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Abstract
Software requirements are ever-changing which often leads to software evolution. Conse-
quently, throughout software lifetime, developers receive new requirements often expressed
as feature requests. To implement the requested features, developers sometimes apply refac-
torings to make their systems adapt to the new requirements. However, deciding what
refactorings to apply is often challenging and there is still lack of automated support
to recommend refactorings given a feature request. To this end, we propose a learning-
based approach that recommends refactorings based on the history of the previously
requested features, applied refactorings, and code smells information. First, the state-of-the-
art refactoring detection tools are leveraged to identify the previous refactorings applied to
implement the past feature requests. Second, a machine classifier is trained with the history
data of the feature requests, code smells, and refactorings applied on the respective commits.
Consequently, the machine classifier is used to predict refactorings for new feature requests.
The proposed approach is evaluated on the dataset of 55 open source Java projects and the
results suggest that it can accurately recommend refactorings (accuracy is up to 83.19%).

Keywords Feature requests · Code smells · Machine learning · Recommendation ·
Software refactoring

1 Introduction

Requirements change is inevitable as the business, technologies, and stakeholder demands
continuously evolve (Jayatilleke et al. 2018). The adaptation to ever-changing software
requirements is one of the key factors for the evolution of software systems. During soft-
ware evolution, developers often receive new requirements expressed as feature requests
which demand for the implementation of a new functionality or enhancement of an existing
feature. The most common and dominant means to track and manage feature requests is the
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use of issue tracking systems e.g JIRA (2019), Bugzilla (2019), and GitHub Issue Tracker
(2019). Through issue tracker, a feature request can be discussed, assigned to a developer,
and keep track of its status (Heck and Zaidman 2013). To implement the requested feature,
first, developers usually need to locate the source code that should be modified. As a result,
several techniques have been proposed to leverage feature requests to locate (e.g., based on
requirements traceability and text similarity) and recommend software entities (e.g., API
methods) that can be used to implement the requested feature (Thung et al. 2013; Niu et al.
2014; Palomba et al. 2017). Second, developers often apply refactorings on the located
source code to make their systems adapt to the new requirements (Niu et al. 2014; Ratzinger
et al. 2007). However, deciding what refactorings to apply is often challenging.

Software refactoring is a state-of-the-art practice that has been extensively used to
improve software quality by applying changes on internal structure without altering its
external behavior (Fowler 1999). Currently, most of the existing refactorings recommenda-
tion approaches focus at resolving design flaws in source code commonly known as code
smells (Xu et al. 2017; Liu et al. 2013; Ouni et al. 2017). However, the recently conducted
case study to investigate the motivation behind refactoring found that refactoring activity is
mainly motivated by the changes in the requirements and much less by code smell resolution
(Silva et al. 2016). Furthermore, the empirical analysis of refactorings from software repos-
itories found that refactorings are most commonly applied by developers for a specific goal
such as implementing a feature or bug fixing, than in the refactoring sessions dedicated for
evolving the software design (Soares et al. 2011; Murphy-Hill et al. 2012). This finding was
further confirmed by Palomba et al. (2017) in the exploratory study on the relationship
between changes and refactoring. Silva et al. (2016) advocate the need for refactorings
recommender systems that focus on facilitating maintenance tasks (i.e., implementing fea-
ture requests or fixing bugs). However, to the best of our knowledge, there is still lack of
automated support to recommend refactorings during the implementation of feature requests.

To this end, in this paper we propose a learning-based approach that recommends
refactoring types based on the history data of the previously requested features, applied
refactorings, and code smells information. The proposed approach learns from the training
dataset associated with a set of applications and can be used to suggest refactoring types
for feature requests associated with other applications (or new feature requests associated
with the training applications). Our approach involves two classification tasks: first a binary
classification that suggests whether refactoring is needed or not for a given feature request,
and then a multi-label classification that suggests the type of refactoring. Notably, the pro-
posed approach suggests refactoring types only and it does not point to the locations in
the codebase for the recommended refactoring. However, it could be integrated with other
approaches/tools that could suggest such locations, and thus makes more complete refac-
toring suggestions. The proposed approach also helps developers pick up proper refactoring
tools by suggesting refactoring types. The past feature requests and their associated commits
are retrieved from the corresponding issue trackers and software repositories respectively.
Usually, each feature request can be linked to the respective commits that addressed the
request through a unique feature request identifier which is often added in the commits’
messages. In practice, the previously applied refactorings on such commits can be recovered
by using the state-of-the-art refactoring detection tools, e.g., RefDiff (Silva and Valente
2017), RMINER (Tsantalis et al. 2018), and Ref-Finder (Kim et al. 2010). The proposed
approach is evaluated on the dataset of 55 open source Java projects altogether consisting
of 18,899 feature requests from JIRA issue tracker. The evaluation results suggest that, the
proposed approach can accurately recommend refactoring types and attain an accuracy of
up to 83.19%.

Empirical Software Engineering (2020) 25:4315–43474316



This paper is an expanded version of our previous conference paper (Nyamawe et al.
2019). Compared to the conference version (Nyamawe et al. 2019), in this paper we make
the following expansion:

– We revise the proposed approach to leverage code smells in source code besides feature
requests. With such additional information, the proposed approach is improved signif-
icantly. The precision and recall for predicting the need for refactoring are improved
from 66.36% to 80.75%, and from 85.32% to 93.76%, respectively. In addition, the
accuracy of refactorings recommendation has improved from 70.75% to 83.19%.

– We evaluate the proposed approach with larger dataset. The number of involved feature
requests has been increased significantly by 41%.

– We investigate additional research question(RQ3) about the impact of code smells on
refactorings recommendation.

– We implement our approach on three additional classifiers (i.e., Random Forest, Deci-
sion Tree, and Convolutional Neural Network) that were not implemented in our
previous paper (Nyamawe et al. 2019).

The rest of the paper is organized as follows. In Section 2 we review the work related with
our research. Section 3 presents our recommendation approach. We evaluate the proposed
approach and discuss threats to validity of our results in Section 4. We finally conclude our
paper and state the future work in Section 5.

2 RelatedWork

2.1 Refactoring Practice

Software refactoring (Fowler 1999; Mens and Tourwé 2004) has received increased atten-
tion from the research community and a lot of approaches have been proposed that strive
to improve the overall quality of software systems. Developers often apply refactorings to
improve source code maintainability, comprehensibility, and prepare their systems to adapt
to new requirements (Xu et al. 2017; Liu et al. 2013). Usually, software refactoring involves
identifying refactoring opportunities (e.g., code smells) and selecting proper refactoring
operations to alleviate them. However, such task is often challenging especially in large and
non-trivial software systems (Bavota et al. 2014a). Consequently, a majority of the effort has
been devoted in devising refactoring recommenders that can (semi-) automatically detect
code smells, suggest refactoring solutions, and apply them. Such great tools as JMove (Terra
et al. 2018), JDeodorant Fokaefs et al. (2007, 2011), and DECOR (Moha et al. 2010), make
software refactoring efficient and less error-prone.

Understanding the rationale driving the application of refactorings can be useful in evolv-
ing refactoring recommenders that are tailored to the actual needs of software developers
(Silva et al. 2016). As a result, several research (Kim et al. 2012; Silva et al. 2016; Palomba
et al. 2017) have invested in empirically investigating the developers’ motivations behind
applying refactorings, which found that refactoring is mainly motivated by the changes in
the requirements. However, among the prevalent techniques that have been used in rec-
ommending refactorings include source code metrics (Chaparro et al. 2014; Tsantalis and
Chatzigeorgiou 2009), search-based and software change history (Kessentini et al. 2017;
Tsantalis and Chatzigeorgiou 2011; Ouni et al. 2016; Lin et al. 2016), requirements trace-
ability (Niu et al. 2014; Nyamawe et al. 2018) and machine learning techniques (Xu et al.
2017; Liu et al. 2018; Ratzinger et al. 2007; Pantiuchina et al. 2018). To the best of our

Empirical Software Engineering (2020) 25:4315–4347 4317



knowledge, none of these approaches have attempted to automate refactoring recommen-
dation based on past feature requests. In the following, we briefly highlight some of the
state-of-the-art refactorings recommendation techniques.

2.2 Code-Metrics-Based Recommendation of Refactorings

One of the most common ways to recommend refactoring solutions is based on the com-
putation of source code metrics (Chaparro et al. 2014; Tsantalis and Chatzigeorgiou 2009).
Such approaches take the assumption that, refactorings that lead to the improved source
code metrics (e.g., cohesion and coupling) are the best ones. For example, Bavota et al.
(2014b) proposed an approach that recommends extract class refactorings based on the anal-
ysis of structural and semantic relationships between methods of a class to identify chains
of strongly related methods. Consequently, the chains are used to create new classes with
improved cohesion than the original class. Simon et al. (2001) proposed a metrics based
refactoring approach to facilitate developers in deciding where to apply which refactoring.
They defined a metrical distance measure between the members of a class (i.e., attributes
and methods) to identify how they are closely related. Consequently, a defined metric is
used to measure cohesion of a class. For the two entities of a class, say x and y, the metric
is formalized as:

distance(x, y) = 1 − |p(x) ∩ p(y)|
|p(x) ∪ p(y)| (1)

where p(x) and p(y) are the set of properties possessed by x and y respectively. Therefore,
entities with low distances are considered more cohesive than those with higher distances.
In this case, for instance, a move method refactoring is recommended if a method is closer
to the entities in another class than those of the class it is currently in. Similar approaches
in recommending refactorings based on code design metrics are also proposed in Fokaefs
et al. (2007, 2012) and Terra et al. (2018).

2.3 Search-Based Recommendation of Refactorings

Ouni et al. (2016) proposed a multi-criteria refactoring recommender which suggests an
optimal sequence of refactorings that, among other criteria, targets at maximizing consis-
tency with the previously applied refactorings. In their work they contended that, the history
of code changes is essential and can increase confidence in recommending new refactorings.
To ensure consistency with past refactorings, they defined the following fitness function:

Sim ref actoring history(RO) =
n∑

j=1

ej (2)

where n is the number of previously applied refactorings, and ej is a refactoring weight that
measures the similarity between the recommended refactoring operation (RO) and the past
refactoring operation j . A detailed survey of search-based refactorings recommendation
approaches is recently conducted in Mohan and Greer (2018).

2.4 Software Change History-Based Recommendation of Refactorings

Kessentini et al. (2017) proposed an approach that recommends refactorings based on the
analysis of bug reports and history of change. The assumption of this approach is that, a class
which is recently modified or listed in previous bug reports is more likely to demand refac-
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toring. Additionally, the previously applied refactorings were also considered to deduce
possible potential refactorings for current release. Tsantalis and Chatzigeorgiou (2011) pro-
posed a tool (Eclipse plugin) that exploits past source code changes to rank refactoring
suggestions. The philosophy of this approach is that, a piece of code that has undergone sev-
eral changes in the past, is more likely to demand refactoring in the future. Consequently,
a refactoring involving such code should receive a higher priority. Similar approaches to
recommend refactorings based on development history are proposed in Ouni et al. (2015)
and Ouni et al. (2013). Generally, these approaches Kessentini et al. (2017), Tsantalis and
Chatzigeorgiou (2011), Ouni et al. (2013, 2016, 2015) suggest that past source code change
history is useful in recommending new refactorings. In addition, historical data is essential
in producing quality code to evolve software systems (Mei and Zhang 2018). However, such
approaches do not consider feature requests in their recommendation.

2.5 Requirements-Traceability-Based Recommendation of Refactorings

Our approach is inspired by the earlier work proposed by Niu et al. (2014). The authors
in Niu et al. (2014) proposed a traceability-based refactoring recommendation approach
to ensure that the requested requirements are fully implemented. Their approach leverages
requirements traceability between the requirements under development and the implement-
ing source code to accurately locate where the software should be refactored. To determine
what types of refactorings should be applied, the authors developed a new scheme that
examines the requirements semantics as they relate to the implementation. Requirements
semantics involves manual analysis of requirements action themes which refer to the
intended action (e.g., Add, Enhance, Remove) to be taken to implement a feature such as
enhancing a quality attribute. Consequently, semantic characterization is leveraged to detect
code smells that may hinder the fulfillment of such actions. In summary, this approach pro-
posed a novel scheme that maps requirements action themes and code smells to refactorings.
This approach was qualitatively evaluated based on asking opinions from the developers
of the involved subject application to rank the recommended refactorings. Generally, the
approach scored 3.8 in the 5 point scale which suggests that the recommended refactor-
ings were somewhat appropriate. The key difference of the approach in Niu et al. (2014)
with our proposed approach is on how to recommend refactoring solutions. Although both
approaches rely on feature requests (i.e., requirements) to recommend refactorings, the
proposed approach leverages previous feature requests and their associated applied refac-
torings to predict refactorings for the implementation of the current feature request. On the
other hand, Niu et al. (2014) only work with current feature request as input and recom-
mend refactorings that ensure full implementation of the requested feature. Additionally,
the approach in Niu et al. (2014) is based on manual analysis of requirements which is
often tedious and error-prone, whereas our work implements an automated recommendation
approach.

Nyamawe et al. (2018) proposed an approach that leverages requirements traceability
and code metrics to recommend refactoring solutions. The assumption of this approach
is that, the traceability between requirements (i.e., use cases) and source code is useful
in inferring how code elements relate functionally and how well they should be grouped.
Besides traceability, authors employed code metrics (i.e., cohesion and coupling) to estab-
lish a tradeoff between traceability and code design improvement. To quantify the quality
of traceability, authors used traceability entropy to identify how classes are traced to use
cases and vice versa. However, the approaches in Niu et al. (2014) and Nyamawe et al.

Empirical Software Engineering (2020) 25:4315–4347 4319



(2018) do not consider the history of applied refactorings during their recommendation pro-
cesses. Additionally, our approach differs from Nyamawe et al. (2018) in that the former is
learning-based whereas the latter is not.

In line with facilitating developers during maintenance task especially when implement-
ing feature requests, Thung et al. (2013) proposed an approach to recommend API methods
given a feature request. Their approach takes as input the textual description of a new feature
request and recommends methods from API library that a developer can use to implement
a feature. The proposed approach learns from the training dataset of the past resolved or
closed feature requests and changes made to a software system recorded in issue trackers
and software repositories respectively. Then, the past similar feature requests are retrieved
along with the relevant methods used to implement them. The approach then learns a rank-
ing function and consequently recommends the potential and relevant library methods to
the developer. This approach is different from ours in the sense that, based on feature
request they recommend API methods to the developer, whereas the proposed approach
recommends refactoring solutions.

2.6 Machine Learning-Based Recommendation of Refactorings

Furthermore, several approaches have been proposed to employ machine learning tech-
niques to detect refactoring opportunities and recommend refactorings. For example,
Ratzinger et al. (2007) leveraged change history mining to extract features that can be
used to predict the need for refactoring in the next two months by using machine learn-
ing classifiers. Besides extracting features from evolution data, they also identified the
changes applied as either refactoring or not based on the commit messages. However, their
prediction models do not distinguish different types of refactorings (e.g., rename class,
extract method, etc.). In contrast, our approach explicitly suggests the classes of refactorings
required.

Liu et al. (2018) proposed an approach that leverages deep learning techniques to auto-
matically generate labeled training set consisting of methods with or without feature envy.
Consequently, such training set is used to train the neural network classifier to predict
whether a given method envies another class. Besides that, the classifier also predicts the
potential target class where the envy method should be moved to. The structural and textual
information were used to decide whether a given method should be moved to another class.
Structural information computes how close a method is to the target classes, whereas tex-
tual information reveals the semantic relationship between methods and classes. Recently,
Pantiuchina et al. (2018) developed a refactoring recommender that targets at preventing
the introduction of code smells into the codebase. Their approach relies on machine learn-
ing techniques to train the classifier that predicts classes which are likely to be affected by
a particular smell in near future. The approach takes a change history of a system with its
latest version as an input and deduces the historical trend of 14 predefined class quality met-
rics. Consequently, they compute regression slope line fitting the values of the metrics for
each class that would be used to infer whether the quality is degrading or not. For example,
a high positive slope for the WMC (Weighted Methods per Class) metrics indicates that the
complexity of a given class is strongly increasing.

In addition, Xu et al. (2017) proposed a machine learning based approach that learns a
probabilistic model to recommend Extract Method refactorings. The proposed approach
extracts structural and functional features from software repositories which encode the con-
cepts of complexity, coupling, and cohesion. Based on these features the approach learns
to extract appropriate code fragments from a source of a given method. The proposed
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approach called GEMS is developed as an Eclipse plug-in for Java programs. Xu et al.
(2017) contend that, usually human involvement is required in identifying true refactor-
ings which often leads to the use of small-sized datasets for efficiency. However, to allow
working on large datasets and ensure correct recommendations, the deployment of machine
learning based approaches is inevitable. Yue et al. (2018) proposed a learning-based
approach that recommends code clones (i.e., duplicated code) for refactoring by training
the machine learning models with features extracted from refactored and non-refactored
clones mined from software repositories. The authors defined 5 categories of key features
that characterize clones’ content, evolution history, co-evolution relationship, as well as spa-
tial locations of clone peers and syntactic difference between clones. The findings suggest
that, history-based features are effective in recommending refactorings than the features
extracted from the present version of a software. This leads to a very interesting observation
that, when applying refactoring, developers mostly consider the past history than the exist-
ing version. These approaches, however, differ from our proposed approach as they do not
consider feature requests in their recommendation.

3 Approach

3.1 Overview

As depicted in Fig. 1, the proposed approach follows the following six key steps to predict
the need for refactoring and recommend the required refactorings. First, we extract the fea-
ture requests from the issue tracker (JIRA) and their respective commits from a software
repository (GitHub). Usually, the two artifacts (feature requests and commits) can be linked
through a unique feature request identifier. Second, we recover the previously applied refac-
torings on the retrieved commits. Third, by using the state-of-the-art tool we identify the
code smells associated with the source code in each of the retrieved commits. The output
from the previous two steps is the file containing feature requests with their associating
refactorings and code smells. Fourth, we apply the text preprocessing on the contents of the
file to prepare the textual data suitable for the next steps. Fifth, feature modelling is applied
to convert the textual data into a numerical representation (feature vectors) for training the
classifiers. Finally, we train the machine-learning-based classifier which gives a prediction
model for predicting and recommending refactorings for new feature requests. Next, we
elaborate each of these key steps in detail.

Fig. 1 The framework of the proposed approach
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3.2 Feature Requests and Commits Extraction

Software users are usually allowed to request for the new feature or enhancement of the
existing feature by submitting a feature request. A feature request often requires some new
source code to implement the requirements that cannot be satisfied by the current codebase.
Generally, a feature request contains several data fields including: unique request ID, sum-
mary, description, resolution, etc. This study is concerned with the data fields which are
listed in Table 1.

The feature requests for each of the subject applications that have been addressed to com-
pletion (i.e., marked as “Closed” or “Resolved”) are retrieved from the issue tracker. The
details (ID, Summary, and Description) of the retrieved feature requests which are gener-
ally the free-form texts are stored for further processing. Such feature requests were then
used to formulate our dataset. The dataset was split into training and testing set. The testing
set of feature requests is the one that was used to evaluate the performance of the approach
in predicting and recommending refactorings. All feature requests had to undergo the NLP
steps (e.g., stop word removal, lemmatization and vector space modelling) prior to training
and testing the classifiers. Therefore, once the classifiers are trained with existing feature
requests (say original FRs) then it can be readily used to predict and recommend refactor-
ings for the new FRs (after preprocessing and vector space modelling). Next, the repository
of each subject application (comprising of several commits) is cloned from Git repository
to a local computer by using Eclipse. To speed up the process of detecting refactorings the
repositories of the subject applications were first cloned to a local machine rather than being
cloned during the refactoring detection process. Next, by using Git bash commands (2018)
we retrieve all commits that contain in their commit messages the specified feature request
identifiers of the feature requests we retrieved earlier. Finally, at this stage for each feature
request f r from the set of all feature requests FR is formalized as:

f r =< f rID, summ, desc, commitID > (3)

where f rID represents a unique feature request identifier, summ is the summary or title
of a feature request, desc is the detailed description of a feature request and commitID

is the unique identifier of a commit used to implement a feature request. The identified
commits are then inputted in the next step to detect the applied refactorings. Note that,
all commits associated with a given feature request are retrieved in order to identify all
types of refactorings applied for such feature request. That means a one-to-many association
between feature requests and commits is taken into consideration. In this study we only
focus on the cases where the links between the feature requests and commits are known
explicitly. Notably, the cases with missing links accounts around 30% of the total links of
the applications forming up our dataset. In the future the state-of-the-art techniques can be
leveraged to generate missing links. For example, recently, Rath et al. (2018) proposed an

Table 1 Data fields of a feature
request Attribute Description

ID A number which uniquely identifies a feature request

Summary The summary or title of a request

Description The detailed description of a request

Status The current status of a request

Resolution The implementation status of a request
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approach that trains a classifier to identify the missing issue tags in commit messages and
generate the missing links.

3.3 Detection of Refactorings

To detect refactorings applied in the commits we leveraged the state-of-the-art refactoring
detection tools (RefDiff and RMINER). RefDiff is an automated approach introduced
by Silva and Valente (2017) to detect refactorings applied between two source code revi-
sions archived in Git repository. The tool uses the combination of heuristics based on static
analysis and code similarity to detect 13 common refactoring types. Moreover, RMINER is a
novel technique recently proposed by Tsantalis et al. (2018) to mine refactorings from soft-
ware repositories. RMINER runs an AST-based statement matching algorithm to detect 15
representative refactoring types. These tools are selected because they can easily be used as
Eclipse plugins and they are effective in detecting applied refactorings by comparing sub-
sequent versions of the program. Such tools were recently applied on manually validated
refactorings oracle and reported the precision and recall of 98% and 87% for RMINER and
76% and 86% for RefDiff respectively (Tsantalis et al. 2018). Note that, the results from
the two detectors were combined to form a union set. Consequently, the set was manually
checked to identify the overlapping cases and eliminate duplication. To identify refactor-
ings, the text file with the list of all commits identified in the previous step is inputted to
the refactoring detection tool. For each commitID the tool detects refactorings applied and
then outputs the txt file with the list of commitID and the associated refactorings. If the
inputted commitID is not returned in the output file, then such commit is considered not
to have any refactorings. At the end of this step for each feature request f r from the set of
all feature requests FR is such that:

f r =< f rID, summ, desc, commitID, ref > (4)

where ref represents the set of refactorings detected in a commit. Note that, if no refactor-
ings are detected then the value of ref is set to null. Therefore, we identify if a given feature
request f ri demands refactorings or not based on the following condition:

f ri =
{

no refactoring, if ref = ∅
need refactoring, if ref �= ∅ (5)

3.4 Detection of Code Smells

Code smells are symptoms of poor design and implementation choices (Fowler 1999) that
suggest for possibility of refactoring. For example, one of the classical smells is Long
Method (i.e., a method is excessively long and it is doing more than its name suggests).
Usually, this smell can be resolved by Extract Method refactoring which extracts parts of
the method that can well go together to form a new method (Fowler 1999). To uncover code
smells we leveraged an automated code review tool (i.e., Codacy) Codacy (2019) which
applies static analysis to identify design issues in software repositories. The tool is pow-
ered by PMD (2019) to implement the set of rules which are the basis for identification
of design issues in the codebase. Therefore, to determine how code smells associate with
a feature implementation, we first establish a link between a feature request and the com-
mit through feature request identifier. This aspect is well described in Section 3.2. Next, by
using Codacy, we detect code smells that were introduced by such particular commit. We
employed this tool because it supports a variety of languages and it is publicly available for
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reviewing open source projects. Besides that, the tool can be easily integrated with GitHub
repositories and provide quality analysis on the source code files which are to be modified to
implement the requested feature. It follows that, for the past feature requests, we identified
the list of smells that were fixed in each commit that implemented such feature requests.
Thus, a feature request that has been identified as needing refactoring in Formula (4) will
further be presented as:

f r =< f rID, summ, desc, commitID, ref, smells > (6)

where smells is the set of code smells related to a commit commitID.
The information of code smells is leveraged to further enrich the feature set that could

improve the discrimination of feature requests and consequently improve the prediction
performance. Therefore, the feature requests’ summary summ, description desc, and code
smells smells will serve as the primary source of feature set that will be used to train
our classifiers that target to predict refactorings ref . The usage of feature requests as pre-
sented in Formula (6) is described in detail in Section 3.7. Furthermore, it is worth noting
that, Formula (3), (4), and (6) do not imply that, a given a feature request can only be
related to only one commit. But rather, they just show a tuple that contains a feature request
and related commit. However, one feature request could have several tuples relating it to
different commits.

3.5 Text Pre-processing

To clean and prepare the feature requests for classification we employed text pre-processing.
Such process is essential in improving the classification performance (Uysal and Günal
2014). Text preprocessing is purposely used to transform the feature requests (which are
written in natural languages) into a form suitable for textual analysis by using Python Nat-
ural Language Processing Toolkit (NLTK) (Loper and Bird 2002). The texts which are
considered here are those from the summary and description fields of the feature requests.
The applied NLP techniques include tokenization, stop word removal, and lemmatization.
First, tokenization involves breaking up a document into a lists of individual words (i.e.,
tokens). In this step some characters such as numbers and punctuation are excluded as they
do not contain any useful information. Second, stop word removal is applied, the com-
mon and frequently used words such as “a”, “an”, “the”, “in”, and “is” are eliminated as
they do not carry any useful information and just introduce noise to NLP activities. Finally,
lemmatization is applied to convert the words as they appear in the document back into their
common base form. This base form is usually referred to as Lemma. This process reduces
the number of tokens and hence the complexity of NLP activities. In this study we use
Porter’s stemming (Porter 2006) which implements suffix stripping algorithm for lemmati-
zation. Porter’s stemmer has been extensively used in various software engineering studies
(Mahmoud and Niu 2014; Palomba et al. 2017).

3.6 Feature Modelling

The classification of feature requests which are free-form texts written in natural language
involves some key natural language processing steps which include vector space represen-
tation (Runeson et al. 2007; Sun et al. 2010). Therefore, we selected the vector space model
for representation of word features extracted from feature requests into numerical represen-
tation which is suitable for machine learning. Vector space model is among the mostly used
model mainly because of its conceptual simplicity (Manning and Schütze 2001) and it has
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been widely used in texts clustering, categorization and classification (Thung et al. 2014;
Sun et al. 2010; Nizamani et al. 2018). Consequently, in this step, the preprocessed feature
requests are converted into a feature vector space model (Manning et al. 2008) which rep-
resents the bag of words extracted from feature requests as a vector of weights. The weight
of a word represents its importance in a document. To quantify how important a word is to
a document in a corpus the term frequency (TF) and inverse document frequency (IDF) are
often used. We therefore use TF-IDF to represent features in a feature vector. Suppose in
our corpus D we have a term t and a document f r , then Term Frequency T F(t, f r) defines
the number of times the term t appears in a document f r , whereas Document Frequency
DF(t, D) defines the number of documents in the corpus that contain the term t . Here, a
corpus refers to the collection of all feature requests, whereas a document and term refer
to a single feature request (f r) and a word (i.e., a token) respectively. Note that, Inverse
Document Frequency (IDF) is the reciprocal of the Document Frequency (DF). Therefore,
TF-IDF computes the weight w of a term t in a document f r from corpus D as follows:

IDF(t, D) = 1

DF(t, D)
(7)

wt,fr,D = T F(t, f r) × IDF(t, D) (8)

The higher the value of the weight, the more important the term is and has higher
discriminating power between documents.

3.7 Training and Recommendation

The feature vectors obtained in the previous step are then subject to the classifiers for train-
ing and prediction (i.e., recommending refactoring types). The proposed approach leverages
six widely-used machine learning classifiers: Logistic Regression (LR), Multinomial Naı̈ve
Bayes (MNB), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF)
and Convolutional Neural Network (CNN). The classifiers have been implemented by a
well-known machine learning library based on Python called scikit-learn (Scikit-learn ). We
have specifically selected such machine learning algorithms for various reasons including
the nature of our classification problem and effectiveness of the individual classifier. Usu-
ally, text classification is attributed with high dimensional input space which often leads
to a lot of features (Chen et al. 2009; Khan et al. 2010). For example, SV M classifiers
are effective in managing high dimensional feature space and removing irrelevant features
(Khan et al. 2010). Besides that, SV M classifiers are effective in handling sparsity problem
and well recognized as accurate text classifiers (Godbole and Sarawagi 2004). Further-
more, Jiang et al. (2013) suggest that, Naı̈ve Bayes classifiers are widely-used to address
the classification problem in the domains with large number of attributes such as text clas-
sification. Naı̈ve Bayes classifiers are relatively effective, fast and easy to implement (Jiang
et al. 2013). Given the assumption of attribute conditional independence of Naı̈ve Bayes
classifiers, the parameters for each attribute can be estimated easily and separately which
consequently simplifies learning (Jiang et al. 2013). In summary, these classifiers can han-
dle the problem of sparseness and high dimensionality. Such properties of the classifiers
apply to our dataset as well which consequently make them optimal for our approach. Gen-
erally, the employed classifiers have been widely used and shown to be effective in text
classification (Aggarwal and Zhai 2012; Nizamani et al. 2018).

We generally model our text classification problem such that, we have a feature request
f r from the feature requests space FR such that f r ∈ FR. Each feature request f r may
belong to one or more classes from the set of fixed classes R, where R = {r1, r2, ..., rm}.
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In our case here, classes are also referred to as labels or refactoring types. Suppose we have
a training set T of labeled feature requests (f r, r), where (f r, r) ∈ FR × R. Our goal is to
train a classifier (or a classification function) f that maps feature requests to classes (i.e.,
recommended refactoring types):

f : FR → R (9)

To boost the training and recommendation performance, our approach involves two classi-
fication tasks, i.e., binary and multi-label classification. In the following we describe these
two tasks in details.

– Binary classification, at this first stage the classifier is trained to determine whether
refactoring is needed or not. The input to the classifier is all feature requests (noted
as allReq) and the goal is to classify them into two categories: those that deserve
refactoring (noted as desReq) and those that do not deserve refactoring (noted as
otherReq). The training set contains the texts (i.e., summary and description) of the
feature requests, code smells information, along with their labels. At this stage, the
labels i.e., ref (see Formula (6)) are presented as 1 if refactoring is needed or 0 other-
wise. The test data contains feature requests for which we need to predict if they would
need refactoring or not. The classifier categorizes a feature request f r into a class c as
function f such that:

c = f (f r), c ∈ {0, 1}, f r ∈ FR (10)

where c represents the classification result: 0 implies a feature request f r does not
require refactoring whereas 1 implies that refactoring is needed.

Consequently, the feature requests which are identified to need refactoring will serve
as input to the next stage to identify the types of refactorings required.

– Multi-label classification, after identifying the feature requests that require refactoring
(noted as desReq), the multi-label classification is performed to predict the specific
types of refactorings which are required. Multi-label classifiers are leveraged because
a given feature request may involve more than one type of refactoring. To train the
classifier, past feature requests (i.e., those identified to need refactoring), code smells
information, and the applied refactorings will serve as input (see Formula (6)). The
classifier will then be tested with data containing feature requests and their associating
code smells to recommend the types of refactorings that would be needed. The classifier
is therefore trained to categorize a feature request f r into a class c as function f such
that:

c = f (f r), c ⊆ R, f r ∈ FR (11)

where c is the set of one or more refactoring types.

In summary, the classifiers are generally trained to determine whether refactoring is
required or not, if yes then they should predict (i.e., recommend) the types of refactoring
required for the unseen feature requests.

4 Evaluation

In this section we present the evaluation of our approach that we refer to as FR-Refactor
(Feature-Request-based Refactoring). To evaluate the performance of FR-Refactor in pre-
dicting the need for refactoring and recommending required refactoring types, we compared
it against the state-of-the-art approach proposed by Niu et al. (2014). In the following, we
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first highlight the research questions that this study is investigating. We then describe the
dataset used in our experiments. Next, the process and metrics used as the basis of our eval-
uation are described. Finally, we present and analyse the experimental results and conclude
the section by highlighting the threats to validity of our results.

4.1 Research Questions

The evaluation investigates the following research questions:

– RQ1: How accurate are different machine learning classifiers in predicting the need for
refactoring?

– RQ2: How accurate are different machine learning classifiers in recommending
required refactoring types?

– RQ3: How does the code smells information influence the performance of the
classifiers?

– RQ4: How accurate is FR-Refactor in predicting the need for refactoring compared to
the state-of-the-art baseline approach?

– RQ5: How accurate is FR-Refactor in recommending required refactorings compared
to the state-of-the-art baseline approach?

– RQ6: Can the proposed approach still obtain good results on applications that are
different from those involved in the training?

The research questions RQ1 and RQ2 respectively investigate the performance of dif-
ferent machine learning classifiers in predicting the need for refactoring and identifying
which refactoring types are required. Furthermore, RQ3 aims at exploring how the addi-
tion of code smells information influences the classification performance of the proposed
approach. RQ4 concerns the performance of FR-Refactor in predicting if a given feature
request would demand refactoring or not. The research question RQ5 evaluates the accu-
racy of FR-Refactor in recommending refactoring types. The accuracy of recommendation
is essential to determine at what extent the approach suggests useful refactoring types (true
positives) to the developers rather than just overloading developers with irrelevant refac-
toring types (false positives). Finally, RQ6 investigates the performance of the proposed
approach when it is applied to predict and recommend refactoring types to new applications
that were not involved in the training.

To answer RQ4 and RQ5 we compare FR-Refactor with the traceability-enabled
approach proposed by Niu et al. (2014) which is based on manual analysis of requirements
semantics to recommend refactoring types. Authors performed such analysis by analyzing
the description of each feature request to identify terms similar or related to the action (e.g.,
Add, Enhance, Remove) that has to be taken to implement a feature. Given the identified
action themes along with the code smells information, the required refactoring types can
be identified based on the novel scheme proposed by Niu et al. (2014). We note that, the
baseline approach (Niu et al. 2014) was implemented as a separate approach but was eval-
uated on the same dataset applied for evaluating our proposed approach. To avoid missing
out the feature requests with relevant themes, we also considered the themes (i.e., verbs)
in their different forms. For example, Add, Addition and Adding were considered to have
the same intention such as adding a functionality. The other key consideration that we took
into account is to identify synonyms of each of the key themes. Therefore, a feature request
containing a key verb or its synonym were considered to be in the same action theme cate-
gory. This baseline approach is selected because, to the best of our knowledge, it is the only
existing approach which is based on requirements to drive refactoring.
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4.2 Dataset

We note that there exist a few publicly available and manually validated datasets of refac-
torings mined from software repositories (Hegedüs et al. 2018; Silva and Valente 2017;
Tsantalis et al. 2018). However, these oracles contain few representative refactorings and
feature requests. For example, the evaluation oracles used in Silva and Valente (2017) and
Tsantalis et al. (2018) consist of 448 and 3, 188 known refactoring operations respectively.
Additionally, not all refactorings in such oracles are associated with the implementation
of feature requests. Besides that, the code smells associated with the commits in these
oracles are not explicitly specified. Therefore, to attain the reasonable amount of feature
requests, code smells and refactorings to effectively train our classifiers, we exploited the
state-of-the-art tools to uncover refactorings and code smells in the commits retrieved from
software repositories. To recover previously applied refactorings we employed RefDiff
and RMINER tools which were recently validated manually and used in creating an ora-
cle of refactorings proposed by Tsantalis et al. (2018). The tools are publicly available
and effective in detecting applied refactorings by comparing subsequent versions of the
program. Moreover, the code smells associated with each commit were identified by an
automated code review tool (i.e., Codacy) Codacy (2019) which is powered by PMD (2019)
and applies static analysis to detect design issues in software repositories. The tool is specif-
ically selected because it is publicly available for open source projects and can be easily
integrated with GitHub repository.

Table 2 highlights the distribution of the feature requests of the subject applications used
in creating our dataset. First, we extracted the feature requests (Request ID, Summary, and
Description fields) of the subject applications from the Apache JIRA issue tracker accessed
on (2020). Note that, the feature requests are those that have been addressed to comple-
tion (i.e., marked as “Closed” or “Resolved”). Normally, JIRA explicitly links the feature
requests to their respective commits in a repository by using unique request/issue identifier.
Second, we retrieved the relevant commits from the repository that were used to imple-
ment the feature requests retrieved earlier. Our subject applications selection was based on

Table 2 The distribution of feature requests (FR) in our dataset

Project FR Project FR Project FR Project FR Project FR

Accumulo 474 Cayenne 390 Jena 202 Opennlp 392 Stanbol 154

ActiveMQ 753 Curator 24 Kafka 307 PDFBox 482 Storm 302

Ambari 391 Drill 446 Kylin 680 Pig 577 Struts 2 214

Archiva 193 Flink 555 Lens 172 Pivot 185 Synapse 79

Aries 314 Geronimo 38 Maven 359 Ranger 278 Syncope 599

Atlas 70 Giraph 252 Myfaces 407 Sentry 87 Systemml 34

Axis2-Java 204 Gora 31 Nifi 430 Sling 2369 Tajo 444

Beam 295 Groovy 385 Nutch 348 Spring-Datamongo 261 Tapestry-5 381

Bookkeeper 132 Hbase 1389 Ode 102 Spring-Integration 517 Velocity 56

Calcite 74 Impala 178 Oodt 26 Spring-ROO 797 Wicket 237

Carbondata 226 Jclouds 122 Oozie 318 Spring-Security 87 Zookeeper 80

TOTAL: Projects: 55, Feature Requests: 18, 899
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Java open source projects from GitHub repository whose commits messages explicitly con-
tain the identifier of the feature requests that were addressed. In other words, our selection
contains a reliable link between a feature request in an issue tracker and the correspond-
ing commit in a software repository. Third, by using the tools mentioned in the preceding
paragraph, we recovered the previously applied refactorings and the respective code smells
on the previous versions of the source code in the retrieved commits. Finally, we created
a dataset of 55 open source Java projects consisting of 18, 899 feature requests from JIRA
issue tracker. Out of 18, 899 feature requests, a total of 9, 915 (52% = 9, 915/18, 899)
feature requests are associated with one or more refactorings, whereas the remaining 48%
(= 8, 984/18, 899) of the feature requests do not have any refactorings. The dataset
is publicly available on GitHub (https://github.com/nyamawe/FR-Refactor). The subject
applications forming up our dataset were selected because they cover a wide range of
domains, publicly available, developed by different developers, and have long evolution his-
tory. Consequently, it is more likely that they will have a variety of feature requests, code
smells, and refactorings.

Furthermore, Table 3 summarizes the distribution of refactoring types in our dataset.
Additionally, Fig. 2 presents the distribution of the number of refactoring types (i.e., all
labels excluding no-refactoring category) per each data point (i.e., feature request). From
the figure we observed that, in our dataset, most (63% = 6, 221/9, 915) of the feature
requests are associated with only one refactoring type, whereas only 37% (= 3, 694/9, 915)
are associated with more than one refactoring type. However, such amount is significant
which is why we casted the refactoring recommendation problem as multi-label classifica-
tion problem. We further noted that, there was not feature request that had more than 10
refactoring types.

4.3 Process andMetrics

The evaluation of the proposed approach follows two key steps. First, the classifiers are
trained to predict whether the given feature requests would require refactoring or not.

Table 3 The distribution of
refactoring types in our dataset Refactoring types Number

Extract Interface 192

Extract Method 5,310

Extract Superclass 176

Inline Method 997

Move And Rename Class 357

Move Attribute 1,244

Move Class 975

Move Method 1,884

Pull Up Attribute 248

Pull Up Method 339

Push Down Attribute 136

Push Down Method 159

Rename Class 1,316

Rename Method 3,664

Total 16,997
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Fig. 2 Number of refactoring types per data points

Second, for the feature requests identified to require refactoring, the classifiers are trained
to predict the required refactoring types. To answer the research questions (RQ1–RQ5), we
conduct 10-fold cross validation where the dataset is randomly partitioned into ten subsets.
On each fold of the evaluation, one subset is employed as testing data whereas others are
taken as training data. Furthermore, we cast the problem of predicting the need for refac-
toring as a binary classification problem. To evaluate the binary classifiers we leveraged
the traditional accuracy, precision, recall, and F-measure metrics. Moreover, since in the
second step each feature request can be associated with one or more refactoring types, we
cast our refactoring recommendation problem as the multi-label classification problem. In
multi-label classification each example can be associated with several labels simultaneously,
hence its performance evaluation is much more complicated than in the traditional single-
label classification (Zhang and Zhou 2014). To evaluate the performance of the multi-label
classifiers we use the common and widely-used metrics including hamming loss, hamming
score, and subset accuracy (Zhang and Zhou 2014; Godbole and Sarawagi 2004; Schapire
and Singer 2000), as defined in the following.

Suppose FR = {f r1, f r2, ..., f rm} denotes the feature requests space, and R =
{r1, r2, ..., rn} denotes the refactoring space with possible n different types of refactor-
ings. The task of multi-label learning is to train a classifier with an evaluation dataset
D = {(f r i, r i)|1 ≤ i ≤ m}, where r i ⊆ R is the set of refactoring types associated with
a feature request f r i. For any unseen feature request f r i ∈ FR, the classifier H predicts
H(f r i) ⊆ R denoted as zi as the set of possible refactoring types for a feature request f r i.
It follows that:

– Hamming loss, computes the fraction of labels (refactoring types) incorrectly pre-
dicted, i.e., a relevant refactoring is missed or an irrelevant refactoring is predicted.
Hamming loss is formally defined as:

HammingLoss(H) = 1

|D|
|D|∑

i=1

|zi�r i|
|R| (12)

where � stands for the symmetric difference between the two sets (i.e., the set of predicted
refactoring types and the set of true refactoring types for the feature request f r i). Note that,
as the value of the metric closes to 0 the better the classifier’s performance.
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– Hamming score, symmetrically computes how close the set of the predicted refactoring
types (zi) is to the true set of refactoring types (r i) for the given feature request f r i.
Note that, the larger the value of the metric (with optimal value of 1) the better the
classifier’s performance. Hamming score can be formally defined as:

HammingScore(H) = |r i ∩ zi|
|r i ∪ zi| (13)

– Subset accuracy, measures the fraction of examples classified correctly, i.e., the pre-
dicted set of refactoring types (zi) is similar to the true set of refactoring types (r i)
for the given feature request f r i. Subset accuracy can be intuitively considered as the
traditional accuracy metric (Zhang and Zhou 2014). It is formally defined as:

SubsetAccuracy(H) = 1

|D|
|D|∑

i=1

[[zi = r i]] (14)

where [[zi = r i]] returns 1 if the two sets are identical or 0 otherwise. Note that, the larger
the value of the metric (with optimal value of 1) the better the classifier’s performance.

4.4 RQ1: Performance of Different Classifiers in Identifying theNeed for Refactoring

To investigate which classifier will be effective in predicting the need for refactoring when
implementing a given feature request, we evaluated the performance of six machine learn-
ing algorithms: SV M , MNB, LR, RF , DT , and CNN . Table 4 presents the effectiveness
of each classifier in terms of accuracy, precision, recall, and F-measure. Note that, the best
recorded result for each metric is highlighted in bold. From the table, it is observed that
the accuracy of predicting whether refactoring would be required ranges from 70.44% to
76.01%. The results further suggest that, on average precision (see column 2) of up to
78.12% the need for refactoring can be accurately predicted. Furthermore, the results gen-
erally indicate that, on average, MNB and LR classifiers outperform all other classifiers.
MNB classifier achieved an F-measure of 86.77% and an accuracy of 76.01%, whereas,
LR classifier achieved an F-measure of 82.75% and can accurately predict the need for
refactoring with up to 79.37% precision. Furthermore, from the table we can observe that,
a convolutional neural network (CNN) classifier has performed slightly lower than the rest
of the classifiers. One possible reason for that is, deep learning classifiers generally require
significantly large datasets to achieve a competitive performance. We, therefore, conclude
the preceding analysis that Multinomial Naı̈ve Bayes (MNB) classifier turned out to be
the best classifier in this case. MNB has shown to be effective in binary text classifica-
tion in various studies including enhancement requests approval prediction (Nizamani et al.
2018) and spam emails detection (Feng et al. 2016). We note that, our binary classification

Table 4 Classifiers’ performance
for predicting the need for
refactoring (%)

Classifier Accuracy Precision Recall F-measure

SVM 74.08 79.58 86.14 82.73

MNB 76.01 80.75 93.76 86.77

LR 74.00 79.37 86.43 82.75

RF 73.78 79.51 82.79 81.12

DT 73.21 75.58 82.35 78.82

CNN 70.44 73.90 83.06 78.21
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problem also involves classifying texts which assigns feature request to different classes
(i.e., refactoring or non-refactoring) based on the words features present in the document.
MNB classifier is the widely used generative classifier that can easily accommodate any
domain-specific knowledge and also performs better with hierarchical classification sce-
nario (Aggarwal and Zhai 2012). Since the evaluation results suggest that MNB works
best in predicting whether refactoring is required to implement a given feature request
(noted as binary classification), MNB would be used in the rest of the paper for the binary
classification.

The possible potential challenges that may have hindered higher prediction accuracy
include: 1) for the same feature request, developers may propose different solutions
(implementation strategies), which has significant influence on the refactoring activities.
Consequently, predicting the refactoring while implementation strategies are not speci-
fied is natively challenging. 2) Refactoring activities are not indispensable even if they
are helpful for the given programming task. Consequently, many factors, e.g., the pref-
erence/experiences of the developers, the schedule of the team, and the employed QA
measures may help in accurate prediction of refactorings. However, it is challenging to get
such information in advance, and thus the prediction of refactoring is challenging. Although
precision is relatively low (76.5%), recall is higher (89.37%). Consequently, based on our
prediction, developers can apply refactoring tools for suggested feature requests only and
thus save significant cost.

4.5 RQ2: Performance of Different Classifiers in Recommending Refactoring Types

As mentioned earlier, the refactoring types recommendation is cast here as a multi-label
classification problem, hence Table 5 summarizes the results in terms of subset accuracy,
hamming score, and hamming loss which are widely used metrics for evaluating multi-label
classifiers. The best recorded result for each metric is presented in bold. Note that, subset
accuracy (also called classif ication accuracy) returns the percentage of instances where
the set of labels (i.e., refactoring types) predicted by the classifier is exactly the same with
their corresponding truth set (Gibaja and Ventura 2015). Generally, as shown in Table 5,
SV M turned out to be the best performing classifier with the recorded subset accuracy and
hamming score of 83.19% and 83.03% respectively. Therefore, this implies that, the needed
refactoring types can be accurately recommended with up to 83.19% accuracy. Furthermore,
from Table 5, we make the following observations:

– In the case of multi-label classification, SV M classifier has significantly outperformed
MNB, RF , and DT classifiers by the difference of 42.66, 19.47, and 22.88 percentage

Table 5 Classifiers’ performance
for refactoring types
recommendation(%)

Classifier Subset Hamming Hamming

accuracy score loss

SVM 83.19 83.03 0.031

MNB 40.53 39.92 0.059

LR 81.88 81.26 0.033

RF 63.72 63.84 0.041

DT 60.31 59.99 0.040

CNN 75.44 75.81 0.047
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point on subset accuracy respectively. On the other hand, SV M has only outperformed
LR marginally in both metrics.

– Compared to other classifiers, SV M achieved the lowest value (i.e., 0.031) on hamming
loss which identifies to what extent the classifier predicts the irrelevant refactor-
ing types and omits relevant refactoring types. This metric is normalized between 0
and 1. As the value of the metric closes to 0, it indicates better performance of the
classification.

SV M often performs better due to the following reasons. First, high dimensional input
space texts produce a lot of features which consequently lead to a very large feature space.
SV M employs overfitting protection and has the ability to learn which can be independent
from the dimensionality of the feature space. Second, in text classification, sometimes doc-
uments are represented by some amount of features which could be irrelevant, therefore a
classifier should be able to combine several features (i.e., dense concept). Third, sparsity of
document vectors, usually each document contains a document vector with a lot of entries
which are zeros. SVM based classifiers have shown to be effective in handling problems
with sparse instances and dense concepts. Based on these factors, SVM is shown to be effec-
tive for text classification and well recognized to be accurate (Godbole and Sarawagi 2004).
Since the preceding results analysis suggests that SV M works best in suggesting refactor-
ing classes (noted as multi-label classification), SV M would be used in the rest of the paper
for the multi-label classification.

Furthermore, we investigated the performance of SV M in recommending individual
refactoring types. As depicted in Table 6, generally the results suggest that the classi-
fier achieves an average precision of 76% in recommending refactoring types. We further
observed that, the classifier achieved the best results (72%) in terms of F-measure for the
Extract Method refactoring. The possible reason for this best performance comparing to
the F-measure results recorded for other refactorings could be the amount of such refactor-
ings in the dataset. If we refer to Table 3, Extract Method refactoring is the one with the
most (31%) representative examples in the dataset. This is due to the fact that, in practice,

Table 6 Results for individual
refactoring types
recommendation

Refactoring type Precision Recall F-measure

Extract Interface 0.63 0.61 0.62

Extract Method 0.68 0.77 0.72

Extract Superclass 0.85 0.41 0.55

Inline Method 0.84 0.39 0.53

Move And Rename Class 0.89 0.54 0.67

Move Attribute 0.86 0.37 0.52

Move Class 0.78 0.43 0.55

Move Method 0.85 0.47 0.67

Pull Up Attribute 0.69 0.60 0.64

Pull Up Method 0.67 0.40 0.50

Push Down Attribute 0.81 0.36 0.50

Push Down Method 0.83 0.35 0.49

Rename Class 0.75 0.42 0.54

Rename Method 0.69 0.55 0.61

Weighted avg 0.76 0.54 0.61
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certain refactoring types are more prevalent than the others. For example, the recently con-
ducted empirical study by Silva et al. (2016) on the refactorings performed by developers
on 539 commits of 185 java projects retrieved from GitHub found that, Extract Method is
the most popular high-level refactoring. On the other hand, in some few cases (e.g., Push
Down Method) the classifier achieved a recall and F-measure below 50%. This can be jus-
tified by the fact that some of the refactoring types, including Push Down Method and Push
Down Attribute have very few instances in the dataset (see Table 3) which can consequently
affect their prediction. The same study by Silva et al. (2016) also found that Push Down
refactorings were among the least popular refactorings. It is therefore challenging to create
a dataset with sufficient number of refactorings and yet balance the number of represen-
tative examples for each refactoring type. In view of that, we implemented the classifier
which is based on the distribution of refactorings in our dataset. The classifier predicts a
given feature request f r will deserve a refactoring type r at a chance of f r(r) such that:

f r(r) = |FR(r)|
|allFR| (15)

where, FR(r) are all feature requests that are associated with refactoring r in the training
set, and allFR are all feature requests in the training set.

Ideally, the classifier is assessed based on the accuracy of recommending individual
refactoring types. We established the chances for a given feature request to deserve cer-
tain refactoring based on Formula (15). Consequently, from the training set we compute
the number of instances that were correctly and incorrectly classified for each individual
refactoring types. On average, the classifier recorded the precision, recall and F-measure
of 79%, 63%, and 70% respectively for recommending individual refactoring types. Such
performance is slightly higher than that reported earlier in Table 6 where a classifier (based
on SVM) attained an average precision, recall and F-measure of 76%, 54%, and 61%
respectively. The preceding analysis suggests that, the proposed approach is accurate in
recommending refactoring types.

It is worth noting that, in general binary classification should be more accurate than
multi-label classification if they are applied to the same dataset. However, in our case, they
are applied to different datasets, and thus there is no obvious relation between their per-
formances. We also note that, the multi-label classification achieves higher accuracy than
the binary classification. That is because of the difference in their testing data. As men-
tioned earlier in Section 3.7, we first apply the binary classifier to all of the feature requests
(noted as allReq), and such feature requests are classified into two categories: those that
deserve refactoring (noted as desReq) and those that do not deserve refactoring (noted as
otherReq). The multi-label classifier is then applied to the desReq only, and otherReq is
not involved.

4.6 RQ3: The Influence of Code Smells Information

This evaluation explores the influence of code smells information on the classifiers’ per-
formance in predicting refactoring and recommending the required refactoring types. In
contrast to other binary and multi-label classification experiments reported in this study, in
this case we trained our classifiers with only feature requests and refactoring types. That
means we excluded code smells information. Consequently, the classifiers were tested to
predict refactoring and recommend refactoring types for new feature requests. The results
for predicting refactoring and recommending refactoring types are respectively reported
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Table 7 Classifiers’ performance
for predicting the need for
refactoring (without code smells)
(%)

Classifier Accuracy Precision Recall F-measure

SVM 71.96 77.09 80.63 78.82

MNB 73.10 76.51 89.37 82.44

LR 72.17 77.74 80.70 79.19

RF 69.49 77.82 78.77 78.29

DT 68.23 76.68 78.01 77.34

CNN 64.36 69.92 78.45 73.94

in Tables 7 and 8. Note that, the results reported in these tables are based on the previ-
ous approach proposed in Nyamawe et al. (2019) which do not consider code smells in
its recommendation. Consequently, to analyze the influence of code smells on the classi-
fiers’ performance we compare the results obtained by the previous approach (Nyamawe
et al. 2019) reported in Tables 7 and 8 (noted as without code smells) with that obtained
by our proposed approach reported earlier in Tables 4 and 5 (noted as with code smells)
respectively.

To investigate the influence of code smells information on classifiers’ performance in
predicting the need for refactoring we compare the results reported in Tables 4 and 7. We
note that, this comparison includes two more additional machine learning classifiers (i.e.,
Decision Tree and Neural Network) that were not implemented by Nyamawe et al. (2019)
for binary classification. To clearly visualize the change in performance, we graphically
depict such comparison in Fig. 3 in terms of accuracy. From the figure we observe that,
code smells information slightly increased the performance of the classifiers. The noticeable
increase in performance of around 5 percentage point is recorded for RF , DT , and CNN

classifiers. Such a slight change can be justified by the fact that, it is not necessarily that
only feature requests that associate with code smells will demand refactoring.

Furthermore, to visualize the influence of code smells on refactoring recommendation
we compare the results reported in Tables 5 and 8. Also note that, this comparison includes
three more additional machine learning classifiers (i.e., Random Forest, Decision Tree and
Neural Network) which were not implemented by Nyamawe et al. (2019) for multi-label
classification. For clarity, the graphical representation of that comparison is depicted in
Fig. 4 in terms of subset accuracy. From the figure we observe that, code smells informa-
tion positively influenced the performance of the classifiers. For example, SV M classifier
recorded a performance increase of 14 (= 83.2%−69.2%) percentage point when including

Table 8 Classifiers’ performance
for refactoring types
recommendation (without code
smells) (%)

Classifier Subset Hamming Hamming

accuracy score loss

SVM 69.21 70.46 0.026

MNB 24.73 24.79 0.059

LR 69.21 69.93 0.026

RF 27.55 27.63 0.036

DT 22.14 22.16 0.039

CNN 66.53 66.97 0.042
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Fig. 3 The influence of code smells information on refactoring prediction performance

code smells information as input to the classifier along with feature requests and refactoring
types during training. Such trend can also be observed in the rest of the classifiers where
MNB, LR, RF , DT , and CNN respectively recorded the change of 15.8, 12.7, 36.1,
38.2, and 8.9 percentage point by including code smells information. Notably, only 58% of
the feature requests and refactorings in our dataset were associated with code smells. This
implies therefore that, the refactorings recommendation is somewhat not biased. There-
fore, the possible reason for such improvement is that, code smells have been proven useful
in accessing (e.g., based on smells catalogs) the special kinds of software refactorings
required to alleviate them (Vidal et al. 2014). Consequently, understanding the specific
smell type along with a given feature request can lead to accurate prediction of a required
refactoring type. That is because, often a given code smell could have multiple refactor-
ing solutions (Fokaefs et al. 2011; Niu et al. 2014). We, therefore, conclude the preceding
analysis that inclusion of code smells information boosts the accuracy of refactoring types
recommendation.

Fig. 4 The influence of code smells information on refactoring types recommendation performance
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4.7 RQ4: FR-Refactor vs State-of-the-Art Approach in Predicting the Need
for Refactoring

To investigate the performance of FR-Refactor in predicting the need for refactoring,
we compared it (based on MNB classifier) with the state-of-the-art traceability-enabled
approach proposed by Niu et al. (2014). The results of the comparison are depicted in
Fig. 5. Generally, results suggest that FR-Refactor (based on MNB classifier) significantly
outperforms the state-of-the-art approach. From the figure we observe that, FR-Refactor
significantly achieved an increase in F-measure of 43.3 (82.4% − 39.1%) percentage point.
Moreover, FR-Refactor achieves better performance in terms of recall (89.4%) because
of its ability to learn from past feature requests and predict accordingly, compared to
the state-of-the-art approach which attains lower recall (28.5%). In addition to that, FR-
Refactor improves accuracy and precision by 27.6 (= 73.1% − 45.5%) percentage point
and 12.1 (= 76.5% − 64.4%) percentage point respectively. The results lead us to the con-
clusion that, FR-Refactor can accurately predict the need for refactoring. As the baseline
approach may fail to explicitly identify the requirements semantics and consequently pre-
dict the need for refactoring, FR-Refactor leverages past history to predict the need for
refactoring of a new feature request. For example, the baseline approach failed to iden-
tify if a feature request CAY-1350: “Implement memorized sorting of modeler columns”
will need refactoring. However, FR-Refactor predicted the need for refactoring for such
feature request. This feature request suggests for additional functionality that would allow
users to sort items in the table and their preferences should be memorized. Analysis on
the history data revealed that, the feature request CAY-1350 for the additional func-
tionality is similar to some past features (e.g., CAY-1251:“Memorize user-selected
column widths in preferences”) and the later feature request (CAY-1350) is an improve-
ment request related to CAY-1251. Moreover, the two feature requests were implemented
in two different commits but the same type of refactoring (i.e., Extract Method) was
applied.

Fig. 5 Performance in predicting the necessity of refactoring
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4.8 RQ5: FR-Refactor vs State-of-the-Art Approach in Recommending Refactoring
Types

To answer research question RQ5 we compared the performance of FR-Refactor (based on
SV M classifier) and the state-of-the-art traceability-enabled approach (Niu et al. 2014) in
recommending refactoring types. Evaluation results are presented in Fig. 6. From the figure
we make the following observations:

– First, FR-Refactor can accurately recommend relevant refactoring types for most of the
feature requests. Its average precision is up to 76%. Compared to the state-of-the-art
baseline approach, it improves precision significantly by 56 (= 76%−20%) percentage
point.

– Second, FR-Refactor significantly outperforms the state-of-the-art in terms of F-
measure. It achieved an average F-measure of 61%. This is equivalent to an improve-
ment of 36 (= 61% − 25%) percentage point compared to the baseline approach which
recorded an F-measure of 25%.

– Third, the recall (54%) of FR-Refactor is significantly higher than that of the baseline
approach (34%).

Based on the preceding analysis, we conclude that FR-Refactor achieves better results
than the baseline approach. One of the possible reasons for the underperformance of the
baseline approach could be due to the fact that it relies on manual analysis of predefined
requirements semantics. Additionally, it also ignores the possibility that a given feature
request may belong to different categories of requirements semantics. Consequently, that
may lead to miss out some relevant refactoring types. For example, consider the following
part of a feature request. “Simplify SDK API interfaces. Current SDK API interfaces are
not simpler and don’t follow builder pattern. If new features are added, it will become more
complex”. This feature request suggests for enhancing the quality attributes that will lead to
the reduction of interface complexity. One way of getting rid of complexity is to allow for
separation of concerns and reduce unneeded code. FR-Refactor recommended the following
refactoring types. First, a Rename Method and Extract Method refactoring types. The later
refactoring is recommended to decompose long and complex methods. Second, an Inline
Method refactoring for the calls instances of unneeded methods. Ideally, Inline Method

Fig. 6 Performance in refactoring types recommendation
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refactoring involves replacing calls to the method with its content and delete the method
itself. On the other hand, the baseline approach (based on its scheme) only recommended
Substitute Algorithm refactoring to alleviate Long Method flaw which is considered to cause
complexity. Furthermore, consider the following part of another feature request. “Improve
broadcast table cache. Currently, broadcast implementation keep a tuples on scan operator
and It creates a duplicated table cache in memory”. This feature request highlights the
problem of duplicated feature. The proposed refactoring types are Extract Method, Move
Method, and Rename Class. The Extract Method refactoring is applied to remove code
duplication, whereas Move Method refactoring to move a method to class which is more
functionally related to it. In addition, Rename Class is applied to rename the class from
which a method was removed to properly reflect its responsibility. In this case, the baseline
approach failed to explicitly uncover the requirement’s action theme of such feature request
and hence was unable to identify the required refactoring types.

4.9 RQ6: Cross Project Evaluation

This evaluation aims to explore the effectiveness of the proposed approach in predicting
and recommending refactoring solutions for the feature requests that their applications were
not involved in the training of classifiers. Basically, there might exist a case where some
applications have not accumulated enough history, hence it is crucial to understand if the
history of other applications can be useful to recommend refactorings for such applications
with insufficient history. Note that, in the preceding experiments we take all the dataset
from different subject applications as a whole, and conduct 10-fold evaluation on the result-
ing dataset. To answer RQ6, in this section we conduct a cross project evaluation. We use
50 subject applications for the evaluation, and divide them into 10 groups (each contains
5 applications). On the 10 groups of data, we conduct 10-fold evaluation where testing
projects are different from training projects. Evaluation results suggest that the proposed
approach performs well even if the testing applications are different from training applica-
tions. Its precision, recall, and F-measure on binary classification are 72.86%, 81.92%, and
77.12%, respectively. Whereas, its precision, recall, and F-measure on multi-label classifi-
cation are 81.54%, 59.37%, and 68.71%, respectively. Comparing such results against those
reported in Sections 4.7 and 4.8, we conclude that the proposed approach still obtains good
results when testing projects are different from training projects.

One possible reason for the success is that the classifiers can learn some generic rules
applicable to different applications, e.g., the presence of special code smells may sug-
gest a specific type of refactoring actions, and some special words or phrases in feature
requests may suggest the necessity of refactorings. To investigate the latter, we slightly
adopted the comprehensive list of patterns which are potential in inferring refactoring-
related activities proposed recently by AlOmar et al. (2019). We note that, such patterns
were drawn from commit messages and shown to have significant correlation with
refactoring-related changes applied on their associated commits. Consequently, from the
list of patterns we identified 24 unique and representative keywords which we used to
evaluate the feature requests. For each keyword w we computed how likely (denoted as
Ref actoringRate(w)) the feature requests containing such keyword can be associated
with refactoring. Ref actoringRate(w) can be formalized as follows:

Ref actoringRate(w) = |ref actoredFR(w)|
|allFR(w)| (16)
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where, ref actoredFR(w) are feature requests that contain the keyword w and deserve
refactoring, and allFR(w) are all feature requests that contain the keyword w.

For clarity, we only list the top ten keywords with the highest Ref actoringRate

in Table 9. Other leveraged keywords not listed include: Replace, Improve, Extract ,
Reduce, Move, Change, Import , Enhance, Modify, Remove, Better , Avoid , Add,
and Fix. The Ref actoringRate of these keywords ranges from 54% to 65%. We noted
that, the feature requests with such keywords tend to have more significant refactoring
rate than those without. Generally, the keywords clearly indicate the intention of a feature
request such as improving or optimizing a quality attribute. Additionally, we observed that,
certain feature requests explicitly mention the word refactor to infer the need for improving
a specified functionality. For example, the description of the feature request with identifier
CARBONDAT A − 1838 reads as “Refactor and optimize ‘SortRowStepUtil’ to make it
efficient and more readable”. Furthermore, it is worth noting that, feature requests are often
stated in solution-space terms contrary to the classical requirements (Alspaugh and Scacchi
2013; Niu et al. 2014). Consequently, that facilitates the mapping between feature requests
and refactorings. The classifiers can therefore learn the combination of such terms as fea-
tures from the feature requests and use them as the basis for prediction. We notice that the
mentioned keywords are generic terms that may appear in any feature request independent
of the application domains.

To further investigate RQ6, we train a decision tree (DT) based classifier and inves-
tigate the rules that the decision tree learns. We used keywords from feature requests
whose Ref actoringRate is not less than 50% and code smells associated with the feature
requests. A given feature request f r is represented as two vectors, Kf r and Sf r . The first
vector is such that, Kf r = {v1, v2, ..., vn}, where vi ∈ {0, 1} represents whether a keyword
ki appears in a feature request f r or not. The second vector, Sf r = {s1, s2, ..., sm}, where
sk represents whether the kth code smell appears in the associated source code. The value of
Sf r is 0 if a feature request f r does not associate to any code smell. Table 10 presents the
performance of the decision tree classifier. As it can be observed from the table, on average,
the classifier can accurately predict the need for refactoring on up to 68% precision.

For space limitation, the learned rules and the resulting full decision tree are available
as online appendix at https://github.com/nyamawe/FR-Refactor. A part of the tree (learned
rules) is presented in Fig. 7. An example of the learned rules is presented in the first top
block of Fig. 7. This rule (noted as Rule1) suggests that if a feature request does not

Table 9 Top-10 Keywords with
highest refactoring rate Keyword Refactoring rate (%)

Refactor 83

Restructure 80

Rewrite 78

Rename 76

Introduce 75

Simplify 72

Extend 70

Optimize 67

Split 66

Cleanup 66
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Table 10 Performance of
Decision Tree classifier Class Precision Recall F-measure

Non-refactoring 0.75 0.71 0.73

Refactoring 0.55 0.67 0.58

Weighted avg. 0.68 0.67 0.67

associate with any smell and does not contain the keywords Ref actor , Move, Fix,
Extend , then such a feature request does not need any refactoring. However, if it contains
the keyword Extend then it needs refactoring. Notably, the keywords involved in Rule1,

Fig. 7 Part of the learned rules
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e.g., Ref actor , Move, Fix, Extend , are generic terms (not application specific). Conse-
quently, the learned decision rule Rule1 could be applied to feature requests of different
applications.

4.10 Threats to Validity

First, the threat to external validity is concerned with the generalizability of the proposed
approach. To address this threat, in this study we have considered several feature requests
from different 55 Java open source projects and 14 common refactoring types. To further
reduce this threat, we also conducted a cross-project validation where the projects involved
in the training set were different from those in the testing set. This is the standard practice
to evaluate how the proposed approach would perform on an independent dataset. In future
we plan to work on more feature requests and leverage other refactorings detection tools to
enhance the recommendation of a wide range of refactoring types.

Second, the internal threat may stem from the classification models that we leveraged
in our approach. The classifiers have been implemented by the well-known Python-based
library for machine learning called scikit-learn. To reduce the threat, the implementation of
the models and the classification results were carefully examined, however there could be
some errors slipped in unnoticed.

Finally, a threat to construct validity is related to the implementation of the approach. The
major threat relates to the correctness of the recovered refactorings and code smells that con-
stituted our dataset. That is because the leveraged detection tools are not 100% on both recall
and precision. The inaccuracy of the dataset could be accelerated by the fact that the detec-
tion tools may be unable to identify all of the past applied refactorings and the respective
smells. Moreover, the tools may suggest irrelevant refactorings or smells (false positives)
and may miss out some true refactorings or smells (false negatives). Consequently, that may
threaten the accuracy of our dataset. However, in the future, the more improved tools after
applying necessary fix as suggested in Tan and Bockisch (2019) can be leveraged to boost
the accuracy of refactorings detection. In addition, another threat may stem from the pos-
sibility that a commit could have some additional refactorings that are not related to the
implementation of feature requests. To reduce such threats we checked the dataset for pos-
sible errors, but still there could be some unnoticed errors. That would be due to the lack of
the systems knowledge as the process did not involve original developers. Finding original
developers is challenging considering the number of the subject applications we used and
some of them have long evolution history.

5 Conclusion and FutureWork

Empirical investigations on developers’ motivations behind applying refactorings on their
software systems suggest that, refactoring is mostly motivated by the changes in the require-
ments. However, most of the existing refactorings recommenders solely focus on identifying
refactorings opportunities for the sake of resolving code smells and ignore other refactor-
ing motivations such as adding or extending features in software systems. To implement the
requested features, developers sometimes apply refactorings to prepare for new adaptation
that accommodates the new requirements. However, it is often challenging to determine
which types of refactorings should be applied. Consequently, in this paper we propose a
learning-based approach that recommends refactoring types based on the past history of
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feature requests, code smells information, and the applied refactorings on the respective
commits. The proposed approach learns from the training dataset associated with a set of
applications and can be used to suggest refactoring types for feature requests associated
with other applications or that associated with the training applications. To demonstrate the
efficacy of our approach, we conducted experiments on the dataset of 55 open source Java
projects consisting of 18, 899 feature requests retrieved from JIRA issue tracker and their
associated refactorings recovered by using the state-of-the-art refactoring detection tools.
Experimental results suggest that our approach significantly improves over the state-of-the-
art approach. Evaluation analysis on two tasks (i.e., predicting the need for refactoring and
recommending refactoring types) indicates that our approach attains the accuracy of up to
76.01% and 83.19% respectively.

Although the proposed approach suggests refactoring types only and does not point to
the classes involved in the refactoring, the proposed approach is helpful to implement fea-
ture request. To carry out software refactoring, we should know both ‘what’ (refactoring
types) and ‘where’ (where the refactoring should be applied). Consequently, the baseline
approach proposed by Niu et al. (2014) suggests both ‘where’ and ‘what’. However, the
proposed approach suggests ‘what’ only. One of its potential practical usefulness is to
replace/improve the second part of the baseline approach (Niu et al. 2014) (that suggests
refactoring types) because the evaluation results suggest that it is more accurate than the
baseline approach in suggesting refactoring types. The two approaches working together
could suggest both ‘what’ and ‘where’ to developers. The proposed approach may also
be integrated with other approaches/tools that could suggest ‘where’. It is interesting in
future to investigate how change impact analysis approaches (Angerer et al. 2019) may
help to identify which specific source code entity (e.g., class or method) should be refac-
tored. Another potential practical usefulness of the proposed approach is to help developers
pick up proper refactoring tools. Existing study (Liu et al. 2012) suggests that it is often
up to developers to pick up the proper tools to identify different classes of refactoring
opportunities, e.g., GEMS (Xu et al. 2017) for extract method refactoring opportunities, and
JMove (Terra et al. 2018) for move method refactoring opportunities. Suggesting refactor-
ing types (by the proposed approach) may significantly facilitate the selection. The third
potential practical usefulness of the proposed approach is to prioritize the implementation
of different features. Because different categories of refactorings may interfere with each
other (Liu et al. 2012), knowing the required refactoring types of different features help
in deciding the order of refactoring types and hence deciding the order of implementing
features.

Our future work includes the following. First, we would like to conduct a qualitative eval-
uation that involves the actual application of the approach by developers to further reveal its
usefulness and applicability. Second, it would be interesting to investigate how to accurately
locate where recommended refactoring types should be applied by exploiting the advance-
ment of requirements traceability. Finally, our results encourage further investigation that
would improve our approach, for example, leveraging more advanced techniques such as
deep learning algorithms.
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