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Abstract—Large collections of data help evolve deep learning
into the state-of-the-art in solving many artificial intelligence
problems. However, the requirements engineering (RE) commu-
nity has yet to adapt to such sweeping changes caused exclusively
by data. One reason is that the traditional requirements quality
like unambiguity becomes less applicable to data, and so do
requirements fault detection techniques like inspections. In this
paper, we view deep learning as a class of machines whose effects
must be evaluated with direct consideration of inherent data
quality attributes: accuracy, consistency, currentness, etc. We
substantiate this view by altering stationarity of the multivariate
time-series data, and by further analyzing how the stationarity
changes affect the behavior of a recurrent neural network in the
context of predicting combined sewer overflow. Our work sheds
light on the active role RE plays in deep learning.

Index Terms—Data quality, stationarity, recurrent neural net-
work, metamorphic testing, smart sewer systems.

I. INTRODUCTION

Requirements faults are common. Basili and Perricone [1]

reported that 48% of the failures observed in a medium-scaled

software project were “attributed to incorrect or misinterpreted

functional specifications or requirements.” Perry and Stieg [2]

showed that 79.6% of interface faults were due to incomplete

or omitted requirements. While not all requirements faults

are equal, the summary statistics are comparable in safety

and mission critical systems. Lutz [3] analyzed errors in two

NASA spacecraft software systems (Voyager and Galileo), and

found that “the primary cause of safety-related interface faults

is misunderstood hardware interface specifications (67% on

Voyager; 48% on Galileo)”, and “the primary cause of safety-

related functional faults is errors in recognizing (understand-

ing) the requirements (62% on Voyager; 79% on Galileo).”

Faulty requirements are costly. Brooks [4] asserted that “the

hardest single part of building a software system is deciding

precisely what to build”, because “no other part of the work

so cripples the resulting system if done wrong.” With data

support, Boehm [5] suggested that: “Clearly, it pays off to

invest effort in finding requirements errors early and correcting

them in, say, 1 man-hour rather than waiting to find the

error during operations and having to spend 100 man-hours

correcting it.”

As a community, requirements engineering (RE) has paid

substantial attention to characterizing what constitutes a desir-

able level of quality. Most notably, the IEEE 830 standard [6]

defines a good software requirements specification (SRS) to be

correct, unambiguous, complete, consistent, ranked for impor-

tance and/or stability, verifiable, modifiable, and traceable. In

case an SRS lacks these characteristics, systematic and manual

reviews (particularly requirements inspections [7, 8, 9, 10, 11])

shall be carried out to identify as many faults as possible.

When building deep learning (DL) systems, however, a new

class of requirements becomes crucial: data. DL is data hungry,

requiring large collections of data to train a neural network to

classify objects, translate languages, or learn to perform other

tasks. Because the intended functionality like classification has

shared understandings in artificial intelligence (AI), no SRS

seems to ever exist for DL yet algorithmic essentials like back-

propagation are fairly well developed. An underlying driver of

DL becoming the state-of-the-art in practically solving many

AI problems, such as computer vision and natural language

processing, is the availability of vast volumes of data.

Unlike an SRS that needs to be engineered, data arise

naturally: images and the objects in them, natural language

documents and the sentiments in them, etc. Even if require-

ments engineers understand the importance of correctness,

unambiguity, completeness, and the like [6], these quality

characteristics are less applicable to data, making this part

of RE knowledge, including the inspection techniques in the

RE toolbox, rather obsolete in developing DL solutions.

In this paper, we argue that data are important requirements

for DL and the wisdom of requirements quality shall play

an active part in gauging DL’s fitness for purpose. Innova-

tive ways, other than inspecting requirements faults, must

be sought to cope with data faults. We revisit Jackson’s

foundational work on the environment and the machine [12],

and further elaborate our view on the data implications in

building the class of DL machines.

The chief contribution of our paper is a novel vision: Instead

of striving for uncovering and subsequently eliminating faulty

requirements, we shall recognize the inherent data quality

attributes and then embrace the faulty data in new ways. To

substantiate the view, we carry out a case study with the

Metropolitan Sewer District of Greater Cincinnati (MSDGC)

where the prediction in the context of combined sewer over-

flow is experimented with recurrent neural networks (RNNs).

The results demonstrate the value of RNN testing when the

stationarity of the time-series data is altered.

The remainder of the paper is organized as follows. Sec-

tion II provides the background on faulty requirements. Sec-



tion III distills data quality in building DL machines. Sec-

tion IV describes our MSDGC case study. Section V presents

concluding remarks.

II. REQUIREMENTS FAULTS AND INSPECTIONS

Requirements are located in the environment, which is in

contrast to the machine to be constructed [12]. Figure 1 depicts

the conceptual distinction where environment and machine

overlap. Although the machine refers to the software being

built (e.g., a library information management system or the

controller for NASA’s Voyager), the requirements do not

directly concern the machine. They concern the environment in

which the effects of the machine—once built and deployed—

will be observed and evaluated.

While Figure 1 contextualizes requirements as problem

theories, a specification bridges problem and solution. An SRS,

therefore, documents key issues including functionality (what

the software is supposed to do), external interfaces (how the

software interacts with people, hardware, and other software),

nonfunctional attributes (what the speed, availability, security,

etc. considerations are), and design constraints imposed on an

implementation (whether any required standards, policies, re-

source limits, etc. are in effect) [6]. Engineering requirements

is often about figuring out these issues.

Specifying requirements, like many other RE tasks, is

a human-centric activity and prone to error. Walia and

Carver [13] identified 119 requirements errors in their lit-

erature review, and grouped them into three types: people

errors (arising from fallibilities of the people involved in

RE), process errors (arising from selecting inappropriate steps

or procedures for achieving the desired RE outcomes), and

documentation errors (arising from mistakes in organizing

and specifying the requirements, regardless of whether the

engineers properly understood the requirements). The review

by Anu et al. [14] revealed three reasons causing the human

errors: slip (lack of attention), lapse (memory-related failure),

and mistake (inadequate planning).

These human errors manifest in an SRS as requirements

faults. For example, if the SRS does not reflect the stakehold-

ers’ actual needs, then the requirements are incorrect. Other

faults are ambiguity, incompleteness, inconsistency, etc. [6].

Because the software built to satisfy faulty requirements would

result in failure (e.g., unexpected operation or invalid output),

they must be uncovered and addressed to improve the quality

of the machine being constructed.

Inspection is among the effective methods to uncover re-

quirements faults. Not only are different inspections intro-

duced (e.g., checklist, scenario-based, or perspective-based

reading), but rigorous experiments and replications are also

carried out, building a rich body of empirical knowledge [7,

8, 9, 10, 11]. For example, inspectors whose degree is in a field

related to software engineering are found to be less effective in

identifying requirements faults than inspectors whose degrees

are in other fields [10, 11], highlighting the risks of forming

a homogenous, biased inspection team.

Fig. 1. The environment is the part of the world with which the machine will
interact (adopted from [12]).

In summary, when the requirements are externalized in

an SRS [15], in user stories [16], or in other forms [17],

errors manifest in them resulting in faults. These faults, if not

detected, would lead to failures of the constructed machine,

and if detected late in the software life cycle, would be

the most difficult and costly to rectify [4, 5, 18]. Therefore,

static reading techniques like inspections, as well as automated

tools [19, 20, 21, 22], shall be employed to ensure the

requirements artifacts are of high quality on their own.

III. DATA QUALITY AND DEEP LEARNING

Compared to requirements artifacts like an SRS or user

stories, data in DL development are very much taken for

granted. This section revisits Jackson’s conceptualization to

position data in DL development and to further argue that

checking data quality in the same static manner as inspecting

SRS is no longer appropriate, motivating our new way of

exploiting data quality.

We regard DL as a class of software which can be concep-

tualized as “machine” in Jackson’s model [12]. DL is part of

a broader family of machine learning methods that develop

algorithms based on sample data known as training data in

order to make predictions or decisions without being explicitly

programmed to do so [23]. The architectural backbone of DL

is artificial neural network, inspired by information processing

and distributed communication nodes in biological systems.

Compared to traditional machine learning that requires manual

feature selections, DL consists of multiple hidden layers to dis-

cover intricate structure in large data sets more automatically

by using backpropagation to indicate how a machine should

change its internal parameters [24].

Clearly, backpropagation, internal parameters, and hidden

layers all belong to the private part of the machine. However,

DL is to be applied in fields like computer vision, speech

recognition, machine translation, playing board games, and

medical diagnosis, all of which overlap the “environment”

according to Jackson [12]. Take playing board games as an

example, no matter how the DL machine is built, its true

effects have to be observed and evaluated in the environment,

i.e., by competing against human players.

Winning a board game may be an important entertainment

goal, other requirements concern safety, security, business,

healthcare, etc. All requirements, according to Jackson [12],

are typically about the private phenomena of the environment
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Fig. 2. Data lie in the overlap of the DL machine and its environment.

and can be stated entirely without reference to the machine.

For a board game, winning by the rules (achieving a desired

state, respecting the timing constraints placed on the moves,

etc.) is the requirement, independent of how specific DL

machines are trained (e.g., whether reinforcement learning is

used to maximize the objective function). The data, or more

specifically, the training data of previously played games, exist

without any DL machine being built. Therefore, data are not
in the private part of the machine.

When constructing the DL machine, data are not in the

private part of the environment, either. This is because data,

especially the training data, directly influence the DL behavior.

Thus, we position data in the overlap of the DL machine and

its environment, as shown in Figure 2. This raises the question

of whether data are given (being indicative [12]) as other parts

of the environment like the board games and their rules, or

data are constructed (being optative [12]) as other parts of the

machine like the hidden layers and their nonlinear activations.

We argue the answer is both. While the training data are

given, once the constructed DL machine is deployed in the

lab or in the field, many more data will be outputted from the

machine. These newly generated data, though left the machine,

can be used as positive or negative examples for training

better DL machines. It is this dynamic consuming-producing

relationship of DL that makes data fit in the intersection of

the environment and the machine.

Being data hungry, DL suffers from the “garbage in, garbage

out” problem, and therefore requires high-quality input data

to train the neural network for making good classifications

and predictions, or learning to perform other tasks well.

Data quality, as shown in Figure 3, can be viewed from

two angles: inherent or system-dependent [25]. As system-

dependent quality attributes, such as availability and trace-

ability [26, 27, 28, 29, 30], rely on the degree to which

the machine stores the data and permits the data usage, we

focus on the inherent data quality in our current work. The

five characteristics listed below refer to the extent the data

themselves are amenable to satisfying the DL functionality.

• Accuracy concerns how correctly the data represent the

true value of the intended attribute of a concept or event

in a specific context of use. For instance, if a city’s

Fig. 3. Inherent data quality includes: accuracy, completeness, consistency,
credibility, and currentness (adopted from [25]).

temperature is recorded as “86 celsius”, then semantic

inaccuracy could be encountered and “86 fahrenheit” (“30

celsius”) might be suspected to be the correct value.

• Completeness refers to whether the data associated with

an entity have values for all expected attributes and in

all instances. When constructing a supervised DL ma-

chine, missing labels represent a serious incompleteness

challenge.

• Consistency is defined as attributes being free from

contradiction and data being coherent with each other in

a specific context. We discuss stationarity, a consistency

property of time-series data, in our case study presented

in the next section.

• Credibility is about whether the data attributes are

regarded as true and believable by users. Credibility

includes the concept of authenticity (the truthfulness of

origins, attributions, commitments) [25].

• Currentness is concerned with the degree to which data

have attributes that are of the right age. Using image

recognition as an example, although landline phones are

still around, using only them to train a DL algorithm

without considering smartphone samples seems already

outdated.

These quality characteristics of data have the intrinsic poten-

tial to satisfy a DL machine’s requirements. The data artifacts

are so different from the requirements artifacts. Not only are

the desired qualities distinct (e.g., IEEE 830 for SRS [6] versus

ISO/IEC 25012 for data [25]), but the approaches toward

assuring qualities have to be diversified. In particular, static

reading techniques like inspections, which are used to be

successfully applied to examine requirements artifacts like an

SRS, are no longer effective when data quality is at stake.

Due to the overlapping nature of data in Figure 2, we

posit that data quality shall be assessed together with the DL



machine in an intertwined manner, rather than being checked

on their own in isolation. Specifically, we propose to apply a

new kind of metamorphic testing [31] by focusing on making

data faulty along the inherent quality dimensions and then

observing whether the DL machine behaves in some expected

way.

Metamorphic testing emerged as a technique to alleviate

the oracle problem, which refers to the lack of mechanism

for checking whether the program under test produces the

expected output when executed using a set of test cases [32].

In scientific software, for example, test oracle might be prac-

tically unavailable due to reasons like inherent simulation un-

certainties and complex floating point operations [33]. Under

these circumstances, metamorphic testing can be applied to

continuous simulations to derive the desired outcome (oracle)

of any simulation being a better fit than its previous round [34].

To illustrate our idea of using metamorphic testing, let us

consider a DL machine whose classification accuracy is 90%

on phone images. We could intentionally drop the training

data’s accuracy (one of the inherent data characteristics of

Figure 3), e.g., by changing the label of some real phone

images to “not phone”. This is a concrete operation that we

refer to as “metamorphic accuracy drop”. Everything else

being equal, we would expect the DL trained with the data

after a “metamorphic accuracy drop” to behave worse than

90% in phone-image classifications. In this way, we are able

to leverage the faulty data that are purposefully altered to

compare the DL machine’s behaviors before and after the

change in data quality.

It is important to note that metamorphic testing machine

learning is not new. Murphy et al. [35] made one of the

first attempts to enumerate six operations a machine learning

application’s input data could be changed: additive, multiplica-

tive, permutative, invertive, inclusive, and exclusive. Our work

differs from these adding, shrinking, or rearranging operations

in that we explicitly create faulty data based on the inherent

quality characteristics, and embed these faulty changes in the

DL machine to observe the effects. We next present a case

study to offer insights into the faulty change made on the

time-series data and the change effects on an RNN.

IV. CASE STUDY

A. Study Context

We collaborate with MSDGC to address one of the most

pressing societal problems: combined sewer overflow, or

“overflow” for short. Figure 4 illustrates that combined sewer

systems manage stormwater runoff, domestic sewage, and

industrial wastewater in the same pipe, and when the volume

of wastewater in the pipe exceeds the safe capacity (e.g.,

during heavy rainfall events), overflow occurs causing the

untreated water to discharge directly to nearby water bodies.

Because overflows can harm human and environmental health,

they must be dealt with. For example, the first phase of the

Overflow Long Term Control Plan at the Augusta Sanitary

District of Maine involved a $12.2-million upgrade to better

Fig. 4. Combined sewer overflows contain untreated or partially treated
human and industrial waste, toxic materials, and debris as well as stormwater.

TABLE I
SCHEMATIC OVERFLOW DATA

Timestep . . . Flow Velocity Level . . .
(ft3/sec) (ft/sec) (ft)

. . .
Day1 13:35 . . . 0.07 0.70 545.21 . . .
Day1 13:40 . . . 0.10 0.09 545.87 . . .
Day1 13:45 . . . 0.09 1.08 546.79 . . .

. . .

treat excess wet weather flows, resulting in a 70% decrease of

untreated overflows [36].

Some municipalities and utilities advance both the physical

and cyber infrastructures to address the overflow challenges.

MSDGC, for example, deploys the SCADA (supervisory con-

trol and data acquisition) system to collect large amounts of

data, pioneering the development of a smart sewers network.

A SCADA system’s fundamental purpose is to communicate

data and control commands from a centrally located operator

to geographically dispersed remote locations in real time. In

2014, MSDGC began installing sensors throughout its largest

watershed, and to date, MSDGC’s smart sewer system covers

over 150 square miles of its service area, incorporating two

major treatment plants, six wet weather storage and treatment

facilities, four major interceptor sewers, 164 overflow points,

and 32 rain gauges and river level sites [36]. Remote monitor-

ing has improved the maintenance of wet weather facilities

and enabled upstream facilities to account for downstream

interceptor conditions, increasing overflow capture basin-wide

during wet weather.

With SCADA’s vast collections, MSDGC explores DL’s

potential to automatically predict overflow-related data. Our

study focuses on the data collected and archived for a specific

overflow site in MSDGC’s service area. To honor confidential-

ity, Table I depicts schematically an excerpt where timestep

indicates the sequential nature of the time-series data. The

middle columns of Table I represent various sensing data. For

instance, an inflow manhole sensor can measure the runoff

water velocity whereas a gate sensor can be used to measure

the sewer level in the pipe.
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Fig. 5. Visualizing weakly stationary and weakly non-stationary time-series data (adopted from [41]).

RNN is widely recognized as one of the best DL models for

time-series prediction in general [37], and for overflow forecast

in particular [38]. RNN uses the internal state to process

sequences of inputs, exhibiting temporal dynamic behavior.

In [38], an RNN was trained to predict the stormwater runoff

in terms of the precipitation and the previous runoff discharge.

The experiment on the 34,721-timestep data collected at a

combined sewer overflow site near the District of Columbia

showed that the prediction accuracy was high when the hidden

layer had 50 neurons, which was the maximum number al-

lowed without the RNN running out of memory [38]. Informed

by the relevant literature, we chose RNN to perform overflow-

related prediction.

B. Stationarity of Multivariate Time-Series Data

The data shown in Table I consist of series of observations,

xi(t); [i=1, 2, . . . , n; t=1, 2, . . . , m], made sequentially

through time where i indexes the measurements at each

timestep t [39]. When n≥2, there are multiple variables (e.g.,

flow, velocity, level, etc.) recorded at each observation, making

Table I multivariate time-series data. For this kind of data, an

important consistency characteristic is stationarity. Intuitively,

a time series is stationary if the statistical properties of the

time series, e.g., the mean and the correlation coefficients, do

not change over time.

More formally, a time series is strictly stationary if the joint

distribution of X(t1), X(t2), . . . , X(tn) is the same as the

joint distribution of X(t1+τ ), X(t2+τ ), . . . , X(tn+τ ) for all

t1, t2, . . . , tn, τ , where X(t) denotes the random variable at

time t [40]. In other words, shifting the time origin by an

amount of τ has no effect on the joint distributions, indicating

that the statistical properties of the time series are invariant

with respect to the window in which the data are analyzed. In

practice, it is often useful to define stationarity in a less strict

sense, and hence a time series is weakly stationary if both the

variance and the mean are constant [40].

Figure 5 illustrates examples of weakly stationary and

weakly non-stationary data where two different variables are

plotted in the sub-graphs [41]. The dashed line in the middle

represents the mean of each variable. Figure 5a shows that

the values of stationary data move irregularly away from the

mean but eventually revert to its mean, whereas Figure 5b

displays that some trend of the non-stationary data exists. For

a multivariate time series, co-integration can be performed

to test stationarity [40]. High co-integration level means that

one or more linear combinations of multivariate time series

is stationary even though individually they may be non-

stationary. If the time series are co-integrated, they cannot

move too far away from each other [42].

Stationarity, therefore, is intrinsic to time-series data. We

believe this attribute is key to consistency shown in Figure 3,

as stationarity quantifies the degree to which the data are

coherent and free from contradiction. We next describe our

experiments to demonstrate how to exploit such an inherent

data quality to test RNN in overflow-related forecast.

C. Results and Implications

We constructed an RNN machine based on the long short-

term memory implementation [43] with three 10-neuron hid-

den layers and one dense output layer. We used ‘ReLU’

activation function for each layer, optimized the model using

the ‘SGD’ optimizer, set the learning rate to be 1e-2, and ran

the model for 10 epochs with a batch size of 1 to predict one

timestep further. For our experiment, 5,000-timestep sequential

data were used for training the RNN. We tested the resulting

RNN in two rounds: first with the test data of t timesteps, and

then with these test data altered in stationarity.

To alter stationarity, we apply a linear transformation to

the “flow” value at each timestep, i.e., we set xflow(tm) =

[α ·xflow(tm−1) + β ·xflow(tm)] / γ while keeping the other

two attributes’ values intact (“velocity” and “level”). We call

this operation “metamorphic stationarity change” as changing

the variance of only one variable in a multivariate time series

will impact the stationarity of the data. We then analyze how

the change in stationarity measured by co-integration, which

we calculate by using Python’s statsmodels library [44], affects
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Fig. 6. Change in co-integration (x-axis) and the corresponding change in prediction error (y-axis) after the “metamorphic stationarity change” (α=2, β=1,
γ=3) is applied to t timesteps of test data, which results in N tests (points in the plot): (a) t=300, N=90, and (b) t=600, N=45.

(a) (b)

Fig. 7. Change in co-integration (x-axis) and the corresponding change in prediction error (y-axis) after the “metamorphic stationarity change” (α=2, β=1,
γ=3) is applied to 300 timesteps of test data, which results in 37 tests (points in the plot): (a) RNN trained with 4-month, more current data, and (b) RNN
trained with 2-month, less current data.

the RNN’s prediction at t. To quantify prediction performance,

we aggregate the error: (value from the test data) − (value

from RNN’s prediction), for all three variables in our data.

Figure 6 shows the results. From these plots, a general trend

can be inferred: When co-integration value increases meaning

that the data become more stationary, the less prediction

errors the RNN makes. This trend is in line with correlation-

based multivariate time-series analysis where lesser station-

arity leads to lower classification accuracy [41]. In addition,

Figure 6 shows that stationarity decreases and prediction error

increases scale in correspondence with t, e.g., the greatest

prediction error jump in Figure 6a and Figure 6b is 150.17

and 309.08 respectively. To our surprise, such a scaling factor

is not observed for stationarity improvement: the maximal

co-integration in Figure 6a and Figure 6b is 41.61 and

24.59 respectively, indicating our current way of operating

the “metamorphic stationarity change” tends to make the data

consistency degree worse, rather than better.

Our results demonstrate the feasibility of intentionally ma-

nipulating the inherent data quality characteristics in engi-

neering DL machines. In particular, by changing stationarity,

we are able to empirically observe a desired RNN trend.

Although preliminary, our findings show that requirements

engineers shall not remain passive about data quality in DL.

Our intertwined treatment of data quality requirements and DL

machine construction has a couple of practical implications.

First, RNN machine builders shall consider adding a data

preprocessing component to stationarize the multivariate time-

series items before feeding them into the RNN for processing.

However, caution should be exercised as over-stationarizing

(e.g., redundant first-order differencing) could hurt classifica-

tion accuracy [41].

The second implications concerns RNN end users such

as the MSDGC engineers. When training or retraining the

RNN, the users shall select the data representing the problem

context more stably. To investigate this, we perform another
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Fig. 8. Ratio of prediction-error change (y) over co-integration change (x)
of Figure 7.

experiment where a collection of 300 timesteps of test data

is used (e.g., May–June). We then train two RNN variants:

RNNmc with 4-month, more current data (e.g., Jan–April)

and RNNlc with 2-month, less current data (e.g., Jan–Feb).

Figure 7 shows the results of testing the two RNNs when

our “metamorphic stationarity change” operator is applied.

While the same general trend of “less stationary, more error”

holds, RNNlc is more noisy. Figure 8 further compares the
y
x ratio of these two machines. A majority of the RNNmc

results are bound within a threshold range of [−1, 1], whereas

a wider range is exhibited by RNNlc. In practical settings,

such thresholds may be used to inform the MSDGC engineers

about the extent to which the RNN machine behaves beyond

the limits and hence human intervention would be required.

D. Threats to Validity

The construct validity of our case study analysis can be

affected by the metrics that we used to measure stationarity

and prediction error. Following Chatfield [40], we calculate

co-integration values to assess the stationarity of MSDGC’s

multivariate time-series data. Similarly, to account for the

inherent quality of the entire data rather than an individual

attribute, we report the error by aggregating the difference

between the RNN prediction and the test data of all the

variables including the one to which “metamorphic stationarity

change” is applied.

The internal validity can be influenced by the way that

we implement the DL machine as well as the “metamorphic

stationarity change” operation. The validity threats particularly

concern our calibration of DL hyperparameters for the ma-

chine learning process, our choice of specific parameters used

in the linear transformation, and our selection of training and

test data in the experiments. In addition, though our intention is

to account for sensor malfunctioning or other failure situations,

the decision of linearly transforming only “flow” values may

impose certain threats to internal validity.

The results may not generalize beyond the multivariate time-

series data and the prediction context of combined sewer

overflow, potentially hurting external validity. Although strong

parallels can be drawn between our “metamorphic stationarity

change” over the multivariate time-series data and approaches

like DeepTest [45] that blur image data to detect erroneous

behaviors of the DL machines, it is interesting future work to

explore in which application areas data-driven metamorphic

testing is suitable, and in what other domains it may not be

desired.

V. CONCLUDING REMARKS

This paper presents our view that DL is a class of machines

requiring special attention to the data quality requirements.

Unlike stakeholder needs expressed in natural languages or

requirements models, we argue that data for DL lie in the

intersection of machine and environment. Thus, data are both

indicative and optative [12]. The inherent quality charac-

teristics of data are no longer amenable to be checked by

using static reading techniques like inspections. Rather, we

show how the wisdom of uncovering requirements faults can

be transformed to a more integrated and dynamic mode.

In particular, we define a novel set of operators based on

metamorphic testing [31] to directly alter data quality, and

illustrate our vision with RNN testing under “metamorphic

stationarity change” of MSDGC’s time-series data.

Our study explores systematic ways of assessing data

quality in DL development. However, low-quality data can

be caused by components such as data acquisition/sensing.

This may require re-scoping of the environment and the

machine so that stakeholder needs and desires could be better

satisfied. Nevertheless, our work exploits faults in software and

systems engineering to create new ways of taking advantage

of these faults in RE tasks. For instance, by surveying the

modeling mistakes in the literature [46, 47], we develop a

novel mutation-driven approach to tracing safety requirement

and state-based design models [48].

Our future work includes performing more experiments to

lend strength to the preliminary findings reported here. We

are also intrigued by the interdependencies and tradeoffs of

the inherent data quality attributes. Indeed, our experimental

results reported in Figures 7 and 8 has linked time-series

stationarity with data currentness, suggesting future work

may help assess multiple data quality requirements for DL.

As the role of RE in AI reshapes and expands [49], the

synergy of data qualities and nonfunctional requirements (e.g.,

robustness [50]) is worth exploring.
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