ADOLF GRUNBAUM

Zeno’s
Metrical
Paradox
of
Extension

§1. THE PROBLEM

It is a commonplace in the analytic geometry of physical
space and time that an extended straight-line segment, hav-
ing positive tength, is treated as ““consisting ot” unextended

‘points, mmmr_ of which has zero length. Analogously, time in-

tervals of positive duration are postulated to _um. aggregates
of instants, each of which has zero duration.
Fver since some of the Greeks defined a point as “‘that

“which has no part,””* philosophers and mathematicians have

questioned the consistency of conceiving of an extended
continuum as an aggregate of unextended elements. On the
long list of investigators who have examined this question in
the context of the specific Smﬂrmwﬂm:nm_ and philosophical
theories of their time, we find not 03_< Nm:o but also such

From Modern Science and Zeno’s .nmamaoxmm Ti_m_%mﬂoﬁn mo:z Wesleyan
University Press, 1967), pp. 115-135. mmvznﬁma _u% vm_‘:‘:mm_ag British edi-
tion, revised (London: George Allen & CnE_n ZQ Em@ o

L This definition is given in Euclid, The ﬂ?:mm: m@@rm ,,,.: m:nrm: Elements,
:m:imﬁma by T. L. Heath (New York: _Hm_:.&:n_mm C:_.qmﬂm:”{ ?mmm 1926), p. 153.
*S. Luria, “Die Infinitesimaltheorie o_m_. mn:rm: }83;8: ' Quellen und
Studien zur Geschichte der Mathematik, _}mm_.dzoﬁhm cz_u Pﬂs\m:ﬁ Abteilung B,

Studien 1 (Berlin, 1933), p. 106.
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thinkers as Aristotle,® Cavalieri * Tacquet,® Pascal,® Bolzano,”?

Leibniz,® Paul du Bois- xm<30:gw and Georg Cantor,'® to
‘mention but a few. Thus, William James wrote:

1If, however, we take time and space as concepts, not as
perceptual data, we don’t well see how they can have this
atomistic constitution. For if the drops or atoms are them-
selves without duration or extension it is inconceivable that

by adding m:< :_,\_BUE of them together times or spaces
should accrue.?

that being should be identified with the consummation
of an endless chain of units (such as “points”’), no one of
which contains any amount whatever of the being (such as
“space”) expected to result, this is something which our
intellect not only fails to understand, but which it finds
absurd.1?

Writing on this issue more recently, P. W. Bridgman de-
clared:

With regard to the paradoxes of Zeno . . . if | :mﬁm_:\

thought of a line as consisting of an mmmmSU_mmm of points
of zero length and of an interval of time as the sum of

moments without duration, EEQQ would then present
itself.13

> Aristotle, On Generation and Corruption, Book 1, Chapter ii, 316a15—
317217, A. Edel, Aristotle’s Theory of the Infinite {New York: ﬂc.:ﬂgm Uni-
_{mﬂmﬁx _”:,mmm A@ué pp. 48-49, 76-78: T. L. Heath, Mathematics in Aristotie
[14], pp. 90, 117. | |

* C. B. Bover, The Concepts of the Calculus {(New York: Im_?mﬁ_.”mazm&i:m

Co., Inc. 1949}, p. 140. [Dover edn. 3111,

m.;u&_
°Ibid., p. 152.

" ibid., p. 270; and B. Bolzano. Paradoxes of ::m 333% mm_:mn_ _3\ D. A,
Steele AZmé Haven: Yale University Press, .E.mj

®B. Russell, The Philosophy of hm.&:_ﬁm ?o:&o: Omo_.mm >:m: w Unwin

Ltd., 1937), p. 114.

° _u du Bois-Reymond, Die h:mmﬁmﬁm _n::»:onmnmrmnw:m ii _H_Hmuvu_._._:”mm:”
wmcum_mn:m Buchhandlung, 1882), p. 66.. |
' G. Cantor, Gesammelte m.@rmnag::mm: ma:ma _3,, m Nm:ﬂm_o (

”w.m_.‘_._mﬂn
Springer-Verlag, 1932}, pp. 275, 374. o |
W, James, Some Problems of wvaomabrf Eﬁ ,“mm
2 Ibid., p. 186, S | ST .
'* P. W. Bridgman, “Some Implications n:, mmnm:ﬂ _ue_zﬁ ﬁ:ﬁ <_mE i _ujﬁm_nm "
Revue Internationale de Philosophie, g zo S :fm: u a@o
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- This Zenonian criticism of the mathematical theory of
physical space and time by James and Bridgman is a chal-
lenge to the basic Cantorean conceptions underlying analytic
geometry and the mathematical theory of motion.'* Their
view also calls into question such philosophies of science as
rely on these conceptions for the interpretation of our math-
ematical knowledge of nature. Accordingly, it is essential
that we inquire whether contemporary point-set theory suc-
ceeds in avoiding an inconsistency upon postulating positive
linear intervals to be aggregates of extensionless point-
‘elements. _

? In the present chapter | shall endeavor to exhibit those
L features of present mathematical theory which do indeed
- preclude the existence of such an inconsistency. It will then
be clear what kind of mathematical and philosophical theory
does succeed in avoiding Zeno’s mathematical (metrical)
paradoxes of plurality, paradoxes that 1 have distinguished
from his paradoxes of motion in the Introduction.* As before,
my concern é.m”ﬂr_._,_ﬂ:m views which various writers have at-
tributed to Zeno is exclusively systematic, and | make no
claims whatever regarding the historicity of Zeno's argu-
ments or concerning the authenticity of views which | shall
associate with his-name. According to S. Luria,’”” Zeno in-
_.__,.h_ow__ﬁmm two _umm_n axioms in his mathematical paradoxes of

cannot regard a line as an aggregate of “dimensionless”
points, however dense an order we postulate for this ag-
gregate. Zeno himself is presumed to have used these axioms.
as a basis for the following dilemma:!" If a line segment is
postulated to be an aggregate of infinitely many like ele-
ments, then two and only two cases are possible. Either these
elements are of equal positive length and the aggregate of
them is of infinite length (by Axiom 1) or the elements are of
zero length and then their aggregate is necessarily of zero
length (by Axiom 2). The first horn of this dilemma is valid
but does not have relevance to the:modern analytic geome-
try of space and time. It is the second horn that we must
refute in the context of present mathematical theo ry if we
are to solve the problem which we have posed. _
To carry out this refutation, we must first ascertain the
logical relationships between the modern co ncepts of metric,
length, measure, and cardinality, when applied to (infinite)
point-sets. For in the second horn of his dilemma, Zeno avers
that a line cannot be regarded as an _mmum”.ﬂmm_mam of points no
matter what cardinality we postulate for the aggregate. And
du Bois-Reymond endorsed this contention by reminding us
that points are “dimensionless” i.e., unextended, and by
maintaining that if we conceive the line to be “merely an
aggregate of points” then we are ‘€0 ipso abandoning the
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plurality. Having divided all magnitudes into positive and view that “A line and a point are entirely different things.”/18

“dimensionless,” i.e., unextended magnitudes, Zeno as-
sumed that (1) the sum of an infinite number of equal posi-
tive magnitudes of arbitrary smallness must necessarily be
infinite, and (2) the sum of any finite ._.o______\m.”_.__.__.”,_.__”a.ﬁ_m__._,_a_zm number of
“dimensionless” magnitudes must :mmmmmm::\ be zero.

~ The second of these axioms seems to command the assent
of P. W. Bridgman and was also enunciated by the mathema-

tician Paul Q.c Bois-Reymond,'® .é ho %m: _Eﬁm rred that we

~We see that du Bois-Reymond is conforming to the long
intuitive tradition of using the concepts of length and di-
mensionality interchangeably Enrmﬁmﬁm_\mmAmmsmm%mﬁm::
sion. It will _H_T_m._ﬂ efore rm._@m st t 0 rmm_SGC_‘mzm_%m_mF%j oting |
that we must distinguish the :‘mm:_ﬁsm_ﬂsmgnm\cmmmm of the
term “dimensionless” from the contemporary topological
meaning of “zero dimension.” This distinction has become
~ topological ﬁrmﬁﬂv\@%ﬁrgmnmwﬁn 5 ap art ?anmﬂﬁ cal geome-

' G. Cantor, Gesammelte Abhandlungen, p. Nwm
*[In Modern Science and Zeno’s Paradoxes, p. mL e
15 S Luria, “Die Infinitesimaltheorie der antiken:Atomisten,” p. 66.

"' H. Hasse and H. __mn.m_@_m_.._wu_mm Oﬁc:a_a_wmm»..q__..m___w__mm__l __.mlmm?.mmrm: i_m..ﬂ.r,mﬂmh.__.h
18 Py momm-.m.mfn._oja_. Die Allgemet 3mmcmwr_m.;m.nmrmmlm._,{i I, p. 06.

(Charlottenburg: nmzuﬁ_m_am”_mmh 1928), p. 11. ) S - .
** P, du Bois-R eymond, Die Allgemeine Funktionentheorje, Vol. 1, .p. 65.
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try. Prior to this development, any positive interval of Cartes-

“ian n-space was simply called “n-dimensional” by definition.

Thus, line segments having length were called “one-dimen-
I and surfaces having-area “two-dimensional.”” By con-
trast, in the topological theory of dimension developed in
the present century, it is a non-trivial theorem that lines are

topologically one-dimensional, surfaces two-dimensional,

and, generally, that Cartesian n-space is n-dimensional. In
fact, it is this theorem which warrants the use of the name
“dimension theory” for the branch of topology dealing with

~such non-metrical properties of no_:ﬁ -sets as make for the

validity of this theorem.!?
By contrast, the traditional metrical sense of dimensional-
ity identifies: am_n_im_3_%_.0.._3.,”_.___3 ‘with length or measure of ex-

tendedness. It is only the latter sense of “dimension” and
‘dimensionless’” which is relevant to the metrical problem of

this chapter. Hence | refer the reader to another publica-

tion®® for an account of how the twentieth-century theory of
~dimension can consistently affirm the following additivity
properties for dimension in the topological sense of “'zero-
dimensional” and “one-dimensional”: The point-set con-
stituting the number axis or any finite interval in it (e.g., an
infinite straight line or a finite line segment, respectively) is
one-dimensional even though it is the set-theoretic sum of

zero-dimensional subsets. The zero-dimensional subsets are-

(1) any unit point-set (such a set has a single point as its only
‘member and hence can be loosely referred to as a “point,”

whenever such usage does not permit ambiguities), (2) any

finite collection of one or more points, (3)- any denumerable

set (in particular the set of rational real points), and (4) the
set of :S:ozm_ ﬁmm_ _uoSG érmmr is non-denumerably in-
finite. o _._

Accordingly, we must now deal with the following metri-
cal question: Within the framework of the standard mathe-
matics used in .nrxmm_n? how can the definition of length

'* K. Menger, Dimensionstheorie Pm_um_m B. G. Teubner, qwmmv p. 244,

*® A. Grinbaum, “A Consistent Conception of the Extended Linear Con-
ttnuum as an Aggregate of Unextended Elements’” [69], pp. 290-295.
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consistently assign zero length to unit point-sets or individual

points while assigning positive finite lengths to such unions

(sums) of these unit point-sets as constitute a finite interval?
To furnish an answer to the latter question will be to refute

the second horn of Zeno’s dilemma. We shall furnish an

analysis satisfying these req c_:mBm.:Smﬁ@.__”m_m<o__z.3_m_mo__8m at-

tention to the consideration of prior related problems.

§2. THE >oc:.<:« OF LENGTH AND MEASURE

Length, measure, or extension is amj:ma as a property of
point-sets rather than of individual points, and zero length is
assigned to the unit set, i.e., to a set noim_:_:m only a single
point. While it is both _@m_nm__,\ correct and even of central
importance to our problem that we treat a line interval of

geometry as a set of point-elements, m:,_Q:\ speaking the
definition of :_msmﬁrx renders it incorrect to refer to such an

interval as an “aggregate of _c:mx,_.mmjama;vo_:_ﬁ For the
properties of being extended or being unextended each

characterize unit point-sets but are not Uommmmmma by their re-
spective individual point-elements, much as temperature is a

property only of aggregates of BO_mn:_mm and not of individ-

ual molecules. The entities which can therefore be properly

said to be c:mxﬁm:m_ma are SmEQmQ in but are not Bmﬁvma

of the aggregate of points constituting a line interval. Accord-

_3m_<_, the line interval is a union of unextended unit @057
sets and, strictly, not an :mmm,\mmﬂm of unextended points.”
jﬁucmr strictly incorrect, | wish to use the latter designation
in order to avoid the more mcg_umm.mogm mxv_‘mmm_os ““union
Qn c:mﬁmzm_ma unit point-sets.”

I mrm: now present such portions of ﬂrm Emo% oﬁ metric
mbmmmm as bear immediately on our problem.

‘The structure characterizing the class of all real scgwma
Eom::\m negative, and zero) m:,m:mma in order of Bmms_Eam

s ﬁrmﬂ of a _Smm_, Cantorean continuum.??

"' E. V. Huntington, The Continuum and Other Types of Serial Order, 2nd
edition (Cambridge: Harvard University Press, 1942), pp. 10, 44. [Dover edn.

[126].]

.....
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The Euclidean point-sets-or ““spaces’” which we shall have
.Ommmm_03 to consider are “metric”’ in the Hne__eé_:m complex
sense:** e - _

1) There is a one-to-one correspondence between the
points of an n-dimensional Euclidean space e m:a a certain
real coordinate system(xs, . . ., Xa).

2) It'the points x, y have ﬁrm coordinates x;, yi, then: %mﬂm
1s a real E:n:@: d(x, y), called their (Euclidean) distance,
given by

— " —

d(x, y) = | m (xi = yi)?
I

— . g

g 2

Hrm basic properties of this Enm:@z are given U,\ certain dis-
tance axioms.*3 _

A finite interval on a straight line is the (ordered) set of all
real points between (and sometimes including one or both
of) two fixed points called the “end-points” of the interval.
Since the points constituting an interval satisfy condition (1)
above in the definition of “metric,” it 1s-possible to define
the “distance’” between the fixed end-points of a given in-
terval: The number ﬂm!mmm:g:m this m__ﬂmzmm. is the length of
the. _@93 -set constituting the ‘interval. Let “a” and “b” de-
note, ﬂmm@mm:f\m_ﬂ, the. m@_na aandb or %m: respective real-
number coordinates, depending upon the context. We then
_.Qm_ﬁSm ﬂrm _mznﬁr !ﬁ a finite-interval (a, b) as the non-negative
Q:m::? @ ﬁmmma_mmm m:n Ejm%mﬁ %m interval ?& is
._m@“ﬂ_.__._m__m_”_._._A xm S A: is ::o_magoa :ﬁ: Hrm m<3@o_m :A:_ nd
~ “="have a !:m:\ ordinal meaning here.) Therefore, the set-
._ﬁrmoﬂmﬁ_m mmm_:o: of a single point to an open interval (or to

a half- -open Sﬂm_ém_ at the open end) has no effect at all on

the \m:mg of the resulting interval as compared with the
length of the _o_.ﬁ_m._m_ﬂm_ interval. In-the limiting case of a = b,

"2 S. Lefschetz, Introduction to Topology {(Princeton, N.J.: Princeton Uni-
versity Press, 1949), p. 28.
"3 [bid.

_Hrm _ozmm_\ of two such intervals -

to the shorter _smmzm_ But this “more” !ﬁ differing identity
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the interval is called “degenerate,” and here the closed in-

terval reduces to a set containing the single point x = a,

while each of the other three intervals is empty. It follows
that the length of a degenerate interval is zero. Loosely
speaking, a sin m__._____m_.__1!__2_._.7 as zero length.??

Zeno is challenging us to obtain a result dif fering from

zero when using the additivity of lengths to determine the

length of a finite interval on the basis of the known zero
engths of its degenerate: subintervals, each of which has a

single point as its only member. But since each positive

interval has a non-denumerable infinity of degenerate sub-

intervals, we see already that the result of determining the
length of that interval by ‘compounding,” in'some unspeci-
fied way, the zero lengths of its degenerate subintervals is
far less obvious than it must have seemed to Zeno, who did
not distinguish between countably m:g non- 8::5_@:\ in-
finite sets!

Although _m:mﬁr s m:,:__mﬂ to cardinality in being a prop-
erty of sets and not of the elements of these, it is essential
to realize that the cardinality of an interval is not a function
of the length of that interval. The Eammmsam:mm of cardi-
nality and length- becomes ngo:m:mw_m by combining our

~definition of length with- mmioﬂ s proof of the equivalence
_Qﬁ the set of all real vo_im Uﬁémm: 0and 1 with the set of

all real points between any two fixed points on the number

-

axis. It is therefore not the case. ﬁrmz the longer of two posi-

tive intervals has “more”’ _u!mm In %m. case of two unequal

intervals, one of which s a proper. Bm: @_h %m other, the
longer interval contains U!:a Erhmr are stﬁ also contained

in the shorter- one. In- %_m _m:@, sense. _-._ﬂ _” e mtmmzﬂ_ma differ-

mEGmQrﬁﬁ

m< tm mmi to _contain
“more” points, i.e., points eﬁrm_\ %mn ﬁ e 1.5.@ rm_ozu;m._m_

ence in the identity and m@EbwmrmaEm:mmm of r

and comprehensiveness must. :oﬁ Um m!icMm; E:r Sm

** H. Cramér, Mathematical imr:n_ow E mﬁm:nrnm Swn nﬁ_ j 4@
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“more” of greater numerosity {cardinality). And it is the
specified kind of greater comprehensiveness that ermm for
greater spatial (or temporal) extension.

“Once the __._za.mnm__:_amsmm of cardina ity and _msmﬁr @.m inter-
vals is established, it is possible to e iminate several of the

confusions Er.nrrm ve vitiated certain treatments of the in-
finite divisibility of intervals, as we shall see below. Thus, it
will become impossible to infer in finitist manner that the
division of an interval into two or more subintervals imparts
to each of the resulting subintervals a nma_sm__c\ lower than
the cardinality of the original interval.

An interesting illustration of the ._____:_Q.mvm:mm.:_mm of cardi-
nality and length is provided by the so-called “ternary set”
(Cantor discontinuum). This set has measure zero (and zero
dimension) while having the cardinality of the continuum 3
‘And the existence of this set: shows that the nma_:m:a\ as
such is not mc?m“mi to confer positive extension on an in-
terval but that its U@m;Em mﬁmzm“@: @_m@m:m_m on the structural
arrangement of its elements. EE

We shall be concerned with mmnm:m_:_:m why Zeno's para-
doxical result %2 the length of a given positive interval
(a, b) is zero is not Lmacn_!m from the following two propo-
sitions in our mm@BmE\ in %m context of its rules governing
the ma%gSQ of mnmﬂrm 1 >:< _uom_:.qm or non-degenerate
~interval is the union of a continuum of- Qmmm:mﬂmﬁm subinter-

___<m_m and (2) %m _mzm% of ac mem:mﬁmﬂm (sub) interval is zero.
___._: mm orSmEm 1:: if the Smoc\ is consistent, Zeno's result
o __._nm::@H rm ._m;cm&_m Such a result would mo:ﬁma_ﬂ H:m

_!otom:_@s that the length of the interval (a, b) is b —
(a4 b). mcirm:,:@ﬂm this result Ee:_n_ be 583135_@ E:r

Cantor’s theorem that all positive SEEm_m have the same

cardinality _.ﬂm_mm_._d___,_m_mm of length, for this theorem shows that
no inference regarding the length of a non-degenerate inter-

val can be drawn from propositions (1) and (2) via the ad-

%5 R, Courant and I..__Na__u_uma? What Is Mathematics? [133], p. 249. Also, A. D.

Aleksandrov, A. N. Kolmogorov, and M. A. Lavrent'ev, Mathematics, Vol. 1},

transiated by K. Hirsch {Cambridge: The M. T. Press, 1963), pp. 24 and 28.
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ditivity of lengths permitted by the theory. In order S mroé_
later that the standard mathematical theory used in- 13@9_

does have the required consistency, i.e., that it m_omm not lend

itself to the deduction of Zeno’s nmamoxumm_ result, we must
now consider the determination of (1) the: _m:m? of the

union of a finite number of non- o<m1m_u§:m intervals of
known _mnmﬂrm and (2) the length of the union of a denumer-

able infinity of such intervals.
It an interval i is the union of a finite number of intervals,
no two of which have a common point, 1.e., if

=+ e iy + L 4, (ipig =0 dﬁoﬁ pPF#q),

it follows Swmr:\ trom Hrm theory previously m@ﬂonma that
the length b — a of the total interval is equal to the arithmetic
sum of %m EL_SQcm_ lengths of the Egim?m_m <<m :,_mﬁm,.

*oﬁm 238
_E_._,v_ = L(1,) + 23 + L)+ o+ Ii

If we now define the arithmetic sum oﬁ a _uam_,mmm_o: of

finite cardinal numbers as the limit of a sequence of partial
arithmetic sums of members of the sequence, ‘then a non-
trivial proof can be given?® that the following ﬁ_\_moﬁmS holds:
The length of an interval which is m:rm:\ima 58 an
enumerable number of subintervals 2;395 common points
S mac,m_ to the arithmetic sum of the lengths of these subin-
tervals.”® It follows at once that if %m. standard mathematical

v %mo% m@:.ﬁw_:_zm this result were to mmmm: as well—which it
~does not!'—that an interval m@:m_ma ow an. m.:c m_\_m..r_m num-
__umu, of points, then Zeno’s Umﬂmm_ox Eoc_m_ tm mecm_@_m

Thus, both Hﬁ@_. a finite number and ?ﬁ a noc:Sr:\ mfinite

number of non-overlapping mc!im?.m_m the. _m:m% h: of

the total interval is an additive ?:ngo: o* ﬂ m M:Hmﬂ m.._ H

The

nensiveness (extension) of 53 Bﬂm_dm_ s mer
to the standard 3 length but not Q_h ;m nml_jm__g

*¢ Cf. H. Cramér, Mathematical Methods o_“ mhm:.ﬁ:nm Ewﬁ .Eu_u__. N‘“

" See also the discussion in [Modern Science maa Nmaa s wmﬁm&axm&

length of an interval is a numerical Bmmmcﬁm & tt m n!,:ﬂ:m-.
1berstk ip. wm_m:,\m”_.



186 ADOLF GRUNBAUM

~does not depend upon the nognﬂmjmzmzmzmmm of the mem-
__um_‘m:;u of an interval. R

It will be recalled that :_mjm.ﬂr:_émm defined only for in-
tervals. So far, we have not assigned any property akin to
length to other kinds of point-sets. There are many occa-
stons, however, when it is desirable to have some kind of
~measure of the extensiveness, as it were, of point-sets quite
different from intervals. Problems of this kind as well as prob-
tems encountered in the theory of (Lebesgue) integration
“have prompted the introduction of the generalized metrical
concept of “measure” L(S) of a set S to deal as well with sets
other than intervals. This metrical concept extends the defini-
tion .of the interval function L(i) so as to obtain a non-nega-
tive and additive set function L(5) which coincides with
L() in the special case when S is an interval i. And the
principles of the resulting measure theory relevant to our
concern with Zeno’s metrical paradox are the tollowing:

1) The measure _.u;n a set of points is to be a number de-

..”..”Um:amjﬁ on Hrm set, such that Wrm measure of the sum of two

~ sets, which have no point in common, is the sum of the

"~ measures of %m two sets. . . . The measure of a set Um_:m

 regarded as a function of ﬁrm set, is thus required to be an
- additive Emn.ﬁ_“o_:;_ e., a function such that its value for the
set E, + m.ﬂ IS ‘the m:3 of its <m_cmm 3_‘ E, and E,.28

2) ... any m:B . of a finite or m:cBmEEm number Oﬁ

_Bmmm:ﬂm_u_m sets E: mo_im_:ma in a 303-5?3_8 _Em_&m:
itself Bmmmcﬂm_u_m |

3) Arm Bmmm:qm om ﬁrm sum of an enumerably Brzzm
mmgcm:mm of sets, no two of which have a point in common,
is to be the limiting sum of the measures of the sets, when-
ever that ::::zm sum exists.®? |

4) m<m§ mscgm_.m_@_m set of _uo_nﬁ is Smmm:ﬂmw_m and its
measure is Nm_‘o 1

*8 £ W. Hobson, The Theory of Functions of a Real Variable, Vol. 1 [New

York: Dover Publications, Inc., 1953], p. 166.
** H. Cramér, Mathematical Methods of Statistics [134], p. 32.
2 £, W. Hobson, The Theory of Functions of a Real Variable, Vol. I, p. 166.
1 bid., p. 176.

view is clearly self-contradictory, since no such discrete de-

I P e,
!'“E"r{i'-e'ﬁ '-‘HH §u
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It will be noted that in virtue of (2) and (3), the standard
mathematical theory asserts that the measure ic countably
additive {or enumerably additive), just as it had asserted for

tength, as is evident from our earlier Q_mmCmmSz of the ad-

ditivity of length 2>

Since the theory of infinite divisibility has Umm: used fal-
laciously in an attempt to deduce Zeno’s metrical paradox,
we shall now point out the relevant fallacies before dealing

with the crux of our problem to refute the second horn of
Zeno’s metrical dilemma.

33. INFINITE DIVISIBILITY

In an exchange of views with Leibniz, Johann Bernoull;
committed an important fallacy: He :\mmﬁma the actually in-
finite set of natural numbers as having a last or “soth” term
which can be “reached” in the manner in which an inductive
cardinal can be reached g starting from zero.*? Bernoulli’s

numerable infinity of terms could possibly have a last term.
When giving arguments in behalf of his theory of infini-

‘tesimals, C. S. Peirce®* committed the same Bernoullian fal-

lacy by reasoning as follows: (1) The QmQBm_ expansion of an
trrational number has an infinite number of terms: (2) the

infinite decimal expansion has a 52 element at the “in-

finitieth place,” and since the _m:m_‘ is _:_ﬁ_:;m:\ far out” in
‘the decimal expansion, this m_mSmi is Bdm::m_f small or in-
finitesimal in comparison to Hn_szm 3mm3_.§&mm and (3) since

continuity requires _szo:m_m 83553\ !mmc_-uommm infin-

itesimals. Furthermore, the Bmﬁ od of Lmrs_sm irrational
points by nested intervals?® was B_ﬂmn@:mﬁcmt _u< mE wo_m-

* For details on the definition of “measure’. mm: 5:@5 f:am m:A Eo_i mmm ;
- the reader is referred to H. Cramér, immrmﬂmrmi imhr@% m:“ mﬁm:mrmm Slﬁ: |

pp. 22ff., and P. R, Halmos, Measure Theory. jwmd ;

3 H. émi Philosophy of Mathematics and Zmﬂc...m\ mﬁm:nm JwE _.u ﬁ
3 C. Hartshorne and P.'Weiss (eds.), The ﬁo:mﬁmq wmnma of. ﬁ?mlmm m.m:&miu_m_w_
Peirce, Vol. VI (Cambridge: Harvard C:Em_.m:f Press, J@wmu umﬁmmamr I_um

3 R. Courant and H. Robbins, What is Emﬁrmﬂmrn.mw :wwu UU mlm.@
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‘committing the Bernoullian fallacy.?’ _

"We are now concerned with this fallacy, because it is

“always committed when the attempt is made to use the in-
finite divisibility of positive intervals as a basis for deducing
Zeno's metrical paradox and for then denying that.a positive
interval can be an 5:25? divisible extension. ?mn_mm:\ this
kind of deduction of the paradox is attributed to Zeno by
H. D. P. Lee®S and P. Tannery,?? both of whom seem to be
‘unaware of the fallacy involved. _

The following basic assumptions are involved in their

version ot Zeno's arguments:

1) Infinite divisibility guarantees the _uamm_g__s\ odn a com-

_U\mﬂm@\m_ n_‘@nmmm of “infinite division,” i.e., of a noBU_mS_o_m
“infinite sequence of sets of 95203 oumﬂm:o:m .

2) The completion of this process of “infinite 95203 is

_mnr_m<ma g\ the last set of division ovmﬂm:o:m in the sequence
‘and terminates in “‘reaching” a last product of division 5

each om .%m_ Um:mim 327@338_ point of Zero mxﬁm:m_on

16 m a: Bois-Reymond, Die Allgemeine m::r:@:mﬂrm,u:m Vol. I, pp. 58-67.

T Du Bois- mm<303a s fundamental error lies in SUpPOsing Hjm: mrm method
of nested intervals allows and requires the ‘coalescing’” of the end- points of a

“supposedly “‘next-to-the-last’’ interval into.a single pointsuch that this "coalesc-
~ing'’ is-the last-step in an infinite Uﬂemﬂmmfo: of :mima E_mzm_ formations. If

the Bmﬁroq in question did reguire such a mom:mfn_zm %m: 1t éoc_n_ indeed be
as objectionable Togically as is the Bernoullian mo:mmmfo: of the coth or last

“natural.-number. Thisis not the case, however; for while the method does in-

deed make reference to 4 progression o* intervals, it neither allows nor
requires Hrmﬂ the irrational point is the “last” or ;.:r:_ such “‘contracted”’

___EmEm_ ‘tnstead of appealing to ’ nom_mmmm:nm " the 3970& ,.,Umm:_mm the
_._:‘mro:m_ n:m:_i by the mode of E:E:E -of ﬁrm intervals in the entire se-
- quence. Itis therefore a property: of. %m mE:m seqguence E_,__nr n:mw_mm us to

define the E:m_ of point which is _um“nm mmmm:ma to exist. It would seem that
du Bois- mmﬁ:o:a permitted himself to _um H_m_mq by such pictorial language

as ‘‘The .interval .contracts into a Uo_ﬂ

TH D.P rmm 7Zeno of Elea {21, p.23. __

3 P Tannery, “te Concept mn_m::mﬁ:m Qc Continu: Zénon d'tlée et Georg
Cantor,” Revue Philosophigue, XX, No. 2-(1885), pp. 391-392.

**This assumption is to be :rm:mm_ to the mcmvofrez that the printing of
all the ®, digits in the infinite m_mm:jmu ﬂmoﬂmmmﬂm:o: of = would be com-

pleted by printing a /ast a“m: Q ﬁrm a_mm:mm,o: in. ﬂrm_ﬂm_. it, 84 (pp. 222-226

below].
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3) The actual 5:53\ of distinct point-elements constitut-

5m the interval is. mmzmﬂmﬂmm_ by such an m:mwmm Uﬂonmmm of
S_n_:;m division.” _ _ |

4) Since the sets of divisions begin E;: a ?.ﬁ operation

on the total 58_.5_ ‘each has an immediate successor, and

each set except ﬁrm first, ‘has a specific mﬂmammmmm@ﬁ they
Jointly constitute a progression of sets of one or more opera-

:o:m | - - .

By mmmc,ﬁm:@zm (3) and (4), the ““final elements” or points
om the interval to which Zeno’s metrical argument is to be
applied are. mmnr presumed to have been generated by the
last step in a progression of division obmﬁmﬂoa This con-
sequence, however, is absurd. For it is the very essence of
a progression not to have a last term and not to be com-
b_mﬂmr_m in that oﬁ&_nm_ sense! To maintain the self-contradic-
tory: Eonom;_o: that in such an actually infinite aggregate of

‘order type o, there is a “last” set of divisions which ensures

the n@Sm_mS?:Q 3 the process of “infinite division” by
«mmnr_:m a “final” vSQcQ of division is indeed to com-

3: the mmgoc_:m: *m__mﬂ\

Several mo:mmn:mnnmm 3___02 at once:
1) We do not ever “arrive’” by this kind of :_Eﬁ_s_.ﬂm 95-

-ston”” of an. _im_ém_ at :m actual, super-denumerable nfinity
~of mathematical points in the sense of first generating this
actual ::n:.:a\ of ::mx.ﬂm:amt m_mBm:G by “infinite division.”

2) The facts of infinite : e. _:Lm.r:;mu QEG&SQ do not
by Smimm?mm \mmh?ﬂmmm? mEm. rise to the. metrical paradoxes

of Zeno, which may arise if we 13558 an-actual infinity
of point- -elements ab initio. 1t is: tmnmCmm mmﬂ!, S %m@Q rests
‘on this latter postulate m:a not because ‘every _:ﬂmEm_ on-his
number axis is 5:28:\ 1. e., Smmr:;m_ ) LE_m?_m %mﬁ we
must inquire whether the. line as m@:n@ég by

m::!‘ _m _wm-

_. set by the metrical n__ _nc_:mm Uo_:ﬁma out g\ Nm:@ o
 To mroé Hrmﬂ :.:m latter mmmmz_o: is Emi_mm E;TS ﬂrm_
no:ﬂmﬁ of uo_:ﬂ -set theory, we shall now construct on- ‘the

foundations of 15” :Jmo? a treatment of 5:28 QEG&_:Q |
consistent E:r it. | s e

..........

SR
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No clear meaning can be assigned to the ““division’” of a
Jline unless we specify whether we understand by “line” an
entity like a sensed “continuous’” chalk mark on the black-
board or the very differently continuous line of Cantor’s
theory. The “continuity” of the sensed linear expanse con-
~sists essentially in its failure to exhibit visually noticeable
gaps as the eye scans it from one of its extremities to the
other. There are no distinct elements in the sensed ‘‘con-
tinuum’’ of which the seen line presents itself as a structured
_-m_m_m.m__qm gate. By contrast, the contin uity of the Cantorean line
“consists precisely in the complicated structural relatedness
of (point) elements which is mnmn:ﬁ_mo_ 9\ the postulates for
real numbers:*? _

- We cannot always perceive a distinct third gap between
any two visually discernible gaps (sections) in the sensed line.
Thus the visually discernible gaps (sections) in that line do
not constitute a discernibly dense set. This means that any
significant assertion concerning possible  divisibility of a
sensed line must be compatible with the existence of thresh-
olds of perception. Division of the sensed line will mean
the creation of one or more perceptible gaps in it. Con-
trariwise, any attribution of (infinite) “divisibility”” to a Can-
~torean line must be based on the fact that ab initio that line

empty subsets. A positive interval is infini tely divisible in the
sense of permitting the SINGLING OUT of at least one denu-
merable infinity of positive, non- overlapping subintervals.

It follows from our definition of division and from the
properties of finite sets that the division of a finite point-set
of two or more members necessarily effects a reduction in its
cardinality. This reduction is in marked contrast to the be-
“havior of intervals, whose division yields subintervals of the
same cardinality as the original interval. It is of fundamental
importance to be aware in this context that the division of
an interval effects no reduction in the cardinality of the re-
sulting subintervals as compared to that of the original in-
terval. For the unwitting denial of this fact seems to be
implicit (along with the Bernoullian E:mmé in the false sup-
position that the infinite divisibility of an interval assures the
_OUSSWE_E\ of all of its constituent individual points as

“products of infinite division.”” Since the degenerate interval
has no proper non-empty subset, that unique kind of interval
is indivisible. We see that on our theory, (infinite) divisibility
and indivisibility are respectively set- theoretic rather than

~metrical properties. This theory has enabled us to assign a
precise meaning to the indivisibility of a unit point- set by (1)

e R g e g T T detfining division as an operation on sets only and not on
-and its intervals are already “divided” into an actual dense h
_ their elements, (2) defining divisibility of finite sets as the

infinity of point-elements of which the line (interval) is the ‘ _
ormation of proper non-empty subsets of these, m:; (3)

structured aggregate. >m8&5m_$ the Cantorean line can <he
be said to be already actually infinitelv divided. “Division” snowing that the degenerate interval is- _:LE_m_U_m 3 virtue,
w Wm_ _ 0 be a wmm W\ actually in .:Mm_ © ﬁr i ion of visual ~ofitslack of a subset of the required kind.
of the line can therefore mean neither the creation Note that division is a kind of o oimﬁmzaz on mmm_m__,rm.___ |

gaps in it nor the ° mmnmﬁm:@: of %m point- -elements from
one another to make them 9252 Vhat we will mean in
speaking of the :Q:\G__o: ‘of the ( mnﬁoammz line is the sin-
gling out of positive non- o,,_\mlmBmSm subintervals from
(proper or improper) intervals of the line, and in the case of
finite point-sets in general and of %m Qmmm:m_‘mﬂm _Emzm_ in
particular, “division” will mean ﬁrm .waﬂBmwos of bSUmﬂ, non-

point-sets while divisibility and rm_mm mcvm_ﬂ;m:: mEtE_,_.
infinite are respective properties of certain: point- -sets. in. :Jm.____
case of the Cantorean line. And the S_ﬂ_:zm &Sm_!_; !h _____ an.
interval does not make for a kind of “infinite Q_Sm_o: Er.._.______.-
would first generate its super- Qmsc_ﬁma_@? Sm: m@:mﬂ:cm:ﬁ.
D0ints. 42 | e

It is of importance to realize that our m:m:\ma rmm mro :m__”__

** Nevertheless, it is often convenient by way of m.:ﬁrn nmlmaﬁm 3 amm_m-_m__.___
nate the membership of a set through mention of an actual infinity of oumﬁm,_._
tions which, as it were, ““identify”’ the elements of the set in question. =~

*1 See the earlier discussion In _KGQmS mﬁm:mm and Zeno’s Paradoxes]
Chapter 11, end of §2A. .
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how we can assert Mrm “no:oé_sm two Uﬁovom&ozm perfectly
consistently: - _ _

v.:,_m, __Sm.msn_ Bom_ﬂ_<m mim?mum“j:mwm Sm.:.;mc\ QT
visible. . - |

2) The line msa 1om_:<m intervals in itare mmnr a union o*
indivisible Qmmmzmqmﬂm intervals.

We are now !mmmﬂma to deal with the crux m:_n our prob-

lem by using point-set’ ﬂrmo&\ to m.m:;m the mmmo:a horn of

Nm:o S Bmi_mm_ Qn_mBBm

S4. THE m;._ﬂcw___i._m.__ Nmzom |
PARADOX OF EXTENSION

Since a nom::\m S.ﬁm?.m_ is the union of a continuum of

degenerate _Em_ém_m 43 we :Eﬂ now determine what mean-
ing, if any, we can mmm_m: to ° mc:,:j_:m the _m:m%m of all

these &mmm:mﬂmﬁm _3.8_.<m_m ‘with a view to obtaining the

paradoxical value zero for the length of the total interval.
The answer we shall give to S_m problem will not be ad hoc,

since the ﬂmmmD:_:m on which it is based will not depend
cvo: the particular _m:m}m E?nr Zenonians wish us to
“compound” but" _.‘Erm_\ on the fact that the 3:3@9, of

lengths to be “added” is not Qm:c%mﬁzm

Earlier, we Qmﬁm_.a_:ma the length of the union of a finite

:cBWmﬂ of non- o<m1m115m intervals of known lengths on
the basis of these latter lengths. In addition, we made a cor-

_ﬁmmvesa_zm Lmﬁm_‘BSm:o: of the _m:mﬂ: of the union of a de-

‘numerable _1_:5\ of non- ocmﬂ_m@n_:m intervals. If we now
__m:m:‘%ﬂ ﬁo m:ra_SQm an interval into a non-denumerable in-

._._j:_Q of non- @<m1mv§:m intervals, we find that they cannot

be non- Qmmm:mﬂmﬂm For Cantor has mroéz that any collection
of mgm::\m non- Q<m1mvb_:m intervals on a line is at most de-
numerably infinite #* It follows that the degenerate subinter-
vals which are at the focus of our -_3__.m_m_‘_mmﬂ are the 03”__*_”5_3&

** The word “continuum” can designate either the ordering structure of the
real numbers or their cardinality. The context will indicate which of these
meanings is intended or whether both are jointly involved.

** G. Cantor, Gesammelte Abhandlungen, p. 153.
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of non-overlapping subintervals of which there are non-
denumerably many in a given interval. Quite naturally, there-
fore, they create a special situation. The latter is due to the
fact that our theory m_omm not assign any meaning to jﬁo_‘B:
ing the arithmetic sum,” when we are attempting to “sum’’
a super-denumerable infinity of individual numbers (lengths)!
This fact is independent of whether the individual numbers
in such a non-denumerable set of 3c3_umm,. are zeros or finite
cardinal numbers differing from zero.

Consequently, -the theory under m___mm_cmmmo_: ‘cannot be
m_mmgmo_ to be ad hoc for precluding the possibility of “add-
ing,” in Zenonian fashion, the zero lengths of the continuum
ot points which “compose’” the interval (a, b) to obtain zero
as the length of this interval. Though the finite interval (a, b)
s the union of a continuum of degenerate subintervals, we
cannot meaningtully determine its length in our theory by

“adding” the individual zero lengths of the degenerate sub-
intervals. We are here confronted with an instance in which
set-theoretic addition (i.e., forming the union of degenerate
subintervals) is Bmmzimmc_ while- m:%Bm:n mm_a:_o: (of
their lengths) is not. _ -

We have shown that the standard set- %ma_.mznm geometry
here presented does not have the 133@58_ feature of both
assigning the non-zero length b — a to the interval (a, b) and
permitting the inference via- Hrm mmm_:ﬁs\ of lengths that
(a, b) must have zero length on the m?::gm that its points
each have zero length. More U_‘mm_mm_f we have shown that
geometrical theory can m@:!ﬂmi? af firm - the tollowing
four propositions méc:m:mo_,_m_,\ in H_rm moimﬁ Sﬁ ;m E_m.m

of additivity for lengths:

1) The finite interval (a, b) is Hrm. czéj l m m@:rzcc_ﬁ
_.u;h degenerate subintervals. L e T

2) The length of each Qmmm:mqﬁm Amc!_:ﬁm?m_ m .

3) The length of the S,ﬂm._ém_ A S v by the
berb — a. RRefte TN
v The length of an _Em?m_ is zoﬂ m E:n:iz l :rm mmi_-_._.

-
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Our analysis  has manifestly refuted the Zenonian
allegation of inconsistency if Bmam against the standard
set-theoretical geometry. _

The set-theoretical analysis of the various issues raised or
suggested by Zeno's paradoxes of plurality has enabled me -
to give a consistent metrical account of an extended line

segment as an aggregate of unextended pomnts. Thus Zeno's
mathematical paradoxes are avoided in the formal part of
a geometry or chronometry built on Cantorean foundations.
Given the aforementioned additivity rules for length of the
standard mathematical theory, the consistency of the metri-
cal analysis which | have given requires the non-denumera-
_ oility of the infinite point-sets constituting the intervals on
the line. Thus, if any infinite set of rational points were re-
i3 garded as constituting an extended line segment, then the
‘customary mathematical theory under consideration could
assert the length of that merely denumerable point-set to be

greater than zero only at the cost of permitting itself to be-

come self-contradicto ryl For-we saw that in the standard

theory the length of an interval and the measure of-a point-

set are each countably additive. And hence if an interval

(a, b) Umﬂémms the rational points a and b were claimed to

Qu:m_ﬂ only of the denumerable rational points between

‘a2 and b, the ﬁn@__aé_:m logical situation would result: The
f . ._am:c:dmﬂmzcz of this set of points coupled with the count-
i | _m_@_m additivity of ﬂrm: zero lengths would permit the deduc-
. ___:@: %mn ﬁrm _m:m% of (a, b) is (paradoxically) zero. This zero
_ :____‘mm:: is: Qmacm_v_m without any reference at all to the con- |
______,m_.cmnnmm and unit of length furnished by a transported
standard of length, which is extrinsic to (a, b). To emphasize
the independence of this result from a length-standard
extrinsic to (a, b), we can say that the “intrinsic’” length of

a denumerable “interval” of rational points is zero—simi-

larly for the measure of such an “interval.””*®
It might seem that this conclusion concerning the fun-

damental logical importance of non-denumerability coula
be criticized in the following way: The need for non-
denumerably infinite point-sets to avoid metrical contradic-
tions derives from the countable additivity of length and
measure. Without these additivity rules, it would not have
been possible to infer that the length and the measure of an
enumerable point-set turn out to be zero. Consequently,
by omitting these additivity rules, it would presumably have
been possible to assign a finite length to certain enumerable
sets without contradiction and to base physical theory on
a denumerable geometry. Thus it might be argued that a non-
denumerably infinite point-set is only unimportantly indis-
nensable for consistency, since this indispensablity obtains
only _\m_m:,xm_,v\ to a formulation of the theory in ér_nr length
and measure are countably additive.

To assess the merits of this objection, two vo_sa must
firstbe noted: _

1) The rejection of mocimzm additivity for length and
measure would entail incurring the loss of those portions
of mS.:Q.m___d; applied mathematics which depend on the
presence of countable additivity in the foundations. Thus,
tor mxmBU_m one would need to sacrifice some of the mathe- .
“matics of Fourier series m.ua_aﬂ___@.m_ﬁ_._m.r_m_ eigenfunctions of quantum
mechanics as well as of probability theory and statistics. For
countably additive set functions enter into these branches
of applied mathematics _:ozmoﬂ another form via the
Lebesgue integral, the rmrmmmcm measure, or 15 rmwmmmzml_
Stieltjes integral. e _

2) Apart from being ﬁmm_::mm Tﬂ Bm:_nm_ n.:maﬂm:Q 1s
the context of countable mgg:_sﬁf %m super-g Lm::Bm_‘mg:?
9ﬁ _Em?m_m S _srmﬂmsﬂ n %m mmmc:;ﬂo: !n ﬁrm m.%m_,:m.:; |

m_mnmsam on izw mmmcﬁl_@: in ﬂrm .H mo:mm !ﬁ m_jm:.“mmm
science. Those who maintain. 1._3 mctmTLm:: mﬂmr_ infinite

U@EH -sets are o:? gc:m :3_310_.53? mmmmi_m_ E vrﬁ_mmm.

* Cf. also H. Cramér, Mathematical Methods of Statistics (134], p. 25.
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erect the physics of space and time on denumerable foun-
dations. For to substantiate their claim, they must demon-
strate that the implementation of their recommendation is

_ﬂm.m_mm,_u_mm g\ showing the following: At least one kind of
mathematics which avoids Zeno's ‘paradox by Q._m_mm..m_:mm__.s_m_

~with countable additivity in the inte

[72} Chapter 11, §2A, it is quite do ubtful that physicists would
acquiesce in its sacrifice. In this ___mm_m.a_m_m__mm_smﬁ_ __.mmnmmm‘. Zeno's
metrical paradox of extension does pose a chall enge to theo-
rists whose philosophical commitments do not allow them
8_..m§.___ themselves of super-denumerably infinite sets. o
| mﬂG_UO nents of Nm:@ 'S view. m _mrﬁ m:__ | m_____.._.m_c_.m __ ___H..TN.H this
arithmetical rebuttal, which appeals to the fact that arithme-

tic addition is not defined for a super-denumerable infinity

of num bers, is unconvincing on purely geometric grounds,
maintaining that if extension (spac e) 1s to _be composed of
elements, these must themselves be extended. Specifically,

geometers such as Veronese objected®” to Cantor that in

the array of peints on the line, their extensions are all, as it
were, “summed geometrically” Umﬁﬁoﬁmﬁ >:Q | ?@3 __ this
mm@:,_mgn perspective, it is not memm:r_: their View, _H_.o
suppose that even. a mc@m?amscamﬁm!m ..mm_.,_a_”mm”m__m_q Q un-
extended points would be able to sustain a positive interval ,
especially since the Cantorean theory can claim arithmetical
consistency here only because o:rme@mnc::mm ﬁ.r_m.ﬂ,._.o bi g~
ingly surround the meaning of ‘the arithr m.:m “sum’” of a
super-denumerable infini ty of n c:im;.m o o _

s this objection to Cantor mo:m_CmEmw:ri_A:oﬂ Whence

*“ For doubts about the thesis that the warrant. for the mathematical con-
tinuity of space and time is conventional rather than empirical cf.
sophical Problems of Space and Time [139] _u_um.walwum R

*" See E. W. Hobson, The Theory of Functions of a Real Variable, 2nd edition
Voi. | (New York: C ambridge University P‘mmmﬁq@mdﬁmm 56-57 f

my Philo-

.....

. rest of postulating the
ity of space and of time is fully as viable for
empirical science as the standard mathematics used in ac-
tual physical theory.*® But in the light of the _.U_mr_%mm”nm_”_ con-
siderations put forward in favor of ____n__o___:__a_S_UW_,_m. additivity 3_
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does it derive its plausibility? It would seem that it achieves
persuasiveness via a tacit appeal to a pictorial representation
of the points of mathematical physics in which they are
arrayed in the consecutive manner of beads on a string to
form a line. But the properties that any such representation
imaginatively attributes to points are not even allowed, let
alone prescribed, by the formal postulates of geometric
theory. The spuriousness of the difficulties adduced against
the Cantorean conception of the line becomes apparent
upon noting that not only the cardinality of its constituent
points altogether eludes pictorialization but also their dense
ordering: between any two points, there is an infinitude of
others. Thus, in complete contrast to the discrete order of
the beads on a string, no point is immediately adjacent
to any other. The futility, irrelevance, and misleading effect
of attempts to visualize the Cantorean interval structurally
become mh_ubm_\mﬁ from the following: If we were to exclude-
one end-point of an initially closed interval from that inter-
val, the now open “end” of that interval would defy pic-
torialization because of the non-existence of a point next to
the excluded point. _ _

These considerations show that from a genuinely geo-
metric point of view, a physical interpretation of the formal
postulates of geometry cannot be obtained by the inevitably

_ BE_w_mm%:_m__om_n_ﬁ.onmw_“_m__mmao.: o?:Q__SQcEBoSS of the theory.

Instead, we can provide a physical interpretation quite un-
encumbered by the intrusion of the irrelevancies of visual
space, if we associate not the term “point” but the term
“linear continuum of points” of our theory with an appro-
geometry. And, on this interpretation, the ground is then

the modern legatees of Zeno.
It has been overlo oked in s QEQIENZmHmﬁTmﬂﬂTmmmmc mm
posed by Zeno’s paradox of extension are no less important
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philosophically than are those raised by his paradoxes of
motion. Two examples will illustrate that there has been
insufficient appreciation of the philosophical lesson to be
learned from the avoidance of Zeno's paradox of extension
within the framework of the standard mathemat: cal theory.

1) In his discussion of the mathematical theory of motion,
Russell neglected the essential contribution made by the
cardinality and ordinal structure of the lin ear Cantorean
continuum toward the avoidance of Zeno's paradox of ex-
tension. This philosophical neglect of his is clear in the
following passages: _ _

Mathematicians have distinguished different degrees of con-
‘tinuity, and have confined the word ._,_ﬁmos_.g:”_c”o:m,___: for tech-
nical purposes, to series _rmi_:m a certain high degree of
continuity. But for philosophical purposes, all that is im-
portant in continuity is _mzﬂaaucnmm.@_« the lowest degree of

continuity, which is called “‘compactness’ [i.e., denseness].
... What do we mean by saying that the motion is continu-
ous¢ It is not necessary for our purposes to consider the
whole of what the ‘mathematician means by this statement:
‘Only part of what he means is pnilosophically important.
‘One part of what he means is that, if we consider any two
- positions of the speck occupied at any two instants, there will
._M,U..m..@_ﬁ_rmmﬁ _:E“Bm&_mﬂmiem itions occ upied at intermediate in-
stants.. 48 _
We know that the mere existence of the denseness prop-
erty guarantees only a denumerably infinite point-set. But

in the context of the standard mathem atical additivity rules
~for length, a super-denumerably infinite point-set is required
by the demands of metrical consistency. And it could be
- reasonably maintained that the physical relevance of the

_3__mm.m._~_mmhm___ concept of length requires its countable additivity.

Hence in this sense there are philosophical reasons for re-

quiring a higher degree of continuity than is ensured by the
‘denseness property alone.

2) The Greeks certainly were not led to the discovery of

* B. Russell, Our Knowledge of the External World 1100}, pp. 144, 146, my

italics.
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incommensurable magnitudes by merely operationally car-
rying out the iterative transport of measuring sticks.*® And
it is impossible to show by direct physical operations alone

‘that there are hypotenuses whose length cannot be repre-

sented by any rational number. For the limits of experimental

-accuracy and the denseness of the rational points guarantee

that we can never claim anything but a rational result on the
strength of operational accuracy alone. A radical operationist
approach to geometry might therefore suggest that this
science be constructed so as to use only the system of ra-
tional points.” The analysis given in this chapter has aimed

to show that in the absence of a denumerable alternative
to the standard mathematical theory which is demonstrably

viable for the purposes of physics, such an operationist ap-

proach to geometry and to the theoretical measurables of

physics must be rejected on logical grounds. !

** For the historical details, see K. von Fritz, “The Discovery of Incom-

mensurability: by Hippasus of Metapontu m," - _\..,.___3”J”_.wu__m“__.._”m”_@h Kmmrmﬂm:nm XLV

(1945)...

*° Ci. the approximative geometry of J. Hjelmslev. (“Die natiirliche Geo-
metrie,”” Abhandlungen aus dem mathematischen Seminar der Hamburger Uni-

versitdt, Vol. Il [1923], pp. 1ff.) and Weyl's comments on it (H. Weyl, Philosophy

of Mathematics and Natural Science H._w@_..wmx_@l‘_ﬁv

"' In §3 (pp. 336-338), G. J. Massey, “Toward a Clarification of Grinbaum’s
Conception of an Intrinsic Metric,” ‘Philosophy of Science, XXXV {1969), pp.
331-345, offers some criticisms. G*ﬁrm_ﬂ ormulat ion of the thesis of t r_mnrmo tar.
For a discussion of these criticisms, see A. Grij nbaum, ““Reply to Critiques, and

Critical Exposition,” P:h*m3_mﬁ&.k.._.__@%___m.ﬁ.m:nm.‘. xxxc..__”.H.__.__._Gmm_wov forthcoming.
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