
ORIGINAL ARTICLE

Automated classification of non-functional requirements

Jane Cleland-Huang Æ Raffaella Settimi Æ
Xuchang Zou Æ Peter Solc

Received: 3 November 2006 / Accepted: 22 February 2007 / Published online: 23 March 2007

� Springer-Verlag London Limited 2007

Abstract This paper describes a technique for automat-

ing the detection and classification of non-functional

requirements related to properties such as security, per-

formance, and usability. Early detection of non-functional

requirements enables them to be incorporated into the

initial architectural design instead of being refactored in at

a later date. The approach is used to detect and classify

stakeholders’ quality concerns across requirements speci-

fications containing scattered and non-categorized

requirements, and also across freeform documents such as

meeting minutes, interview notes, and memos. This paper

first describes the classification algorithm and then evalu-

ates its effectiveness through reporting a series of experi-

ments based on 30 requirements specifications developed

as term projects by MS students at DePaul University. A

new and iterative approach is then introduced for training

or retraining a classifier to detect and classify non-func-

tional requirements (NFR) in datasets dissimilar to the

initial training sets. This approach is evaluated against a

large free-form requirements document obtained from

Siemens Logistics and Automotive Organization. Although

to the NFR classifier is unable to detect all of the NFRs, it

is useful for supporting an analyst in the error-prone task of

manually discovering NFRs, and furthermore can be used

to quickly analyse large and complex documents in order to

search for NFRs.

Keywords Non-functional requirements �
Quality requirements � Classification � Early aspects

1 Introduction

Non-functional requirements (NFR) describe important

constraints upon the development and behaviour of a

software system. They specify a broad range of qualities

such as security, performance, availability, extensibility,

and portability. As these qualities play a critical role in

driving architectural design [1] they should be considered

and specified as early as possible during system analysis.

Unfortunately NFRs are often discovered in an ad-hoc

fashion relatively late in the development process. In a

recent review we conducted of 15 publicly available soft-

ware requirements specifications (SRS) [2], we found an

almost universal lack of any requirements describing non-

functional qualities. This suggests that developers may fail

to appreciate the importance of specifying NFRs or may

falsely assume them to be implicitly understood and agreed

upon by all stakeholders.

Despite a lack of emphasis on NFRs, stakeholders’

quality concerns are often collected as a by-product of the

requirements elicitation process and documented across a

range of artefacts including memos, interview notes, and

meeting minutes. Resulting requirements specifications

tend to be organized by functionality, with non-functional

requirements scattered widely across multiple documents.

J. Cleland-Huang (&) � R. Settimi � X. Zou � P. Solc

Center for Requirements Engineering,

School of Computer Science, Telecommunications,

and Information Systems, DePaul University,

243 S. Wabash Avenue, Chicago, IL 60604, USA

e-mail: jhuang@cs.depaul.edu

R. Settimi

e-mail: rsettimi@cs.depaul.edu

X. Zou

e-mail: xzou@cs.depaul.edu

P. Solc

e-mail: petersolc@hotmail.com

123

Requirements Eng (2007) 12:103–120

DOI 10.1007/s00766-007-0045-1

This can lead to a number of problems such as important

conflicts going undetected, architectural solutions that fail

to take into account critical quality constraints, and

development of products that fall short of meeting the

stakeholders’ real needs. This paper introduces and de-

scribes an NFR-classifier, for retrieving and classifying

NFRs scattered across both structured and unstructured

documents [3]. Although the classifier is trained to detect

and categorize general NFRs; the use of domain specific

terminology, specific writing styles, or use of pre-defined

standards across disparate projects and organizations,

means that ongoing training is needed. The paper therefore

describes the initial training phase and related experiments

that were conducted, and then introduces an iterative ap-

proach for retraining the classifier so that it can be utilized

across a broad spectrum of document types and domains.

The NFR-classifier can also be used to detect and clas-

sify early aspects. An early aspect is a concern that cuts

across the dominant decomposition of a system [4] and is

found in the requirements specification or other early de-

sign documents. Many early aspects are identical to high-

level NFRs such as security, performance, portability, and

usability. Intermediate level aspects include concerns such

as logging and authentication, while lower-level concerns

focus on program level concepts such as buffering and

caching. The classification method described in this paper

is applicable to the high and intermediate level concerns

that are described in the requirements specification or other

early documents. Lower level concerns that belong to the

solution domain at the code or design level are not dis-

cussed further. Early discovery of aspects is significant not

only for purposes of architectural design, but also so that

candidate aspects can be evaluated and modelled in the

design and code of the system, thereby minimizing the

need to ‘mine’ and refactor aspects from the code at a later

date.

The NFR-classifier uses information retrieval methods

to find and identify NFRs. The method assumes that dif-

ferent types of NFR are characterized by the use of rela-

tively distinct keywords that we call ‘indicator terms’.

When those indicator terms are learned for a specific NFR

type, they can be used to detect requirements, sentences, or

phrases, related to that type. The process, which is depicted

in Fig. 1, includes the three primary phases of training,

classification, and application. During the training phase

indicator terms are mined from existing requirements

specifications in which NFRs have been manually catego-

rized by type. These terms are then used during the re-

trieval phase to detect and classify other NFRs. Finally

during the application phase, the classified requirements

are used to support more advanced software engineering

activities such as requirements negotiation or architectural

design. An additional phase, labelled in the diagram as

iterative training augments the previously learned indicator

terms through feedback obtained from the analyst as he or

she reviews the classification results for a new document.

Iterative training can also be used to train a classifier from

scratch.

This paper extends our previous work presented at the

International Requirements Engineering Conference [3].

Section 2 surveys existing methods for eliciting and dis-

covering non-functional requirements and early aspects.

This section also describes a preliminary experiment we

conducted using a fixed key-term approach. Section 3 de-

scribes the NFR-classifier, and the process of mining terms

and using them to classify NFRs. Section 4 presents an

initial experiment we conducted that was previously re-

ported in [3] to evaluate the effectiveness of the approach

using 15 different requirements specifications constructed

as term projects by MS students at DePaul University. In

Sect. 5, we report additional results from extending the size

of the dataset to include 30 projects. Section 6 then de-

scribes an industrial case study which was previously re-

ported in [3] and is based on a large user requirement

document developed for a project at Siemens Logistics and

Automation plant. The classification results obtained from

reusing previously mined indicator terms are compared to

results obtained from retraining the tool. In Sect. 7 we

introduce a new technique and associated algorithms for

iteratively training (or re-training) the classifier when it is

needed in an entirely new domain or organizational con-

text. The iterative process is critical for use of the tool in an

industrial setting. Section 8 then concludes with a discus-

sion of the application of this approach to the requirements

analysis process, and suggestions for future work. Finally,

this paper corrects the precision results reported in our

previous paper. This correction is discussed in greater de-

tail in Sect. 4.2.

2 Existing NFR classification methods

There are two primary approaches that are currently used to

classify NFRs. These include elicitation methods that

support stakeholders as they reason about, identify, nego-

tiate, and model NFRs; and also detection methods for

semi-automated or manual extraction of NFRs from a

variety of existing documents.

2.1 Elicitation techniques

Elicitation methods frequently rely upon creative brain-

storming or the use of checklists and templates to trigger

stakeholders’ input. For example Win–Win methods [5]

provide generic checklists and require stakeholders to

contribute, prioritize, and negotiate requirements that are

104 Requirements Eng (2007) 12:103–120

123

perceived to be important to the success of the system.

Cysneiros et al. [6] proposed a technique for eliciting,

analysing, and tracing NFRs based on the use of a language

extended lexicon (LEL). Their approach required stake-

holders to build a common vocabulary to support the

concurrent specification of a functional and non-functional

model. An NFR knowledge base was then used to deter-

mine if any quality concerns or constraints were related to

any of the LEL symbols. This information was used to

construct the NFR model. D}orr et al. [7] proposed an NFR

elicitation technique that first constructed functional use

cases and then utilized a checklist to identify and associate

NFRs to constrain the use cases. Kaiya et al. [8] proposed a

similar use case approach but used the goal-question-met-

ric (GQM) model to explore NFRs and their interdepen-

dencies.

In addition to NFR elicitation methods, several NFR

modelling and analysis techniques have been proposed.

The architectural assessment method (ATAM) models

NFRs using utility trees in which stakeholders describe

quality requirements within a hierarchical abstraction of

high-level goals [9]. The NFR framework provides cata-

logues to help analysts define NFR quality goals, potential

implementation solutions, and also to identify conflicts

[10]. In addition to the NFR framework, other goal oriented

techniques such as i* [11], and Kaos [12, 13] provide a

notation and environment in which analysts can model

non-functional requirements and evaluate their constraints

and tradeoffs. These techniques provide a structured ap-

proach for brainstorming and documenting NFR needs and

for producing a set of categorized NFRs, however there are

no guarantees that important stakeholders’ concerns will be

considered and included in the goal models. The NFR-

classifier can support the process of gathering non-func-

tional concerns by helping to ensure that NFR related

stakeholders’ comments are not inadvertently ignored or

missed during the elicitation process. Work towards a

speech-based version of the NFR-classifier that would

further augment this process is described in [14].

2.2 Detection techniques

With the increasing popularity of aspect-oriented pro-

gramming (AOP), several researchers have developed

techniques for detecting low-level aspects in the design and

code and ‘early-aspects’ from requirements specifications

[15]. At the program level, aspects can be ‘mined’ using

clone detection techniques such as pattern matching against

Training
sets

(Classified
require-
ments)

Indicator
terms

Indicator
“miner”

Analyst classifies
requirements

Training Phase

Classification Phase

NFR-
Classifier

Requirements

Extracted
“sentences”

Unclassified
software

requirements
specification

Unstructured
memos,

interview notes,
reports

Classified
documents

Subset of
classified

documents

Analyst
provides
feedback

Update corpus
of indicator
terms

Iterative
Training Phase

Application Phase

NFR-
modeling

tools

Aspect-
Oriented

design tools

Viewpoint
generation

Classified EFRs used to support
software engineering activities

Architectural
design

Train

No additional
training

Classify

Requirements
Triage

Fig. 1 The process for

classifying non-functional

requirements

Requirements Eng (2007) 12:103–120 105

123

the abstract syntax tree, or through analyzing the system’s

meta-model [16]. Runtime methods such as the analysis of

execution traces [17] can also be used at the code level.

Unfortunately, none of these approaches are applicable to

the detection of early aspects, including NFRs, which are

less formally expressed and exist prior to the system

becoming executable.

Several semi-automated techniques have been proposed

for mining early aspects. Rosenhainer proposed a basic

information retrieval (IR) method that required an analyst

to manually search through the requirements looking for

candidate aspects [18]. If a candidate aspect were found,

then it was used as the basis of an IR style query to find

related requirements. Several researchers have described

effective methods for implementing such artefact based

searches [19–23]. However Rosenhainer’s approach is la-

bour intensive as it requires manual inspection to discover

a ‘starting point’ for the analysis, and it also depends on

finding a good initial requirement that contains similar

terms to other aspect-related requirements. Maarek et al.

[24] described a similar approach for mining software

repositories and finding appropriate reusable components.

However this approach requires the analyst to provide an

initial query, which is something that the NFR-classifier

generates automatically through use of a training set.

The Theme/Doc method [25] also provides semi-auto-

mated support for early aspect mining. An analyst parses

the requirements specification to identify keywords, which

are then used by the tool to generate a visual representation

of the relationships between behaviours. This view is used

by the analyst to identify candidate aspects. Again, the

approach is rather labour intensive as the analyst needs to

perform a preliminary manual search for keywords in

addition to a later analysis of the candidate concerns. It also

presupposes that the requirements specification is gram-

matically structured in a certain way. However Theme/Doc

provides an opportunity to discover aspect types that are

unique to a specific project in addition to commonly

occurring types.

Sampaio et al. proposed a method that uses natural

language processing to first identify viewpoints based on

nouns occurring in the specification and then to find actions

(i.e. verbs) that occur across multiple viewpoints. This

approach has potential for identifying unique aspect types,

but it requires significant user feedback to evaluate view-

points and assess the feasibility of the candidate aspects. It

may also miss aspects if different action verbs are used to

represent the same concern across different viewpoints

[26].

Although the techniques for early aspect identification

are applicable to the problem of NFR classification, they

are significantly more labor intensive than the NFR-clas-

sifier, which requires initial training and is then able to

automatically retrieve a candidate list of NFRs.

2.3 Keyword classification method

As a precursor to our work on the NFR-classifier we

investigated whether a pre-defined fixed set of keywords

could be used to classify each type of NFR. This simpler

approach would avoid the need to develop and use a training

set. A small experiment was conducted in which a set of

keywords, listed in Table 1, were extracted from catalogues

of operationalization methods for security and performance

softgoal interdependency graphs (SIGs) [10]. These cata-

logues represent extensive bodies of knowledge related to

goals and potential solutions for each of these NFRs and so

provided a standardized set of keywords. The keywords

were used to retrieve NFRs from a set of 15 requirements

specifications developed by DePaul MS students as term

projects for a course in Requirements Engineering.

Approximately 80% of the students in this course work in

the software industry as professionals. Out of the 45 stu-

dents in the class the top 15 projects were selected for this

experiment, based primarily upon grades assigned by the

course instructor. Project topics included a wide range of

domains including a claims dispute manager, vehicle parts

finder, meetings scheduler, battleships game, and an

enterprise level service bus for use by the public works

department in a major US city. Requirements were specified

using the Volere template (http://www.systemsguild.com/),

which has specific subsections assigned for several NFR

Table 1 Keywords for security and performance requirements

NFR type Keywords extracted

from a SIG

catalogue [9]

Recall Precision Specificity

Security Confidentiality,

integrity,

completeness,

accuracy,

perturbation, virus,

access, authorization,

rule, validation,

audit, biometrics,

card, key, password,

alarm, encryption,

noise

0.702 0.315 0.773

Performance Space, time, memory,

storage, response,

throughput, peak,

mean, index,

compress,

uncompress, runtime,

perform, execute,

dynamic, offset,

reduce, fixing, early,

late

0.438 0.214 0.874

106 Requirements Eng (2007) 12:103–120

123

types, including those analysed in this paper. Classifica-

tion of NFRs in the training set was therefore performed

by the students themselves as part of the requirements

writing process. Although this process introduces the

possibility that the requirements writing was biased by

examples used in class and in the textbook, these datasets

provided the opportunity for evaluating and comparing

classification methods that would have been very time

consuming to establish from larger industrial datasets.

However, this threat was not present in the industrial case

studies reported at the end of this paper, that were de-

signed to test the results obtained from the initial student-

based study.

In the keyword retrieval method, any requirement con-

taining one or more of these keywords was classified as a

candidate security or performance requirement respec-

tively. A multiple categorization approach was taken in

which a requirement containing both a security keyword

and a performance keyword was classified into both cate-

gories.

Results were evaluated for each NFR type using the

standard metrics of recall, precision [27], and specificity

[28] where recall measures the percentage of NFRs that

were correctly retrieved and categorized and is defined as

follows

recall ¼ true positives

true positivesþ false negatives
:

Precision measures the total number of correctly retrieved

NFRs in respect to the total number of retrieved NFRs and

is defined as:

precision ¼ true positives

true positivesþ false positives
:

Finally, specificity in binary classification is defined as the

proportion of true negatives to all negatives and is

computed as

specificity ¼ true negatives

true negativesþ false positives
:

The results of this experiment are shown in Table 1 and

indicate that the security keywords returned a recall of

70.2% and precision of 31.5%, while the performance

keywords returned a recall of 43.8 and 21.4% precision.

Observation showed that many of the security keywords

were in fact shared by other types of NFRs, and that several

of the target NFRs, especially performance ones, did not

contain any of the keywords and so were not retrieved. One

of the primary stumbling blocks of this approach (and the

reason that we did not evaluate more NFRs using this

method) was the difficulty of finding accepted and stan-

dardized catalogues for the other NFR types specified in

our data sets.

3 The NFR-classifier

The NFR-classifier addresses this problem by using a

training set to discover a set of weighted indicator terms for

each NFR type. This approach means that the NFR-clas-

sifier is limited to recognizing and retrieving NFR types for

which it has been trained. However this is not overly

limiting. Although more than 150 NFR types and numerous

lower level aspects have been documented [10], in practice

a much smaller subset of common ones are generally of

interest during the system design process. The approach

also has several benefits over the standard keyword meth-

od. Indicator terms can be automatically learned from

existing pre-categorized requirement specifications, and

therefore customized for an organization in accordance

with their own standard terminologies and policies.

The NFR-classifier method consists of two stages.

During the first stage, a set of indicator terms is identified

for each NFR category. This step assumes the existence of

a set of correctly pre-classified requirements that can be

used for training. The requirements in the training set are

used to compute a probabilistic weight for each potential

indicator term in respect to each NFR type. The weight

measures how strongly an indicator term represents a

requirement type. For example, terms such as ‘‘authenti-

cate’’ and ‘‘access’’ that occur frequently in security

requirements and infrequently in other types of require-

ments, represent strong indicator terms for security NFRs,

while other terms such as ‘ensure’ that occur less fre-

quently in security requirements or are found in several

different requirement types, represent much weaker indi-

cators.

Once indicator terms are mined and weighted, they can

be used in a second step to classify additional requirements

and statements. A probability value that represents the

likelihood that the new requirement belongs to a certain

NFR type is computed as a function of the occurrence of

indicator terms of that type in the requirement. A

requirement is then classified according to a certain NFR

type if it contains several indicator terms representative of

that type. Requirements receiving classification scores

above a certain threshold for a given NFR type will be

classified into that type, and all unclassified requirements

will be assumed to be functional requirements. Because

classification results can only be considered successful if a

high percentage of the target NFRs are detected for a

specific type, in all of the experiments described in this

Requirements Eng (2007) 12:103–120 107

123

paper the threshold was established with the objective of

achieving high recall results.

Prior to classification, the requirements must be pre-

processed and reduced to a set of keywords [27]. The pre-

processing step first eliminates all common ‘‘stop’’ words

that do not provide any relevant information on the docu-

ment’s lexical content (for example conjunctions and

prepositions). The remaining words are then reduced to

their stemmed form using Porter’s stemming algorithm, to

eliminate plurals, past tenses, and other suffixes. The fol-

lowing sections more formally describe the two steps of

mining and classification.

3.1 Indicator terms mining

Let Q be a given requirement type. Indicator terms of

quality type Q are found by considering the set SQ of all

type Q NFRs in the training set. The cardinality of SQ is

defined as NQ. Each term t is assigned a weight score PrQ(t)

that measures how well the term helps identify a require-

ment of quality type Q. The weight score PrQ(t) corre-

sponds to the probability that a particular term t identifies a

document (i.e. an individual requirement) as belonging to a

type Q based on the standard information retrieval

assumption that terms indicating relevance for a certain

NFR type must be present in the document to be classified.

The frequency freq(dQ,,t) of occurrence of term t in doc-

ument dQ, is computed for each document in SQ. The

expression for the probability value is computed as fol-

lows:

PrQðtÞ ¼
1

NQ

X

dQ2SQ

freqðdQ; tÞ
jdQj

� NQðtÞ
NðtÞ �

NPQðtÞ
NPQ

ð1Þ

The first factor 1
NQ

P
dQ2SQ

freqðdQ;tÞ
jdQj in expression (1)

represents the term frequency component that is standard in

Information Retrieval [29] and shows that the weight score

PrQ(t) increases if term t occurs frequently in NFR docu-

ments of type Q. It is computed as the average term fre-

quency of term t in type Q NFR documents dQ rescaled by

the documents size |dQ|.

The remaining component of the expression in (1)

measure inverse document frequency [29] and penalizes

the weight score if the term occurs in several quality types.

The second factor
NQðtÞ
NðtÞ is the percentage of Q type docu-

ments in SQ containing t with respect to all requirements in

the training set containing t, whose number is denoted by

N(t). This factor decreases if the indicator term t is used

broadly throughout the requirements specification. If the

term is only used in Q type requirements, it will evaluate to

1 for that type. The third factor
NPQðtÞ

NPQ
is the ratio between

the number NPQ(t) of system projects containing type Q

documents with term t and the number NPQ of all projects

in the training set with type Q NFRs. The purpose of this

rescaling factor with values ranging between zero and one

is to decrease the weight PrQ(t) for terms that are project

specific. It is equal to one only if a term appears in all the

projects containing type Q documents.

A probability score PrQ(t) is computed for each term t

and terms are then ranked by decreasing order according to

PrQ(t). We considered two alternative methods to deter-

mine which terms should be used as indicator terms for

each type Q. One method selected the top K terms as the

indicator terms, and the second method selected all terms

with a non-zero weight. Experiments to evaluate the two

methods and select the best value for K are presented in

Sect. 4.

3.2 NFR classification

The NFR classification algorithm is defined by computing

a probability score PrQ(R) that evaluates the probability

that a certain NFR R belongs to type Q. This probability

score depends on the lexical content of requirement R, as

we assume that type Q NFRs are more likely to contain

indicator terms for that type.

Let IQ be the set of indicator terms for a quality type Q.

We assume that the weighted indicator terms in IQ are

identified and their weights computed from a training set

that contains correctly pre-categorized NFRs. The indicator

terms are mined using the expression in (1).

The classification score that an unclassified requirement

R belongs to a type Q is defined as follows:

PrQðRÞ ¼
P

t2R\IQ
PrQðtÞP

t2IQ
PrQðtÞ

ð2Þ

The numerator is computed as the sum of the term

weights of all type Q indicator terms that are contained in

R, and the denominator is the sum of the term weights for

all type Q indicator terms. The probabilistic classifier for a

given type Q will assign higher score PrQ(R) to an NFR R

that contains several strong indicator terms for Q. Results

on the application of our classifier are reported below.

4 Evaluating the classifier model

The training set used in the experiments again consisted of

the 15 requirements specifications developed as term

projects by MS students at DePaul University. These spec-

ifications contained a total of 326 NFRs and 358 functional

requirements. NFR types included availability, look-

and-feel, legal, maintainability, operational, performance,

108 Requirements Eng (2007) 12:103–120

123

scalability, security, and usability. As there were insufficient

portability and process requirements, these NFR types were

not included in the study. Counts for each requirement type

are displayed in Table 2. The high ratio of NFRs to func-

tional requirements reflects the time limitations that inhib-

ited the writing of a more complete set of requirements

during the allocated time. Table 3 lists the top 15 indicator

terms that were mined from each NFR type. Performance

indicator terms are amongst the most intuitive, and include

stemmed terms such as second, respons, time, longer, fast,

minut, take, process etc. In certain cases, domain specific

indicator terms, such as izognmovi (as the weakest term

shown for legal), or sea (as the weakest indicator term for

look-and-feel) appear amongst the 15 top ranked terms. In

fact, each of these terms occurred strongly in a single

dataset, and although the project component of the mining

formula decreased the terms’ importance, in each case they

were still ranked as the 15th term. Nevertheless, as depicted

in Fig. 2, the weighting assigned to these terms was rela-

tively low, and so their impact on NFR detection was rela-

tively insignificant.

Another interesting phenomenon is that several terms,

such as product, appeared across multiple NFR types. In

fact this term appeared as an indicator term in seven out of

the ten NFR categories. In this particular case, the term was

found repeatedly in several NFR types but very rarely in

any of the functional requirements. For this particular

experiment, the situation was caused by the tendency of the

Table 2 Counts of requirement specification by project and quality type

Quality type Project number Total

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Availability (A) 1 1 1 0 2 1 0 5 1 1 1 1 1 1 1 18

Look and feel (LF) 1 2 0 1 3 2 0 6 0 7 2 2 4 3 2 35

Legal (L) 0 0 0 3 3 0 1 3 0 0 0 0 0 0 0 10

Maintainability (M) 0 0 0 0 0 3 0 2 1 0 1 3 2 2 2 16

Operational (O) 0 0 6 6 10 15 3 9 2 0 0 2 2 3 3 61

Performance (P) 2 3 1 2 4 1 2 17 4 4 1 5 0 1 1 48

Scalability (SC) 0 1 3 0 3 4 0 4 0 0 0 1 2 0 0 18

Security (SE) 1 3 6 6 7 5 2 15 0 1 3 3 2 2 2 58

Usability (US) 3 5 4 4 5 13 0 10 0 2 2 3 6 4 1 62

Total NFRs 8 15 21 21 37 44 8 71 8 15 10 20 19 16 12 326

Functional 20 11 47 25 36 26 15 20 16 38 22 13 3 51 15 358

Total 28 26 68 47 73 70 23 91 24 53 32 33 22 67 127 684

Table 3 Top 15 indicator terms learned from the training set

Rank Availability Legal Look and feel Maintainability Operational Performance Scalability Security Usability

1 avail compli appear updat interfac second simultan onli us

2 achiev regul interfac mainten environ respons handl access easi

3 dai standard profession releas server time year author user

4 time sarban appeal new oper longer capabl user train

5 hour oxlei colour chang product fast support inform product

6 pm php look dure system minut expect ensur abl

7 year pear simul promot databas take concurr data understand

8 technic legal product product browser process abl authent successfulli

9 downtim law compli addit window user number secur intuit

10 long estimat scheme everi web system user system learn

11 system regard logo budget comput let launch malici system

12 product complianc sound develop applic maximum process prevent click

13 seven rule brand season us complet next incorrect minut

14 defect requir feel integr internet flow product product self

15 asid izognmovi sea oper abl everi connect ar explanatori

Requirements Eng (2007) 12:103–120 109

123

students in the experiment to specify NFRs using phrases

starting with ‘‘The product shall.....’’ The impact of writing

styles and standards on the classifier is discussed more

fully in Sect. 6.2.

4.1 Classifying the NFRs

To evaluate the effectiveness of the NFR-classifier, a leave-

one-out cross validation technique was applied against the

15 SRS. Fifteen iterations were conducted. During each

iteration indicator terms were extracted from 14 SRS’s that

constituted the training set, and term weights for each NFR

type were calculated based on the function in (1). Two

alternate methods were evaluated for selecting indicator

terms from the training set:

1. Top K terms, where K is a positive number. For each

NFR type, the K terms with the highest weights were

selected as the indicator terms.

2. All terms, where every term with a non-zero weight

with regard to a specific NFR type was selected as an

indicator term for that type.

The extracted indicator terms were then used to classify

requirements in the remaining SRS using the function in

(2). A multiple classification scheme was used so that for

any given NFR type, all requirements that scored higher

than a certain threshold value were classified as that NFR

type. This meant that a single requirement could be clas-

sified into more than one NFR type. Although normally a

single requirement will only belong to one type of NFR,

there are instances in which a requirement represents more

than one NFR type. For example ‘‘The railway gate must

close at least 30 seconds before a train enters the crossing’’

represents both a safety and a performance requirement.

As a side note, an additional experiment was conducted

to compare the efficacy of multiple classification versus a

‘‘pick-top’’ method in which each requirement was as-

signed to only the NFR type for which it received the

highest classification value. When the pick-top method was

used, recall was problematic for almost all categories. For

example, recall dropped to 33% for legal, 9% for look-and-

feel, and 41% for maintainability. The average recall ob-

tained using this method was only 52% as opposed to 76%

using the multi-category method. For this particular prob-

lem (i.e. attempting to retrieve and classify all NFRs into

their correct categories), recall is significantly more

important than precision, because it is a much simpler task

for an analyst to evaluate a set of candidate NFRs and

reject the unwanted ones, than it is to browse through the

entire document looking for entirely missed ones. For this

reason the multiple-classification approach, which favours

higher recall over precision, was adopted.

The goodness of the classifiers was evaluated by the

three metrics of recall, precision and specificity for each

NFR type in each single iteration of the experiment.

Overall results were calculated by combining the results of

the 15 iterations. As each SRS was subjected to classifi-

cation in only one experiment, the combined results

therefore represented the classification of each individual

requirement only one time.

4.2 Selection of indicator terms

Three different values for K were used in our experiments:

K = 5, K = 10 and K = 15. Table 4 shows the overall re-

call and precision of the classification using Top-5, Top-10,

Top-15, and ‘all’ indicator terms respectively. The results

in Tables 4 and 6 correct the precision values previously

reported in [3], that were erroneously computed by

excluding the functional requirements from the count of the

classified requirements. A classification threshold of 0.04

was maintained for all four of the experiments, meaning

that only requirements that were given scores greater than

0.04 for a particular NFR type were classified.

The results indicated that among the Top-K methods,

Top-5 returned the worst recall, about 10% lower than the

other two methods. The classification accuracy showed no

significant difference between the Top-10 and Top-15

methods. Precision remained at about 14% while recall

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

151413121110987654321

Ranked terms

T
er

m
 w

ei
gh

t
A
L
LF
MN
O
PE
SC
SE
US

Fig. 2 Term weightings

Table 4 Comparisons of top-k versus ‘‘All’’ terms classification

methods

Indicator selection method Recall Precision

Top-5 0.6564 0.1851

Top-10 0.7423 0.1372

Top-15 0.7669 0.1416

All 0.7392 0.1603

110 Requirements Eng (2007) 12:103–120

123

improved slightly from 74.23 to 76.69% when changing the

selection method from using Top-10 to Top-15 terms. The

results also indicated that if all terms were retained as

indicators then the recall was reduced by 2.7%, while pre-

cision was increased by 2.4% compared to the Top-15

method. As recall and precision tend to trade-off against

each other, this difference was again considered relatively

insignificant. If the threshold had been slightly raised to

remove some of the extra ‘background noise’ caused by the

additional less significant terms, then recall would have

likely decreased and precision increased to levels similar to

Top-15. There was therefore no significant difference be-

tween the use of Top-10, Top-15, and ‘‘all’’ terms approach.

4.3 Classification results

A confusion matrix is a useful instrument for analyzing

classification results [30], as it has the ability to depict true

and false positives as well as true and false negatives.

Table 5 illustrates the confusion matrix for the classifica-

tion results for Top-15.

The correct classifications (true positives) are depicted

on the diagonal, and have been highlighted in the diagram.

For example, the matrix shows that 16 availability NFRs

were correctly categorized. By looking in the column la-

belled ‘‘A’’ for availability we also see that eight main-

tainability requirements were incorrectly classified as

availability. Additionally operational, performance, scala-

bility, performance, and usability requirements were also

similarly incorrectly classified. Looking across the row

labelled ‘‘Availability’’ we also see that availability

requirements were incorrectly classified under several NFR

types including three as ‘look-and-feel’, and six as

‘maintainability’. Although there are only 18 actual avail-

ability requirements, the multiple classification approach

means that many of them will be classified more than once.

Table 6 reports the three metrics of recall, precision, and

specificity that were derived from the confusion matrix for

each NFR type. The precision values were erroneously

computed in [3] by excluding the functional requirements

from the count of the classified requirements. Table 6 re-

ports the correct values. Here the specificity for a specific

NFR type, say availability, is computed as the proportion

of all non-availability NFR types that are not misclassified

as availability to the total number of non-availability

NFRs. A high specificity of an NFR type indicates the

ability of the classifier to correctly differentiate this NFR

from others.

As depicted in Table 6, different NFR types responded

differently to the classification method. Usability had the

highest recall of 98.39%, and the confusion matrix shows

that only 1 out of the 62 usability NFRs were misclassified

or unclassified. However, usability NFR also had the

lowest specificity of 34.47%, meaning it was quite difficult

to differentiate non-usability NFRs from usability ones. As

shown in the last column of the confusion matrix, there are

a total of 173 non-usability NFRs that have been misclas-

sified as usability. In contrast look-and-feel achieves the

lowest recall of 51.43% and a specificity of 69.07%.

In general these results suggest that the NFR-classifier

can effectively detect several different types of NFRs, but

that additional work is needed to improve results for certain

NFR types such as ‘look-and-feel.’ It was observed for this

NFR type, that categories of words such as colours tended

to occur across multiple requirements, and future work will

therefore investigate the possibility of using categories of

indicator terms or extended training to improve these re-

trieval results.

4.4 Comparison to standard approaches

Following the publication of our initial paper on the NFR-

classifier [3], we made the dataset containing the 15 student

projects available to the PROMISE repository [31]. As part

Table 6 Results using top-15 terms at classification threshold value

of 0.04

EFR type Recall Precision Specificity

Availability 0.8889 0.1111 0.7792

Legal 0.7000 0.1628 0.9525

Look-and-feel 0.5143 0.1169 0.6907

Maintainability 0.8824 0.1087 0.8220

Operational 0.7213 0.1137 0.4151

Performance 0.6250 0.2727 0.8561

Scalability 0.7222 0.1111 0.7825

Security 0.8070 0.1840 0.6468

Usability 0.9839 0.1442 0.3447

Table 5 Confusion matrix showing classification results

Actual Total# Classified as

A L LF MN O PE SC SE US

Availability 18 16 0 3 6 10 10 6 4 10

Legal 10 0 7 2 0 3 1 0 1 5

Look-and-feel 35 0 7 18 9 20 0 1 9 22

Maintainability 17 8 0 5 15 11 4 5 3 10

Operational 61 10 0 32 10 44 3 11 17 42

Performance 48 20 1 7 7 27 30 12 20 35

Scalability 18 11 0 5 4 12 3 13 6 11

Security 57 6 3 10 12 38 5 8 46 38

Usability 62 13 4 26 7 34 14 24 35 61

Functional 359 60 21 46 68 188 40 37 109 189

Requirements Eng (2007) 12:103–120 111

123

of Dr. Tim Menzies data mining course at the University of

West Virginia, Jalaji et al. conducted an extensive set of

experiments utilizing WEKA to compare standard classi-

fication techniques against the performance of the NFR-

classifier algorithms. The results from naı̈ve bayes classi-

fier, standard decision tree algorithm (J48), feature subset

selection (FSS), correlation-based feature subset selection

(CFS), and various combinations of the above were eval-

uated [32]; however they were unable to globally improve

on the results obtained by the NFR classifier. The com-

bined approach with decision trees and feature subset

selection procedure in Jalaili et al. produced the best recall

and precision values among the standard machine learning

tools used in the paper. Its recall value was still lower than

the one achieved by the NFR classifier, while the precision

values were similar. The complete report of their findings

is available [32].

5 Training set size

To examine whether the number of NFRs in the training set

affects the classification results positively, an experiment

was conducted in which 15 new student term projects were

added to the training set. Like the original projects, the new

ones also utilized the Volere template and described a

broad range of projects such as prescription management

and online appointment scheduling. The number of NFRs

contained in each project ranged from 8 to 28.

In order to compare results with those from the previous

experiment, this experiment was designed to reclassify

only the previous 15 projects. The original 15 projects were

randomly divided into five groups of three. Each group in

turn was used as the test set, while the remaining 27 pro-

jects (12 from the original set plus the 15 new ones) were

used as the training set. In this way, after five iterations of

the experiment, each of the previous projects was classified

once and only once. The only significant difference in this

experiment from the previous ones described in Sect. 4 was

therefore the larger training set size.

The classification results, as displayed in Table 7, only

partially supported our hypothesis that the classifier per-

forms better with a larger training set. The recall for all

NFRs increased only from 76.7% to 81.3% while precision

slightly decreased to 12.4%. Although improvements were

seen in availability, look-and-feel and operational

requirements, other requirements such as scalability and

security showed significant declines. The decreased recall

observed in the scalability requirements was accounted for

by the fact that several scalability requirements in two of

the projects had previously gone unclassified because

several critical indicator terms only appeared in two of the

projects, and these project were both randomly selected

into the same test set group. The classifier was therefore

unable to learn the terms for classifying these two scala-

bility requirements.

6 Industrial case study

As an initial proof-of-concept the indicator terms mined

from the 15 projects were used to detect and classify

candidate NFRs from a Microsoft Word document

describing the customer requirements for an integrated

engineering toolset (IET) under development at Siemens

Logistics and Automation plant. IET is a system for

planning and constructing production lines, and represents

a domain that is entirely unrelated to any of the 30 student

projects. To the best of our knowledge, Siemens’

employees who were involved in constructing the IET

requirements had not previously been exposed to the

Volere template (used by the students) and so were not

biased towards writing requirements in a style similar to

the student projects. The IET document was a well written

document (scoring 10.3 on the Flesch-Kincaid reading le-

vel) organized entirely by functionality. It contained 137

pages, 2,250 paragraphs, and 30,374 words.

To classify the NFRs in the document, it was first saved

as a text file, parsed to remove unwanted characters, and

then deconstructed into 2,064 ‘‘sentences.’’ These sen-

tences were not necessarily grammatically complete, as

they included bullet points, and text extracted from tables

etc. Some sentences corresponded to actual requirements in

the text and others to less structured narrative. The data

was treated to remove stop words and reduce terms to their

stemmed forms, and was then parsed by the NFR classifier.

In addition to automated classification, all of the sentences

were manually classified into NFR types by the DePaul

University faculty investigators in order to create an

Table 7 Impact of training set size

NFR type Training with 15 projects Training with 30 projects

Recall Precision # Recall Precision

Availability 18 0.8889 0.1111 34 0.9444 10828

Legal 10 0.7000 0.1628 27 0.8 0.5333

Look and feel 35 0.5143 0.1169 62 0.7714 0.1004

Maintainability 17 0.8824 0.1087 48 0.9412 0.0510

Operational 61 0.7213 0.1137 93 0.8361 0.1275

Performance 48 0.6250 0.2727 68 0.6042 0.2589

Scalability 18 0.7222 0.1111 25 0.5556 0.0769

Security 57 0.8070 0.184 101 0.7895 0.1573

Usability 62 0.9839 0.1442 101 1 0.1387

Overall 326 0.7669 0.1416 559 0.8129 0.1244

112 Requirements Eng (2007) 12:103–120

123

‘answer’ set against which classification results could be

compared. The manual classification took approximately

10 h of a single person’s time. Validating the results took

an additional 10 h. The counts for each NFR type are de-

picted in Table 8.

6.1 Fixed keywords

In the first experiment, the fixed keywords shown in Ta-

ble 1 were used to classify security and performance NFRs.

Security NFRs were retrieved with recall of 58%, precision

of 9%, and specificity of 83%, while performance NFRs

were retrieved with recall of 35%, precision of 6%, and

specificity of 92%. These results strengthened our earlier

conjecture that the use of this fixed set of keywords did not

consistently produce good classification results.

6.2 Using prior indicator terms

In the second experiment, the terms extracted from the 15

original SRS’s were used. Both ‘‘Top-15’’ and ‘‘all’’

indicator term approaches were evaluated, however no

significant differences were observed in recall and preci-

sion metrics. Results from the ‘‘all’’ indicator approach

which showed slightly higher recall, are shown in Table 8.

Results using these previously mined indicator terms were

relatively good for availability, security, and usability,

which all had recall values around 80%, but were disap-

pointing for several other NFR types. For example look-

and-feel and performance NFRs were retrieved only at

recall levels of approximately 33%, while legal, opera-

tional, and scalability requirements also returned relatively

low recall values.

An analysis of the targeted NFRs in the user require-

ments document revealed a mismatch of terms between the

MS Projects and the IET data. For example, performance

NFRs in the high-level IET document tended to use more

general terms such as ‘‘fast’’ and ‘‘quickly’’, compared to

the more precise use of terms such as ‘‘per second’’ in the

MS project training sets. Furthermore, different organiza-

tions follow different practices for structuring require-

ments, use of jargon, use of predefined templates, company

and organization standards, and legal requirements; all of

which may significantly impact the use of terminology

within a requirements specification. This variation provides

a feasible explanation for why indicator terms mined from

the original training sets were not effective in classifying

certain types of NFR in the new data set. It further

underlines the importance of the NFR-classifier’s ability to

be trained to recognize NFRs and aspects within a specific

organization or project.

6.3 Retraining the classifier

Because of the poor classification results from the first two

experiments we decided to conduct a third study in which

the NFR-classifier was retrained using a training set com-

posed of one third of the sentences in the IET document.

The training set was used to mine new indicator terms

which were then used to classify NFRs in the remaining

two thirds of the document. The fraction of ‘‘one third’’

was selected to provide sufficient NFRs in each type for

training purposes. One third of the requirements from each

requirement type, including functional requirements were

randomly selected for the training set. Results obtained

using the new indicator terms were generally much im-

proved. All of the availability requirements were recalled;

operational, security, and usability NFRs were recalled at

relatively high values ranging from 73 to 87%; and only the

NFR type of look-and-feel performed badly with a recall of

40%. In fact even this was a significant improvement from

the previous recall value of 13%. There were insufficient

Table 8 Results from retrieving and classifying NFRs from IET requirements document

NFR type Using ‘‘all’’ indicator terms mined from 15 MS projects Using indicator terms mined from 30% of IET data

NFR count by type Recall Precision Specificity NFR count by type Recall Precision Specificity

Availability 18 0.889 0.190 0.967 12 1.000 0.112 0.860

Legal 9 0.222 0.033 0.971 6 0.667 0.061 0.948

Look and feel 15 0.133 0.017 0.943 10 0.400 0.103 0.926

Maintainance 33 0.667 0.222 0.962 22 0.636 0.2 0.763

Operability 73 0.329 0.122 0.914 48 0.813 0.184 0.801

Performance 23 0.130 0.051 0.973 15 0.600 0.321 0.958

Scalability 2 0.5 0.008 0.939 2 Insufficient data to mine terms

Security 29 0.828 0.071 0.847 19 0.737 0.21 0.885

Usability 183 0.803 0.262 0.779 122 0.877 0.277 0.500

All NFRs 0.626 0.147 0.799 0.207

Requirements Eng (2007) 12:103–120 113

123

scalability requirements in the IET document to train the

tool to recognize this type of NFR. Overall, recall rose

from 62.6 to 79.9% and precision also increased from 14.7

to 20.7%. The results from this initial study supported the

generally accepted IR wisdom that a training set that is

‘closer’ to the data being classified significantly improves

the retrieval results.

7 An iterative approach

The previous experiment using the IET datasets has shown

the importance of retraining the classifier before using it on

datasets that are dissimilar from the ones on which it was

initially trained. Unfortunately, training can be time con-

suming, and must therefore be designed to minimize hu-

man effort. This section therefore describes a new and

iterative technique that sequentially creates a training set

through user’s feedback on a subset of selected require-

ments. An existing corpus of indicator terms can be used as

a starting point and augmented through additional training

based on requirements selected from the new dataset.

Alternately the process can be started from scratch without

the benefit of an existing corpus. An iterative approach

requires less human effort and enables the analyst to stop

training when little additional improvement is predicted.

When an existing corpus of terms is used, the amount of

training is expected to primarily depend on the similarity

between the new data sets and the initial training set.

The iterative approach builds a corpus of indicator terms

in a sequential fashion. During each iteration a subset of

requirements are displayed to an analyst who reviews each

requirement and either accepts the classification result or

reclassifies it into the correct category based on his or her

expert judgment. The requirements that are manually

evaluated and classified by the user are incrementally ad-

ded to the training set, and the corpus of indicator terms is

updated accordingly through the addition of new terms and

the modification of existing term weights. This iterative

step incorporates indicator terms from requirements that

belong to the same domain and have been written within a

similar context of practices and standards as the NFRs that

are to be classified. The ability of the classifier to identify

and categorize the NFRs is therefore expected to improve.

7.1 Selection criteria

The level of human effort required to train the classifier can

be minimized by carefully selecting requirements to pres-

ent to the user for feedback. These requirements should

maximize the potential for discovering new indicator terms

and strengthening existing ones as early as possible.

Through a series of informal experiments and subjective

observations, we determined that a significant number of

previously unidentified indicator terms occurred in

requirements that were ranked just below the classifier

threshold values. Based on this observation, we decided

that a large percentage of requirements presented to the

analyst should consist of these ‘near misses’. This

hypothesis was informally tested through including a ran-

dom selection of unclassified requirements in earlier

experiments; however this approach proved to be less

efficient because fewer requirements resulted in useful

feedback and training therefore took longer.

For experimental purposes the requirements selected for

each iteration therefore included five randomly selected

NFR type documents (as classified by the tool), plus 15

functional requirements (unclassified by the tool) selected

among the top unclassified requirements based on the

ranking of their classification scores. We also specified that

a single requirement could be selected only once across all

iterations of the training process.

In our experiments, the iterative learning approach was

conducted for a fixed number of iterations to evaluate the

performance of the classifier, and to study appropriate

stopping criteria. In practice, the iterative learning ap-

proach should stop either when the user chooses to dis-

continue the training process, or when little improvement is

anticipated through further training. One possible stopping

criterion is determined through comparing recall values

from two ‘sliding windows’, where a window consists of

the recall classification results obtained from n iterations.

At the end of a given iteration i, Window2 is composed of

iterations i-n + 1 to i, and Window1 is composed of iter-

ations i-2n + 1 to i-n. For example, if n is set to three, then

following iteration 6, iterations 1–3 would be considered as

Window1, and iterations 4–6 as Window2. A stop condi-

tion occurs when Recall(Window2) – Recall(Window1) <

t, where t represents a predefined threshold value. Other

possible stopping criteria involve using different measures

for evaluating the classification process, for instance by

considering the precision of functional requirements it is

possible to indirectly measure the ability of the classifier to

detect and classify the NFR types correctly.

7.2 Learning the indicator terms

The indicator term weights are updated according to the

user’s feedback using the expressions reported below. Let

D be an NFR that has been classified as quality type Q* by

the analyst.

For any term w in D, the probability PrQ*(w, i) at the ith

iteration will be computed using equation (1) in Sect. 3.1.

The change in the probability values due to the addition of

the new NFR D to the training set can be evaluated by

writing the expression of PrQ*(w, i) as follows:

114 Requirements Eng (2007) 12:103–120

123

PrQ�ðw; iÞ ¼
1

NQ�ði� 1Þ þ 1

�
X

d2SQ�

freqðd;wÞ=jdj þ freqðD;wÞ=jDj
 !

� NQ�ðw; i� 1Þ þ 1

Nðw; i� 1Þ þ 1

NPQ�ðw; iÞ
NPQ�ðiÞ

where SQ* is the set of NFR documents of type Q* and the

following terms are computed at each i-th iteration from

the training set:

– NQ(i) is the number of type Q NFRs

– NQ(w,i) is the number of type Q NFRs containing term w

– N(w,i) is the number of requirements containing w

– NPQ(i) is the number of projects containing type Q

NFRs

– NPQ(w,i) is the number of projects containing type Q

NFRs with terms w.

In practice this formula simply represents an iterative

version of the formula presented in Sect. 3.1. Notice that

the number of projects NPQ(i) containing type Q docu-

ments is increased by one only if the document added to the

training set belongs to a type Q that was not previously

discovered in that project.

An analysis of the expression above shows that if we

add a document D of type Q* to the training set, the

weight value PrQ*(w, i) of each indicator term w in D will

increase, and the increment amount will be larger if the

training set contains fewer type Q* documents, and/or if

the term w belongs to fewer than average documents. As

expected, adding a document that either belongs to a

quality type that is underrepresented in the training set

and/or that contains rarer terms will have a stronger im-

pact on the corpus of indicator terms learned from the

training set.

It is also interesting to observe the effect of adding a

document D of type Q* on the weight values PrQ^(w,i) for

any quality type Q^ different from Q*. The probability

PrQ^(w,i) of the indicator term w in D is computed as

follows:

PrQ ð̂w; iÞ ¼
Nðw; i� 1Þ

Nðw; i� 1Þ þ 1
PrQ ð̂w; i� 1Þ

where N(w,i – 1) is the number of requirements containing

the term w at the (i – 1)th step. The probability of the

indicator term PrQ^(w,i) decreases with a factor equal to 1/

(N(w,i – 1) + 1), which is inversely proportional to the

number of documents containing term w. Thus the impact

on the indicator term weights will be stronger if w is a rare

term in respect to the training set.

7.3 Simulation results

Two simulation experiments were conducted to test the

effectiveness of the iterative learning approach for the

Siemens IET dataset. In Experiment 1 the indicator terms

previously learned from the original 15 student projects

were used as an initial corpus of terms, and in the second

experiment, Experiment 2, the training started with no

initial corpus of terms. Results from the two experiments

allowed us to evaluate the effectiveness of using an initial

corpus of terms to classify a new dataset.

In both experiments, the collection of requirements was

divided into a learning set and a testing set. The documents

for the learning and the testing set were randomly selected

using a stratified sampling approach to maintain the original

size ratio of the different NFR types in both sets. The learning

set was constructed by selecting 60% of the documents from

each requirement type, and the testing set contained the

remaining 40% of the documents. The learning set was used

to sequentially construct the training set for the classifier

while the testing set was used to measure the performance of

the NFR classifier during the incremental training procedure.

A total of ten runs were executed for each simulation

experiment and a learning set and a testing set were created

at each run. For each run, the sequential learning approach

was iterated 30 times by randomly selecting five require-

ments classified as NFRs and 15 requirements classified as

functional (currently unclassified) from the learning set. As

described above, the 15 currently unclassified requirements

were selected from the top 15 unclassified documents in the

learning set, ranked accordingly to their classification

scores. For the first experiment, all of the indicator terms

learned during the training phase of the 15 students projects

were used to form an initial corpus of indicator terms. In

Experiment 2, as no initial indicator terms were available

to classify the learning set during iteration one, 20

requirements were randomly selected from the unclassified

learning set. For both experiments the classification

threshold was fixed at 0.04, and user feedback was simu-

lated through the use of the previously defined ‘‘answer

set’’. During each iteration, the selected requirements

classified using the answer set to simulate user’s feedback

were added to the training set and used to update the corpus

of indicator terms. The new corpus was then used to

reclassify the remaining portions of the learning set, and to

classify the documents in the testing set. After a certain

number of iterations, the classifier was unable to detect

additional NFRs in the testing set and no further

improvement in recall and precision values were achieved.

At the end of the experiments, the performance of the

classifier was measured by computing the average recall

and precision values for the documents in the testing set

Requirements Eng (2007) 12:103–120 115

123

based on the ten simulation runs. Figure 3 shows the

average recall values and their error bars computed as two

times their standard deviation for each iterative step. For

Experiment 1, recall improved gradually until the 20th

iteration, with an increase from the initial 61.6 to 68.2%

after 30 iterations. In Experiment 1, the Availability,

Security, Usability and Maintenance requirements had

consistently high recall values of over 70% as shown in

Figs. 4 and 5, while the most significant increase in recall

due to the sequential training approach was seen for the

look-and-feel and operational requirements. The recall of

legal requirements worsened following initial training and

only gradually improved over the remaining iterations. The

improvement in recall for look-and-feel and operational

requirements suggests that many quality type indicator

terms missing in the initial corpus were sequentially

learned during the iterative steps.

For Experiment 2, in which no prior knowledge of

indicator terms was assumed, the improvement in recall

was significantly faster during the early iterations, starting

from 36.1% recall after the first iteration, and ending at

70.8% recall after 30 iterations. Iterative training was very

effective for learning the indicator terms for most quality

types as shown by the consistent upward trend in recall

values displayed in Fig. 6 for the first 15–20 iterations.

Important indicator terms were discovered at early itera-

tions, and produced high average recall values for several

NFR types, such as Availability and Operational.

The initial corpus of indicator terms was very useful and

effective in discovering and classifying Maintenance and

Security requirements. For these two types, the recall val-

ues of the classifier used in Experiment 1 were consistently

higher than the recall values for Experiment 2 as displayed

in Fig. 7. However the classifier using no prior indicator

terms performed significantly better in identifying and

categorizing Performance, Operational and Legal NFRs,

and the sequential training with no prior knowledge was

more effective. The overall performance of the two clas-

sifiers was very similar for Availability, Usability and Look

& Feel requirements indicating that the initial corpus of

indicator terms contained terms that were appropriate to

discover and classify documents of those types even though

the domain was different. For both experiments, increase in

recall values seems to level off after 20 iterations.

A very interesting result is that precision in Experiment

1 showed no significant change, while the precision for

Experiment 2 improved consistently during each iteration,

as shown in Fig. 4. For Experiment 2, the precision values

increased from 11.7 to 22.1% after 30 iterations. The

classifier with no prior indicator terms therefore yielded

better recall and better precision than the classifier with the

initial corpus of indicator terms. The significantly higher

precision values for Experiment 2 show that the choice of

the initial corpus of indicator terms can have a significant

effect on the classifier’s performance. In particular it sug-

gests that a disparate corpus of terms is a source of possible

classification error, as it contains terms from different do-

mains or specific specification styles that may be used

differently in the new dataset. However if no sequential

training can be conducted, an initial corpus of terms can be

very helpful to train the classifier as suggested by the re-

sults of Experiment 1 and the results of our previous

experiments in Sect. 6.

7.4 Analysis of indicator terms

A detailed analysis of the indicator terms for each NFR

type learned from the two experiments at the end of the

30th iteration showed some interesting results. The set of

indicator terms for each experiment were constructed

through combining the indicator terms learned from all ten

simulation runs for the Experiments 1 and 2, respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

13951 17 21 25 29

Iteration #

Recall for
Experiment 1

Recall for
Experiment 2

Fig. 3 Improvement in overall recall using the iterative tool.

Experiment 1 uses initial corpus of indicator terms. Experiment 2

starts with no prior knowledge

0

0.05

0.1

0.15

0.2

0.25

29

Iteration #

Precision for
Experiment 1

Precision for
Experiment 2

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Fig. 4 Improvement in overall precision using the iterative tool for

Experiments 1 and 2

116 Requirements Eng (2007) 12:103–120

123

Each indicator term in the two sets was assigned a weight

score obtained as the weight score average in the ten runs.

Our results showed that the top indicator terms for NFR

types learned from the two experiments varied signifi-

cantly. The scatter plots in Fig. 8 display the difference in

ranking for the sets of indicator terms that appear in both

the training set for Experiment 1 built using an initial

corpus of indicator terms and the one for Experiment 2

assuming no prior knowledge. Several terms that are highly

ranked in Experiment 1 were assigned significantly lower

weights in Experiment 2. Those are the terms that appear

more often in the initial corpus of indicator terms but that

are not representative of the content of the NFR documents

in the dataset to be classified. For instance the term

‘‘system’’ that is ranked fifth as indicator term for

Performance and third for Operational in Experiment 1 has

a much lower rank in Experiment 2. It is only 64th for

Performance and 96th for Operational. For Performance

requirements, the terms ‘‘response’’ and ‘‘time’’ among

the top ten in Experiment 1, are ranked only 38th and 76th

by the second classifier.

We also noticed that on average the top ranked terms for

the classifier in Experiment 2, were also ranked relatively

high in Experiment 1. This is consistent with the fact that

highly ranked indicator terms in Experiment 2 are repre-

sentative of the NFRs content in the project to be classified.

Therefore they are likely to be learned during the sequen-

tial training process and used to augment the training set in

Experiment 1. The weight scores for these terms are ex-

pected to still be reasonably high.

0.00

0.20

0.40

0.60

0.80

1.00

Iteration #

Availability

Legal

Look & Feel

Maintenance

Operational

Performance

Security

Usability

291 3 5 7 9 11 13 15 17 19 21 23 25 27

Fig. 5 Average recall for NFRs

in the testing set for Experiment

1, utilizing an existing corpus of

indicator terms

0.00

0.20

0.40

0.60

0.80

1.00

2 6 10 12 14 16 18 20 22 24 26 28 30

Iteration #

Availability

Legal

Look & Feel

Maintenance

Operational

Performance

Security

Usability

84

Fig. 6 Average recall for NFRs

in the testing set for Experiment

2 based on no prior corpus of

indicator terms

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

Iteration #

Zero line

291 3 5 7 9 11 13 15 17 19 21 23 25 27

Availability
Legal
Look & Feel
Maintenance
Operational
Performance
Security
Usability

Fig. 7 Difference in average

recall values between

Experiments 1 and 2 for each

NFR type

Requirements Eng (2007) 12:103–120 117

123

L
eg

al

01020304050607080

0
50

10
0

15
0

20
0

L
o

o
k

an
d

 F
ee

l

01020304050607080

0
50

10
0

15
0

20
0

25
0

M
ai

n
ta

n
an

ce

02040608010
0

12
0

14
0

16
0

0
50

10
0

15
0

20
0

25
0

O
p

er
at

io
n

al

05010
0

15
0

20
0

25
0

30
0

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

P
er

fo
rm

an
ce

0

2040608010
0

12
0

14
0

16
0

0
50

10
0

15
0

20
0

25
0

30
0

S
ec

u
ri

ty

02040608010
0

12
0

14
0

16
0

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

U
sa

b
ili

ty

0

10
0

20
0

30
0

40
0

50
0

60
0

0
10

0
20

0
30

0
40

0
50

0
60

0

A
va

ila
b

ili
ty

02040608010
0

12
0

14
0

16
0

0
50

10
0

15
0

20
0

25
0

Fig. 8 Indicator terms ranking

according to the weight scores

for each NFR type for

Experiments 1 and 2

118 Requirements Eng (2007) 12:103–120

123

8 Applications of the NFR-classifier

This paper has introduced a new approach based on

information retrieval methods for detecting and classify-

ing non-functional requirements from both structured

requirements specifications as well as from free-form

text. Although the approach still requires an analyst to

evaluate the correctness of candidate NFRs, it requires

less effort than previous semi-automated classification

methods such as the Theme/Doc method [25]. Despite

the fact that our results have suggest that perfect recall is

probably unachievable and that 60–90% is a more real-

istic goal, the NFR-classifier is useful in several different

ways.

First, the NFR-classifier can be used to support an

analyst in manually detecting and classifying NFRs from a

previously uncategorized requirements specification. The

NFR-classifier could be used to augment the manual

evaluation, which like all human activities has a tendency

to be error prone. Secondly, the strength of the NFR-

classifier lies in its ability to quickly trawl through large

free-form datasets searching for stakeholders’ comments

and requirements. For example, during the elicitation pro-

cess, requirements analysts may generate large amounts of

unstructured documents in the form of meeting minutes,

survey responses, interview notes, and memos etc. The

NFR-classifier can parse these documents and extract

viewpoints for different NFR qualities of interest. For

example, a security analyst could issue a query for all

comments and requests related to security issues, or a GUI

designer could issue a request to retrieve information about

stakeholders’ usability or look-and-feel concerns.

Although the recall of the NFR-classifier is typically less

than perfect (60–90% in general), it can still retrieve

interesting and useful information that might otherwise be

entirely overlooked during the requirements analysis pro-

cess. Furthermore, because the classifier trawls for NFRs

from raw stakeholders’ data, there is a reasonable likeli-

hood that many of the concerns will have been expressed

by more than one stakeholder using different terminology.

The NFR-classifier may therefore have more than one

opportunity to detect a single concern. The NFR-classifier

is useful for supporting many of the NFR elicitation and

analysis techniques described in the introduction to this

paper. For example the NFR-framework assumes that

quality related goals for the system are known and under-

stood, while other techniques such as Cysneiro et al’s ap-

proach assume that the non-functional goals related to

functional areas of the system can be brainstormed in a

systematic fashion [6]. Our approach retrieves this infor-

mation from the data collected during a broader elicitation

process, and makes it available during the process of NFR

modelling.

This paper has provided an initial validation of the ap-

proach and has also introduced a new technique for itera-

tively training a classifier to work in entirely new domains.

Additional work is still needed to compare various poten-

tial stopping conditions; to optimize the value of the ana-

lysts’ efforts by more strategically selecting and presenting

statements for review; and finally to improve runtime

performance of the tool so that it can be strategically used

by a real analyst.

Acknowledgments The work described in this paper was partially

funded by NSF grants CCR-0306303 and CCR-0447594. Additional

funding and access to project artefacts was provided by Siemens

Corporate Research and Siemens Logistics and Automation plant in

Grand Rapids, MI. We would like to express our appreciation to Wen

Dou for constructing the iterative prototype tool.

References

1. Nuseibeh B (2001) Weaving together requirements and archi-

tecture. IEEE Comput 34(3):115–117

2. Zowghi D Resources: collection of software requirements spec-

ifications [Online document]. Available at http://www.research.-

it.uts.edu.au/re/cgi-bin/resources_srs.cgi

3. Cleland-Huang J, Settimi R, Zou X, Solc P (2006) The detection

and classification of non-functional requirements with application

to early aspects. In: IEEE international conference on require-

ments engineering, Minneapolis, MN, pp 39–48

4. Baniassan E, Clements P, Araujo J, Moreira A, Rashid A, Tek-

inerdogan B (2006) Discovering early aspects. IEEE Softw

23(1):61–70

5. In H, Boehm BW (2001) Using winwin quality requirements

management tools: a case study. Ann Softw Eng 11(1):141–174

6. Cysneiros LM, do Prado Leite JCS, de Melo Sabat Neto J (2001)

A framework for integrating non-functional requirements into

conceptual models. Requirement Eng 6(2):97–115

7. D}orr J, Kerkow D, Von Knethen A, Paech B (2003) Eliciting

efficiency requirements with use cases. In: Ninth international

workshop on requirements engineering: foundation for software

quality. In conjunction with CAiSE’03

8. Kaiya H, Osada A, Kaijiri K (2004) Identifying stakeholders and

their preferences about NFR by comparing use case diagrams of

several existing systems. In: Proceedings of 12th IEEE interna-

tional requirements engineering conference, pp 112–121

9. Kazman R, Klein M, Clements P (2000) ATAM: method for

architecture evaluation. CMU/SEI Technical Report, CMU/SEI-

2000-TR-004, ADA382629, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, PA

10. Chung L, Nixon B, Yu E, Mylopoulos J (2000) Non-functional

requirements in software engineering. Kluwer, Boston

11. Eric SK Yu, John Mylopoulos (1994) Understanding ‘‘Why’’ in

software process modelling, analysis, and design. In: Proceedings

of 16th international conference on software engineering, pp

159–168

12. van Lamsweerde A (2004) Goal-oriented requirements engi-

neering: a roundtrip from research to practice. In: Proceedings of

RE’04, 12th IEEE joint international requirements engineering

conference, Kyoto, 4–8 September 2004 (Invited Keynote Paper)

13. Dardenne A, Lamsweerde A, Fickas S (1993) Goal-directed

requirements acquisition. Sci Comput Program

14. Steele A, Arnold J, Cleland-Huang J (2006) Speech detection of

stakeholders’ non-functional requirements. In: International

Requirements Eng (2007) 12:103–120 119

123

workshop on multimedia requirements engineering—beyond

mere descriptions, MERE’06, In conjunction with IEEE RE’06,

September, 2006, pp 3

15. Kellens A, Mens K (2005) A survey of aspect mining tools and

techniques. INGI Technical Report, 2005–08, UCL, Belgium,

Deliverable 6.2a for the workpackage 6 of the IWT project

040116 ‘‘AspectLab’’

16. Bruntink M, van Deursen A, Tourwe T, van Engelen R (2004) An

evaluation of clone detection techniques for identifying cross-

cutting concerns. In: 20th International conference on software

maintenance (ICSM’04), pp 200–209

17. Tonella P, Ceccato M (2004) Aspect mining through the formal

concept analysis of execution traces. In: 11th working conference

on reverse engineering (WCRE’04), pp 112–121

18. Rosenhainer L (2004) Identifying crosscutting concerns in

requirements specifications. In: Workshop on early aspects: as-

pect-oriented requirements engineering and architecture design,

Vancouver, Canada, 2004. Available at http://www.trese.cs.ut-

wente.nl/Docs/workshops/oopsla-early-aspects-2004/

19. Antoniol G, Canfora G, Casazza G, De Lucia A, Merlo E (2002)

Recovering traceability links between code and documentation.

IEEE Trans Softw Eng 28(10):970–983

20. Cleland-Huang J, Settimi R, Duan C, Zou X (2005) Utilizing

supporting evidence to improve dynamic requirements trace-

ability. In: International requirements engineering conference,

Paris, France, pp 135–144

21. Cleland-Huang J, Settimi R, BenKhadra O, Berezhanskaya E,

Christina S (2005) Goal-centric traceability for managing non-

functional requirements. In: International conference on software

engineering, pp 362–371

22. Huffman Hayes J, Dekhtyar A, Sundaram SK (2006) Advancing

candidate link generation for requirements tracing: the study of

methods. IEEE Trans Softw Eng 32(1):4–19

23. Settimi R, Cleland-Huang J, BenKhadra O, Mody J, Lukasik W,

DePalma C (2004) Supporting change in evolving software sys-

tems through dynamic traces to UML. In: IEEE international

workshop on principles of software evolution, pp 49–54

24. Maarek Y, Berry DM, Kaiser GE (1994) GURU: information

retrieval for reuse. In: Hall P (ed) Landmark contributions in

software reuse and reverse engineering. Unicom Seminars Ltd

25. Clarke S, Baniassad E (2005) Aspect-oriented analysis and de-

sign. In: The theme approach. Addison Wesley Ltd. ISBN:

0321246748

26. Sampaio A, Loughran N, Rashid A, Rayson P (2005) Mining

aspects in requirements. In: Workshop on early aspects

27. Frakes WB, Baeza-Yates R (1992) Information retrieval: data

structures and algorithms. Prentice-Hall, Englewood Cliffs

28. Altman DG, Bland JM (1994) Statistics notes: diagnostic tests 1:

sensitivity and specificity. Br Med J 308(1552)

29. Salton G, McGill MJ (1983) Introduction to modern information

retrieval. McGraw-Hill, New York

30. Fawcett T ROC graphs: notes and practical considerations for

researchers. HP Labs Tech Report, HPL-2003–4

31. PROMISE Software Engineering Repository. http://www.prom-

ise.site.uottawa.ca/SERepository/

32. Jalaji A, Goff R, Jackson M, Jones N, Menzies T (2006) Making

sense of text: identifying non functional requirements early. Sub-

mitted to PROMISE 2007, also available on-line as a West Virginia

University CSEE technical report, 2006. http://www.stupidchoic-

es.org/cs591o/final_pres/ottawa.ca/SERepository/

120 Requirements Eng (2007) 12:103–120

123

	Automated classification of non-functional requirements
	Abstract
	Introduction
	Existing NFR classification methods
	Elicitation techniques
	Detection techniques
	Keyword classification method

	The NFR-classifier
	Indicator terms mining
	NFR classification

	Evaluating the classifier model
	Classifying the NFRs
	Selection of indicator terms
	Classification results
	Comparison to standard approaches

	Training set size
	Industrial case study
	Fixed keywords
	Using prior indicator terms
	Retraining the classifier

	An iterative approach
	Selection criteria
	Learning the indicator terms
	Simulation results
	Analysis of indicator terms

	Applications of the NFR-classifier
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

