
Deriving Use Cases from Organizational Modeling

Victor F.A. Santander * Jaelson F. B. Castro

Universidade Federal de Pernambuco – Centro de Informática
Cx. Postal 7851, CEP 50732-970, Recife-PE, BRAZIL
Phone: (+55 81) 3271-8430, Fax: (+55 81) 3271-8438

{vfas,jbc}@cin.ufpe.br

* Partially Supported by CNPq Grant No. 147192/1999-4. On-leave from Universidade Estadual do Oeste do Paraná.

Abstract
Use Cases Diagrams in the Unified Language

Modeling (UML) have been used for capturing system
functional requirements. However, the system
development occurs in a context where organizational
processes are well established. Therefore, we need to
capture organizational requirements to define how the
system fulfils the organization goals, why it is necessary,
what are the possible alternatives, etc. Unfortunately,
UML is ill equipped for modeling organizational
requirements. We need other techniques, such as i*, to
represent these aspects. Nevertheless, organizational
requirements must be related to functional requirements
represented as Use Cases. In this paper we present some
guidelines to assist requirement engineers in the
development of Use Cases from the i* organizational
models.

1. Introduction

System development occurs in a context where

organizational processes are well established. However,
as discovered in empirical studies, the primary reason for
software system failure is the lack of proper
understanding of the organization by the software
developers. Unfortunately, the dominant object oriented
modeling technique, UML, is ill equipped for
organizational requirement modeling. We need others
techniques, such as i* [15] to represent these aspects. We
argue that i* framework, is well suited to represent
organizational requirements that occur during the early-
phase requirements capture, since it provides adequate
representation of alternatives, and offers primitive
modeling concepts such as softgoal and goal. These early
activities would enable an understanding of how and why
the requirements came about.

Nevertheless, organizational requirements must be
related to functional requirements represented with

techniques such as Use Cases. However, Use Case
development demands great experience of the requirement
engineers. The heuristics presented in the literature to
develop Use Cases are not sufficient to allow a systematic
development. Indeed, they do not consider relevant
organizational aspects such as goals and softgoal.

In this work, we propose some guidelines to support
the integration of i* and Use Case modeling. We describe
some heuristics to assist requirement engineers to develop
Use Cases based on the organizational i* models. This
paper is organized as follows. Section 2 introduces the
concepts used by i* framework to represent organizational
requirements and early requirements. In Section 3, we
review Use Case modeling. In Section 4, we present the
benefits of our approach as well as describe the guidelines
to integrate i* organizational models and Use Cases
diagrams. In Section 5, we introduce a brief case study to
show the viability of our proposal. Section 6 discusses
related works and concludes the paper.

2. The i* Modeling Framework

When developing systems, we usually need to have a
broad understanding of the organizational environment
and goals. The i* framework [15] provides understanding
of the reasons (“Why”) that underlie system requirements.
I* offers two models to represent organizational
requirements: the Strategic Dependency (SD) Model and
the Rationale Dependency (SR) Model.

2.1. The Strategic Dependency Model - SD

This model focuses on the intentional relationships
among organizational actors. It consists of a set of nodes
and links connecting them, where nodes represent actors
and each link represents the dependency between actors.
The depending actor is called Depender and the actor who
is depended upon is called Dependee. The i* framework
defines four types of dependencies among actors: goal,

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)
1090-705X/02 $17.00 © 2002 IEEE

resource, task and softgoal. Figure 1 shows an Strategic
Dependency (SD) Model of the meeting scheduling
setting with a computer-based meeting scheduler [15].

Figure 1. Strategic Dependency Model for the Meeting

Scheduling Problem.

The meeting initiator depends on participant to attend

the meeting. The meeting initiator delegates much of the
work of meeting scheduling to the meeting scheduler.
The meeting scheduler determines what are the acceptable
dates, given the availability information (task dependency
EnterAvailDates(m)). The meeting initiator does not care
how the scheduler does this, as longer as the acceptable
dates are found. This is reflected in the goal dependency
MeetingBeScheduled from the initiator to the scheduler.
On the other hand, to arrive at an agreeable date,
participants depend on the meeting scheduler for date
proposals (resource dependency ProposedDate(m)). Once
proposed, the scheduler depends on participants to
indicate whether they agree with the date (resource
dependency Agreement(m,p)). For important participants,
the meeting initiator depends critically on their
attendance, and thus also on their assurance that they will
attend (softgoal dependency
Assured(AttendsMeeting(ip.m))). The meeting scheduler
depends on the meeting initiator to provide a date range
(task dependency EnterDateRange(m)) for the scheduling.

2.2. The Strategic Rationale Model - SR

The Strategic Rationale (SR) model allows modeling
of the reasons associated with each actor and their
dependencies. Two news links are added to previous
notation:
• Means-ends: This link indicates a relationship between

an end - which can be a goal to be achieved, a task to

be accomplished, a resource to be produced, or a
softgoal to be satisficed - and a means for attaining it.

• Task-decomposition: A task is modeled in terms of its
decomposition into its sub-components. These
components can be goals, tasks, resources, and/or
sofgoals.
In Figure 2, we present an example of the Strategic

Rationale (SR) model. We use the SR notation to detail
the Meeting Scheduler actor. Due to space limitation, we
do not detail the Meeting Initiator and Meeting
Participant actors (see the complete model in [15]). The
Meeting Scheduler actor represents a software system that
partially performs the meeting scheduling, while the
Meeting Initiator and Meeting Participant, are responsible
for providing or receiving information to the system. The
Meeting Scheduler actor possesses a Schedule Meeting
task which is decomposed into three sub-components
using the task-decomposition relationship:
FindAgreeableSlot, ObtainAgreemet and
ObtainAvailDates. These sub-components represent the
work that will be accomplished by the meeting scheduler
system.

Figure 2. Strategic Rationale (SR) Model to the

Meeting Scheduler System.

3. Use Cases in UML
Scenario-based techniques have been used by the

software engineering community to understand, model
and validate users requirements [9] [10] [13] [14]. Among
these techniques, Use Cases have received a special
attention in the object oriented development community.
Use Cases in UML [3] are used to describe the use of a
system by actors. An actor is any external element that
interacts with the system. A Use Case is a description of a
set of sequences of actions, including variants, that a

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)
1090-705X/02 $17.00 © 2002 IEEE

system performs that yields an observable result value to
an actor. It is desirable to separate main (primary
scenario) versus alternative (secondary scenario) flows
because a Use Case describes a set of sequences, not just
a single sequence, and it would be impossible to express
all the details of an interesting Use Case in just one
sequence.

In order to cope with increasing complexity of Use
Cases description, UML caters for three structuring
mechanism: inclusion, extension and generalization. For
further information see [3].

4. Deriving Use Cases from Organizational
Modeling.

In this section we argue how our approach can improve
the Use Case development. In section 4.1 we outline the
main benefits accomplished by approach and in section
4.2 we describe it in detail.

4.1. Benefits of i* and Use Case Integration

i* provides an early understanding of the
organizational relationships in a business domain. As we
continue the development process, we need to focus on
the functional and non-functional requirements of the
system-to-be. As a first step in the late requirements phase
we can adopt Use Cases to describe functional
requirements of the system. We argue that the Use Case
development from organizational modeling using i*
allows requirement engineers to establish a relationship
between the functional requirements of the intended
system and the organizational goals previously defined in
the organization modeling. Besides, through a goal-
oriented analysis of the organizational models, we can
derive and map goals, intentions and motivations of
organizational actors to main goals of Use Cases. We
assume, that for each Use Case we have associated a main
goal, which represents what the user aims to reach as a
result of the execution of the Use Case. In our proposal,
the Use Case scenario description is based on
organizational models, which are well known and
understood by all stakeholders. Note that our approach
can be used for any type of system.

We can mention other important benefits obtained
using our approach, such as:
• Many researchers [1] [6] [8] [14] [16] have considered

goals in a number of different areas of Requirements
Engineering. Goal-oriented approaches to
requirements acquisition may be contrasted with
techniques that treat requirements as consisting only of
processes and data, such as traditional systems
analysis or “objects”, such as the object-oriented

methods, but which do not explicitly capture why and
how relationships in terms of goals.

• The relationships between systems and their
environments can also be expressed in terms of goal-
based relationships. This is partly motivated by
today’s more dynamic business and organizational
environments, where systems are increasingly used to
fundamentally change businesses process [16].
Deriving Use Cases from i* relationships allows
traceability and evaluation of the impact of these
changes into the functional requirements of the
intended system;

• Some of the Use Case pitfalls and drawbacks
described in [11], can be partially solved using our
approach. For instance, Use Cases are written from the
actor’s (not the system’s) point of view. We derive
Use Cases from actors dependencies defined explicitly
in i*. Another positive aspect is the ability to define
the essential Use Cases for the intended system. This
avoids defining too many Use Cases and allows
managing the appropriate granularity of Use Cases.
Finally, the integration between requirements
engineers and customers during the organizational
model development also allows customers (actors) to
better understand the Use Cases originated from these
models;

• To elicit and specify system requirements observing
the actor’s goal in relation to the system-to-be, is a
way of clarifying requirements [16]. From i* we can
derive these goals, associate them with system actors
and then refine and clarify the requirements into Use
Cases.

4.2. Proposed Approach

To guide the mapping and integration process of i*
organizational models and Use Cases, we have defined
some guidelines which must be applied according to the
steps represented in Figure 3. In this figure, steps 1, 2 and
3 represent the discovery of system actors and its
associated Use Cases diagrams and descriptions. The
input for the integration process are the Strategic
Dependency (SD) and Strategic Rationale (SR) models
developed through i* framework. In steps 1 and 2, the
input is the Strategic Dependence (SD) Model. The
description of scenarios for Use Cases (step 3) is derived
from elements represented in the Strategic Rationale (SR)
Model. The results of the integration processes are Use
Case diagrams for the intended system and scenario
textual descriptions for each Use Case.

In the sequel we suggest heuristics for the Use Cases
development from organizational modeling with i*.

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)
1090-705X/02 $17.00 © 2002 IEEE

Figure 3. Steps of the integration process between i*

and Use Cases in UML

1º Step: Discovering System Actors.
Guideline 1: every actor in i* should be considered as a
possible Use Case actor; For example, the Meeting
Participant i* actor in Figure 1 is a possible UML actor.
Guideline 2: the actor considered in i* should be external
to the intended software system. For example, the
Meeting Participant actor is external to the system
because it will interact with the intended meeting
scheduler system.
Guideline 3: if the actor is external to the system, it
should be guaranteed that the i* actor is a candidate actor
in the Use Case diagram. For this purpose, the following
analysis is necessary:

Guideline 3.1: the actor dependencies in i* must be
relevant from the point of view of the intended system;
For instance, the Meeting Participant actor in i* can be
mapped to Use Case actor, considering that
dependencies associated with it, characterizes it as
important in an interaction context with the meeting
scheduler system.

Guideline 4: actors in i*, related through the IS-A
mechanism in the organizational models and mapped
individually for actors in Use Cases (applying guidelines
1, 2 and 3), will be related in the Use Case diagrams
through the <<generalization>> relationship. For instance,
the IS-A relationship between Meeting Participant and
Important Participant in Figure 1, can be mapped to
generalization relationship between these actors in the
Use Case diagram.
2º Step: Discovering Use Cases for the Actors.
Guideline 5: for each discovered actor of the system (step
1), we should observe all its dependencies (dependum) in
which the actor is a dependee, looking for Use Cases for
the actor; Initially, we recommend to create a table
containing the discovered actors and the information
about the dependencies for the actor from the point of
view of a dependee. Moreover, you can include which

guideline(s) to be used to analyze each dependency
(dependum) (see table 1). For instance, some Use Cases
can be associated with the Meeting Participant actor
observing their dependencies presented in i*:

Guideline 5.1: goal dependencies - goals in i* can be
mapped to Use Case goals; For instance, in Figure 1,
the goal dependency AttendsMeeting(p,m) between
Meeting Initiator (Depender) and Meeting Participant
(Dependee) can be mapped to the AttendsMeeting Use
Case, which will contain the several steps accomplished
by Meeting Participant to attends to the meeting.

Actor Dependency Type of
Dependency

Guideline
to be used

Meeting Participant AttendsMeeting(p,m) Goal (G5.1)

Table 1. Gathered information from SD Models to
aid requirement engineers to derive Use Cases.

Guideline 5.2: task dependencies - if an actor depends
on another actor for the accomplishment of a task, it
should be investigated if this task needs to be
decomposed into other sub-tasks. For example, for the
task dependency EnterDateRange(m) associated with
the Meeting Initiator actor (see Figure 1), we can
consider that the task of supplying a date range for the
meeting scheduling can include several aspects (later
mapped to Use Case steps) such as to associate range
dates with specific meetings, to establish priorities for
specific meetings, etc. Thus, from the task
EnterDateRange(m) we can generate the Use Case
called EnterDateRange for the Meeting Initiator actor.
 Guideline 5.3: resources dependencies - if an actor
depends on another actor for obtaining a resource(s),
why is it required? If there is a more abstract goal, it
will be the candidate goal of the Use Case for the actor.
For instance, for the resource dependency
Agreement(m,p) associated with the Meeting
Participant actor (see Figure 1), we conclude that the
main goal of obtaining of Agreement(m,p) resource is a
scheduled date agreement from each participant. We
could consider that in this agreement process, each
participant could agree with the proposed meeting date
with certain schedule restrictions or duration time. Still,
the agreement could involve an analysis of other
possible dates. In other words, to obtain the scheduled
date agreement, several interaction steps between
meeting scheduler and meeting participant could be
defined in one Use Case called Agreement for the
Meeting Participant actor.
Guideline 5.4: sofgoal dependencies - typically, the
sofgoal dependency in i* is a non-functional
requirement for the intended system. Hence, a softgoal
does not represent a Use Case of the system but a non-
functional requirement associated with a Use Case of

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)
1090-705X/02 $17.00 © 2002 IEEE

the system. For instance, the softgoal
Assured(AttendsMeeting(ip,m)) between Meeting
Initiator and Important Participant actors can be
mapped into a non functional requirement associated
with the Use Case AttendsMeeting. This non-functional
requirement indicates that it is necessary to assure that
the Important Participant attends to the meeting.

Guideline 6: analyze special situations, where an actor
discovered (following the step 1), possess dependencies in
relation to an actor in i* that represents an intended
software system or part of it. These dependencies usually
generate Use Cases. It is important to notice that in this
situation the derived Use Case is associated with the
depender actor in the relationship. This occurs due to the
fact that the dependee is a software system and the
depender (Use Case actor) must interact with the system
to achieve the goal associated with the generated Use
Case. For instance, the goal dependency
MeetingBeScheduled between Meeting Initiator and
Meeting Scheduler system in the Figure 1, points out for
the definition of the Use Case MeetingBeScheduled for
the Meeting Initiator actor, which represents the use of the
system by the actor, describing the details of the meeting
scheduling process.
Guideline 7: classify each Use Case according to the type
associated to its goal (business, summary, user goal or
subfunction). This is based on a classification scheme
proposed by Cockburn [7]. A business goal represents a
high level intention, related to business processes, that the
organization or user possesses in the context of the
organizational environment. An example could be the
goal "organizing a meeting in the possible shortest time".
A summary goal represents an alternative for the
satisfaction of a business goal, as in the case of the goal,
"meeting scheduling by software system". An user goal
results in the direct discovery of a relevant functionality
and value for the organization actor using a software
system. An example could be the goal, "the meeting
participant wishes to attend the meeting". Finally,
subfunction-level goals are those required to carry out
user goals. An example could be the goal, “enter date
range for meeting scheduling” by the Meeting Initiator.
To aid requirement engineers to identify new Use Case
and better understand the discovered Use Cases, we
recommended to generate a table containing the actor
name, the Use Case goal and the goal classification (see
table 2).

Actor Use Case Goal Goal Classification
Meeting Participant AttendsMeeting User Goal

Table 2. Use Case goal classification.

3º Step: Discovering and Describing Use Case Scenario.
Guideline 8: analyze each actor and its relationships in
the Strategic Rationale (SR) model, to extract information

that can lead to the description of the Use Cases scenario
for the actor. It is important to remember that SR models
represent the internal reasons associated with the actor
goals. Therefore, we must consider internal elements
which are used by the actor to achieve goals and sofgoals,
to perform tasks or obtain resources. The actor has the
responsibility to satisfy these elements and the
decomposition in SR shows how the actor will be
performing this. Typically, the dependencies associated
with the actor are satisfied internally through two types of
relationships used in SR: means-ends and task-
decomposition. These relationships must be observed to
derive scenario steps for the Use Cases. For instance,
consider the Strategic Rationale (SR) Model in Figure 2.
From the Meeting Scheduler actor point of view, we know
that the Schedule Meeting task is decomposed into
ObtainAvailDates, FindAgreeableSlot and
ObtainAgreement. Since the software system objective is
to accomplish meeting scheduling, we could consider that
these tasks are the necessary high-level steps to
accomplish a meeting schedule (Use Case
MeetingBeScheduled defined for the Meeting Initiator
actor). Thus, this Use Case could contain the steps (the
primary scenario description) regarding the need to obtain
from each Meeting Participant, the available dates for a
meeting (ObtainAvailDates); the need to define the best
meeting dates that could be scheduled
(FindAgreeableSlot); and to obtain the participants
agreement for a proposed meeting date
(ObtainAgreement).

5. Case Study
 In this section, we follow the steps proposed in Figure
3 and apply the appropriate guidelines to the example
described in the previous section (Figure 1 and 2). Recall
that Figure 1 shows a Strategic Dependency (SD) model
for meeting scheduling while Figure 2 represents the
Strategic Rationale (SR) model. Hence, these
organizational models are used to discover and describe
Use Cases in UML for the Meeting Scheduler system. We
begin deriving the Use Case actors from the SD model.
We then find the Use Cases for the actors observing the
actors dependencies in SD model. Next, the primary
scenario for one derived Use Case is described from the
SR model. Last but not least, a version of the Use Case
diagram in UML for the Meeting Scheduler system is
generated.
• From Figure 1, we can find candidates actors for the

Use Case development. According to the guidelines in
the 1st step of the proposal, we conclude that one of
the analyzed actors does not follow guideline 2. The
Meeting Scheduler actor is a system, i.e. the software
to be developed. Therefore, this i* actor cannot be

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)
1090-705X/02 $17.00 © 2002 IEEE

considered as a Use Case actor. The other i* actors are
considered appropriate because their strategic
dependencies refer to relevant aspects for the meeting
scheduler system (guideline 3) development. So, the
list of candidates Use Cases actors includes: Meeting
Initiator, Meeting Participant and Important
Participant. We also note that Important Participant is
a type (relationship IS-A) of participant. According to
guideline 4 (1st step), we consider this actor a
specialization of Meeting Participant actor.
The next step is to discover and relate Use Cases for

each actor according to the guidelines presented in the 2º
Step (Discovering Use Cases for the Actors).
• Initially, following the guideline 5 and observing the

SD model presented in Figure 1 we can generate the
table 3.

Actor Dependency Type of
Dependency

Guideline
to be used

Meeting
Participant AttendsMeeting(p,m) Goal (G5.1)

Meeting
Participant EnterAvailDates(m) Task (G5.2)

Meeting
Participant Agreement(m,p) Resource (G5.3)

Meeting Initiator EnterDateRange(m) Task (G5.2)

Table 3. Gathered information from SD Models to
derive Use Cases for the Meeting Scheduler System.

• Thus, for the Meeting Participant actor, observing this
actor as Dependee, we can indicate some Use Cases
originated from the actor dependency relationships
(guideline 5). Initially, we should consider the goal
dependency (guideline 5.1) of the actor as Dependee.
In table 3, we verify the goal AttendsMeeting(p,m),
which represents the need of the meeting participant
actor to attend the meeting. This goal originates the
Use Case AttendsMeeting. Several steps are necessary
to achieve this goal. Typically, this is a user goal
(guideline 7). The fulfillment of the Use Case goal
brings a relevant result for Meeting Participant actor,
allowing it to attend to the meeting. Usually, the
description of the primary scenario (to be
accomplished later) for this Use Case, will present
other user goals that can originate new Use Cases for
the system.
The next dependency associated with the Meeting
Participant actor is the task dependency
EnterAvailDates(m). According to guideline 5.2, we
can consider the need of several interaction steps
among the participants (Meeting Participant actor) and
the meeting scheduler system to enter available dates.
Some steps could include participants to supply a list
of exclusion dates and preferred dates in a particular
format, to validate these dates by the system, etc.
Thus, the task EnterAvailDates(m) generate the Use

Case EnterAvailDates for the Meeting Participant
Actor.
Continuing our analysis, we can observe associated
with the Meeting Participant (Dependee) actor the
resource dependency Agreement(m,p). Following
guideline 5.3, we conclude that the main goal of
obtaining of Agreement(m,p) resource is an scheduled
date agreement from each participant. We could
consider that in this agreement process, each
participant could agree with the proposed meeting date
with certain schedule restrictions or duration time.
Still, the agreement could involve an analysis of other
possible dates. In other words, the schedule of dates
requires several interaction steps between the system
and the Meeting Participant actor, which defines the
Agreement Use Case of the Meeting Participant actor.

• To discovery of Use Cases candidates for the Meeting
Initiator actor follows the same guidelines (2º Step).
We have one dependency associated with the Meeting
Initiator actor (see table 3): the task
EnterDateRange(m). Using guideline 5.2 for this task
dependency we observe that to supply a date range for
the meeting scheduling can include several aspects
(sub-tasks) such as to associate range dates with
specific meetings, to establish priorities for specific
meetings, etc. Thus, from the EnterDateRange(m) task
we generate the EnterDateRange Use Case for the
Meeting Initiator actor.
Having considered all dependencies for the Meeting
Initiator as Dependee, we should now consider special
situations (guideline 6). Observing Figure 1, we
visualize the goal dependency MeetingBeScheduled
between Meeting Initiator and Meeting Scheduler
(software to be developed), which requires some sort
of interaction. Therefore, we can define the
MeetingBeScheduled Use Case that represents the use
of the system by the Meeting Initiator actor. In this
Use Case, we describe the details of the meeting
schedule process. Note that in this special situation
the depender (meeting initiator) is the Use Case actor.

• Finally, following the guideline 7 we can to classify
each discovered Use Case goal, as showed in the table
4.
Thereby, after we have used the proposed guidelines

(2º Step), we have discovered EnterDateRange and
MeetingBeScheduled Use Cases for the Meeting Initiator
actor as well as AttendsMeeting, EnterAvailDates and
Agreement Use Cases for the Meeting Participant actor.
Therefore, we can begin the description of the primary
and secondary scenarios and the Use Cases relationships
(3º Step). At this point, the Strategic Rationale (SR)
model is used as source of information for the scenario
description and the Use Cases relationships.

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)
1090-705X/02 $17.00 © 2002 IEEE

Actor Use Case Goal Goal Classification
Meeting Initiator EnterDateRange Subfunction
Meeting Initiator MeetingBeScheduled Summary

Meeting Participant AttendsMeeting User Goal
Meeting Participant EnterAvailDates Subfunction
Meeting Participant Agreement Subfunction

Table 4. Goal Classification for the Meeting
Scheduler System.

For example, the MeetingBeScheduled Use Case

discovered for the Meeting Initiator actor represents the
use of the system by Meeting Initiator to accomplish the
meeting scheduling. This Use Case should contain all the
necessary steps to schedule a meeting that begins when
the Meeting Initiator supplies information to the system
such as the date range to schedule a meeting. Based on the
supplied dates range by Meeting Initiator, the system must
find available dates for all the participants for the meeting
as well as elaborate a consensus dates list within which a
date will be chosen to be proposed and agreed. This
process must result in a consensus-scheduled date for the
meeting and later in the confirmation of this date for all
the participants. Thus, for the Use Case
MeetingBeScheduled, we could have the primary scenario
with the following steps:
Use Case: MeetingBeScheduled
Actor: Meeting Initiator
Use Case Goal: Schedule a Meeting (summary goal, see
guideline 7)
Primary Scenario:
1. The Use Case begins with the Meeting Initiator actor

supplying the system with a date range for the
meeting; (the EnterDateRange Use Case is included
<<include>> in this step).

2. The system should request from participants (Meeting
Participant) an available date list for the meeting
based on the proposed date range by the Meeting
Initiator; (the EnterAvailDates Use Case is included
<<include>> in this step).

3. The system should find a consensus date list, filtering
information observing the available dates sent by the
participants and the proposed date range sent by
Meeting Initiator;

4. Based on the consensus list, the system proposes a
date for the meeting to be scheduled;

5. The Meeting Initiator expects that the system requests
the agreement for a scheduled meeting date. (The
Agreement Use Case is included << include >> in
this step).

The information for the description of this Use Case
has as main source the Strategic Rationale (SR) Model
presented in the Figure 2. Following the guideline 8, we
must observe which elements are involved in the SR

model to achieve the MeetingBeScheduled goal by
Meeting Scheduler actor. This actor has the responsibility
to achieve MeetingBeScheduled which originated the
MeetingBeScheduled Use Case (according to guideline
6). Thus, observing the internal strategic reasons
associated with Meeting Scheduler we can conclude that
the base information for the step 1 in this Use Case, is
extracted from the EnterDateRange task dependency,
establishing the need that Meeting Initiator supplies date
range for the meeting to be scheduled. Previously, in the
Use Case discovery for the system, we considered that the
process of establishing a date range included several steps
(sub-tasks) such as to associate range dates with specific
meetings, to establish priorities for specific meetings, etc.
These steps should be described in the EnterDateRange
Use Case. For this reason, this Use Case is included
<<include>> in step 1.

Steps 2 and 3 are extracted from the decompositions of
the task Schedule Meeting (associated with Meeting
Scheduler in the Figure 2). Step 2 derives from the
observation of the ObtainAvailDates task and its
associated EnterAvailDates task dependency. The
EnterAvailDates Use Case is included <<include>>
because it represents the necessary steps for the entry of
the available dates list by participants. Step 3 originates
from FindAgreeableSlot goal and the MergeAvailDates
task. This step represents the internal actions of the
system to define a list of the consensus dates for the
meeting scheduling. Step 4, is extracted from observation
of the ProposedDate resource dependency in connection
with the task Schedule Meeting (Figure 2). It is assumed,
given the defined information in the models of the Figure
1 and 2, that the proposed date should be defined by the
system, using some previously established and defined
criterion by the Meeting Initiator, taking as base for
example, priorities of organization meetings.

Step 5, derives from the system need to obtain the
agreement for the chosen date for the meeting scheduling.
This information arises from the observation of the task
ObtainAgreement and its associated resource dependency
Agreement (Figure 2). Previously, in the Use Case
discovery for the system, we assumed that in order for a
participant to agree with the proposed date, it was
necessary the accomplishment of some interaction steps
between the participant and the Meeting Scheduler.
These steps should be described in the Agreement Use
Case. For this reason, this Use Case is included <include>
in the step 5. We can describe the others Use Cases in a
similar way.

After we have applied the proposed guidelines to this
case study, we can define, as described in the Figure 4, a
version of the Use Cases diagram in UML for the Meeting
Scheduler system.

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)
1090-705X/02 $17.00 © 2002 IEEE

Meeting
Initiator Meeting

Participant

MeetingBe
Scheduled

<<include>>
Important
Participant

<<generalization>>

Agreement Attends
Meeting EnterAvailDates EnterDateRange

Figure 4. Use Case Diagram for the Meeting
Scheduler system.

The descriptions of the discovered Use Cases could
still be modified or complemented, as new relationships
are elicited.

6. Conclusions and Related Works
In this paper we argued that the Use Cases

development can be improved by using the i*
organizational models. We presented some heuristics and
a case study to show the viability and benefits of our
approach.

Some related works include the requirements-driven
development proposal presented in the Tropos framework
[4] and the integration of i* and pUML diagrams [5].
These works argue that organizational models are
fundamental for the development of quality software,
which can satisfy the real needs of users and
organizations. Several groups have also discussed the
challenges and associated risks building quality system
during goal and scenario analysis. For instance, the
ScenIC method [12] uses goal refinement and scenario
analysis as its primary methodological strategies. This
method includes systematic strategies to identify actors,
goals, tasks, and obstacles into evolving systems. In
Anton et al. [2], the GBRAM method [1] is used to derive
goals from a use-case based requirements specification. In
the CREWS project [13] [14], the CREWS-L`Ecritoire
approach [14] aims at discovering/eliciting requirements
through a bi-directional coupling of goals and scenarios
allowing movement from goals to scenarios and vice-
versa. However, these approaches do not consider
organizational models for deriving goals and scenarios for
intended systems.

Further research is still required to describe more
systematic guidelines, that can aid requirement engineers
to relate non-functional requirements [6] (softgoals in i*)
with functional requirements of the system, described
through Use Cases in UML. Work is underway to
incorporate goal-oriented modeling approaches [1] [8]
[12] [14] into our proposal aiming at discovering other
Use Cases from the exploration of already discovered
goals. We also expect to develop more real case studies as
well as to provide some tool support for the proposed
mapping.

7. References
[1] A.I. Anton, Goal identification and refinement in the

specification of software-based information systems. Phd Thesis,
Georgia Institute of Technology, Atlanta, GA, June 1997.

[2] A.I. Anton, R.A. Carter, A. Dagnino, J.H. Dempster, and D.F.
Siege, “Deriving Goals from a Use Case Based Requirements
Specification”, Requirements Engineering Journal, Springer-
Verlag, Volume 6, pp. 63-73, May 2001.

[3] G. Booch, I. Jacobson, and J. Rumbaugh, The Unified Modeling
Language User Guide, Addison-Wesley, 1999.

[4] J.F. Castro, M. Kolp, and J. Mylopoulos, “A Requirements-
Driven Development Methodology”, In: CAISE’01, Proceedings
of the 13th Conference on Advanced Information Systems
Engineering. Heildelberg, Germany: Springer Lecture Notes in
Computer Science LNCS 2068, pp. 108-123, 2001.

[5] J.F. Castro, F. Alencar, G. Cysneiros, and J. Mylopoulos,
“Integrating Organizational Requirements and Object Oriented
Modeling”, In Proceedings of the Fifth IEEE International
Symposium on Requirements Engineering - RE’01, pp. 146-153,
August 27-31, Toronto, 2001.

[6] L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos, Non-
Functional Requirements in Software Engineering (Monograph),
Kluwer Academic Publishers, 472 pp, 2000.

[7] A. Cockburn, Writing Effective Use Cases, Humans and
Technology, Addison-Wesley, 2000.

[8] A. Dardene, V. Lamsweerde, and S. Fikas, “Goal-Directed
Requirements Acquisition”, Science of Computer Programming,
20, pp. 3-50, 1993.

[9] I. Jacobson, Object Oriented Software Engineering: A Use Case
Driven Approach, Addison-Wesley, 1995.

[10] J.C.S.P. Leite, G. Rossi, F. Balaguer, and V. Maiorana,
“Enhancing a requirements baseline with scenarios”, In
Proceedings of the Third IEEE International Symposium on
Requirements Engineering – RE’97, pages 44-53. IEEE
Computer Society Press, January 1997.

[11] S. Lilly, “Use Case Pitfalls: top 10 problems from Real projects
using Use Cases”, In: Proceedings, technology of object oriented
languages and systems, pp 174-183, 1-5 August, 1999.

[12] C. Potts, “ScenIC: A Strategy for Inquiry-Driven Requirements
Determination”, In Proceedings of the Fourth IEEE International
Symposium on Requirements Engineering – RE’99, Ireland, June
7-11, 1999.

[13] J. Ralyté, C. Rolland, and V. Plihon, “Method Enhancement
With Scenario Based Techniques”, In Proceedings of CAISE 99,
11th Conference on Advanced Information Systems Engineering
Heidelberg, Germany, June 14-18, 1999.

[14] C. Rolland, C. Souveyet, and C.B. Achour, “Guiding Goal
Modeling Using Scenarios”, IEEE Transactions on Software
Engineering, Vol 24, No 12, Special Issue on Scenario
Management, December 1998.

[15] E. Yu, Modelling Strategic Relationships for Process
Reengineering, Phd Thesis, University of Toronto, 1995.

[16] E. Yu and J. Mylopoulos, “Why Goal-Oriented Requirements
Engineering”, Proc. Fourth International Workshop Requirements
Engineering: Foundations of Software Quality REFSQ’98, pp.
15-22, Pisa, June 1998.

<<include>> <<include>>

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)
1090-705X/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

