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ABSTRACT

Artificial intelligence and deep learning are becoming increasingly

prevalent in contemporary software solutions. Explainable artificial

intelligence (XAI) tools attempt to address the black box nature of

the deep learning models and make them more understandable to

humans. In this work, we apply three state-of-the-art XAI tools in

a real-world case study. Our study focuses on predicting combined

sewer overflow events for a municipal wastewater treatment orga-

nization. Through a data driven inquiry, we collect both qualitative

information via stakeholder interviews and quantitative measures.

These help us assess the predictive accuracy of the XAI tools, as

well as the simplicity, soundness, and insightfulness of the pro-

duced explanations. Our results not only show the varying degrees

that the XAI tools meet the requirements, but also highlight that

domain experts can draw new insights from complex explanations

that may differ from their previous expectations.

CCS CONCEPTS

· Computing methodologies→Machine learning; Neural net-

works; · Software and its engineering→ Process validation.
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1 INTRODUCTION

Artificial Intelligence (AI) has become so ubiquitous that many

decisions nowadays in our daily life are shaped by it, e.g., news

feed suggestions and shopping item recommendations. To put the

flourish of AI into perspective, Adadi and Berrada [2] highlight the

reports forecasting that from 2017 to 2021, the global investment

on AI will increase from $12 billion US dollars to $52.2 billion, and

the revenues from the AI enabled industries worldwide is expected

to grow from $480 billion to $2.59 trillion.

The unstoppable penetration of AI also reaches into the public

sector. For example, the European Commission envisions that AI

could be used to serve citizens 24/7 in faster, more agile, and more

accessible ways [22]. However, some public AI services have already

shown harmful consequences. In the U.S., for instance, AI was

used to allocate caregiver hours for people with disabilities, but

dramatically lowered the number of hours in multiple cases without

any explanation or meaningful opportunity to contest the decisions

made by the proprietary algorithm [52].

Although AI mistakes are inevitable, the lack of explainability

raises significant concerns from the citizens and public organiza-

tions about AI-based decision making’s accountability, fairness,

responsibility, and transparency. Explainable artificial intelligence

(XAI) addresses these concerns by aiming to make AI more under-

standable to users, so as to increase the users’ trust and reliance on

the AI system.

Consequently, many XAI tools are built to automatically gener-

ate explanations from deep learning models. Deep learning models

have been able to achieve near-human accuracy levels in various

types of classification and prediction tasks including images, text,

speech, and video data [7]. These deep learning models are often

opaque in their nature and hence referred to as łblack boxesž due to

the difficulty in understanding how they operate [20]. An influential

XAI tool is LIME (Local Interpretable Model-agnostic Explanations)

proposed by Ribeiro and his colleagues [43]. LIME can approximate

a black box model locally in the neighborhood of any prediction

of interest. An illustration given by Ribeiro et al. [43] is that, once

a model predicts a patient has the flu, LIME shows with relative

weights that łsneezež and łheadachež contribute to this particular

prediction whereas łno fatiguež is evidence against it. Identifying a

few weighted features as in LIME is only one way to produce expla-

nations. Others extract rules, visualize salience maps, or implement

other methodologies [2].
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Miller et al. [31] argue that most XAI researchers are currently

building tools for themselves, rather than for the intended user.

Even the seminal work on LIME scored the lowest on Miller et al.’s

‘Data Driven’ criteria, because Ribeiro et al. [43] constructed their

own understanding of how people might evaluate explanations and

recruited human subjects on Amazon Mechanical Turk to perform

the experiments. Behavioral experiments conducted with lay per-

sons are simplifications of, and therefore cannot replace, putting the

explanation into the real-world application and letting the actual

end user (typically a domain expert) test it [15].

To gain insights into application-grounded XAI evaluations, we

conducted a case study on how public services might exploit deep

learning to predict combined sewer overflows (CSOs). Combined

sewer systems transport various sources of water from residential,

industrial, and commercial customers as well as storm runoff. A

problem with these systems is handling CSO events when the sys-

tem is overwhelmed by surges of water and the combined sewer

system is forced to discharge untreated water into the local en-

vironment. With infrastructures like sensor networks collecting

real-time water flow data, along with the availability of contribut-

ing sources like the rainfall data, public sewer services show keen

interests in deep learning techniques that are capable of offering

high degrees of predictive accuracy as well as explainability.

This paper makes two main contributions. We perform a goal-

question-metric analysis of explainability to quantitatively mea-

sure three state-of-the-art XAI tools, and we interview two domain

experts to qualitatively assess the XAI results on ‘Data Driven’1

CSO predictions. Our study not only updates some commonly held

beliefs about explainability, but also emphasizes the engineering

considerations of incorporating explainability into the entire deep

learning’s development workflow. In what follows, we present back-

ground information in Section 2, detail our case design in Section 3,

analyze the results in Section 4, discuss our work’s implications in

Section 5, and draw some concluding remarks in Section 6.

2 BACKGROUND

2.1 Explainable Artificial Intelligence (XAI)
and Tools

In AI, the high level of difficulty for the system to provide a suitable

explanation for how it arrived at an answer is referred to as the

black box problem [2]. This difficulty is particularly prominent for

deep learning models, because a deep neural network trained end-

to-end can be as complex as an accurate explanation of why the

model works [17]. The complexity can be illustrated by ResNet [21],

which incorporates about 5 × 107 learned parameters and executes

about 1010 floating point operations to classify a single image. XAI

tries to demystify the black boxes as they begin making decisions

previously entrusted to humans. Thus, explainabilityÐthe ability

to interpret the inner workings or the logic of reasoning behind the

decision makingÐhelps to achieve an AI system’s:

• accountability: justifying the decisions and actions,

• fairness: having impartial treatment and behavior,

1By ‘Data Driven’, we mean explicitly referencing articles on explanation in social
science, and testing if the produced explanations are appropriate for the intended
users [31].

• responsibility: answering for one’s decisions and identify-

ing errors or unexpected results, and

• transparency: describing, inspecting, and reproducing the

mechanisms through which the decisions are made.

Adadi and Berrada [2] identified 17 XAI techniques by surveying

381 papers published between 2004 and 2018. According to the sur-

vey, most recent work done in the XAI field offers a post-hoc, local

explanation. Because only a few models, such as linear regression

or decision trees, are inherently interpretable, generating post-hoc

explanations is necessary for complex models like deep neural net-

works. Post-hoc XAI tool can therefore be applied to any classifier

or regressor that is appropriate for the application domainÐeven

those that are yet to be proposed [43]. Local explanations justify

why a single prediction was made, which are in contrast to global

explanations trying to understand the entire reasoning leading to

all possible outcomes.

What the XAI tools do can be classified by how they emulate

the processing of the data to draw connections between the in-

puts and outputs. Gilpin et al.’s taxonomy [16] organizes XAI tools

by their function to (1) extract rules to summarize decisions, (2)

create a salience map to highlight a small portion of the computa-

tion which is most relevant, and (3) employ a simplified proxy that

behaves similarly to the original model. For instance, Benítez et

al. [5] transformed deep neural networks to fuzzy rules through an

equivalence-by-approximation process, Simonyan et al. [45] pro-

duced a salience map by directly computing the input gradient, and

Ribeiro et al. [43] used a local linear model in LIME as a simplified

proxy for the full model.

With the increased usage of XAI techniques, evaluating their

efficacy becomes important to inform practitioners about tool adop-

tions. Miller et al.’s survey of 23 XAI papers [31] shows that rigorous

human behavioral experiments are not currently being undertaken.

As the verb to explain is a three-place predicate: łSomeone ex-

plains something to someone [23]ž, Miller and his colleagues [31]

argue that most XAI tools explain things (e.g., feature or neuron

importance) to the AI researchers but not to the intended users.

Doshi-Velez and Kim [15] further argue that the best way to show

how an XAI technique works is to evaluate the tool by consulting

domain expert grounded in the exact application task. Although

costly, the application-grounded evaluations provide direct and

strong evidence (or lack thereof) of XAI’s fulfillment of the require-

ments.

2.2 Explainability as a Non-Functional
Requirement (NFR)

In software engineering, functional requirements describe what the

system does, whereas non-functional requirements (NFRs) focus on

how well the system does it [10, 38]. Making classifications, rec-

ommendations, and predictions are among the common functional

requirements of an AI system [11], and doing so in an explain-

able way is often regarded as a non-functional concern [28]. Thus,

researchers consider explainability to be an NFR.

In a survey study with 107 participants (90 from Brazil and 17

fromGermany), Chazette and Schneider [9] elicited the participants’

expectations from an explanation. Chazette and Schneider’s online
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questionnaire used a hypothetical scenario where the survey par-

ticipants would use a vehicle’s AI-based navigation system while

driving on a route they had traveled before; however, AI suggested

a different route than usual. Of the 103 codes analyzed from all

the responses, 36 (35%) expressed desire in knowing what specific

piece of information supported and influenced the suggestion, 12

(12%) wanted to know the how of the algorithm’s inner reasoning,

and 55 (53%) expressed willingness to understand why something

happened (e.g., łwhy the [usual] route is not being suggestedž and

łbenefits of the new route when compared to the usualž [9]).

The survey results clearly show that people’s explainability re-

quirements are different. Chazette and Schneider [9] further pointed

out that eliciting explainability should also consider laws and norms,

cultural and corporate values, domain aspects, and practical project

constraints such as time and budget. The European Union, for in-

stance, debated about a general łRight to Explanationž [18] which

is partly enshrined in certain regulations [41]. Such policies, along

with the globally emerging ethics guidelines [25], are making AIÐ

especially AI in citizen servicesÐmore auditable.

NFRs may interact: the attempts to achieve one NFR can hurt or

help the achievement of another [34]. For example, generating a

post-hoc explanation imposes additional computational overhead,

possibly hurting an AI service’s responsiveness. Meanwhile, 35% of

the codes in [9] corresponded to the responses in which the users

perceived explanations as a way to reduce obscurity due to the

more information about the AI system and its outcomes. Yet 15%

cautioned that too technical or lengthy explanations might add

more obscurity. Recognizing the trade-offs between explainability

and other NFRs is therefore important for prioritizing requirements

and making design choices.

In summary, the requirements engineering literature suggests

that explainability is an NFR, or a softgoal whose satisfaction is

a matter of degree without a clear-cut criterion [10]. Because ex-

plainability is not a technical concept but tightly coupled to human

understanding, examiningwhat XAI tools actually do andwhat they

should do must be carried out with respect to the relevant aspect in

relevant contexts. Understanding the degree to which existing XAI

tools satisfy the explainability softgoal in an application-grounded

task is precisely the focus of our research.

3 CASE STUDY DESIGN

3.1 Problem Context

Nearly 860 cities and towns across the U.S. have combined sewer

systems, which manage stormwater as well as wastewater, creating

what the U.S. Environmental Protection Agency (EPA) considers

to be the largest unaddressed risk to human health from the water

infrastructure [50]. According to an EPA report [50], about 850 bil-

lion gallons of untreated wastewater is discharged into waterways

annually in the U.S. The excess water from storms carries dust,

trash, and debris from developed regions and washes them into

the combined sewer system. When these combined sewer systems

are overwhelmed, they will discharge untreated wastewater into

nearby waterways at an outfall site. This is defined as a combined

sewer overflow (CSO) event. Figure 1 shows a simplified view of

the causes of CSO events.

domestic

wastewater

stormwater

runoff industrial

wastewater

pipe maximum conveyance

capacity 

wastewater treatment

river

Figure 1: Illustration of a CSO (combined sewer overflow)

site and how overflow can lead into nearby water sources.

In the U.S., the over 9,000 CSO outfall sites account for approxi-

mately 5,000 infections annually, damages habitats for animals in

wetlands, killing fish in rivers, and closures of recreational water-

ways and beaches [50]. This problem is not unique to the U.S., but

occurs all around the world. For example, an average of 39 million

tons of untreated wastewater is dumped into the river Thames

in London, UK annually due to the CSO events [13]. Even mod-

ern cities with combined sewer systems such as Shenzhen, China

have to handle mitigation of pollution into rivers from the CSO

events [47]. With increasing levels of urbanization and changes

in weather patterns due to climate change, these problems are ex-

pected to become more severe and require new solutions to handle

them in the future [13].

We worked with a wastewater treatment organization, Metropol-

itan Sewer District of Greater Cincinnati (MSDGC), that services an

operating area of about 300 square miles, over 850,000 customers,

and over 3,000 miles of combined sewers. MSDGC has set up a large

scale sensor network to collect data and remotely operate their sys-

tem. Some of the older outflow sites in their system can only hold

a limited amount of water before they will overflow and cause a

CSO event. The current practice of MSDGC is to reference weather

forecast, then alert citizens if a CSO event may occur within the

next day.

Since MSDGC is a public service, they need to be able to jus-

tify their reasoning for their decisions, especially when their deci-

sions affect the safety of customers. This need for transparency is

why their current system of mostly relying on weather forecasts is

preferred. They can justify their decisions easily, quickly identify

mistakes, and utilize this information for future warning. Ideally,

alerting customers early before a CSO event occurs can help keep

their customers safe. When using weather forecasts, a warning

may be sent every time a large storm is expected. However, many

of the alerts sent are false positives leading to customers simply

ignoring them. Reducing the high false positives in predicting the

CSO events (łpredicting CSOsž for short) is the main reason why

MSDGC is exploring deep learning solutions.

Drawing fromprior experience [6, 36], we designed an exploratory

case study [55] to investigate the use of deep learning and XAI

tools to predict the CSOs within the real-life context of MSDGC.

In particular, we worked with two domain experts from MSDGC:
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Table 1: Sample of rainfall data which is sampled every

minute from a sensor and returns the depth of rainfall mea-

sured in an area upstream of the CSO outfall site.

Timestamp Rainfall (inches)

Oct 12, 2018 14:29 0.0006

Oct 12, 2018 14:30 0.0006

Oct 12, 2018 14:31 0.0006

Oct 12, 2018 14:32 0.0006

Oct 12, 2018 14:33 0.0015

Table 2: Sample of level, velocity, and flow data from the

manhole site upstream of the outflow sensor. This data was

sampled at a rate of once every 5 minutes.

Timestamp Level Velocity Flow

Aug 20, 2019 2:15:00 1.706 0.920 0.066

Aug 20, 2019 2:20:00 1.673 0.861 0.060

Aug 20, 2019 2:25:00 1.648 0.789 0.054

Aug 20, 2019 2:30:00 1.634 0.753 0.051

Aug 20, 2019 2:35:00 1.618 0.779 0.052

a hydrologist and an operational manager. They were points of

contact for our case study and were the employees that managed

the data. They are representative of our stakeholders due to their

organizational roles and working experiences. We communicated

via emails as well as online meetings and discussions throughout

the course of the case study due to restrictions relating to COVID-

19. These meetings were conducted in an informal interview style

where we co-designed the goal-question-metric framework2 with

the domain experts and we presented results and made revisions

as needed. When presenting results of the XAI tools to the domain

experts, we used the visuals and interactive elements provided di-

rectly from the selected XAI tools to observe how well the tool

could provide insight to domain experts more familiar with the

data but not familiar with AI research. Our work seeks to provide

some examples of successes and problems of conducting further

research into how domain experts can use XAI tools to better apply

and utilize deep learning models.

The data collected by our wastewater treatment organization

was taken from various sensors at a CSO outflow site, a manhole

approximately 450 ft upstream of the outflow site, and a rainfall

sensor for the area. The site is considered to be łoverflowingž when-

ever the level of water at the CSO site exceeds the site’s capacity.

Each of these sites collects data independently from each other at

different rates. The slowest sampling rate is one sample for every 5

minutes while the fastest is every minute. In order to handle the

inconsistency and variations in real data, we used linear interpo-

lation to handle variations in sampling time to synchronize the

samples from each of our sources. As illustrations with fictitious

data, Table 1 shows a sample of the rainfall data, Table 2 shows

samples from sensors in a manhole a few minutes upstream in a

pipe upstream, and Table 3 shows a sample of the synchronized

and interpolated dataset.

2The framework will be further discussed in Section 3.3.

Table 3: From our dataset, we collected three features (flow,

level, velocity) from the manhole upstream of the outflow

site, one feature (outfall) from the outfall site itself, and one

feature (rainfall) from the rainfall sensor. This is a sample

of the synchronized and interpolated data points from our

dataset.

Timestamp Flow Level Velocity Rainfall Outfall

Aug 17, 2019 7:35 0.038 1.441 0.673 0.0 45.78

Aug 17, 2019 7:40 0.032 1.424 0.590 0.0 45.78

Aug 17, 2019 7:45 0.035 1.395 0.654 0.1 45.79

Aug 17, 2019 7:50 0.032 1.366 0.624 0.1 45.80

Figure 2: Figure from [43] showing an abstraction of how

LIME forms a local, linear decision boundary from themore

complex decision space.

3.2 Deep Learning Solution and XAI Tools

We are using a deep learning model to take advantage of the year

of continuous data collected by our wastewater treatment organi-

zation and the smart network they have developed. Since our data

is sequential in nature, we are using a Long Short Term Memory

(LSTM) cell structure in our model, which is in line with our recent

work on deep learning based CSO predictions [8, 19]. In order to

simplify the problem, we first check when all of the CSO events

occur, then pass the LSTM the features from Table 3 for 12 hours

of data. We utilized an Adam optimizer [27] and tensorflow [1] to

create and train our model3.

Simply giving our deep learning model to the wastewater treat-

ment organization is not sufficient to meet their needs for trans-

parency and justification. Therefore, we applied various XAI tools

to our deep learning solution. There are quite a few tools that pro-

vide explanations for LSTM-based models [2]. In order to select and

compare tools for our work, the tools we used must be available

to the engineers at the wastewater treatment organization even

without our direct input so they can continue to use and expand

on our work. Given this constraint, the tool should be open source,

compatible with our solution, and easy to use.

In addition to the above selection criteria, we wanted to use the

XAI tools to explain how the LSTM has made a decision of overflow

for the CSO site. Ideally this can be used to help inform future

decisions for our stakeholders at the MSDGC. These tools should

3Our source code and results are shared at https://doi.org/10.5281/zenodo.4818970.
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(a) LIME (b) SHAP

(c) RuleMatrix

Figure 3: Illustrating the explanations generated from the XAI tools: (a) LIME’s explanation displays the most influential

features supporting or opposing a prediction decision, (b) SHAP’s explanation visualizes how much input features affect the

CSO predictions, and (c) RuleMatrix’s explanation generates a hierarchy of rules by using the input features.

increase transparency and accountability of the deep learningmodel

by better understanding how it operates.

From these requirements, we selected the XAI tools of LIME [43],

SHAP [30] based on DeepLIFT [44], and RuleMatrix [32]. Each of

these state-of-the-art tools can take an LSTM-based model and a

given sample from our dataset, and then produce an explanation

for how the deep learning model made a decision. The tools have

different assumptions and make different explanations.

• LIME creates a local approximation of the deep learning

model’s output space by sampling various inputs from our

dataset. LIME then uses this approximation of the output

space to determine which features in the input space are

the most significant to determine the model’s prediction.

Figure 2 shows a representation of how a linear boundary

is created for a given sample of interest. This identifies the

most significant features and which classes these features

support.

• SHAP uses backpropagation and computes shapely values

to determine how much influence the inputs of each layer

have on the next layer. Through backpropogation, these val-

ues are progressed from each layer starting with the output

back towards the input of the deep learning model. This is

then used to create a significance map of how much each

individual input influenced the final prediction. These values

of influence can range dynamically on a gradient.

• RuleMatrix creates a global approximation of the deep

learning model’s decisions. This is done through a set of

rules organized hierarchically where each rule in sequence

divides the dataset based on a threshold for a given input

feature. These rules, though only approximations, are inher-

ently explainable to humans.

Figure 3 provides sample explanations illustrating the outputs

from our chosen XAI tools. Some key differences of these tools

can be seen through how they represent their explanations. For
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Goal

Question

Metric

Accuracy (w.r.t. predictions) Explainability (w.r.t. explanations)

Predicting all CSOs? Predicting only CSOs? Simple? Disruptive? Sound?

Recall Precision Entropy Stakeholder
Interviews

Prediction
Change

Figure 4: The goal-question-metric (GQM) framework guides our case study. Each arrow represents defining a concept inmore

detail. The diagram progresses from high level goals into more concrete questions, then finally to the measurable metrics.

example, between LIME and SHAP, SHAP gives a gradient of values

to each feature as to how much it helped or hurt a prediction. LIME

attributes influence to different features instead of a gradient for

each feature to the prediction. SHAP uses backpropagation to assign

influence from the prediction to the input space while LIME samples

other data points in the local output space to generate explanations.

RuleMatrix operates in a completely different manner as it creates

a whole new model making it difficult to directly compare to SHAP

and LIME. These differences motivate us to establish a coherent

framework for evaluating the XAI tools.

3.3 Research Questions

We follow the goal-question-metric (GQM) approach [46] to crit-

ically understand the three chosen XAI tools in the context of

deep learning based CSO prediction. The analysis is drawn from

our GQM analysis of visual requirments analytics tools [37, 40].

Compared with many XAI studies that focused on evaluating the

produced explanations with lay persons or AI researchers [31], we

collected the feedback directly from two domain experts, i.e., a

hydrologist and an operational manager at the MSDGC. We were

in constant email communications with the two domain experts.

Furthermore, we held three one-hour virtual meetings with these

two experts to understand the data shared with the research team,

to elicit their explainability related concerns, and to interview them

while presenting the explanation results from the XAI tools.

The structure of our GQM analysis is presented in Figure 4

where two general goals of accuracy and explainability of CSO

prediction are addressed. Relevant questions are used to refine the

goals. While we measure accuracy by well-known metrics of recall

and precision, the questions of explainability are explicitly built on

human behavioral studies, making our case study directly ‘Data

Driven’ according to Miller et al. [31]. In particular, we consider two

studies on explainability from cognitive psychology and behavioral

sciences.

Lombrozo [29] conducted human subject experiments to decide

what caused a given event from a set of possible choices then jus-

tify these decisions, and showed that people disproportionately

preferred simpler explanations over more likely ones, indicating

some trade-off between the simplicity and soundness of explana-

tions. Moreover, Thagard [49], in developing his well-known ECHO

model to characterize the cognitive processes responsible for se-

lecting between competing explanatory hypotheses, reported that

people preferred the explanations consistent with their prior knowl-

edge. Therefore, we also investigate how disruptive the XAI tools’

explanations are, compared to the domain experts’ existing CSO

understandings. As shown in Figure 4, our case study addresses

five research questions (RQs):

• RQ1: How complete does the XAI-enabled deep learning

solution predict CSOs?

We measured this through recall which is the number of

correctly identified CSO events out of all CSO events in the

dataset. LIME and SHAP make post-hoc predictions directly

from the LSTM-based deep learning model. Consequently,

LIME and SHAP have the same recall value as the LSTM.

RuleMatrix, on the other hand, requires a re-computation of

recall according to the generated rules.

• RQ2: How much noise is there as the XAI-enabled deep

learning solution predicts CSO events?

We measured this through precision, the number of correctly

identified CSO events out of all predicted events by the deep

learning model. Just as with recall, LIME and SHAP make

post-hoc predictions and thus have the same precision as

the original LSTM, whereas this metric will need to be re-

computed for the rule-based model created by RuleMatrix.

• RQ3: How simple are the explanations generated by the XAI

tools?

In order to evaluate the simplicity of these tools, we used

both numeric metrics as well as interviews. For a quantita-

tive metric, we computed the entropy of the explanations

produced by the XAI tools. Entropy measures the uncer-

tainty, or disorder, of a distribution [42] which can be used

to approximate how much unique information and variabil-

ity is in the explanation. In addition, we interviewed the two

experts and showed them explanations from the various XAI

tools.

• RQ4: How sound are the explanations generated by the XAI

tools?

Soundness of an explanation can be difficult to investigate

since it depends on the background of a stakeholder, as dis-

cussed by Gilpin et al. [16]. However, XAI tools such as

DeepLIFT [44], SHAP [43], and Layer-wise Relevance Prop-

agation [4] all attempt to assess the łcorrectnessž of the

generated explanations by masking the most significant data

values identified by an XAI tool from a sample to examine
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the corresponding prediction changes of a given deep learn-

ing model. Thus, we applied this łprediction changež metric

as a quantitative measure of the soundness of an explanation.

We also interviewed the two domain experts to assess their

confidence in the plausibility of the XAI tools’ explanations.

• RQ5: How much new insight, if any, do the XAI tools’ ex-

planations offer?

To our stakeholders from the MSDGC, performance is an

important aspect as an AI system must both perform better

and be as interpretable as their existing system to justify its

use. It is clear to us that our stakeholders want to know if

deep learning can provide a new perspective on the problem.

However, having a model deviate too much from their expec-

tations may make it difficult to trust. Through interviewing

the stakeholders, we assessed how deep learning equipped

with the explanations can help provide new insights toward

identifying the CSO events, thereby potentially disrupting

some aspects of the MSDGC’s practice.

4 RESULTS AND ANALYSIS

As mentioned in Section 3, we designed an LSTM deep learning

solution to predict CSOs for the MSDGC. We analyzed the results

from this deep learning model as well as the XAI tools described

in Section 3.2. These results are from an LSTM that predicts if a

CSO event will occur within the next hour after being given the

previous 12 hours of data.

4.1 Predictive Accuracy: Recall and Precision

The most important metric for model performance to the MSDGC is

accurately identifying events. If the solution fails to identify events

(i.e., recall is low), it will not be able to warn the citizens in the

serving area. If there are too many false positives (i.e., precision is

low), citizens will likely ignore the warnings.

As discussed in Section 3.3, LIME and SHAP had the same recall

and precision values as the LSTM model. RuleMatrix’s recall and

precision needed to be re-computed once the resulting rules were

generated. To calculate the accuracy measures of both LSTM and

RuleMatrix, we used a 2-month long test subset of the dataset and

then evaluated the predictions based on the given labels from the

wastewater treatment organization: łelevatedž means CSO events

occurred; łnormalž means otherwise.

The recall and precision results are plotted in Figure 5. The figure

shows the results of predicting whether a CSO event will happen

within the next hour for every 5 minute interval over a 2-month

duration. The recall and precision of the deep learning model (and

hence LIME and SHAP) are approximately 80% and 45% respectively.

The recall and precision for RuleMatrix are only about 40% and 20%

respectively, representing a 50% recall drop and a 55% precision

drop.

While disappointed in the RuleMatrix’s accuracy levels, the two

domain experts believed LSTM’s CSO predictions were encour-

aging and agreed with our suggestions of improving the model

performances by incorporating data from more CSO sites. During

the interviews, the experts were also interested in how the LSTM’s

performances would compare to the MSDGC’s current practice of
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Figure 5: Answering RQ1 and RQ2. Recall of predict-

ing CSOs (łelevatedž class): LIME=SHAP=LSTM=78.9%,

RuleMatrix=43.2%. Precision of predicting CSOs:

LIME=SHAP=LSTM=41.3%, RuleMatrix=17.3%. Re-

call of predicting non-CSO events (łnormalž class):

LIME=SHAP=LSTM=99.6%, RuleMatrix=99.3%. Precision

of predicting non-CSO events: LIME=SHAP=LSTM=99.9%,

RuleMatrix=99.8%.

relying on weather forecast to inform the citizens about potential

CSO events.

To investigate this, we further collected rainfall data from NOAA

DIVER [14] for the area around the CSO site for the same date

and time range that our deep learning model was tested on. When

using a constant rainfall threshold for a given day (i.e., 0.5 inches

of rainfall per day), a recall of 100% and a precision of 20% were

obtained. The low precision level helped illustrate the exploration

of the deep learning solutions. Although LSTM’s 41.3% doubled the

CSO predictions’ precision, it is important to note that the NOAA

dataset can only collect rainfall data for each day, whereas the

LSTM-based deep learning model makes predictions continuously

for a time range in the future. This continuous prediction of the

deep learning model could lead to lower recall as a prediction one

hour before an event may be correct but half an hour before an

event may be incorrect. LSTM does not predict every interval before

the CSO event correctly but it does identify 78.9% of the 5 minute

intervals an hour before a CSO event from Figure 5. The deep

learning model is more precise than only considering rainfall data

and can be substantially improved in the future. The value added

by the deep learning model redefines the problem and, with some

improvement to the deep learning model, could give the wastewater

treatment organization to proactively address CSO events before

they occur. The above analyses suggest:

Finding 1: While RuleMatrix’s recall and precision

are low, LSTM (and hence LIME and SHAP) achieves

about 80% recall and performs more precisely than

the current practice. In addition, LSTM provides new

predictive capabilities for every five minutes before a

CSO event as opposed to daily weather forecasts.
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Figure 6: Explanation complexitymeasured by entropy. Ran-

dom is sampled from a uniform distribution, representing

a baseline entropy. Entropy is computed from the Scikit-

Learn library [39] with a log2 scale for these results. Greater

entropy values indicate more complex explanations (RQ3).

4.2 Explanation Simplicity and Soundness

Our RQ3 and RQ4 investigate to what extent, łsimpler explanations

favored over more likely onesž [29], holds in our case study. As

illustrated in Table 3, our LSTM model had a total of 720 input

parameters consisting of five features sampled at a rate of every 5

minutes for 12 hours. To quantitatively evaluate all three XAI tools,

we computed SHAP for all input parameters, and experimented

LIME for 10 (default), 100, and 720 (all) parameters. RuleMatrix

had a fixed number of decisions so we used the 19 rules that were

produced.

In order to quantify simplicity, we computed the entropy to

measure the variation and uniqueness of the explanations produced

by each tool. The explanation of each instance was a matrix sharing

the same shape as the input dataset. The influence of each element

on the final prediction was stored in this matrix. RuleMatrix created

a set of rules, so to approximate this level of information we simply

used a string of ones and zeros where a one indicates a rule was

used and a zero indicates that a rule was skipped. When computing

entropy, a set of numbers of the same value has an entropy of zero

while a set of completely unique or random numbers would have

much greater entropy. We repeated a random sampling 1,000 times

to identify an accurate representation of random entropy. This is

limited to a small sampling due to the time it takes to create an

explanation.

Results in Figure 6 show an increase in entropy with increase in

explanation size (i.e., the number of parameters in an explanation).

This trend is expected as more unique values are being added to

the explanations. As far as the XAI tools are concerned, LIME

had complexity almost equivalent to a random sampling, and it

could also be filtered to the most significant results. SHAP had

much less entropy for the 720 parameters that it explained, and
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Figure 7: Explanation soundness generated by removing the

most significant 𝑘 features identified by SHAP and LIME

from a sample and then evaluating how much the removal

changed the prediction. Greater change in prediction im-

plies more soundness of the explanations (RQ4).

had a wider variance than a random sampling. We speculate that

this is due to the majority of the features have little significance,

potentially resulting from backpropagation and how the SHAP tool

parses the LSTM structure. RuleMatrix’s entropy was on par with

a random sample of that size but the variation was wide. Note that

RuleMatrix produced what is commonly believed to be inherently

explainable and simple in terms of citing a small list of causes for

each prediction.

Explanation soundness (RQ4) evaluates how łcorrectž an ex-

planation is at determining the decision made by the black box

LSTM. We quantified how much the deep learning model’s predic-

tion would change when removing the most significant features at

specific timestamps within the dataset. This measure gives us an

experimental verification of the importance of the identified fea-

tures in the explanations. Since RuleMatrix did not distinguish in

the explanations which elements were the most significant for each

individual prediction, we could not directly evaluate RuleMatrix by

using the łprediction changež procedure.

Figure 7 shows the soundness results when removing the top

𝑘 features for SHAP and LIME. For the top 10 features, SHAP

and LIME have a change in prediction of about 0.0001 and 0.0007,

respectively. When increasing 𝑘 to 100, SHAP has a much wider

range, centered at 0.0217 while LIME has a 0.0028 average. When

𝑘 increases further to 200, SHAP and LIME’s distributions cluster

around 0.1050 and 0.0088 respectively. Figure 7’s results suggest

that LIME has the slightly more sound results for a smaller 𝑘 , but a

larger 𝑘 seems to manifest SHAP’s soundness better.

The interviewswith the two domain experts confirmed our obser-

vations and provided new views. Although RuleMatrix is inherently

more explainable than LIME and SHAP, the hydrologist and the

operational manager at the MSDGC did not find the rule hierarchy

captured the relevant knowledge in the CSO domain. Both LIME

and SHAP were well received by the experts, with more preferences

shifting to SHAP as this XAI tool exhibits more soundness when all

the features are considered together. Despite being sound at smaller

𝑘 and being flexible in terms of having a customizable number of
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Figure 8: The average influence each feature had on the over-

all prediction. Observing where the influence comes from

helps to establish both soundness of results (RQ4) and to ex-

plore new insights (RQ5).

parameters in an explanation, LIME could be confusing when in-

corporating many features. Surprisingly, from Figure 6’s entropy

perspective, SHAP is simpler than LIME when all the features are

taken into account. Based on the analyses of RQ3 and RQ4, we

summarize:

Finding 2: Explanation’s simplicity does not always

come at the cost of soundness. Domain experts would

clearly favor soundness over simplicity, and in our

case study of CSO predictions, SHAP’s more sound

explanations with many parameters turn out to be

also simpler.

4.3 New Insights from the Explanations

Our stakeholder interviews included an interactive session where

the two domain experts could explore the XAI tools beyond the

results that the research team had prepared. We highlight some

concrete insights gained from the interactive session, which fo-

cused more on LIME and SHAP, due to RuleMatrix’s low recall and

precision levels.

Figure 8 shows the general results as to which features from the

dataset are the most influential to the deep learning model across all

predictions. SHAP distributed influence fairly evenly between the

features while LIME heavily favored Rainfall. As LIME increased to

include more features in the explanation, the distribution evened

out more. In addition to this, a visualization of the influence by time

is shown in Figure 9. SHAP heavily favored the time right before

the CSO event while LIME favored the start of the sample. Similar

to Figure 8, the influence of LIME in Figure 9 evened out as more

features were included in the explanation.

The experts stated that LIME results were useful in identifying

the most significant features when looking at the top 10 elements.

Meanwhile, they were able to interpret new insights from the sig-

nificance plots generated by SHAP such as Figure 3(b) and the

summary plot of Figure 8: they found a pattern in the correlation

between velocity, flow, and level and suggested why these attributes

might be more significant in a few sample events. At first, they had

not assumed the feature of velocity to be useful for predictions but
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Figure 9: The average influence each hour of time before the

predicted event had on the overall prediction. This distribu-

tion helps to identify the new insight about what specific

features to focus on and when to focus on them (RQ5).

realized and discussed how correlations between velocity and flow

could help predict future CSO events. This provided a new insight

to help guide future development and resources for their analysis

that challenged their initial view.

Another major insight was the prominence of Rainfall in the

decision making process of the model, as shown in Figure 8. This

confirmed our stakeholders’ expectations as excess storm water

is the main cause of CSO events and helped them to trust the

results. However, the dominant influence of Rainfall leveled off not

only when LIME’s explanations involved more features, but also

when SHAP was applied. Given that LIME and SHAP achieved the

same recall and precision levels, the patterns revealed in Figure 9

offers remarkable insights into when to focus on which features.

While weather forecast’s Rainfall could still be dependent upon

in alerting CSOs to the relevant citizens 12 hours ahead of the

time, paying additional and equal attention to sensor network data

like velocity could potentially leave 2ś4 hours for the MSDGC to

dispatch engineers onsite to prevent, alleviate, or otherwise manage

the CSO events. Based on the interviews, we conclude:

Finding 3: XAI tools of our case study, especially

LIME and SHAP, have the potential to disrupt

stakeholder expectations of the influential factors

of CSOs, as well as to take justifiable actions to

ameliorate the CSO situation.

4.4 Threats to Validity

Our inquiry is an exploratory case study [55] aimed at investigat-

ing the contemporary CSO phenomenon in depth and within its

real-life context. We discuss some of the most important aspects

that must be considered when interpreting our case study’s results.

A threat to construct validity is our choice of the three XAI tools.

As mentioned in Section 3.2, our tool selections were guided by the

considerations of being open source, being compatible with our

LSTM solution, and being easy to use for the stakeholders in the
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tools. The undirected lines represent goal decompositions,

informed by our GQM analysis (cf. Figure 4). The arrows

represent softgoal contributions [10]: ł--žmeans breaks, ł-ž

means hurts, ł+ž means helps, and ł++ž means makes.

wastewater treatment organization even without our assistance.

To those ends, we limited our scope to evaluate the XAI tools as

is, without any further adjustment or customization. Another con-

struct validity relates to our use of entropy. Insights provided by

the XAI tools provide added value to stakeholders and can guide fu-

ture development and improvements for CSO prediction. Although

entropy directly measures variance and uniqueness and thus im-

plies more on information density, we found it to be useful when

quantitatively measuring how complex a result was.

A threat to internal validity concerns the size of the real-world

dataset shared with us by our stakeholder organization. Our dataset

was limited in scale, e.g., the dataset was heavily biased towards

the negative class (normal flow). We therefore augmented it with

oversampling to effectively train the deep learning model. The aug-

mentations might have had unintended consequences on the results

of the XAI tools as this was not fully explored in our work. More

historical data of the CSO site would help evaluate our assumptions

of our augmentations, mitigating the threat to internal validity.

We believe our study’s conclusion validity is high. First and

foremost, we set out to overcome the łdata drivenž weakness of

current XAI studies [31]. Referring explicitly to the relevant liter-

ature [29, 49] allowed our inquires to stay focused and our con-

clusions to be well grounded. Furthermore, bias is mitigated by

investigating XAI tools not developed by the research team. Al-

though the two domain experts are only a small sample in the

field, they have real stake in the potential changes to be introduced

by deep learning. Last but not least, we share our source code at

https://doi.org/10.5281/zenodo.4818970 in order to facilitate repli-

cation and expansion of our results.

5 DISCUSSION

5.1 Satisficing Explainability

Explainability, as an NFR discussed in Section 2.2, is satisficed [10]

in a matter of degrees. Based on our GQM analysis from Figure 4

and the quantitative and qualitative results presented in Section 4,

we build a Softgoal Interdependence Graph (SIG) in Figure 10. In the

SIG, each of the XAI tools contributes either positively or negatively

to the softgoals. From Figure 10, we note that none of the XAI tools

that we investigated makes all positive contributions, indicating

the tools are all limited in some aspects. A tool cannot help meet

some softgoal without hurting some others, suggesting the trade-

offs among the softgoals. Interestingly, Figure 10 does not reveal

the well-known trade-off between recall and precision. Instead,

the LSTM (and hence LIME and SHAP) achieved higher recall and

higher precision than RuleMatrix, showing that RuleMatrix is less

fit for making CSO predictions. However, as of now, LIME and

SHAP do not perform accurately enough to be adopted by our

stakeholders.

One might argue the key to improving accuracy is with the un-

derlying deep learning model (namely LSTM in our case), making

explainability less of a concern. We argue considering explainabil-

ity, even when accuracy levels are not ideal, is still valuable. For

example, an interesting contrast between LIME and SHAP is where

the influence for CSO predictions comes from. Although different,

the explanations provided by LIME and SHAP are both valid and

show how these XAI methodologies diverge in operation. The deep

learning model predicts events one hour into the future. However,

LIME prioritizes influence of rainfall frommany hours before a CSO

event, whereas SHAP prioritizes influence from all features evenly

immediately preceding a CSO event. Deciphering the black-box

deep learning models, though with varying degrees of satisficing

explainability, is of vital importance for ensuring public sector’s

transparency and accountability.

5.2 Data Driven Explainability

As we drive our inquiry by explicitly referencing the explainability

findings from [29, 49], we cast our case study’s results in light of

the relevant literature. Lombrozo [29] showed that people dispro-

portionately prefer simpler explanations over more likely ones;

however, Lombrozo’s work was carried out with student subjects

who were not domain experts in the field. Through our case study,

we have seen that the hydrologist and the operational manager

greatly favored the soundness of the explanations. It is also worth

mentioning that simplicity does not necessarily correlate with size

(i.e., the number of features an explanation has). By computing

entropy to measure the randomness of the information contained

in the explanations (cf. Figure 6), we observe that soundness and

simplicity co-exist in SHAP’s explanations.

Thagard [49] reported that people prefer the explanations that

are consistent with their prior knowledge. Our domain experts

conformed largely to Thagard’s conjecture. They confirmed the XAI

tools’ outputs generally cohered with what they expected. In some

occasions, we noticed that the XAI tools’ explanations refuted our

domain experts’ expectations. The experts kept an open mindset,

and were able to find new insights from the dataset. Specifically, the

results of SHAP gave more influence to velocity than the experts

initially expected (cf. Figure 8). Since SHAP mostly drew influence

from right before the CSO event (cf. Figure 9), they were able to

reason that this explanation drew upon information that they might

have overlooked. Because of these observations, LIME or SHAP

alone might not be able to uncover the new insights. In the SIG

of Figure 10, therefore, it is the synergy of LIME and SHAP that

contributes positively toward the łembrace disruptivenessž softgoal.
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Figure 11: Simplified view of the software engineering pro-

cess for AI-based systems proposed by Amershi et al. [3].

5.3 Software Engineering for AI-Based Systems

An important lesson learned from our case study is that one shall

not treat explainability as something to add after a deep learning

model is built. Our experience advocates strongly for explainability

to be engineered throughout the deep learning project. Amershi et

al. [3] breaks the software engineering process for machine learning

into nine stages. A simplified view of this process into four phases

is shown in Figure 11. Explainability is so broadly scoped that it

influenced our decisions for each phase of the software engineering

process.

• Requirements Gathering. We interviewed our stakehold-

ers to identify what needs to be explained and why. The

critical requirement of warning citizens about the CSO risks

helped us to better understand the role that XAI might play

in accountability, and to better build the deep learning model

in making CSO predictions.

• Data Preparation. We made a few assumptions about the

data and applied data cleaning and augmentation by inter-

polating data points to synchronize the various data sources

(cf. Tables 1ś3). Understanding the composition of data from

each of the sensors and their preparation helped us better

contextualize the results of the XAI tools’ explanations.

• Model Development. Integrating XAI into the deep learn-

ing model not only required extra effort, but also led to per-

formance decrements due to the resources required to gen-

erate and visualize explanations. For tools like RuleMatrix,

an additional step was required to predict CSOs according

to the generated rules.

• Model Evaluation. Explanations can be consumed by more

than just AI researchers or lay persons; from our work, we

have found that domain experts can contextualize these ex-

planations or use them to gain new insights into the task at

hand. The łrevision and feedbackž of Figure 11 may involve

exploring different numbers of top features from explana-

tions provided by LIME. Additional feedback could be linked

to other phases. For example, the insight gained from SHAP’s

results discussed in Section 4.3 helped elicit a new require-

ment of using deep learning to inform engineer-dispatch

decisions 2ś4 hours prior to a likely CSO event.

XAI tools can be integrated into all phases of Figure 11 as shown

through our case study. They helped inform decisions throughout

software development and can be integrated into pipelines as a

method of verifying model performance or to diagnose issues and

their causes. As noted by Zhang et al. [56], there is a need for

identifying how and why deep learning models make decisions to

satisfy other broadly scoped requirements, such as fairness, privacy,

and robustness. We believe these concerns must be incorporated

into all the phases of machine learning development, and our case

study has demonstrated the feasibility of engineering explainability

with state-of-the-art XAI tools.

6 CONCLUDING REMARKS

Research on explainability of XAI tools with domain experts using

real-world data is significant to ensuring the tool’s ability to be used

with new topics. Our work is a proof of concept for how a GQM

analysis might be used to assess various XAI tools. Despite not

developing an immediately applicable product for domain experts,

we believe that this research can serve as a foundation to assist

development of XAI tools that are more useful for a broader set of

stakeholders by providing a framework based on GQM for potential

analysis.

In our exploratory case study, we employed qualitative and quan-

titative methods to evaluate the predictions’ accuracy and the expla-

nations’ simplicity, soundness, and disruptiveness. Through com-

paring the numeric metrics and reviewing the results of the stake-

holder interviews, we are able to build upon existing psychological

results and contextualize them with respect to the modern XAI

tools. Domain experts welcome new insights and more complex

explanations with multiple causes. Our findings do not directly re-

fute the work of Lombrozo [29] and Thagard [49], but rather build

upon their work in noting that the different levels of complexity

may be appropriate for different stakeholders depending on their

background [16].

To further expand upon this work, explanations from more XAI

tools can be investigated for new insights and for supporting differ-

ent software engineering tasks (e.g., [12, 24, 48, 51]). Future work

can also explore how to effectively, efficiently, dynamically, and

continuously present value-added explanations of deep learning

model to stakeholders [33]. Additionally, we want to use more data

to expand our case study and investigate how seasonal rainfall

differences affect the XAI results. Last but not least, we seek to

employ diverse empirical methods in our future work, such as case

studies co-design with domain experts [53, 54] and theoretical repli-

cations [26, 35]. Investigating explainability as a non-functional

requirement of AI-based systems is an open area of research. The in-

dividual metrics and interview questions of our study are only first

steps to spark a discussion of how they can be improved further.
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