
What excites you most about computer
science today?

Turing Award winner Edsger Dijkstra once said,
‘computer science is no more about computers
than astronomy is about telescopes’. For me,
computer science is all about people. One of
the most exciting aspects of the field is enabling
humans to interact with each other and society
as a whole in ways that would otherwise not
be possible. In this context, the future can
be compared to the enabling role of a sports
official: although people should enjoy the game
without paying much attention to the referee,
without officiating or with bad officiating,
things can become inconvenient, discomforting
and unpleasant.

Could you give an insight into the
mathematically modelled foraging
mechanisms you envision informing
the development of a unified theory for
code navigation?

In optimal food foraging, resources are assumed
to be distributed in patches (the patch model)
and structural properties such as locality pose
important shaping limits on the potential
for optimisation. In particular, predators
engage in more within-patch foraging and
less between-patch foraging activities, trying

to maximise their energy intake per unit cost.
In information foraging on the Web, similar
phenomena are observed. What we found is
that the programming artefacts are not placed
randomly, but are organised in a topically
related manner. This patchy distribution, in turn,
affects developers’ navigation. Our empirical
studies show that, for each between-patch
navigation step taken, developers take four
within-patch foraging steps on average, in
order to compensate for the cost. The empirical
findings not only validate foraging theory’s
applicability in code navigation, but also inform
tool builders to take advantage of the patchy
environment in which developers forage.

How has your background equipped you for
this work?

After receiving my bachelor’s degree from
Beijing Institute of Technology, I stayed in my
hometown, Beijing, and joined Lenovo, one of the
top computer technology companies in China and
worldwide. Two years of experience as a Lenovo
programmer made me fully appreciate the
practical challenges associated with developing
software for millions of users. At the same time,
I realised the tremendous impact that top-notch
software engineering research could make.

I then pursued my graduate degree overseas,
specialising in software engineering and
earned my PhD from the University of Toronto,
Canada, where I acquired the knowledge and
skills to conduct both theoretical and empirical
software engineering research. An important
theme of my work has always been to address
the challenges encountered by software
practitioners. By forming an interdisciplinary
research team and forging international
collaborations, I continue to explore new
and improved ways to answer the needs of
today’s developers.

Could you explain what sets your research
apart from other work in the field?

Other studies that have applied foraging
theory in software engineering so far have

focused mainly on enabling developers to
best shape themselves to the software and
task environments. Our research tries to
make a start at reversing foraging-theoretic
thinking in software engineering; that is, to
enable the environments to be best suited to
the developers, and to do so in an automated
way via clustering.

Have you encountered any specific
challenges in your work?

A challenge I faced in applying foraging
theory was defining a ‘patch’ in the code
base. While certain food resources like
berries are naturally organised into physical
patches, source code patches may manifest
themselves in many forms: stored together
in folders, opened together in a programming
tool, or changed together in a project’s
history. Instead of attempting to find the
most natural source code patch, I realised
the opportunity of researching multiple
and possibly equally valid ways to cluster
programming artefacts in patches. This
fully leverages the softness of software and
leads to principled ways to enrich the code
foraging environment.

Looking ahead, what path will your
research follow?

My research continues to take a theory-
driven path and this is evidenced by my new
National Science Foundation (NSF) project,
entitled ‘CAREER: Linking the Solo and Social
Levels in Software Engineering’. Even though
the specific solo-social link under investigation
may vary from tagging to debugging, the
research methodology will stay the same. For
each instance of the solo-social link, I will
research principled ways to improve the solo-
level production of the information products,
systematically discover the emergent
knowledge structures and aggregate patterns,
and leverage the social capital to boost the
productivity of developers both individually
and cooperatively.

Software engineer Dr Nan Niu understands the need to optimise
the way software developers navigate the information required to
debug and maintain software systems

Evolutionary
software engineeringD

R
N

AN
 N

IU

 72 INTERNATIONAL INNOVATION

Hunter, gatherer…
information forager?

Computer scientists at the College of Engineering and Applied Science at the University of
Cincinnati are combining evolutionary psychology and biology theories to understanding
the human-information interactions within software engineering

Topical locality refl ected by developers’ more within-patch and less between-patch foraging.

DR NAN NIU

 WWW.INTERNATIONALINNOVATION.COM 73

DEVELOPED BY EVOLUTIONARY biologists
and anthropologists, foraging theory describes
how humans and other animals hunt for food.
Latterly, this has been applied by Peter Pirolli,
a research fellow in interactive intelligence,
to information foraging and, in particular,
foraging by humans for information on the
Web; now known as information foraging
theory. The theory draws parallels between
a user searching for information on websites
and settling on the information they want,
with a predator hunting for prey in a particular
environment and making a decision on their
ideal food source. Information foraging
theory links current methods of searching for
information with those our ancestors evolved
in order to forage for food. Understanding and
applying this theory is key to optimising the
layout of websites to maximise the ease of
information access by users.

Despite its use in this area, information
foraging theory is yet to benefi t software
developers that are spending time debugging
software or creating it using a code base; the
collection of source code and other artifacts
the developer must work through in order to
improve or debug a software system. Code
navigation is signifi cantly time-consuming
for developers and understanding how they
can evolve methods of navigation through
the code base – similar to how users navigate

the Web – would improve the information
foraging environment and potentially enable
developers to more effi ciently navigate code.

EAGER

Dr Nan Niu heads up a research group
that aims to understand whether software
development effi ciency can be improved by
optimising code navigation effi ciency. He
and his colleagues prefer an unusual fusion of
disciplines, combining evolutionary biology,
evolutionary psychology and software
engineering. Supported by an EArly-concept
Grant for Exploratory Research (EAGER) from
the National Science Foundation (NSF), the
project, entitled Clustering Programming
Artifacts to Enrich Code Foraging Environment,
centred on three main aims. Firstly, the group
sought to determine whether the biological
optimal foraging theory could be applied to
code navigation, as it could for information
foraging on websites. Secondly, the researchers
wished to determine the extent to which
clustering data, ie. grouping together similar
items using different algorithms, could improve
the software environment. The third aim was
to identify new ways to optimise the software
environment; improving software development
and minimising time lost to code navigation.
Ultimately, the researchers aim to improve the
productivity of software engineers.

THE PATCH MODEL

Biological optimal foraging theory describes
an animal that has to spend some between-
patch time in travelling between food patches
(eg. a bush) and when at a patch can make the
decision to either continue exploiting this area
for diminishing food sources, or expend more
time and energy on travelling to a new patch.
The patches in this model are equated to a
website, an information patch, in information
foraging theory.

Niu and colleagues wanted to test if the patch
model could be applied to code navigation by
testing topical locality, eg. analysing the extent
to which a header can accurately communicate
the information found in the body. Topical
locality is the idea that semantic distance is
similar to spatial distance within the system. The
researchers studied topical locality in a series of
long-term open-source projects to determine if
code navigation can be modelled by the patch
model. If there was little ‘patchiness’ or topical
locality observed, foraging theory could not be
applied to code navigation.

ENRICHING THE
SOFTWARE ENVIRONMENT

When applying biological optimal foraging
theory, the foraging patch is equated to a

The results from the groups’ tests and analyses of topical

locality indicated that […] a parallel can be drawn

between code navigation and foraging theory

CLUSTERING PROGRAMMING
ARTIFACTS TO ENRICH CODE
FORAGING ENVIRONMENT

OBJECTIVE

To develop a unified theory for code
navigation based on mathematically
modelled foraging mechanisms that evolved
to help our animal ancestors to find food.

KEY COLLABORATORS

Dr Gary Bradshaw, Department of
Psychology, Mississippi State University

Dr Jing-Ru C Cheng, Information Technology
Laboratory, US Army Engineer Research and
Development Center

Dr Domenico (Mimmo) Parisi, National
Strategic Planning & Analysis Research
Center, Mississippi State University

FUNDING

National Science Foundation (NSF) – award
no. 1238336

CONTACT

Dr Nan Niu
Principal Investigator

Department of Electrical Engineering and
Computing Systems
University of Cincinnati
PO Box 210030
Cincinnati, Ohio
45221-0030
USA

T +1 513 556 0051
E nan.niu@uc.edu

www.nsf.gov/awardsearch/
showAward?AWD_ID=1238336

http://homepages.uc.edu/~niunn/

DR NAN NIU is an assistant professor of
computer science within the Department
of Electrical Engineering and Computing
Systems at the University of Cincinnati. He
was recently recognised by an NSF CAREER
Award that spans over the next five years.
He received his BS in Computer Science
and Engineering from the Beijing Institute
of Technology and his MS in Computing
Science from the University of Alberta, in
1999 and 2004, respectively. He received
his PhD degree in Computer Science from
the University of Toronto in 2009, under the
supervision of Professor Steve M Easterbrook.
Most recently, he was an assistant professor
in the Department of Computer Science and
Engineering at Mississippi State University.

 74 INTERNATIONAL INNOVATION

INTELLIGENCE

cluster of information that a developer can
access. As the code base may not be clustered
already, clustering algorithms could be used
to bring related data together, thus facilitating
code navigation for software developers by
reshaping the information environment. The
challenge, once the source code has been
rearranged to create a more favourable code
navigation environment, is to assess the
quality of clustering the software into ‘code
patches’ and determine whether this has
been profitable for the software developers.

Niu’s findings indicate there was some
‘patchiness’ within software, drawing a
parallel between code navigation and
foraging theory. Clustering was also shown to
be useful in terms of grouping the quality of
‘traceability links’, the links between software
requirements and the rationale behind it, and
information needed for that requirement to
be implemented (eg. code). The researchers
also demonstrated that semantic relatedness
methods can be used to reshape the
information foraging environment, enabling
software developers to traverse it in a more
principled fashion.

HUMAN TASK, HUMAN LIMITATIONS

Niu’s recent studies continue on from previous
work linking evolutionary psychology to
software development. Building on his
EAGER-funded research, a new NSF CAREER
award is allowing Niu to work on linking the
behaviours of software developers to their
social information foraging, learning and
co-creation. “My CAREER project aims to
quantitatively characterise the intertwining
relationship of the solo and social levels in
software engineering, uncover the essential
limits of the relationship, and create optimal
solutions within or even beyond those limits,”
he explains.

Looking at software engineering problems
from an evolutionary-ecological standpoint
is important, as the human software
developers, who are subject to their past
evolution, are potentially exacerbating
these issues. “Software engineering, long
recognised as a human activity, is challenged
by human limitations,” Niu states. “To
overcome human-centred challenges
such as code navigation, we must gain a
new and improved understanding about
the process itself.” Better understanding
of these processes will provide an insight
into how the work of software developers
can be better supported, thus increasing
developer productivity.

A FUTURE ELECTRONIC ENVIRONMENT

The impacts of the research carried out by
Niu’s group are far-reaching. The researchers
understand that information foraging requires
an interaction between the user and the
information environment, and by employing
biological and psychological principles
they acknowledge that understanding this
interaction can help improve information
environments. Such research could enhance
the development of tools available to
programmers, thereby facilitating code
navigation by professional programmers as
well as novice software engineers learning
how to navigate an unknown code base.
The team’s findings may kick-start the
development of applications that can
favourably alter the information environment
to make everyday code navigation and
software maintenance easier. Providing
the tools to allow software developers
to adapt their electronic environment to
suit human behavioural and information
foraging patterns may ultimately lead the
way into a more economic infrastructure for
software engineering.

