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THE HYPERREAL LINE

1. INTRODUCTION

The aim of this article is to explain that the hyperreal line is, what it looks
like, and what it is good for. Near the beginning of the article we shall
draw pictures of the hyperreal line and sketch its construction as an
ultrapower of the real line. In the middle part of the article, we shall
survey mathematical results about the structure of the hyperreal line. Near
the end, we shall discuss philosophical issues concerning the nature
and significance of the hyperreal line.

The hyperreal number system is a very rich extension of the real
number system which preserves all first-order properties. It contains
infinite and infinitesimal numbers. Another important feature is the
‘hyperfinite grid’, which is an infinite set of equally spaced points on
the unit interval which has the first-order properties possessed by all
sufficiently large finite grids.

We begin with a brief history of the hyperreal line. Archimedes
(287-212 B.C.) in his manuscript ‘The Method’ introduced infinitesimals
as a method for the discovery of mathematical results. The basic rules
of the calculus were discovered in the 1500s and 1600s by reasoning
informally with infinitesimals. The method remained dominant until
the middle of the seventeenth century, and was the motivation for
Leibniz’ differential notation dx. Leibniz (1646—1716) correctly antici-
pated the modern viewpoint; he regarded the infinitesimals as ideal
numbers like the imaginary numbers, and proposed his law of continuity:
“In any supposed transition, ending in any terminus, it is permissible
to institute a general reasoning, in which the terminus may also be
included.” This ‘law’ is far too imprecise by present standards, but was
a forerunner of the modern Transfer Principle that the hyperreal number
system has the same first-order properties as the real number system.

Bishop Berkeley effectively criticized the logical inconsistencies in
the intuitive use of infinitesimals in 1734. A precise treatment of either
the real or the hyperreal number system was beyond the state of the
art at the time. In the 1870s set theory was developed by Cantor, Bolzano,
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Dedekind, and Weierstrass to the point where the real line could be
precisely defined, and Weierstrass based the classical rigorous treat-
ment of the calculus on the real line.

A mathematically precise construction of a hyperreal line had to wait
for developments in the area of mathematical logic, in particular model
theory. To construct the hyperreal number system, one needs either the
compactness theorem or some version of the ultrapower construction.
In 1927, Thoralf Skolem introduced the ultrapower construction to
obtain a nonstandard model of the first-order theory of arithmetic. The
compactness theorem for countable languages was proved by Godel in
1930, and the general case of the compactness theorem was proved by
Malcev in 1936. In 1948, Hewitt used the ultrapower construction, from
the point of view of algebra rather than logic, to obtain a real closed
extension of the ordered field of real numbers, and introduced the name
hyperreal numbers. In 1955, +.0§ introduced the ultrapower construc-
tion in general and proved the Transfer Principle that the ultrapower
preserves all first-order properties. The beginnings of an infinitesimal
approach to analysis was developed in 1958 by Laugwitz and Schmieden
(Laugwitz and Schmieden, 1958). The big step came in 1960, when
Abraham Robinson realized that the Transfer Principle could be used
to give a mathematically correct development of all of analysis based
on the hyperreal number system, and gave the method the name non-
standard analysis. Robinson'’s early papers and his book (Robinson, 1966)
developed the hyperreal number system within the theory of types. The
ultrapower treatment was popularized in the monograph by Luxemburg
(1962). Since then, it has become evident that the hyperreal number
system is a tool which is broadly applicable in many areas of pure and
applied mathematics.

For the last century, the mathematical community has had a strong
aversion to the notion of an infinitesimal. The original reason for this
aversion is the historical fact that infinitesimals were used incorrectly
in the development of the calculus, and the errors were corrected by
the treatment of Weierstrass based on the real line (banishing infinites-
imals). More recently, the influence of the hyperreal line on mathematics
has been held back by the fact that mathematical logic has seldom been
regarded as an essential part of the graduate mathematics curriculum.
Although it is formally possible to develop the hyperreal number system
without mathematical logic, one must be comfortable with mathemat-
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ical logic in order to make effective use of the hyperreal numbers as a
research tool.

Some recent books on the hyperreal line and its role in mathematics
are (Albeverio er al., 1986; Cutland, 1988; Hurd and Loeb, 1985; Robert,
1988; Strogan and Bayod, 1986). For an elementary treatment at the
freshman calculus level, see (Keisler, 1986). For background material
and references in the theory of models, see (Chang and Keisler, 1990),

The work was supported in part by the National Science Foundation
and the Vilas Trust Fund.

2. INFINITESIMALS

One of the most striking and best known features of the hyperreal
line is the presence of infinitesimals and infinite numbers. :c,._...ﬁnﬁ
infinitesimals are only part of the story. They arise not only in the
hyperreal line but in much simpler structures, namely, in any ordered
field which does not have the Archimedean property.

In the beginning stages of Robinson’s analysis, only a few algebraic
rules are needed, and one can go surprisingly far into the infinitesimal
calculus of algebraic functions with such rules. More power is not
required until one gets to the transcendental functions. These rules are
contained in the notion of a non-Archimedean real closed ordered field.
In this section and the next shall discuss the picture of the line from a
non-Archimedean viewpoint. We begin with the basic definitions.

DEFINITION. Given an ordered field F = (F, + , -, 0, 1, <), we shall
identify each natural number n € N with the field element 1 +. . . + |
(n times). An element x of F is said to be infinitesimal iff |x| < 1/n
for all positive integers n, finite iff |x| < n for some Emnmﬁ n, and
infinite iff |x| 2 n for all integers n. Two elements x, y are ﬁEn to be
infinitesimally close, in symbols x = y, iff y = x + d for some infinites-
imal d.

DEFINITION. An ordered field is said to be non-Archimedean iff it

has at least one positive infinite element, and Archimedean Otherwise.
A fundamental classical result is that an ordered field is Archimedean

if and only if it is isomorphic to an ordered subfield of the field R of
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real numbers. For example, the ordered fields of real numbers, rational
numbers, and real algebraic numbers are Archimedean.

mﬁﬂ_ﬁhﬁ. Here are some examples of non-Archimedean ordered fields
which are defined without recourse to methods from mathematical

logic. Each example except (c) is an extension of the field of real
numbers.

(a) The field R(x) of all rational functions over R of one variable
x (i.e. quotients of polynomials in x with real coefficients), with the
ordering determined by stipulating that x is positive infinite.

(b) The real closure of R(x), that is, the smallest ordered field
containing R(x) which is closed under taking roots of polynomials of odd
degree and square roots of positive elements.

mnw. The field Q(x,, . . ., x,) of rational functions over the rationals
Q in n variables, with the ordering determined by making x, positive
infinite and x;,, greater than any power of x, fori=1,...,n - 1.

(d) The field of Laurent series, i.e. formal power series of the form

m a,x" with real coefficients and k € N, making x positive infinite.

(e) The ordered field of surreal numbers of Conway [Co).

Another example of a non-Archimedean ordered field is the ordered
field of hyperreal numbers, which will be introduced in due course.

BLANKET ASSUMPTION. Throughout this and the next section, F will

nmucﬂ a non-Archimedean ordered field which contains the real number
field R.

PROPOSITION 1. (Algebra of infinitesimals). (i) The finite elements
of F form a convex subring. That is, sums, differences, and products of
finite elements are finite, and any element between two finite elements
is finite.

(ii) The infinitesimal elements of F form a convex ideal in the ring
of finite elements. That is, sums and differences of infinitesimals are
infinitesimal, the product of an infinitesimal and a finite element is
infinitesimal, and any element between two infinitesimals is infinitesimal.

(iii) [f H is positive infinite, then each K 2 H is positive infinite,
H + x is positive infinite for all finite x, and H -y is positive infinite for
all positive noninfinitesimal y.
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(iv) If x is nonzero infinitesimal then 1/x is infinite, and if y is infinite
then 1ly is infinitesimal.

We can see now that a non-Archimedean ordered field has infinitely many
different infinitesimals and infinite elements. By definition, there is at
least one positive infinite element H. By (iii) there are infinitely many
different positive infinite elements. By (iv), d = 1/H is positive
infinitesimal. By (i), all finite multiple of d, all finite powers d" of d,
etc. are infinitesimal. Given any positive infinitesimal c, —c is a negative
infinitesimal.

The set of infinitesimals may be thought of as a small cloud centered
at zero, and the set of finite elements a large cloud centered at zero. About
each x € F, there is another small cloud, called the monad of x, consisting
of the set of all elements which are infinitesimally close to x, and a
large cloud, the galaxy of x, consisting of the set of all elements which
are at a finite distance from x. The monad of zero is the set of
infinitesimals, and the galaxy of zero is the set of finite elements. Note

that each galaxy is a union of monads.

3. STANDARD PARTS AND ELEMENTARY EXTENSIONS

We shall now look at the real number field R and a non-Archimedean
extension F as a pair of structures. We introduce the standard part
function, which associates a real number with each finite element of .

DEFINITION. Let x be a finite element of F. A real number r is said
to be the standard part of x, in symbols r = st(x), if r is infinitesimally
close to x. Infinite elements do not have standard parts.

PROPOSITIONS 2. Each finite element of F has a unique standard part.
Hint. Show that if x € F is finite, then the least upper bound of the
set of all real r < x is the standard part of x.

Propositions 1 and 2 provide us with the picture, shown in Figure 1, of
a non-Archimedean line floating above the real line.

In the normal real scale without magnification, the non-Archimedean
line looks like the real line. But if we train an ‘infinitesimal micro-
scope’ on a finite element x, and set the magnification to be an infinite
factor y, the monad of x will be infinitely magnified and points which
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Fig. 1. The real and non-Archimedean Lines.

are at the infinitesimal distance 1/y apart will be distinguishable. If we
aim an ‘infinite telescope’ at a positive infinite element, we will see
positive infinite elements in the normal real scale.

An ordered field is said to be real closed iff every positive element
has a square root and every polynomial of odd degree has a root. Among
the examples in the preceding section, (b) and (e) are real closed ordered
fields. The ordered fields of real numbers, real algebraic numbers, and
hyperreal numbers are also real closed. In the classical paper (Tarski
and McKinsey, 1948), Tarski proved that all real closed ordered fields

have the same properties which are expressible in first-order logic. More
precisely:

PROPOSITION 3. (i) The first-order theory of real closed ordered fields
is complete, that is, all real closed ordered fields satisfy the same
sentences of first-order logic.

(11) The first-order theory of real closed ordered fields is model
complete, that is if G C F are real closed ordered fields, then any formula

of first-order logic with names for elements of G is true in F if and
only if it is true in G.

In particular, if F is a real closed ordered field which contains R, then
any first-order formula with names for real numbers is true in [ if and
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only if it is true in the real numbers. In model theory, this is expressed
briefly by saying that F is an elementary extension of R.

There is an important loophole in the result of Tarski. It applies only
to formulas in the language of ordered fields, that is, formulas built up
from the predicates =, <, the function symbols +, -, and the constants
0 and 1. Nothing has been said about how one might extend other real
relations or functions to the larger set F. For example, the exponential
functions, the trigonometric functions, and the set of natural numbers
cannot be defined in the language of ordered fields. One of the main
properties of the hyperreal line will be the Transfer Principle, which
says that the hyperreal number system is an elementary extension of
the real number system even in the full language which has a symbol
for every relation and function over R.

4, THE HYPERREAL NUMBERS

The hyperreal number system can be introduced either by an axiomatic
approach which lists its properties and proves that a structure with those
properties exists, or by an explicit construction. In this article we shall
construct the hyperreal number system explicitly as an ultrapower of
the real number system. This has the advantage of giving the reader a
concrete structure, but the disadvantage of being less natural than the
axiomatic approach. Moreover, the ultrapower construction is special,
in the sense that not all hyperreal number systems allowed by the
axiomatic approaches are ultrapowers of the real number system. In
Section 12 we shall touch on two axiomatic approaches which extend not
only the real line but the whole set theoretical universe in which the
real line lives.

We now define the notion of an ultrapower of the real number system
R. Let  be an infinite set, the index set. Let us consider a family U of
subsets of I. An ultrafilter over I is a set U of subsets of / such that
(1) fXeUand XC YC I then Y e U,

(2) If X, Ye UthenX N Y e U,
(3) For all X C I, exactly one of the sets X, /\X belongs to U.

Given an ultrafilter U, we shall form a new structure *R, called the
ultrapower of R modulo U. In order to see how the conditions (1)—(3)
arise naturally, let us temporarily consider an arbitrary set U of subsets
of 1. We begin with the set R’ of all functions from / into R. Our plan
is to identify certain elements of R’ with each other, so the elements of
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the ultrapower will be equivalence classes of elements of R’. We first
deal with the properties of equality and order, and introduce two rela-
tions =, and <, on R’ as follows:

f=vg iff (i € I: f(i) = g(i)) € U,
f<pg iff {i € I f(i) < gli)} € U,

The following proposition motivates the definition of an ultrafilter.

PROPOSITION 4. Let U be a family of subsets of I. Then U is an
ultrafilter over I if and only if:
(a) = is an equivalence relation on R' with more than one class;
(b) Iff =yg then f < yg;
(c) Forall f, g € R, either f <,g or g Suf
Hint. Use (a) to prove (2) in the definition of an ultrafilter, use (b)

E prove (1), and then use (a) and (c) to prove (3). The other direction
is easy.

Hereafter we assume that U is an ultrafilter over /. For f € R’, we let
fu be the =, equivalence class of f, and define the ultrapower of R modulo
U to be the set *R of all equivalence classes,

*R={fy:fe R}.

We identify each real number r € R by the equivalence of its constant
function, r = (I X {r})y, so that R C *R. If R is a proper subset of *R,
we call the ultrapower nontrivial. The following proposition, which

depends on the axiom of choice, insures the existence of nontrivial
ultrapowers.

PROPOSITION 5. (i) (Tarski, 1930). Every infinite set has an ultra-
filter which is not closed under countable intersections.

(ii)) The ultrapower of R modulo U is trivial if and only if U is
closed under countable intersections.

We now define relations and operations on *R, by generalizing the
definition of =, and <. Let & be the set of all relations and functions
on R. By the full structure over R we mean the model (R, S : S € %).
We shall expand *R to a model for the vocabulary %. Let S be an

n-ary relation and G an n-ary function on R. For all f,, . . . f, € R’, we
define
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*Sfios - - - » fou) iff (i € T2 S(AG), . . ., fi(D) € U},
*G(fis - - -+ fuw) = (GUAG), - . ., fiD)) i € Iy

That is, a relation holds in the ultrapower iff it holds for U- almost all
i, and a function in the ultrapower is defined component-wise. It can
be checked that these are proper definitions, that is, they depend only
on the equivalence classes of f,, . . . , f, and not on the functions
themselves. We are now ready to state our definition of a hyperreal
number system.

DEFINITION. By a hyperreal number system we shall mean a
structure of the form (*R, *S : § € %) where *R is a nontrivial ultra-
power of the real line R. By a hyperreal line we mean the ordered set
(*R, *<) in a hyperreal number system.

We shall assume hereafter that *R is a nontrivial ultrapower of K.
Relations and functions over R will be called real, and stars of real
relations and functions will be called standard. Thus a relation 7 over
*R is standard iff T = *S for some real relation S. For example, the set
N of natural numbers is a real set, and the set *N of hypernatural
numbers is a standard set.

The usefulness of the hyperreal number system is based on two
fundamental properties, the Transfer and Saturation Principles. The
Transfer Principle formalizes the intuitive idea that the hyperreal number
system should be as much like the real number system as possible. The
Saturation Principle, stated in the next section, captures the fact that
the hyperreal number system is very rich.

TRANSFER PRINCIPLE (Lo§ 1955). Any hyperreal number system

(*R, *S : S € F) is an elementary extension of the full structure

(R, S : S € %). That is, every n-tuple of real numbers satisfies the same

first-order formulas in (R, S : S € %) as it satisfies in (*R, *S: 5 € F).
The proof is by induction on the complexity of formulas.

It follows from the Transfer Principle and the fact that *R is a proper
extension of R that *R is a non-Archimedean real closed ordered field.
Moreover, all other real functions, such as the exponential and trigono-
metric functions, satisfy the same inequalities in the hyperreal number
system that they satisfy in the real number system.
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5. INTERNAL SETS AND SATURATION

The concept of an internal set is of overriding importance in Robinson's
analysis. Intuitively, the internal sets are those sets of hyperreal numbers
which inherit the first-order properties of sets of the real numbers.
Actually, we work with n-ary relations rather than only sets. Ordinarily,
the internal relations are defined as those relations which are ultra-
products of real relations. We shall give a simpler but slightly stronger
definition here which will be sufficient for our purposes; our internal

relations will just be the sections of standard relations. We use the
vector notation a for an n-tuple B ., &)

DEFINITION. An n-ary relation 7 on *R is said to be internal iff there
is a real (n + 1)-ary relation S and a hyperreal number 4 such that

T={ae *R": *S(a, b)).

Remark. It can be shown that any relation which is internal in the
above sense is an ultraproduct modulo U of a family of standard relations.
The converse also holds if the index set / has cardinality at most 2°,

The next two results are useful consequences of the Transfer Principle.

THE OVERSPILL PRINCIPLE. Every nonempty bounded internal
subset of *R has a supremum in *R. Hint. Apply Transfer to the sentence

which states that every nonempty bounded section of a relation has a
supremum.

Examples. By the Overspill Principle, The following subsets of *R are
not internal, since they are nonempty and bounded but have no
supremum: N, R, the monad of 0, the galaxy of 0. As these examples
show, the hyperreal line is not completely ordered. This example contains
a warning: the Transfer Principle does not hold for second-order formulas.

The Overspill Principle is used in almost every application of the
hyperreal number system. A typical exercise: Use the Overspill Principle

to show that for each real function f, lim f(x) = 0 if and only if
X

*f(x) = 0 for all positive infinite x e *R.
In order to make effective use of the hyperreal number system, it is

e
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vitally important to be able to recognize an internal relation. In Emnznn.
we usually use the following principle to show that a relation is internal
It is a corollary of the Transfer Principle.

INTERNAL DEFINITION PRINCIPLE. Let o(x, y) be a formula in
the vocabulary %, and let b be a tuple of hyperreal numbers. Then the
relation

{a € *R"™ : ¢(a, b) holds in (*R, *S : S € %))

1s internal.

Example. (a) Any standard relation *S over *R is internal. |

(b) The collection of internal sets is closed under finite unions,
finite intersections, and complements.

(c) If Fis an internal function, then the domain and range of F are
internal.

(d) For each pair of hyperreal numbers ¢, d, the *closed interval

lc,d] = {a€ *R : c *< a and a *< d)

1S internal.
(¢) For each hyperatural number H € *N, the set
{0,...., H=-1}=[K e *N : K *< H)
1s internal.

We now state the second basic property of the hyperreal number
system.

SATURATION PRINCIPLE (Keisler, 1964). Any countable decreasing
chain of nonempty internal subsets of *R has a nonempty intersection.

Hint. Use Proposition 5 to get a decreasing chain /, of sets in the
ultrafilter U with empty intersection. Given a chain S, of nonempty
internal sets, choose f(i) so that whenever i e I, f(i) belongs to as
many of the sets S, . . ., S, as possible.

Examples. Here are some easy consequences of the Saturation Principle
which add to our picture of the hyperreal line.
(a) No countable infinite set is internal.
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(b) No countable strictly increasing sequence of hyperreal numbers
has a least upper bound.

(c) Any countable set of infinitesimals has an infinitesimal upper

bound. Any countable set of hyperreal numbers has a hyperreal upper
bound.

6. THE HYPERFINITE GRID

We now introduce the hyperfinite sets. Intuitively, a hyperfinite set is a
subset of *R which inherits the first order properties of finite subsets
of R. By analogy with the internal sets, a hyperfinite set is ordinarily
defined as an ultraproduct of a family of finite sets. As in the case of
internal sets, we shall use a simpler but slightly stronger definition; our
hyperfinite sets will be the sections of standard relations *S such that
every section of the original real relation S is finite.

DEFINITION. A subset T of *R is said to be hyperfinite iff there is a
real relation S such that

{ae€ R : Sa, b))} is finite for all b € R

and
T'={ae *R : *S(a, b)} for some b € *R.

Clearly, each hyperfinite set is internal, and each finite subset of *R
is hyperfinite. An example of a hyperfinite set which is infinite is the
set {0,...,H -1} where H is a positive infinite hypernatural number.
By the Transfer Principle, a set T is hyperfinite if and only if there
exists a hypernatural number H and an internal bijection F from
{0,...,H~ 1)} onto T; we call H the internal size of T. Moreover,
any internal subset of a hyperfinite set is hyperfinite.

By writing integers in base 2 and using Transfer, a hyperfinite set
X C *N may be coded by the hypernatural number ¢(X) = ¥{2’ :
J € X}. This coding reduces properties of hyperfinite subsets of *N to

properties of elements of *N, and is useful in combination with the
Internal Definition Principle.

PROPOSITION 6. Here are some consequences of the Transfer and

Saturation Principles which help to give us a picture of the hyperfinite
sers.
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(i) Any nonempty hyperfinite subset of *N has a greatest element.

(ii) Given an increasing chain S, and a decreasing chain T, of
hyperfinite sets such that S, C T, for all n € N, there exists a
hyperfinite set X such that S, C X C T, for all n € N. Hint. Use
part (11) and Saturation.

(iii) The union of a countable strictly increasing chain of hyperfinite
sets is external. Hint. Similar to (i1).

(iv) Any function f : N — *N can be extended to an internal function
F : *N — *N. Hint. Use part (ii), Saturation, and the coding c(X).

One of the most important features of the hyperreal line is that each

interval can be partitioned into hyperfinitely many subintervals of the

same length. This feature is captured by the notion of a hyperfinite

grid.

DEFINITION. Choose a positive infinite hypernatural number H. By
the hyperfinite grid with mesh 1/H we mean the hyperfinite set of all
multiples of 1/H between ~H and H,

H={K/H:Ke *Z and |K| £ H?}.
We think of H as the set

i ging Fi 1
=|=I.*I%&.lt.—-:‘lm.‘-m....ilm#l.mf
gy 2 1

qu*:-mq.—mlmimlmqm*..

We usually take H so that every standard natural number divides H. It
then follows that each standard rational number belongs to H, that is,
Q C H.

The notions of an interval, monad, and galaxy in H are defined by
restricting the original notions to H in the obvious way. The hyper-
finite grid is not a field, and in fact is not even closed under addition,
subtraction, multiplication, or division. The coarse picture of the
hyperfinite grid as an ordered set is much like the hyperreal line or
non-Archimedean line, with a monad surrounding each real number, a
finite part, and a negative and positive infinite part. However, the finer
details, shown in Figure 2, are markedly different.

A hyperfinite grid H has a least and a greatest element and is dis-
cretely ordered,that is, each element except the least has an immediate
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Fig. 2. The real line and the hyperfinite grid.

predecessor and each element except the greatest has an immediate
successor. If we train an infinitesimal microscope on an element of the
hyperfinite grid and set the magnification to H, the portion of the grid
inside the microscope will look like a portion of the set Z of integers.
If we train a microscope on the greatest element H and aim the tele-
scope at this microscope, we will see the upper end of the hyperfinite
grid, which will look like a portion of the set of negative integers with
0at H.

The hyperfinite grid, like any discretely ordered set with a first and
last element, many be divided into a first block which is a copy of the
positive integers, a linearly ordered set of blocks which are copies of
the set Z of integers, and a last block which is a copy of the negative
integers. Moreover, the ordering of the blocks is dense, because if x
and y are in different blocks, then 1/2(x + y) is in a block strictly between
the two.

The set of real numbers R is not contained in H. In fact, H is a
subset of the set *Q of hyperrational numbers, and no irrational number
belongs to *@Q. On the other hand, every real number is infinitely close
to some element of H, so the standard part function maps the finite

part of H onto R. Hint. Let r be real. By Transfer, there is a greatest
element [r] of H such that [r] € r, and [r] is infinitely close to r.

e =
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7. THE LOEB MEASURE

One of the benefits of the hyperfinite grid is that one can calculate with
it as if it were finite. Such calculations are legal only for internal objects.
The internal subsets of the hyperfinite grid are the ‘simplest’ subsets;
they are themselves hyperfinite, and play a role somewhat like the
intervals, or finite unions of intervals, on the real line. A common theme
is to approximate a set in which one is interested by an internal set.

In this section we illustrate this theme with the Loeb measure
construction, which has proved to be an extremely powerful tool. The
idea is to assign an equal infinitesimal weight 1/H to each element of
the hyperfinite grid, compute an internal measure which assigns a
hyperreal value to each internal subset by adding up weights, take
standard parts to get a real valued measure, and then use Saturation to
extend to a countably additive measure in the classical sense. We choose
the weight 1/H because then for any a, b € H, the internal measure of
an interval H N [a, b) will be equal to the length b — a. Thus the
internal measure of an interval of infinite length will be infinite. To avoid
side issues involving sets of infinite measure, from now on we shall
concentrate on the hyperfinite unit interval H, consisting of all x € H
such that 0 € x < 1.

DEFINITION. Let A be an internal subset of H,. By the internal counting
measure of A we shall mean the hyperreal number p(A) = #(A)/H, where
#(A) is the internal size of A. By the Loeb measure L(|1)(A) of A we mean
the standard part st(p(A)).

The set of H, itself has internal size H and thus has internal counting
measure 1. Recall that the set of internal subsets of H, is a field of sets
but is not countably additive. At this point we have only defined the Loeb
measure for internal sets. This restriction of the Loeb measure is finitely
additive. Our next step is to assign Loeb inner and outer measures to
arbitrary subsets of H,.

DEFINITION. Let B be a subset of H,. The inner Loeb measure of B,
i,..(B), is defined as the supremum (in the classical real sense) of the
Loeb measures of all internal subsets of B. The ourer Loeb measure
of B, Woue(B), is the infimum of the Loeb measures of all internal
supersets of B.
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Finally, we define the Loeb measure and show that it is countably
additive.

DEFINITION. A set B C H, is said to be Loeb measurable iff
W (B) = W.(B). If B is Loeb measurable, its Loeb measure is the
common value of its inner and outer measure.

PROPOSITION 7. (Loeb, 1975). The Loeb measure is a complete
countably additive measure.

Hint. The key step is to show that a countable union of sets B, of
outer Loeb measure zero has outer Loeb measure zero. Given a real
e > 0, for each n we may choose an internal superset A, 2 B, of counting
measure < £/2". Now use Saturation to get a single internal set of counting
measure < 2¢ which contains all of the sets A,.

Another nice consequence of Saturation is the ‘internal approximation
lemma’, that for every Loeb measurable set B there is an internal set A
such that the symmetric difference between A and B has Loeb measure
zero.

There is an elegant relationship between the Loeb measure on the
hyperfinite grid and Lebesgue measure on the real line, due to Anderson
(1976) and Henson (1979). For any subset C of the real interval [0, 1],
C is Lebesgue measurable and only if the set st™'(C) = {x € H, :
st(x) € C} is Loeb measurable, and the Loeb measure of st™'(C) equals
the Lebesgue measure of C. Here are some examples of sets which are
not Loeb measurable (as usual, we omit the proofs).

Examples. (a) (Luxemburg) Let A be the internal set of all x €
*[0, 1] such that the Hth binary digit of x is 1. Then A N [0, 1] is not
Lebesgue measurable so st'(A N [0, 1]) is not Loeb measurable.

(b) The set B = {y € H, : y 2 st(y)} is not Loeb measurable, but
has the measurable standard part st(B) = [0, 1].

Although the Loeb measure lives on a hyperfinite set and i1s amenable
to finite-like computations, it is an extremely rich measure space. This
richness has been exploited to prove numerous existence theorems in
probability theory. For more about the subject, see the book by Albeverio
et al. (1986).

The Loeb measurable construction can also be carried out on the whole
hyperreal line instead of just the hyperfinite grid. However, the theory
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is less satisfying. On the hyperfinite grid, every point has the same
infinitesimal weight and every internal set is Loeb measurable. But on
the hyperreal line, each point has weight zero and only some of the
internal sets are Loeb measurable.

8. HYPERFINITE DESCRIPTIVE SET THEORY

Descriptive set theory on the real line deals with the Borel and projec-
tive hierarchies of subsets of R. The open and closed sets are at the
first level of the Borel hierarchy, and are called the X9 and [} sets,
respectively. Given a countable ordinal o > 0, the Y0 sets are the
countable unions of sets in Ujp.,I1§, and the [T sets are the countable
intersections of set in Up.a2p. The collection of Borel sets is X, = [1
= Ugeo 20 and the X, ., and [T, sets are obtained from the [T, and
Y., relations by existential and universal quantification.

There is a parallel descriptive set theory on a hyperfinite grid which
begins with the internal sets at the initial level; see Keisler er al. (1989).
The Saturation Principle plays a crucial role in the theory and acts as
a substitute for the existence of a countable dense set on the real
line. This theory has exposed both similarities and differences between
the real line and the hyperfinite grid. We give a sampling of results
here to build on our picture of the hyperfinite grid. Again, we simplify
the discussion by restricting ourselves to the unit intervals H, and
[0, 1].

We take the internal subsets of the unit interval H, in the hyper-
finite grid to be both X9 and [I{ sets, and form the Borel hierarchy.
Each monad is a []9 set, that is, a countable intersection of internal
sets. The sets in the Borel hierarchy are called Loeb sets, and the
Loeb sets form the o-algebra generated by the internal sets. Since
the Loeb measure is countably additive, every Loeb subset of H, is
Loeb measurable. The projective hierarchy is defined in the natural
way. A starting point of the theory is the result of Robinson that a
set B C [0, 1] is closed if and only if A = st(B) for some internal set
B C H,.

Kunen and Miller (1983), improving an earlier result of Henson
(1979), showed that the standard part inverse preserves the exact location
in the hierarchies. That is, a set B C [0, 1] belongs to X%, or 2., if
and only if st™'(B) belongs to X%, or X, respectively.

Given any partial function on the hyperfinite grid whose graph 1s




224 H. JEROME KEISLER

o, or [1}, the domain of the function is of the same class. In each
case, the analogous statement fails for the real line.

The uniformization, or selection, properties for the hyperfinite grid are
also different from the corresponding properties for the real line. It
follows from Saturation that every X9, or X3, relation over the hyper-
finite grid has a choice function whose graph is X}, or X3, respectively.
The analogous statements are false over the real line. On the other hand,
there is a []3 relation over the hyperfinite grid which has no [T, choice
function for any n. By contrast, every []| relation over the real line has
a [, choice function.

A natural and useful notion which has no counterpart in the real line
1s the notion of a countably determined set (Henson, 1979). A set
B C H is said to be countably determined iff B is a finite or infinite
Boolean combination of some countable collection of internal sets. All
the sets in the projective hierarchy []) are countably determined. A
convenient way to show that a subset of H, is highly complex is to
show that it 1s not countably determined. For example, no well ordering
of H, is countably determined, no function from the unit interval H, onto
the whole grid H is countably determined, and no choice function for
the IT9 relation in the preceding paragraph is countably determined.

9. TOPOLOGY AND ORDER ON THE HYPERREAL LINE

The topology on the hyperreal line which has been used most frequently
in the literature is the S-ropology, where S stands for ‘standard’. For
simplicity, we shall restrict our attention to the hyperreal unit interval
*[0, 1]. A set B C *[0, 1] is open in the S-topology iff for each x € B
there 1s a standard real € > 0 such that each point of *[0, 1] within €
of x belongs to B. The S-topology is just the ordinary topology on
[0, 1] but replacing each real number by its monad. Robinson’s original
nonstandard characterizations of limit and continuity are formulated using
the S-topology. Thus, a real function f on [0, 1] is continuous if and
only if *f is continuous in the S-topology.

Robinson introduced another topology on the hyperreal line, called the
Q-topology. A set B C *[0, 1] is open in the Q-topology iff for each
x € B there is a hyperreal € > 0 such that each point of *[0, 1] within
€ of x belongs to B.

Examples. (a) The internal function *sin(H-x) where H is positive infinite
i1s Q-continuous but not S-continuous.
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(b) The internal ‘step’ function [x/H] where H is positive infinite is
S-continuous but not Q-continuous.

We can get more insight into the nature of the hyperfinite line by studying
its Dedekind cuts. This leads to a collection of order topologies
associated with cuts. The hyperreal line is studied from this viewpoint,
for example, in (Zakon, 1969; and Keisler and Leth, 1991); here we shall
only mention some simple observations and examples.

DEFINITION. By a cut in the hyperreal unit interval *[0, 1] we shall
mean a nontrivial initial segment C of *[0, 1] such that C has no greatest
element and its complement has no least element. A cut is said to be
additive iff it is closed under addition.

By the Overspill Principle, there are no internal cuts.

A cut C is said to be regular iff for every x > 0 in *R there exists
y € C such that x + y ¢ C. Zakon (1969) asked whether the hyperreal
interval has regular cuts. It was shown by Kamo (1981) that there
exist hyperreal lines with regular cuts, assuming the continuum hypoth-
esis. Jin and Keisler (1993) proved this fact in ZFC.

Hereafter we shall concentrate on the additive cuts. Clearly, no additive
cut is regular. Additive cuts are of special interest because each additive
cut induces a topology on the hyperreal line.

DEFINITION. Let C be an additive cut in *[0, 1]. By the C-monad of
a point x € *[0, 1] we mean the set of all y € *[0, 1] such that |x - y|
e C. the C-topology on *[0, 1] is defined by calling a set B C *[0, 1]
C-open iff for every x € B, there exists € € C such that each point of
*[0, 1] within € of x belongs to B.

The C-topology is not Hausdorff, because two points in the same
C-monad belong to the same C-open sets. However, if we identify all
the points in the same C-monad, we obtain a Hausdorff topology, which
is just the order topology on the C-monads.

Examples. (a) The largest additive cut in *{0, 1] is the set of infinites-
imals, and the corresponding topology is the S-topology. For any x €
*(0, 1], there is a greatest additive cut below x, namely the set Lo
all z € *[0, 1] with z/x = 0. The C,-topology will look like 1/x copies
of the real interval [0, 1) laid end to end (with real points replaced by
C,-monads).
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(b) If Cis an additive cut which is not of the form C,, the C-topology
will be totally disconnected, that is, any two distinct C-monads will be
separated by clopen sets. Hint. Given two points x and y in different
C-monads, take a b ¢ C which is infinitesimal compared to |y — x| and
form the clopen set {z : |x - z|/b is finite}. Each of the cuts in examples
(c)-(e) below cannot be of the form C, and therefore induce totally
disconnected topologies.

(¢) For each infinitesimal y € *[0, 1] there is a least additive cut
above x, namely the set C’ of all z € *[0, 1] such that zly is finite.

(d) Each increasing sequence (x, : o < A) indexed by a limit ordinal
A such that each x,/x,,, = 0 induces an additive cut C.

(e) Lightstone and Robinson (1975) considered the C-topology where
C is a cut the form {y : y < x" for all n € N} for some infinitesimal x.

(f) If we relax the requirement that a cut has no greatest element
and allow {0} as an additive cut, the corresponding topology on *[0, 1]
is the Q-topology. This topology is also totally disconnected.

One way to classify cuts is by their cofinality and coinitiality. The
cofinality of a cut C is the least cardinality of a subset C which has no
upper bound in C. By the coinitiality of C we shall mean the least
cardinality of a subset of the complement of C which has no lower
bound.

The greatest additive cut below x has cofinality ®, and the least
additive cut above x has coinitiality . It follows from Saturation that
each regular cut has uncountable cofinality and coinitiality. Another
consequence of Saturation is that there is no cut which has both
cofinality ® and coinitiality .

Does there exist a hyperreal line (satisfying the Transfer and Saturation
Principles) such that every cut C (or every additive cut C) has either
countable cofinality or countable coinitiality? Jin (1992) proved that it
1s consistent with ZFC that the answer is no.

There exist hyperfinite lines with the opposite property, i.e. some
additive cut C has uncountable cofinality and uncountable coinitiality.
Hint. Take an ultrapower of an ultrapower of R, and consider the cut
formed by the second ultrapower applied to the set of finite multiples
of 1/H in the first ultrapower.

The Baire Category Theorem is an important property of the usual
topology on the real interval. The next result shows that on the hyper-
real interval, all of the C-topologies satisfy the Baire Category Theorem.
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A set B C *[0, 1] is said to be C-nowhere dense iff each interval of length
¢ C contains a subinterval of length ¢ C which is disjoint from B. A
countable union of C-nowhere dense sets 1s said to be C-meager.

PROPOSITION 8. (Hyperreal Baire Category Theorem). For each
additive cut C in *[0, 1], the set *[0, 1] is not C-meager. The set
*[0, 1] is also not meager in the Q-topology. |

Hint. By Saturation, the intersection of a countable chain of inter-
vals of length ¢ C is nonempty.

On the real line, there is an interesting interplay between the sets of
Lebesgue measure zero and the meager sets. On the hyperreal line there
is a similar interplay between sets of Loeb measure zero and C-meager
sets. The following examples give some idea of what can happen.

Examples. (a) The unit hyperfinite grid H, is C-meager if and only if
I/H ¢ C. In the remaining examples, we consider subsets of H, and
let C range over the additive cuts such that 1/H € C.

(b) The ‘Cantor ternary’ set, consisting of all x € H, such that x-H
has no 1s in base 3, is C-meager for all C and has Loeb measure zero.

(c) Let P be the set of all x € H, such that x-H is *prime. P has Loeb
measure zero. P is C-meager where C is the smallest additive cut greater
than 1/H, but is not S-meager; in facts, the family of cuts C for which
P is C-meager is rather complicated. .

(d) If C has either confinality ® or coinitiality , then there is a
C-meager subset of H, of Loeb measure one. Hint. Find a Cantor set
in a hyperfinite base which is C-nowhere dense and of Loeb measure
close to one. (The situation for other cuts C is more complex; see Keisler
and Leth, 1991.)

(e) There is an internal subset A C H, such that A has Loeb measure
zero but for all C, A is not C-meager. Hint. Start with a real set B C N
such that for each n, B N [3", 3"*') contains one interval of length 2

and all multiples of 2".

10. IS THE REAL LINE UNIQUE?

A classical theorem is Zermelo set theory states that there is a unique
complete ordered field up to isomorphism. Thus within any model of
Zermelo set theory there is a unique real line. To a Platonist who regards
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the axioms of set theory as describing a universe of sets which really
exists, the real line is unique.

In fact, the unique existence of the real line can be proved in any
reasonable set theory which has the power set axiom. We may thus think
of the real line as existing uniquely relative to the power set operation.

However, there is a case against the view that the real line is unique.
Unlike the natural numbers, the real line is not absolute for transitive
models (M, €), and different transitive models of set theory have
markedly different real lines. By Tarski’s theorem, the first-order theory
of the real line is the same in all models of Zermelo set theory. However,
the second- and higher-order theories of the real line depend on the
underlying universe of set theory. The method of forcing has produced
innumerable examples of statements in the second-order logic of the
real line which are independent of Zermelo set theory and various
stronger set theories. Thus the properties of thé real line are not uniquely
determined by the axioms of set theory. To a mathematician who doubts
the existence of the set theoretic universe, or who believes that several
competing set theoretic universes exist, the properties of the real line
need not be unique.

Historically, Zermelo set theory was developed in order to form a
rigorous foundation for the real line. A set theory which was not strong
enough to prove the unique existence of the real line would not have
gained acceptance as a mathematical foundation. The modern set theory
KPU, Kripke-Platek set theory with urelements, is an example of a set
theory in which the real line cannot be proved to exist. KPU is a natural

foundation for recursion theory over sets; a good reference is the book
by Barwise (1975).

11. IS THE HYPERREAL LINE UNIQUE?

The existence and uniqueness of the hyperreal line depends on the choice
of the underlying set theory and on how one defines the notion of a
hyperreal line.

We shall first discuss the situation in ordinary Zermelo or Zermelo-
Fraenkel set theory, with the hyperreal line defined to be an ultrapower
of the real line. In ZFC, the existence of the hyperreal number system
requires the axiom of choice in two places, first to obtain an ultrafilter
which is not closed under countable intersections and then to prove the
Transfer Principle (but see Luxemburg, 1962; Pincus, 1974: and Spector,

R
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1988, for applications and a theory of ultrapowers E::c.E the axiom
of choice). Given the axiom of choice, there are many n_mﬁ_.nE ultra-
filters which give rise to difference hyperreal lines. Thus if we take
our underlying set theory to be Zermelo or Nn::m_c-_uamnnxn# sel 5.3@
with choice, the hyperreal line can be proved to exist but not to _H unique.

One can obtain uniqueness up to isomorphism by strengthening ZFC
and the definition of a hyperreal number system. By a fully EEEW&
hyperreal number system we shall mean an elementary extension
(*R, *S : § € F) of the full structure over R such that any set i. mn.En_,
than card (*R) formulas with constants from *R which is finitely
satisfiable is satisfiable. It follows from results of the Morley and Vaught
(1962) that in ZFC, there exists a unique fully MmE_.mﬁn. E@o:.nm_ ﬂ_n:._n_ﬂ,
system in any cardinal x > 2° such that either X is Emnnnmm_w_n or
k= A" = 2* (i.e. the GCH holds at x). In the second case x = A" = 2",
it follows from (Keisler, 1965) that the fully saturated hyperreal _.Eacﬂ
system of cardinality x is an ultrapower of R. In the case that K is
inaccessible, it is open whether a fully saturated hyperreal number system,
or even any model of cardinality K, can be an ultrapower of R.

However, it may not be a good idea to restrict the notion of . hy per-
real number system by requiring full EEEH:. In some m@ﬁ:mm:c:m
of the hyperreal number system, full saturation of large nmn___,:m._:w.:mm
proved to be a desirable hypothesis. But there are other applications
where different hypotheses on the hyperreal number system are needed
(for example, it is sometimes useful to take the hyperreal number system
to be an ultrapower of R modulo a selective E:mm:ﬂ over W), It is better
to leave open the possibility of adding a variety of extra hypotheses on
the hyperreal number system. . e |

In the case of the real number system, the real line is unique HE_:.,_n
to the underlying set theory. The second order En_.u_,w of :._.,w real line is
not unique, and this ‘absolute’ non-uniqueness Is Eanzﬁnm.cmn_ﬂc_.
However, the non-uniqueness is exploited by mnm_um extra axioms to
the underlying set theory, while keeping the definition of the real number
system within the set theory fixed. + ;

This suggests that ZFC is not the appropriate underlying set Ema_.w for
the hyperreal number system. Set theory might :uﬁ. Er,nn a different
direction if it had been developed with the hyperreal line in E.:..n. EJE
is needed is an underlying set theory which Ecim.ﬁn unique exis-
tence of the hyperreal number system, with the _uamm_,_“.:_q of exploiting
the absolute non-uniqueness by adding extra axioms in the same manner
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as is done for the real number system in ZFC. This underlying set theory
should have the power set operation to insure the unique existence of
the real number system, and another operation which insures the unique
existence of the pair consisting of the real and hyperreal number systems.

12. HYPERREAL SET THEORIES

We have concentrated on the hyperreal line in this article, but we shall
now shift to the broader perspective of a ‘nonstandard universe’ where
the hyperreal line appears at the first level. Several set theories have been
proposed as foundations for a nonstandard universe. All such theories
have a Transfer Principle which guarantees that the hyperreal line is an
elementary extension of the full structure on the real line. In this broader
perspective, the hyperreal line is not necessarily an ultrapower of the real
line, but by the results of (Keisler, 1963) it must be a limit ultrapower.
Two approaches, which we shall discuss briefly here, are currently used
in the literature.

The first approach is now called the superstructure approach. 1t is
related to Robinson’s original formulation in (Robinson, 1966) using
the theory of types, and is due to Robinson and Zakon (1969). It is
often presented by constructing a model within ZFC, but we shall
formulate it axiomatically. We shall give this theory the name RZ.

We first motivate the theory by describing its intended interpreta-
tion. Given a set X, we inductively define

VoX) = X, V.. (X) =X U V(X), VIX) = U,Va(X).

V(X) is called the superstructure over X. The intended models of RZ
are structures of the form

(V(X), V(Y), =)

where X and Y are nonempty sets and * : V(X) — W(Y) is an embed-
ding which preserves first-order formulas in the vocabulary (=, € } with
only bounded quantifiers (Vu € v), (3u € v). (To avoid unintended e
relationships, X must be chosen so that @ ¢ X and each x € X is disjoint
from V(X), and similarly for ¥). The sets in V(X) are called standard
sets, the sets in V(Y) are called external sets, and the sets in V(Y) which
are elements of *A for some A € V(X) are called internal sets.

The language of RZ is a two-sorted predicate logic with equality, unary
predicate symbols X in the first (standard) sort and Y in the second
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(external) sort, a binary relation symbol € for each sort, and a function
symbol * whose type is a mapping from the first sort into the second
sort. Let Z denote Zermelo set theory with choice and urelements
(individuals) but without the axiom of infinity. The axioms of RZ will
consist of one copy of the theory Z for each sort with X and Y the sets
of urelements, a scheme which says that * is an elementary embedding
with respect to bounded quantifier formulas, and an axiom stating that
X has a countable subset N and * maps N properly into *N.

Both the real and hyperreal number systems exist uniquely relative
to the theory RZ. In RZ, one can prove that X contains a copy of N
(unique up to isomorphism). Using N and the power set operation, one
can then prove in the usual way that there is a unique (up to isomor-
phism) complete ordered field R at level 1 of the first sort. The hyperreal
number system is then characterized uniquely up to isomorphism as the
structure (*R, *S : § € F) in the second sort.

In RZ, the property ‘B is internal’ is definable by the formula
(3A) B € *A. The Saturation Principle is expressible in RZ as follows:
For every internal set C, every countable chain B of internal subsets of
C has a nonempty intersection. Other properties, such as saturation for
higher cardinals, are also expressible in RZ and thus can be added as
extra axioms if necessary. |

Using the ultrapower construction, ZFC proves that RZ is consistent
and in fact every superstructure (V(X), €) with an infinite X can be
expanded to a transitive model of RZ. Therefore any statement about
the standard superstructure which can be proved in RZ can also be
proved in ZFC and hence is a theorem according to the usual rules of
mathematics.

The theory RZ would become inconsistent if the replacement scheme
were added (upgrading the Zermelo axioms to the Zermelo-Fraenkel
axioms). Hint. Show that every standard set *A has finite rank, because
otherwise there would be an infinite decreasing € — sequence below
*A.

On the other hand, all of classical mathematics can be carried out in
each of the two superstructures in RZ. Moreover, the interaction between
the standard, internal, and external sets and the availability of the Zermelo
axioms for the external as well as the standard sets makes RZ quite
powerful.

A second approach is Nelson’s Internal Set Theory (IST), introduced
in (Nelson, 1977). IST has the equality and € symbols and one additional
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unary predicate symbol st(-) for standardness. The axioms of IST are the
axioms of ZFC, the Internalization scheme which is a weak form of

Saturation, the Standardization scheme which says that the restriction
of any formula to a standard set defines a standard set, and the Transfer
scheme which says that the standard sets form an elementary submodel
of the universe with respect to the vocabulary {=, €} of ZFC.

Compared to RZ, IST retains the replacement scheme of ZFC, but
gives up the external sets, leaving only the internal and standard sets.
Since IST is an extension of ZFC and uses the st(-) predicate instead
of the * function, mathematics in IST looks more like traditional
mathematics than mathematics in RZ does. For this reason, it is easier
for a classical mathematician to read work in IST than in RZ. However,
because the external sets are missing, developments such as the Loeb
measure construction and hyperfinite descriptive set theory cannot be
carried out in their full generality in IST.

In IST, the usual construction of the real line R gives us the hyper-
real line instead, and the restriction of the hyperreal line to the standard
predicate gives us the real line. Thus the real and hyperreal lines exist
uniquely relative to IST.

Using a limit ultrapower construction, Nelson (1977) proved that
IST 1s a conservative extension of ZFC. Therefore, as in the case of
RZ, any sentence in the language of ZFC (without the st(-) predicate)
which is provable in IST is already provable in ZFC and hence is a
theorem according to the usual rules of mathematics.

The conservative extension results are often misinterpreted as saying
that anything that can be proved with Robinson’s analysis can be proved
without it. This issue is taken up in (Henson et al., 1984; Henson and
Keisler, 1986). As explained, for example, in (Simpson, 1984), almost
all of classical mathematics uses only a small part of ZFC, at most second
order arithmetic with []} comprehension. In (Henson and Keisler, 1986)
it is shown that Robinson’s analysis uses principles beyond []} com-

prehension in a natural way, thus bringing more of ZFC within the
reach of our intuition.

13. DO WE LIVE IN A HYPERFINITE UNIVERSE?

Our intuitive concept of a geometric line is based upon a finite amount
of experience with a line in physical space. From this finite experience,
we have no way to determine its microscopic structure. For example,
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we cannot tell whether it is finite or infinite, whether it has the
Archimedean property, or whether or not it i1s discretely ordered. Without
direct physical evidence, we must fall back on less direct criteria for
choosing a mathematical model for the geometric line.

One can take a Platonistic view that the geometric line exists, look
for properties which the geometric line should have, and represent the
geometric line by a mathematical object which has these properties.
Alternatively, one can take a pragmatic approach and look for mathe-
matical lines which are useful in explaining or modeling natural
phenomena, or in the discovery of mathematical results.

One Platonistic view is that the geometric line should be as rich as
possible, in some sense containing all possible points. With this criterion,
the geometric line should be a fully saturated hyperreal line of large
cardinality. Taking this to the extreme, the geometric line should be a
hyperreal line which is a fully saturated model whose universe is a proper
class. A similar but more convenient alternative is to take the geometric
line to be a hyperreal line which is fully saturated model whose size is
an uncountable inaccessible cardinal.

Another Platonistic view is that the geometric line should be rich
but should also be as much as possible like the large finite lines which
we know from experience. This leads to the hyperfinite grid. On the
hyperfinite grid, Zeno's Paradox is resolved as follows. We can get
from 0 to 1 in H steps by taking one step of length 1/H every 1/H seconds,
always staying in the hyperfinite grid H. Along the way, we will pass
through all the points 1/2, 3/4, 7/8, and so on, since they all belong
to the set H. Of course, we will overshoot irrational points such as
v2/2, but there will be a time at which we pass from below V2/2 to above
V2/2 with one step of length 1/H.

A pragmatic argument for the hyperreal line is that it provides a useful
source of models for many natural phenomena. There is an extensive
literature in mathematical economics (see Rashid, 1987) and physics (see
Albeverio et al., 1986) using the hyperreal line. In microeconomics,
one studies the behavior of economies with a large number of individ-
ually small agents. The large finite economy is represented by a
mathematically simpler infinite economy. Large finite economies are
sometimes modeled by economies with a continuum of agents, but since
the original economy is finite, a hyperfinite set of infinitesimal agents
provides a better model than a continuum of agents. A similar approach
is useful in physics, where, for example, a large finite set of small
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particles can be modeled by a hyperfinite set of infinitesimal particles.
In some gases, as in the work of Arkeryd (1984) on the Boltzmann
equation and the work of Cutland (1986) in control theory, the real line
is not rich enough to provide a mathematical representation of a physical
phenomenon, and the richer hyperreal line comes to the rescue. The
hyperreal line is also helpful in representing phenomena with two scales
of measurement where one scale is very large compared to the other.
For example, Reeb and his students (see F. and M. Diener (1988) or
van den Berg (1987)) have studied singular perturbations by looking
through an infinitesimal microscope to classify hyperreal solutions whose
trajectories have infinitely fast and slow parts.
In physics, the evidence for the existence of an object such as a
quark is indirect, and often the only evidence is that the object makes
it easier to mathematically represent an observed phenomenon. The
hyperreal line makes it easier to mathematically represent natural
phenomena, and this may be taken as evidence that the hyperreal line
exists in some sense.
A second pragmatic argument for the hyperreal line is that it is helpful
in the process of mathematical discovery. There are many examples where
it has either suggested a fruitful new notion, been used to prove a new
result, or been used to give a clearer proof of an old result.
The following strategy, sometimes called the lifting method, has been
used to prove results which are formulated on the ordinary real line.
Step 1. Lift the given ‘real’ objects up to internal approximations on
the hyperfinite grid.

Step 2. Make a series of hyperfinite computations to construct some
new internal object on the hyperfinite grid.

Step 3. Come back down to the real line by taking standard parts of
the results of the computations.

The hyperfinite computations in Step 2 will typically replace more
problematic infinite computations on the real line. Usually, the hard work
is in Step 3, where one must show that the appropriate standard parts
exist. As a typical example, various existence theorems for stochastic
differential equations have been solved by lifting up to the hyperreal
line, easily solving the corresponding stochastic difference equation,
and then taking standard parts to obtain a solution of the original
stochastic differential equation.

To date, the lifting strategy has been fully exploited in two areas,
probability theory and Banach spaces (see (Albeverio er al., 1986;
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Cutland, 1988; Keisler, 1984) for a variety of applications of this
strategy). However, there appear to be possibilities for its use in prac-
tically all areas of mathematics.

We have stated that the hyperreal line can be used to give a clearer
proof of a result. One reason for this is that hyperreal proofs seem to
be more ‘constructive’ than classical proofs. For example, the solution
of a stochastic differential equation given by the hyperreal proof is
obtained by solving a hyperfinite difference equation by a simple induc-
tion and taking the standard part. The hyperreal proof is not constructive
in the usual sense, because in ZFC the axiom of choice is needed even
to get the existence of a hyperreal line. What often happens is that a proof
within RZ or IST of a statement of the form Jx¢(x) will produce an x
which 1s definable from H, where H is an arbitrary infinite hypernatural
number. Thus instead of a pure existence proof, one obtains an explicit
solution except for the dependence on H. The extra information one
gets from the explicit construction of the solution from H makes the proof
easier to understand and may lead to additional results.

Where do we go from here? At the present time, the hyperreal number
system is regarded as somewhat of a novelty. But because of its broad
potential, it may eventually become a part of the basic toolkit of
mathematicians. This process will probably take a very long time, perhaps
50 to 100 years. The current high degree of specialization in mathematics
serves to inhibit the process, since few established mathematicians are
willing to take the time to learn both mathematical logic and an area
of application. However, in the long term, applications of mathemat-
ical logic to computer science, as well as applications of the hyperreal
numbers, should result in future generations of mathematicians who are
better trained in logic, and therefore more able to take advantage of
the hyperreal line when the opportunity arises.

University of Wisconsin,
Madison, U.S.A.
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