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We are now quite accustomed to the view that the extension of the field of rational
numbers to the field of real numbers is a natural, useful, and proper move—irrespective of the
precise mathematical methods that we may prefer in order to effect that extension and irrespective
of our ontological persuastons (or lack thereof) with respect to (rational and real) numbers and
other mathematical objects. To someone of a philosophical cast of mind contemplating the
development of nonstandard analysis over the last forty years, it- might well be assumed that, by
parity of whatever reasoning that could be invoked to justify this view concerning the relation of
the rationals to the reals, we should similarly be prepared to regard the extension of the field of
real numbers to the field of hyperreal numbers as a natnral, usetul, and proper move. It is my aim

in this essay to explore this assumption first by delving into some of the mathematical

‘archaeology” or history of incommensurables (magnitudes that do not have a common aliquot
part) and of what I call incomparables (magnitudes such that the larger can never be surpassed by
any finite number of additions of the smaller to itself). What I shall suggest is that the
contemporary development of the nonstandard or non-Archimedean mathematics of hyperreal
numbers has a certain “Janus-faced’ character that militates against a paradigm-shift that would
result in the displacement of the real by the hyperreal- number line. A corollary that I’1] be
particularly emphasizing today is that this Janus-faced character renders the use of nonstandard or
non-Archimedean concepts problemanc as tools for addressmg certam classmal conceptual-or, 1f

you will, phllosophlcal—-problems pertalmng to continuous rnagnltudes

. The Ideas of Incommensurability and Incomparabililty.

According to canonical lore, it was those mythical, mystical Pythagoreans who discovered
that there are some magnitudes that are incommensurable with others. In addition to constituting
a specifically mathematical conundrum, this discovery supposedly was regarded as generally very
bad news by the Pythagoreans, who wished to develop a numerical ontology of everything. Ifitis
not even the case that there is any length of which both the side and diagonal of the square are

integral multiples, it would seem to be difficult for the Pythagoreans to make a convincing case



for their Claim (reported by Aristotle) that the “elements of numbers are the elements of all things
that exist” (Meta .1.5.98631-2) and, more particularly, that “justice is a certain property of
numbers, soul and reason another, and opportunity still another, and similarly for each other
thing” (Ibid., 985b29-31). In fact, the discovery of incommensurability was régarded as So
disastrous, according to the hoary tradition to which I am appealing, that a massive Pythagorean
cover-up was undertaken. An apostate Pythagorean whistle-blower, Hippasus of Metapontum,
was punished for spreading the news beyond the confines of the Pythagorean brotherhood,
according to alternative accountsj either directly by the Pythagoreans (who erected a tombstone
to him despite the fact that he was not yet dead) or more sharply and by higher powers (who
brought about his death at sea by shipwreck).

In contemporary (and quite un-Greek) terminology, we see that the rational numbers are
not closed under the operatidn of taking the square root: v2 (length of the diagonal of a square
with unit side) is not expressible as a ratio of iritegérs. In this sense—a sense that obviously has
implications even for elementary plane geometry—the rational numbers are ‘incomplete’. Would it
not make good sense to ‘fill in the gaps’ by adding to the rationals some ‘new’ numbers by which
we can represent the length of the dragonal of the unit square, as well as other constant,

incommensurable (and, in fact, ‘transcendental’) ratios such as that of the circumference of a

circle to 1ts diameter.

Sensible or not, 1t was a move that Greek geometers did not make. Rather, the Greek

response was to draw a sharp distinction between discrete ntAnBocg (multiplicity or plurality) and
continuous péyaboc (magnitude) and to locate the phenomenon of incommensurability squarely

in the latter category. Distinguishiﬁg these two coordinate kinds of quantity (técov), Aristotle

characterizes multiplicity as numerable quantity and magnitude as measurable quantity (Meta.

5.13.1020a8-10), maintaining that “number (ap1BUOG) is commensurable (GOULLETPOC), but

number 1s not predicated with respect to what is not commensurable” (Meta. 5.15.1021a5). And,

as we know, the ‘theory of incommensurability’ is explicated by Euclid in his theory of
‘proportionality of magnitudes in the fifth and tenth books of the Elements. The distinction in
Greek mathematics between multiplicities and magnitudes at least partly explains the parallel

development of a theory of proportionality for numbers in the seventh book of the Elements.
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Although, of course, numerical representation of and algebraic application of
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magnitudes constituted the final-or, at least, final 19™ century—solution to the Greek conundrum

of incommensurable magnitudes.

The second geometrical phenomenon, which -I referred to as that of incomparability, arises
in Greek attempts to ascertain, say, the area of circle or the area of parabolic segment 1n terms
of the limit of areas of inscribed polygons, or the volume of a cylinder in terms of the limit of the
areas of inscribed prisms. Would 1t make good sense to introduce the concept of positive but
really little—and I mean really little-magnitudes so that, say, there is only a vanishingly small
difference between the volume of a cylinder and the volume of an inscribed prism with a
sufficiently large number of faces. Such a really little magnitude would be ‘vanishingly smaﬂ’,

‘insignificant’, or ‘unassignable’ relative to any ‘standard’ magnitude 1n the following sense. It
would not ‘have a ratio’ (A6yov Exewv) to the larger standard magnitude the terms of

Definition 4 of the fifth book of the Elements: “a magnitude is said to have a ratio to another
when it can, when multiplied, exceed the -other.” As previously indicated, I use the term
‘incomparable’ to designate such magnitudes that would not (as we now say) stand in any real-
valued ratio to one another.

Again, whether sensible or not, the introduction of quantities that are incomparable in this
sense seems not to have been a move made _Within the mainstream of Greek mathematics. In fact,
Archimedes is known for having stated in the first book of De sphaera et cylindro a postulate (the
Archimedean axiom) that requires that the difference between any two unequal magnitudes of the
same kind (i.e., lines, surfaces, solids) and any other magnitude of that kind ‘have a ratio to one
another’ in the sense of Def. 4 of the fifth book of E-uclid. Euclid himself had, in effect, used his
definition as a postulate (i.e., had applied it to any unequal magnitudes) in the proof of Prop. 1 of
the tenth book of the Elements, known as the Euclidean lemma: for magnitudes x, y such that x >

y, the subtraction from x of a magnitude greater than half of x, the subtraction from this remainder
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r of a magnitude greater than half of r, etc. will eventually (1.e., in a finite number of steps) yield a
remainder z less than y.

50, adoption of the Archimedéén axidm rules out the possibility of incomparable
magnitudes: it rules out magnitudes that Would be infinitesimal relative to standard, finite
quantities as well as infinitely large quantities, which would be larger than any standard finite
quantities and equal to the multiplicative inverses of infinitesimals. The combination, then, of the
Archimedean axiom and reductio proof provides a means of utilizing an informal concept limit in
a tinitistic context (viz., the availability of finite differences between variable quantities J and
some tixed quantity L, that can be made ‘as small as one wishes’) without actually ‘passing to the
limit’~1.e., without, that is, actually ever identifying the volume of a cylinder with that of some
Inscribed prism (perhaps one with an infinite number of faces) in the sense of claiming that their
magnitudes differ by an amount that is incomparable—in my sense of the term—with the volumes of
either cylinder or inscribed prism. This perspective became the mathematically orthodox
one-now unfortunately designated, as most of you are no doubt aware, by the phrase “method of

exhaustion. [Say something about ‘method of indivisibles’ as a heuristic ‘method of discovery’:

Archimedes’” Methodus ( E¢ooog) and Cavalieri’s work in the 17 century. ]

L'o conclude these brief remarks concerning incommensurables and incomparables in
Greek mathematics, I wish to emphasize the point that classical Greek mathematics found
perfectly comfortable (if, at times, a bit complicated and unwieldy) geometrical means for dealing
with both phenomena: the the'ory of proportion for the analysis of incommensurables: a
combination of the method of exhaustion, as a method of proof, and (at least in some cases) the
method of indivisibles, as a method of discovery, for inﬁnitary analysis. What is completely
lacking is any attempt to accommodate the two phenomena numerically. Number, for the

Greeks, 1s a concept that remains limited to what we would call natural numbers.

1. An Hlicit-but Brief-Excursus into 19™ Century Mathematics.
According to contemporary mathematical orthodoxy, a satisfactory and final resolution of
both the ancient conundrums that we have been considering—that pertaining to incomparables

(and, more generally, the employment of infinitary analytical techniques) and that pertaining to
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Incommensurables—was achieved iIi .the nineteenth century. Although he was in certain respects
anticipated by Cauchy and Bolzano, Karl Weierstrass is usually credited with fully appreciating
that the limit concept could be developed, in terms of the so-called "€, 0 approach’, in such a way
as to eliminate any temptation to appeal to an idea of infinitesimal or infinitely small (and infinitely
great) quantities. Talk of ‘infinitesimal differences’ or differentials increasingly came to be
regarded as a mere fagon d parler. [1 won’t go 1nto details.] The nineteenth-century fate of
Incommensurables was, in a certain respect, diametrically opposed to the nineteenth-century fate
of incomparables: with the arithmeﬁcization of the continuum by Dedekind and Cantor, relatively
incommensurable magnitudes found a secure numerical home as irrationals. Dedekind and
Cantor each developed techniques, now regarded as standard, for the ‘construction’ of the real
numbers from the rationals. [Again, I won’t go 1nto details: Dedekind cuts and Cantor’s similar
construction using Cauchy sequences.]

In other words, as a result of Pnineteenth-—century developments with respect to the two
classical Greek phenomena of incommensurable and incomparable magnitudes, the former was
arithmeticized—incorporated into a system of numbers—while the latter was not. And, as Philip
Ehrlich has pointed out, a consequence of the so-called Cantor-Dedekind axiom identifying the
arithmetical continuum with the geometrical continuum is that Incomparable magnitudes are
finally and firmly denied even any geomeltrical existence.

I'he Cantor-Dedekind perspective is perhaps given added support by a classical
uniqueness result (originating, I believe, with David Hilbert and later clearly stated by Hans Hahn)
for the arithmetic continuum or ordered field of rea] numbers:

(Real Completeness Theorem): The ordered field R of real numbers 1S, up to order

1somorphism, the one ordered field that is complete 1n the following sense: any nonempty

subset that has an upper bound in R has a least upper bound in R.

[t might thus seem that any algebraic proper extension of the field R of real numbers must
sacrifice in some way the ‘completeness’ of the reals. And, 1n a sense, this is true: any such
extension must sacrifice the Archimedean property (and its logical equivalents) of the ordered
field. But we already knew that the addition of Incomparable magnitudes (infinitesimals and

infinitely large numbers, relative to the standard reals) to the ordered field of reals would ental



sacrifice of the Archimedean property. The question is whether there are other significant senses
of “completion’ in which an ordered field co'nt'aining representations of incomparable magnitudes
might be regarded as a completion of R.

As the Cantor-Dedekind perspective gradually achieved the status of mathematical
orthodoxy, non-Archimedean perspectives became—to use -a currently fashionable
term—1increasingly marginalized. The attitude of Cantor himself seems to havé played a part 1n this
process. His own opposition to infinitesimals was unswerving and, at times, vitriolic. In a letter

to Vivanti, he credited Thomae with being the first to “infect mathematics with the Cholera-

Bacillus of infinitesimals™; and he suggests that, in developing the ideas of Thomae, du Bois-
Reymond found “excellent nourishment for the satisfaction of his own burning ambition and
conceit.” In etfect, Cantor denied the possibility of infinitesimal numbers because he believed that
the Archimedean principle, or something equivalent to it, was entailed by the concept of (linear)
number. Therefore, by the so-called Cantor-Dedekind axiom, there is no legitimate geometrical
conception of an infinitesimal magnitude either. In the words of J oseph Dauben,

had Cantor agreed that the Archimedean property of the real numbers was merely

axiomatic, then there was no reason to prevent the development of number Systems by

merely denying the axiom, so long as consistency was still preserved. But to have allowed

this would have left Cantor open to the challenge that, if infinitesimals could be produced

without contradiction, then his own view of the continuum was lacking and the
completeness of his own theory of number would have been contravéned.

Ot course, as has been previously noted, no non-Archimedean ordered field is Complete In
the mathematical sense specified above—or in any intuitive sense that is equivalent to or entailed
by the Archimedean axiom. However, an ordered field is characterized not just by the order
relation but by the algebraic field operations; and if we shift our attention from the order relation
to these algebraic operations, a rather different intuitive picture of ‘completeness’ emerges.

An ordered field F is real closed just in case both (i) every positive element of F has a

square root 1n If and (i1) every polynomial of odd degree has a root in IF.

Artin and Schreier investigated the theory of real closed fields in the 1920s showing that the

ordered field R of real numbers is a real closed field. The ordered field Q of rationals clearly 1s



not: there is no element of Q, for example, that is the square root of the element 2. There is a
fairly intuitive sense in which the concept of a real closed field represents a sort of ‘algebraic
completeness’. But in turns out that this.'concept of completeness is not uniquely satisfied by the
reals up to isomorphism. There are other proper extensions of the reals that, while non-
Archimdean, are real closed. The non-Archimedean character of such extensions means, in effect,
that they add ‘real infinitesimals (and their inverses) to the real line. One such extension is the
reall closed field of hyperreals constructed using model-theoretic techniques by Abraham

~ Robinson in the lat 1950s and early 1960s. We thus perhaps have the option of overturning 19
century mathematical orthodoxy and making a numerical home for incomparable magnitudes as

well as incommensurable ones.

ITI. The Model-Theoretic ‘Superstructure’ Approach to the Construction of the
Hyperreals.

The superstructure approach works with languages with a constant designating the binary

set-membership relation € and bounded quantifiers defined in terms of it [(‘v’x cy), (Ix € y)]. We
shall let the base set R of a superstructure V(R) be the set of real numbers. The nth cumulative
power set 1s defined inductively as V,(R)=R; V,, (R) = V.(R) u PV (R)). Then the
superstructure V(R) over R is the um'(jn of all the cumulative power sets -VI.. In view of the
standard method for defining ordered sequences in terms of sets, n-ary functions as 7 + |-ary
relations, etc. it is fairly clear that a superstructure contains the properties of reals, relations on
reals, functions and operations on reals, “function spaces, measures, and all other structures from
classical analysis.” The ‘trick’ of the method of superstructures 1s to find another superstructure
V(*R) and a monomorphism or injéctive mapping * from V(R) into V(*R) satisfying certain
conditions. The result is an ordered triple (F(R), V(*R), *) that 'Chang and Keisler call a
nonstandard universe. Let (V(R), €) be a modél with € the binary set-membership relation. The
essential conditions that (V(R), V(*R), *) must satisfy in order to be a nonstandard universe are (1n
addition to the requirement that R and * R be infinite, which we have already assumed):

(1) that (as the notation already suggests) * maps the base set R of V(R) to the base set *R

of V(*R); ._



(11) that the mapping * be a bounded elementary embedding of V(R) into V(*R)—that is, for

Iy

every bounded-quantifier We.ll-for‘med formula ¢ with n free variables and every r,, . . ., r

eR, 7, ..., rysatisty ¢ in (V(R), €) (le., V(R), € |= d[r, ..., r]) if and only if *r, ..,

*r, satisfy ¢ in (F(*R), €) (i.e., V(*R), €) |= $[*r,, . . ., *.]).

(111) that, for every infinite X c R, X = {*rire X} ¢ *X.

We also desire that the nonstandard universe { V(R), V(*R), *) be an enlargement or
saturated over V(R). There are a number of ways of characterizing saturation in such a case.
One way 1s the following. Suppose that we extend our bounded-quantifier language for the reals
(with a constant ‘e’ for set membership) by adding a constant for each element of V(R). Then

J(R), V(*R), *) is saturated over V(R) if and only if; for every n < w and for every set T

of bounded-quantifier formulas of this exp'anded language, if every finite A < T is

satisfiable in (F(R), €) by elements of V(R), then I is satisfiable in (V(*R), €) by an
element of ¥ (*R). '
Another way of characterizing an enlargement/saturation begins With the 1dea of a concurrent
binary relation S € ¥(R): a relation such that for any finite numbei‘ of elements a,, . . . a_ of its

domain, there is some b € V(R) such that (a, b) c S, foreachi=1....m. An enlargement of the
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superstructure V(R) (or nonstandard universe (F(R), V(*R), *) that is saturated over V(R)), then,
is one for which, for each concurrent relation S € V(R), there 1s some ¢ € V(*R) such that (*x, ¢)
¢ *S for all x in the domain of relation S simultanedusly. The monomorphism * is then said to
bound all concurrent relations; and such ‘added’ elements ¢ € V(*R) are sometimes said to be
ideal. [ There are also other more general model-theoretic characterizations of -saturation (and of
o.-saturation for cardinal «) that I shall not discuss here.]

This construction nicely suggests how nonstandard uni\ferses introduce numerical
elements (members of non-Archimedean ordered fields) to represent quantities that were once
regarded as ‘ideal’ in something like the sense of Leibniz: mathematical fictions introduced to
shorten the process of reasoning.- For example, saturation yields the result that, since there is
some N > n for each » that is a member of any Jinite subset of the set N of natural numbers, there
is some ‘ideal’ element ¢ € *N such that ¢ *> n, for every n € N, It can then be shown that there

1s another ‘ideal’ numerical element ¢ = 1/c € V(*R), the multiplicative inverse of ¢, that is



infinitesimal, non-zero and nonnegative but less than (*<) any standard hyperreal (""embedded
real’) *r such that r € R. .

Along with the saturation or enlargement characteristic of nonstandard universes, the
other crucial characteristic of nonstandard universes is that the monomorphism * of such
universes be characterized by what is usually reterred to as the fransfer principle (or Leibniz’
principle). Starting with the requiremeht (11) above that the injective mapping * be a bounded
elementary embedding of V(R) into V(*R), we obtain a way of taking any sentence ‘of the
language of the reals’ and 1ts intended interpretation in ¥(R) and constructing, with the use of the
monomorphism *, a hyperreal interpretation of it (its “*-transform’) in V{*R). The resulting
biconditional is the transfer principle or Leibniz’ principle: a bounded well-formed formula (wff)
¢ 1s true 1f and only if (iff) its *-transform (signitied by “*¢’) is true. Consequently, the hyperreal
superstructure V(*R) of a nonstandard universe—or of the ‘theory’ of the hyperfeals—-is a
conservative extension of the real superstructure V(R)—or of the ‘theory’ of the reals. That is, any
true claim about the .reals has a corresponding *-transform true claim about the hyperreals; and
any true claim about the hyperreals that écm be represented as the *-transform of a claim about
the reals has a corresponding true claim (that claim of which it is the *-transform) about the reals.
David Ballard aptly describes such a transfer principle as insuring that a nonstandard theory “is
‘safe’ for conventional mathematicians.” In particular, the transfer principle supplies a new, and
sometimes useful (or elegant, or iﬂteresting} or relatively more simple), way of proving theorems
about the real numbers: viz., the ‘nonstandard’ proof of a claim about hyperreal numbers that can
be répresented as the *-transform of a claim about the reals.

I'he *-transtforms of first-order propositions about the reals (propositions that involve
quantiﬁca'tion over only the real numbers themselves) have essentially the same ‘sense’ as the
first-order propositions about the reals of which they are the *-transforms. Thus, for example,
corresponding to the claim that, for every positive real number (element of R), there is a smaller
positive real number, there is a straightforward analogous claim (*-transform) about positivé
hyperreal numbers (elements of *R). However, while higher-order propositions about the reals
have true *-transforms, they exhibit a more marked ‘shift in meaning’. To consider a concrete

example, the ordered field of reals is ‘complete’ in the sense defined above: every nonempty



subset X c R that has an upper bound has a least upper bound (supremum). This characteristic
can be tormulated as a second-order truth about the reals—second-order because it involves
quantification over sets of reals or, 1 terms of our restri.ction to bounded quantifiers, over
elements of the power set of the reals, .63 (R). We face here what initially appears to be an
antinomy. There is a true *-transform, i.e., a ‘corresponding’ truth about the hyperreals, to the
second-order proposition expressing the 'completeness of the ordered field of reals. But, because
the ordered field of hyperreals in non-Archimedean, there will be sets of hyperreals (elements of
P(*R)) which are bounded above but have no least upper bound (e.g., among many other sets,
the set of positive infinitesimal hyperreals). The antinomy is only apparent because the bounded
second-order quantifier in the *-transform of the completeness proposition rangers over the *-
transtorm of the power set of the reals‘,;f 1.e., *P(R), and this set 1s not identical to (is, in fact, a
proper subset of) the power set of the hyperreals, i.e., @(*R).

1o speak informally, there are entities of the hyperreal superstructure J(*R)~here, certain

sets of hyperreals or elements of @(*R)——-that the *-transforms of truths about the reals fail ‘to

detect’ or ‘to know about’. These are just the entities that would ‘make trouble’—in our particular
example, sets of hyperreals or elements of §(*R) that, while bounded above, do not have a least
upper bound. This situation is the manifestation of an important distinction among three kinds of

entities of the hyperreal superstructure V(*R). A standard entity v 1s an element of V(*R) that is

the 1mage, 1n terms of the monomorphism *, of some x of V(R) [i.e., (3x € V(R))(y = x)']. An
internal entity y is an element of V{*R) that is an element of some standard entity x that is itself an

element of V(*R) [1.e., (dz € V(R))(dx € V(*R))(x = *2 A y € x)]. Itiseasy to show that all

standard entities are internal ones, but the converse does not hold. Finally, an external entity is an
element of V(*R) that is not internal. .
Since it is internal entities that bounded quantifiers range over, it 18 these entities that our
theory of reals, when interpreted in the nonstandard model (the superstructure V(*R)) ‘detects’ or
"knows about’. The theory of reals so interpreted does not detect/know about external entities,
which thus have a sort of ‘ghostly” presence in the model. I shall later return to the philosophical
implications of this ghostly presence. For the moment, [ merely note some straightforward but

perhaps somewhat surprising consequences of the distinction among standard, internal, and
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external entities. The “-image *r of each and every real number » (member of R) is a standard
entity; and, indeed, such images are custOmarily thought of as simply being the real numbers
‘embedded’ into the set *R of hyperreals. However, *R contains infinitesimal and infinitely large
elements that are not the *-images of any real numbers; hence such infinitesimal and infinitely
large hyperreals are not standard but are internal (because they are members of the standard entity
*R). However, the sef °R = {*» ¢ *R: r € R} of all and only the ‘embedded reals’ is an external
set—as 1s the set of all and only infinitesimal elements of *R and the set of all and only infinitely

large elements of *R. Consequently, we can say that, although the theory of reals, when

interpreted in the nonstandard model V(*R), detects or knows about the ‘embedded’ or staudard
reals “individually’ or ‘distributively’, it has ‘lost sight’ of the ser of standard reals. In fact, 1t turns
out that any infinite set containing all and only standard reals is external. One might say that, with
respect to the interpretation of the theory of reals within the nonstandard model V(*R), the

standard reals become ‘indistinguishable’ from nonstandard hyperreals in infinite sets.

. IV. Some Philosophical Implications.

After the technicalities of the preceding section, I return to the principal conceptual
question of this talk: Is the nonstandard method of according numerical status to incomparables
~by means of the hyperreal extension of the field of real numbers—a simple and straightforward
analogue of the nineteenth-century method of according numerical status to Incommensurables—by
means of the real extension of the field of rational numbers‘? As I have now indicated, there
certanly are some similarities, begiuning with an informal picture of the number line. The
‘construction’ of the reals by Dedekind and Cantor suggests the f1lling in of ‘gaps’ in the rational
line by irrational numbers. Similaﬂy,} according to a common picture of the hyperreals,
infinitesimals “fill in the gaps’ Surrounding each Standard,, finite real (yielding monads); and the
negative and positive directions of the real line are extended by ‘galaxies’ of hyperfinite reals. In
his text Elementary Calculus, which is based on Robinson’s development of nonstandard analysis,
Keisler uses the heuristic devices of the ‘infinitesimal microscope’ and the ‘infinite telescope’ for
‘looking at’~for example—the behavior of the slope of a 1-place function within the ‘monadic

neighborhood’ of a given ordered pair of points. [In fact, these devices are tormally defined in
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Keisler’s Foundations of Infinitesimal Calculus.]

We saw that the field R of reals numbers is the unique complete ordered field up to
1somorphism. Since the non-Archimedean field *R of hyperreals is not isomorphic to the reals, 1t
1s, of course, not complete in the technical sense that we earlier noted: every nonempty subset X
< R that 1s bounded above has a least upper bound. For example, the (external) set of
infinitesimals, while bounded above (by any standard real), has no supremum: there is no greatest

infinitesimal nor smallest standard real number. An analo gous uniqueness theorem for the

hyperreal number system is more difficult to construct because of the tact that nonstandard
models of the theory of real numbers—such as the hyperreal nonstandard universes (V(R), V(*R),
*)—of arbitrarily large cardinality can be found. However, it turns out that there is such a
uniqueness theorem: If we require (1) that the monomorphism * of a nonstandard universe (R),
V(*R), *) satisfies the transfer principle, (ii) that (/(R), V(*R), *) be saturated over V(R), and (ii1)
that both *R and the set of all internal sets have the cardinality of the first uncountable
Inaccessible cardinal, there is, up to 1somorphism, a unique such nonstandard universe V(R),
VOFR), *).

Despite such similarities, there is a fundamental difference between the classical
nineteenth-century approach to incommensurables and the twentieth-century approach to
incomparables. As the term ‘nonstandard’ suggests, nonstandard or non-Archimedean hyperreal

models were developed as alternative, nonstandard models of the theory of real numbers. A

positive contribution to classical Analysis.”

S0 1t is perhaps not surprising that most developments of non-Archimedean mathematics
have had the Janus-faced character to which I earlier alluded: they look hoth ‘back’ to the
standard, intended interpretation or modél of (a part of) the mathematical theory of the real
number system and ‘forward’ to a nonstandard (non-Archimedean) model of that same theory.
This Janus-faced character is made particularly perspicuous by the formal representation V(R),
V(*R), *) of a nonstandard universe, which contains both a superstructure on the reals and a

superstructure on the hyperreals, together with the monomorphism * connecting them. It is clear
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that, at least with respect to infinite sets, the two superstructure models are incompatible in the
sense of assigning infinite sets that are not isomorphic as extensions of the relevant
predicates—e.g., N and *N to ‘is a natural number, *R and R to ‘is a real number’, similarly for ‘is
finite’, etc. As we saw, within the nonstandard model, the former infinite sets of standard
elements possess only a ghostly existence as external sets, which the bounded quantifiers do not
recognmize. A ghostly but important existence, however. If the principal value of such non-
Archimedean models is to serve as one element, among many, in the tool kit of mathematicians
working in classical analysis or some other area of Archimedean mathematics, 1t 1s crucial not to
let any of the entities of the original intended Archimedean model—or other important external sets
of the nonstandard model-disappear.

The situation with respect to the nineteenth-century construction of the reals from the
rationals was quite different. It certainly was never supposed that the (non-Archimedean) ordered
field () of rationals and the (Archimedean) field R of reals were alternative—and in a sense
tncompatible-models or interpretations of the same mathematical theory. The added irrational
elements of the latter were simply numerical representations of entities that had possessed, since
at least Greek antiquity, a well-established and i‘espectable geometrical presence—whereas the
numerical representation of incomparables (infinitesimals and infinitely great but still *hyperfinite’
reals) added by hyperreal models have never had even a We.ll~¢stablished and respectable
geomelrical presence. And there never seemed to be any danger that, in working with the field of
reals as opposed to the field of rationals, mathematicians had to worry about ‘losing’ any 1
structures thought to be mathematically significant. Therefore, there was no Compelling
mathematical reason for the nineteenth-century real analyst (or ‘rational analyst”) to adopt a
Janus-faced perspective, keeping in view both ordered fields Q and R as Sepamz‘e but related
models. While eminently useful in terms of the current mathematical employment of non-
Archimedean models, the Janus-faced pérspective introduces, as I shall argue in the next section,
a sort of ambivalence into the attémpt to use non-Archimedean models conceptually—e.g., the
attempt to use such models in order to resolve éertain classical problems concerning continua. [

conclude this talk with several examples of why the attempt to use non-Archimedean models in

this conceptual or phﬂosdphical way proves problematic.



V. Two Examples of the Attempt to Use Nonstandard (Non-Archimedean) Models
Philosophically. -
A. Zeno’s Dichotomy Paradox: One Resolution.

According to Zeno’s Dichotomy paradox, a runner 1s charged with traversing a distance
of unit length. But, according to Zeno, before the runner can reach the goal point—call 1t *1'--he
must first traverse, in order, an infinite sequence of checkpoints {(2" - 1)/2"}, beginﬁing with n =1
and continuing as » increases without limit, i.e., {1/2, 3/4, 7/8, 15/16, 31/32, . .. }. According to
one (charitable) interpretation, Zeno’s prinéipal point 1s that such a runner cannot reach the goal 1
because he first has to complete, sequenﬁally, an infinite number of actions (each one associated
with reaching a checkpoint and no one of which is equivalent to reaching the goal 1) of which
there is no last member—and that, Zeno believes, 1s impossible. According to another version of
the Dichotomy:, the sequence of tasks of reaching checkpoints is inverted, {. .. 1/32, 1/16, 1/8,
1/4, 1/2, 1}, so that there is no first member of the sequence and the runner, according to Zeno,
cannot “get started’. - '

H. Jerome Keisler ouﬂines a resolution of the Dichotomy that makes use of a non-
Archimedean concept to which I have previously alluded, a nyperfinite grid. Where H is an
infinite hypernatural number, the hyperfinite grid H with mesh 1/H is the set of all multiples of
1/H between -H and H . As Keisler notes, an / 1s usually selected such that every standard natural

number divides it (e.g., by létting H=J! or J factorial, for some infinite hyperfinite number .J),

with the result “that each standard rational number belongs to H, that 1s Q < H.” Keisler applies
such a hyperfinite grid, restricted to the unii mterval |0, 1], to Zeno’s Dichotomy:
On the hyperﬁnite erid, Zeno’s [Dichotomy]| Paradox 1s resolved as follows. We can get
from O to 1 in H steps by taking one step of length 1/H every 1/H seconds, always staying
in the hyperﬁnite orid H. Along the way, we will pass through all the points 1/2, 3/4, 7/8,
and so on, since they all belong to the set IH. Of course, we will overshoot irrational
poInts such as v 2/2, but there will be a time at which we pass from below v2/2 to above
v2/2 with one step of length 1/H.
Such a hyperfinite grid, as well as its restriction to the unit interval, are "hyperfinite’—that

is, they belong to the extension of the predicate ‘is finite’ when interpreted in the non-
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Archimedean superstructure model V(*R) of hyperreal numbers. As Keisler notes, such a
hyperfinite subset of *R “inherits the ﬁ-rst'order properties of finite subsets of R,” as well as
appropriately weakened higher-—drder properties. Thus, for example, there is no internal one-to-
one mapping between such a set and any of 1ts proper subsets. Also, in terms of the < relation,
there is a ‘first” member and a ‘last’ member of each such set, and its members ai‘e discretely
ordered: that is, any member that has a successor (predecessor) has a unique, immediate successor
(predecessor). Consequently, many of the worries about the possibility of completing,
sequentially, an infinite sequence of tasks seem to disappear. Although from an ‘external’
(standard) point of view, the runner must complete an infinite sequence of tasks, there will be a
first task and a last task for him to complete; and any task strictly betWeen these will have a
unique, proper succeeding and a unique, proper preceding task, etc. And, as Keisler notes, each
of the Zenonian checkpoints 1n the sequence {(2" - 1)/2"} 1s ‘embedded’ as one of these tasks—as
1s each of the checkpoints in the inverted Zenonian sequence {. . . 1/32, 1/ 16, 1/8, 1/4,1/2, 1}.
Does, then, Keisler’s resolution ‘work’? Sic ef non. There aré subsets of the hyperfinite

grid restricted to [0, 1] that raise some of the same Zenonian worries about completing

sequentially an infinite sequence of tasks. For examplej there is the set of all initial steps,

individually of length 1/H, the sum of which is less than any real value, as well as the complement
of this set relative to the hyperfinite grid restricted to [0, 1]. It would seem that all of the tasks or
steps in the former set would have to be completed, sequentially, before he could begin work on
the tasks/steps in its complement. But there is no last task/step 1n the former set nor any first task
in the latter. These ‘problem-causing’ subsets, however, must be external subsets of the
hypertinite grid restricted t(j 10, 1]. This means that they do not fall within the range of the higher
-order bounded quantiﬁérs over sets of hyperreals (that 1s, quantifiers ranging over *©(R)), when
the wffs of the theory of the reals are interpreted in the non-Archimedean superstructure V(*R).
Does it also mean that the sets are ‘not there’ to cause problems tor Keisler’s analysis of the
Dichotomy? Well, in most formulations of non-Archimedean analysis such problem-causing sets
are ‘there’, as external séts or members of @(*R) - *©(R). Although this may be a sort of .
mathematically ‘ghosﬂy’ existence (in terms of the interpretation of the theory of reals in the

nonstandard model V{*R)), it is far from clear (to me, at least) that the existence of such subsets
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does not raise more-or-less the same issues about the possibility of completing, sequentially, an
infinite sequence of tasks, that Keisler’s resolution of the Dichotomy in terms of hyperfinite grids

was supposed to avoid.

B. Zeno’s Diehotomy Paradox: Another Resolution.

Perhaps the most interesting attempt with which I am familiar to apply non—Arehimedeen
concepts to a classical philosophical problem is the ‘critical’ application of Nelson’s IST to Zeno’s
Dichotomy paradox by William I. McLaughlin and Sylvia L. Miller. The argument of McLaughlin
and Miller depends on an epistemological assumption '

(E2) The fact that an object 1s located at a point in spacetime cannot be established 1f the

coordinates describing the poiiit are nonstandard real numbers.

McLaughlin and Miller add that “the phrase ‘[t]he fact that’ in E2 means that the object’s location
has been observationally verified or could have been observationally verified had one been
sufficiently equipped and attentive to capture the requisite numerical description of the event.” In
a later manuscript by McLaughlin, this assumption becomes the “critical mensuration thesis.”
which he characterizes as follows: -

every phenomenon can be completely described through the use of real numbers, but not

all -real numbers can be used for describing phenomena. The first clause, the “mensuration

thesis”, in the statement of the greater thesisj rests upon the success of experimen'tal
science. The second clause must be argued, and this is carried out through the medium of

internal set theory. . . . .

Since MclLaughlin is working within the framework of Edward Nelson’s nonstandard set
theory—Internal Set Theory (IST)~which does not provide for the existence of external sets, the
extension of the predicate ‘real number’, as he uses the phrase, 1s what is designated *R in other
formulations, 1.e., the hyperreal numbers, and includes nonstandard infinitesimals, infinitely large
reals, etc. As 1t turns out, the second .clause will rule out precisely the nonstandard reals for use in
describing physical processes:

Although the mensuration thesis has appealed to real numbers for the means to

express results of a measurement process, it is clear that the thesis can be extended to

other mathematical objects which serve as measurement labels, e. g., complex numbers,
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vectors, real intervals. Specimens of such objects would be suitable for the process only if

they were standard.

And, says McLaughlin, “we consistently addpt the perspective of an observer who is measuring
phenomena and have shown that nonstandard numbers are not available as measurement labels for
those phenomena.” -

Now, consider the set of ‘checkpoints’ of Zeno’s Dichotomy, designated by McLaughlin
and Milleras C={re [0, 1]:r=1-27, 1 < j <}. From the perspective of IST, this (standard)
set will contain (a great many) elements that are nonstandard. That is, it will include infinitesimals
for (all) values of r = 1 - 279 where j is what is variously called an ‘infinite hypefnatural’ or
limited [positive] integer’ (which numbers possess; of course, the first-order properties of
standard finife natural numbers). But, then, by the critical mensuration thesis (hereafter, CMT),
the set will contain (nonstandard) elements that cannot describe any physical process and,
consequently, no runner could correctly be describéd as traversing the set C of spatial loci.

But what of the set frequently characterized:, in some formulations of nonstandard set
theory, as °C or °C, the set of all and only the standard elements of the (standard) set C? We
might—perhaps with some prejudice—characterize this as thé ‘original set giving rise to the
Zenonian worry’. In other formulations of non-Archimedean mathematics it would be an external
set. But in Nelson’s IST, although all of its members can be said to exist individually as standard
mathematical entities, the set °C simply does not exist. In fact, IST does not allow for the
existence of any set that is infinite (in the usual, standard sense of ‘inﬁnite’) but contains only
standard elements. .

So, the supposed infinite sequence of tasks of Zeno’s Dichotomy cannot be described b'y
the (nonexistent) set °C; and application of the CMT rules out its description by the Set C, which
contains nonstandard members. Consequently, McLaughlin draws a finitistic conclusion about
(the mathematical description of) a physical process such as Zeho’s Dichcjtomy:

For Zeno’s Dichotomy, incursion into an infinitesimal neighborhood of 1 was seen to be

possible but epistemologically opaque, disabling his claim of paradox. ... Assume that

there are no physical constraints to prevent'a traverse of any finite segment of the

Checkpoint'sequence of The Dichotomy, and . . . implement a counting scheme to register
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the passage of the moving object past each checkpoint. It must be the case that the count

ceases prior to the recording of an unlimited natural number. This implies that the count

must terminate at some standard natural number. . . ; to avoid paradox, the premise of no-
physical-constraints must be judged 1alse. That 1S, phrased positively, physical reasons
must prevent the observations from being made.

McLaughlin’s argument, perhaps somewhat oversimplified, 1s the following: Physical-
epistemological considerations pfeclude any mathematical description of a physical process that
appeals to a set containing nonstandard numbers. But IST provides only for finite sets of
elements containing nothing but standard elements. Therefore, the mathematical description of
physical processes must be ﬁnitistic_apparently, suggests McLaughlin, because of physical-
epistemological reasons. -

McLaughlin does not intend the CMT to yield such a finitistic conclusion directly. The
use of IST-and in particular, its ‘disappearance’ of external sets—is a crucial step 1n his argument.
Consequently, it seems to me that one cannot infer that the finitisitic conclusion of his argument 1s
due exclusively to physical-epistemological considerations. And, I think, some interpretative
qualification 1s required for the following comment by McLaughIin: “the premise of non-physical-
constraints must be declared false” and “physical reasons must prevent the observations lof
checkpoints beyond some {inite number] from being made.” The combination of the CMT and
IST yields such conclusions. If one were to accept IST + CMT, that fact would entail that any
physical theory could not fail to be finitistic, “on pain of being mathematically unintelligiblé}” as
McLaughlin has expressed it to me. However, | suspect that the appeal of any physical theory
having a finitistic character—and, indeed, the persuasiveness of arguments on behalf of such a
theory—would rest on considerations quite independent of IST + CMT.

The fact that Nelson’s IST 1s, 1n its elimination of external setsj less Janus-faced than
competing formulations—including other set-theoretic formulations—ot non-Archimedean -
mathematics seems to be crucial to McLaughlin’s argument. From the perspective of alternative
such formulations providing for the existence (as an external set) of the ‘original’ Zenonian set °C
of checkpoints, there would be no apparent reason to disallow this set as an acceptable

description of a se"quence of actions performed by Zeno’s runner, since McLaughlin’s CMT in
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itself does not rule it out. But then we are faced afresh with all the puzzles concerning the
sequential performance of an infinite sequence of acts. One could, of course, invoke physical-
epistemological considerations in order to strengthen the CMT so that it does commit one to

finmitistic descriptions of physical processes. But that would be to render the IST otiose in the

argument for such a conclusion.

V1. A Very Brief Conclusion.

Although the development of non-Archimedean mathematics has provided incompafables
with a spacious numerical Lebensraum in the hyperreal line, there is, I think, little likelihood of a
‘paradigm-shift’ from the real to the hyperreal line. The fact that most of contemporary non-
Archimedean mathematics has been developed as a conservative extension of the relevant classical
Archimedean mathematical theories has given it the Janus-faced character that militates against
such a paradigm shift. Moreover, I have suggested that this Janus-faced character has made non-
Archimedean mathematics of doubtful use, at present, in addressing ‘deep’ conceptual or
philosophical issues pertaining to continuity and infinity.

' Michael J. Whate

<mjwhite@asu.edu>
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