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48 1. Techniques of the calculus, 1630-1660

éarlier mathematicians by present mathematical standards, nor to
emphasise the inadequacy of their concepts as compared to modern

ones. On the contrary, a historian of mathematics ought to enter into

the mode of thought of the period under consideration in order to bring
out the development of the mathematical ideas in 1ts Emﬁmnmm context.
Briefly, it may be said that the mathematicians 1n the period preceding
the invention of the calculus blazed the trail for its invention. They
did so by employing heuristic methods, by making the geometry ana-
lytical, and by seeking methods for solving problems of quadratures and
tangents.’ _

1 1 am grateful to Dr. John North of Oxford University for correcting some of my
linguistic mistakes, and to Dr. D. T. Whites:ide of Cambridge University for his valuable

comments on the manuscript.

Chapter 2

Newton, LLeibniz and the Leibnizian
_ Tradition _

H. J. M. Bos

2.1. Introduction and @Bmgﬁﬁw& summary

The starting-point of this chapter is the ¢ invention ’, or rather ‘ inven-

tions’, of the calculus. Both Newton (in 1664-1666) and Leibniz (in

1675) created, independently of each other, an infinitesimal calculus.
Their inventions were very different in concepts and style, but each
contains so much of what we now recognise as essential to the calculus
that the expression ‘ invention of the calculus ’ is justified in both cases.
I go on to consider the subsequent development of the calculus till

about 1780. In this development the Leibnizian type of calculus with

differentials and integrals proved more successful than the Newtonian
fluxional calculus ; therefore I concentrate on the former.

Many great and lesser mathematicians were involved in the develop-
ment of the calculus in the period covered by this chapter. I shall

‘restrict myself to those who played the prime roles in the story: Isaac

Newton, Lucasian professor of mathematics at Cambridge and Ilater

__zmmgw of the Mint in London ; Gottfried Wilhelm Leibniz, historian
and scientist at the ducal court of Hanover ; Jakob.Bernoulli, professor

of mathematics at Basle; his brother Johann Bernoulli, younger by
thirteen years, who after a professorate at Groningen succeeded Jakob
in Basle in 1705 ; Guillaume Frangois Marquis de 'Hépital, a French
nobleman living by private means, and an able mathematician eagerly
interested in the new developments in infinitesimal methods ; and finally
Leonhard Euler, who studied with Johann Bernoulli and then entered
a career 1n the typically 18th-century scientific institutions, the academies.
He was professor at the St. Petersburg (now Leningrad) Academy from
1730 to 1741 and from 1766 till his death ; in the intervening years he .
served the Berlin Academy as professor.

Many of the great ideas that were to make Isaac Newton famous in
mathematics and natural science came to him in the years 1664—1666.
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50 2. Newton, Leibniz and the Leibnizian tradition

¥

At that time he was a graduate student at Trinity College, Cambridge
but for some time during those two years he lived in Lincolnshire,
staying away from Cambridge for fear of the Plague (compare Whiteside
1966a). His ideas on gravity, which he was to work out later and present
to the world in his famous Principia (1687a), date from that period, as
well as his theory of colours, published in the treatise Opticks in 1704,
the binomial series theorem and his fluxional calculus, which we shall
discuss in more detail in section 2.2.

As with gravity and colours, publication of these mathematical ideas

in print was long delayed. Newton did compose several accounts of

his findings in infinitesimal calculus. In October 1666 he summarised
the discoveries of the fruitful two years in a tract on fluxions (1666a) ;
in 1669 he wrote a treatise on infinite series, the De analys: (1669a),
which circulated in manuscript form among members of the Royal
Society ; from 1671 dates a treatise on the method of fluxions and
infinite series (/671a); and in about 1693 he composed a treatise on
the quadrature of curves (16934). However, the 1666 tract and the
treatise on the method of fluxions were not published in his lifetime,
the De analysi was published only in 1711, and the treatise on quadra-
tures of curves in 1704. Meanwhile the Principia of 1687 had brought
for the first time to the general public indications of his methods in
infinitesimal calculus, but these were not enough to show the scope and
power of his mathematical discoveries. |

About the turn of the century a fair amount was published about
Leibniz’s calculus (as we shall see in sections 2.5-2.8 below), and
sutficient information about Newton’s calculus was available to show
‘that both men had found new methods in essentially the same mathe-
matical field. This caused a nasty quarrel over priority, in which feelings
of personal and national pride combined with insufficient insight in the
mathematics involved (at least in the case of the lesser participants in
the debate) to create a distasteful muddle of misunderstandings and
insinuations which has only been cleared up through patient historical
research in the present century. The net result of the historical research
1s that Leibniz found his calculus later than Newton and independently
of him, and that he published it earlier. N

In 1669 Newton had succeeded Isaac Barrow as Lucasian professor,
but 1n the 1690s he grew dissatisfied with his position at Cambridge.
He visited London often, to attend meetings of the Royal Society, of
which he was a fellow from 1672, and to be present at sessions of Parlia-
ment as a member for the Cambridge University constituency. He
moved finally to London in 1696 when he was offered the office
of Warden of the Mint. In 1703 he became president of the Royal
Society, a post which he held till his death. His position as the most
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eminent British scientist was further emphasised by a knighthood in 1705.

By the 1710s so much on the fluxional calculus was in print that the
method was taken up and applied by others. However, this further
development of the Newtonian type of calculus remained restricted to
Great Britain, and it did not achieve much. Reasons of the lack of
success lie 1n the isolation from the Continental developments in analysis
because of the priority dispute, in the lack of mathematicians in Britain
of sutficient stature to really develop Newton’s calculus, and in an over-
stressed loyalty to Newton’s conception of the calculus and to his nota-
tions, which were less versatile than Leibniz’s.

On the Continent Leibniz’s inventions gave rise to a much more
intense development, to whose origins in the 1670s we now - turn.

Before Leibniz entered the service of the house of Hanover in 1676
he had spent four years in Paris on a diplomatic mission, which left
him ample time to pursue his interest in mathematics, the sciences,

‘history, philosophy and many other things. He met many French

philosophers and made two visits to London to the Royal Society. The
Paris years were his formative period. When he arrived in 1672 his
knowledge of mathematics was slight, despite the fact that he had pub-
lished a small tract on combinatorics. He was trained in law at the
university of his home town of Leipzig. In Paris Christiaan Huygens,
who lived there at that time, recognised Leibniz’s mathematical abilities
and guided his first studies in the higher mathematics. Leibniz’s
“growth to mathematical maturity ’ (see. Hofmann 719492) was indeed

impressive ; it led to his discovery of the calculus in 1675, the elabora-

tion of that calculus in the following years and its publication in 1684—

'1636. He contributed to other branches of mathematics as well, for

instance to algebra (solvability of equations, determinants) and to nearly
all other fields of human learning, including religion, politics, history,
physics, mechanics, technology, mathematics, geology, linguistics and
natural history. Many of his results were not immediately published
and became known only gradually, through correspondence (from his
comparative intellectual isolation in Hanover Leibniz corresponded with
over a‘thousand scholars), through publication of short articles in journals
(he was one of the founders of the first scientific journal in Germany,
the Acta eruditorum), and later through the publication of his manu-
scripts, most of which he kept and which are now stored at the Leibniz
archive in Hanover. _

Leibniz’s publication of his calculus in two articles in the Acta of
1684 and 1686 did not provoke great commotion in mathematical
circles.  'The articles were rather short, and they were marred by
misprints and in places deliberately obscure, so that it is in fact surprising
that in the following decade they were understood at all.
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Jakob and Johann Bernoulli studied the articles from 1687, and by
1690 they showed, in articles published in the Acta, that they had
mastered the Leibnizian symbolism and its use. They both started a
correspondence with Leibniz ; the contact between Johann and Leibniz
was especially intensive and productive. After 1690 a stream of articles
in the Acta and in other journals, written by the Bernoullis and Leibniz

and later joined by ’Hopital and others, showed the learned world that

the new calculus was something to be reckoned with.

However, for people of lesser mathematical calibre than the
Bernoullis, it would have been very ditficult actually to learn the calculus
from these articles. What was wanted was a proper textbook of the
calculus. Such a textbook came, though only of the differential calculus,
in 1696 with I'Hoépital’s Analyse des infiniment petits pour intelligence
des lignes courbes (‘ Analysis of infinitely small quantities for the under-
standing of curved lines’ : 1696a). |

The Marquis de ’Hopital was introduced to the calculus by Johann

Bernoulli, who, after finishing his medical studies in 1690, had travelled

to Paris, where he impressed learned circles by a method to determine,
by means of differentials, the curvature of arbitrary curves—a problem
which by the methods of Cartesian analytic geometry was well nigh
unsolvable. ["Hopital was most impressed and asked Bernoulli to give
him, for a good fee, lectures on the new method. Bernoulli accepted
and the lectures were given, in Paris and at the country chateau of the
Marquis. They were written out and both men kept copies. After
about a year Bernoulli left Paris but agreed to continue instructing
Hoépital by letter. In fact the agreement was that Bernoulli, for a
handsome monthly salary, would answer all 'Hopital’s questions con-
cerning mathematics, would send him all his mathematical discoveries

and would give no one else access to these findings (see Bernoulli

Correspondence, 144) ; a most curious and hardly honourable agreement
which put Bernoulli’s originality strictly in 'Hoépital’s service. From
the start Bernoulli did not quite keep to the letter of the contract, and
I’Hépital soon realised that he could not bind a brilliant mathematician
in this way. But when in 1696 I"'Ho6pital published his textbook, and
Bernoulli saw that most of its content was taken from his lectures with
not more than a passing reference to the Marquis’s indebtedness to
Bernoulli, hecould only be angry in silence, being bound by the contract.
. Later, after 'Hopital’s death, Johann Bernoulli did try to get his
part in the Amnalyse acknowledged, but by that time his credibility in
priority questions had become very low because of open quarrels on
such matters with his brother. Jakob Bernoulli was a rather intro-
verted personality, but he was sensifive to praise from members of the
mathematical community and he resented being overshadowed by his
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brillhiant younger brother. Johann, on the other hand, liked his own
success too much to spare his brother’s feelings. So there appeared
insinuating remarks in articles, and later a quarrel exploded and went on

‘quite openly. Johann Bernoulli’s claim to much of the content of the

Analyse was found to be justified only when in 1921 the manuscript of
his Paris lectures on the differential calculus was found (see Johann
Bernoulli 1924a).

However strained their mutual relations, through the writings of
these men the Leibnizian calculus became known and proved its power.
By the first decade of the 18th century other mathematicians devoted

themselves to the new calculus, such as Jakob Hermann, Pierre Varignon,

Niklaus Bernoulli (a nephew) and Daniel Bernoulli (son of Johann).
The family Bernoulli continued to yield famous mathematicians through-
out the 18th century. |
In these early days the new calculus consisted mainly of rather
loosely connected methods, and problems solved by these methods.
'T'he man who reshaped the Leibnizian calculus into a soundly organised
body of mathematical knowledge was Leonhard Euler. Euler was the
central figure of continental mathematics in the middle years of the 18th
century. He published an enormous number of books and articles on
mathematics, mechanics, optics, astronomy, navigation, hydrodynamics,
technical matters such as artillery and mrmwwzm&smu and very many
other topics. He maintained this impressive productivity mmmw:m losing
the sight of one eye in 1735 and WmnoBBm completely blind in 1766.
His position at the academies involved him in many other tasks besides
scientific research, such as advice on the performance of new inventions
as fire-engines and pumps, and on ﬂmnvﬂaomwomm enterprises like canal-
building and the construction of water-works in the park of the royal

‘palace Sans Souci of Prussia’s Frederick the Great.

Euler’s greatest influence on the calculus and on analysis in general
was through his great textbooks, in which he gave analysis a definitive
torm, which it was to keep until well into the 19th century. These
textbooks, written 1n Latin, were : Introductio ad analysin infinitorum
(" Introduction to the analysis of infinites ’ : 1748a), Institutiones calculi
differentialis (* Textbooks on the differential calculus’: 1755b), and
Institutiones calculi integralis (‘ Textbooks on the integral calculus’ :
1768—-1770a). |

These were the men who created the calculus and shaped the
Leibnizian tradition in analysis. In sections 2.3-2.8 I shall describe

~the mathematics involved, but first 1 shall devote the next section to

an overview of the Newtonian calculus.
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2.2. Newton’s fluxional calculus

As was mentioned above, Newton’s main mathematical discoveries in
the infinitesimal calculus date from 1664 to 1666. (For a detailed
account of his achievements in this period, see Newton Papers, vol. 1,
145-154, and Works,, vol. 1, viii-xiii.) Autodidactically he ﬁﬁoﬁ%
acquired adequate knowledge of existing theories in the field, benefitting
especially from reading Descartes’s La géométrie in van Schooten’s
edition with commentaries, and from the works of Wallis, Starting from
these studies he developed in these fruitful two years his fluxional calculus.

In Newton’s discoveries,-complex, deep and many-sided as they are,

2 number of central themes may be distinguished. 'These are: series

expansions, algorithms, the inverse relationship of differentiation and

integration, the conception of variables as.moving in time, and mﬁ doc-
trine of prime and ultimate ratios. Although these ﬂrmgwm are inter-
connectedly present in almost all of his studies in the infinitesimal
calculus, I shall deal with them separately.

Newton valued power-series expansions very highly, because they
provide a means to reduce the analytical formulae of curves to a form
in which all terms simply consist of a constant times a power of the
variable. 'Thus transcendental curves (admitting no algebraic equation),
as well as algebraic curves with complicated equations, can be repre-
sented by much simpler equations (be it with an infinite wﬂgﬂmm of
terms). Newton saw that this has two great mmﬂmamm.mm, w,:.m&u
series expansion makes it possible to apply rules and algorithms which
are defined for simple equations only, to a much wider range of curves.

In particular, the relation

m. :
3\ T el —— 3+H N‘M‘M
M X R.R_I..a 1 X 5 A v

which was known in various forms by the 1660s (see sections 1.10 and

1.11) can be used, in combination with power-series expansions, to

provide series expressions for the quadratures of almost all curves.
Secondly, series expansion provides a ready means for the approxima-
tion and simplification of formulae through the discarding of higher-
order terms—a feature which he used with virtuosity in his applications
of his mathematical methods to physical problems.

Newton’s most famous series expansion is the ¢ binomial theorem
which he found in the winter of 1664-1665 and which states that the
well-known binomial expansion for integer powers 7,

L N (2.2.2)

- n(n—1)
(a+x)*=a"+- a" x+ a

1 1.2

5,
J.:.r.
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can be generalised for fractional powers a=p/q, in which case the righ
hand side of _ _

_ _Am._.avnuan.m.mantwa | Az 1)

1 1.2
1s an infinite series. He found the theorem in connection with the
problem of squaring the circle y =(1—x2)!/2, He compared the formulac
(1=x2)0, (1—a2)2 (1—x2)%2 (1—-x2)32 (1—-x2)42 .. . . The first
third, fifth, . . . formulae involve no root, and therefore the quadrature:
of the corresponding curves are easily found :

e (2.2.3

quadrature of y=(1—x%)0 is x,
quadrature of y=(1—w?)2/% is x — 1«8, (2.2.4
quadrature of y=(1—x?)/2 is x — 2x% 4 Lxb.

On examining the coefficients in these expansions, Newton noted tha
the denominators are the odd numbers 1, 3, 5, 7, ... and that the

‘numerators are, in the successive expansions, {1}, {1, 1}, {1, 2, 1}

{1, 3, 3, 1}, ..., that is, the numbers 1n the  Pascal triangle ’, whict
he knew could be expressed for successive integral values of # as

n(n—1) n(n—1)(n-2) )
1.2 1.2.3 [

-

He then guessed that, by analogy, the same expressions would apply
tor fractional values of n. When n=1 this yields :

quadrature of y=(1—x2)1/2 is

1, n,

148 146 1 47 _8
&Ima 8% 16X 1ox’

R (2.2.5

Em then saw that this procedure of guessing, or ‘ interpolating ’, expan-
sions such as (2.2.5) from the scheme of the series (2.2.4) could be
applied to the equations of the curves as well as to their quadratures,

and 1n this way he found that

Ly

(1 —x2)12= — 3x%— §a® — fexb — et —. .. (2.2.6)

Not satisfied with the reliability of the interpolation procedure, he

checked (2.2.6) in two ways. He showed that the product of the right

hand side of (2.2.6) with itself yields 1 — &2 (that is, all further coefficients
in the product series are zero), and he saw that a common method of
root extraction known as the ‘galley method’, applied formally to
I —x% yields the same series. In the same way as with root extraction,

he used the algorithm of long division to obtain series expansions, for
instance,
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SEND R SV SV S (2.2.7)
14-x

which provided the quadrature of the r%mwluo.mm Y = Sﬁ + x). .Em
also obtained (2.2.7) by assuming that the binomial expansion applied

when n= —1. | |
In the De analysi (1669a), in which these methods of series expan-
sions are explained and used, Newton also provides a general rule to

compute, for a given polynomial equation

Y a;xty =0 _ (2.2.8)
between x and y, the first coefficients of the pertaining SEries
y=Y bt (2.2.9)

(Papers, vol. 2, 222-247). - |
Both in the way that Newton found the binomial .wwmoumn..w and 1n the
application of series expansions in general, the relation, which we now

write as

1
n+1

fam dx= X (2.2.10)
plays an important role. He mentioned this ¢ quadrature of simple
curves ’ at the outset of his De analysi: ‘ RULE w.._ | If ax™™ =1y, then
will (na/(m+n))x@tmin equal the area ABD’ (thid., 206-207; see
figure 2.2.1). Later in that treatise he gave a general procedure (of

which rule 1 is a direct consequence) for finding the relation between

the quadrature of a curve (as 4D in figure N.M.C and 1ts E&wﬁm. Hrw
procedure makes it clear that Newton recognised the inverse w&iaa_..
ship of integration and differentiation (although, of course, he did not use
these terms). He explains his method by means o.,H, an wwmﬁ%um, from
which, however, the generality of the procedure is quite clear. He

I

_——-ll-l-i——ll-lﬂ-l'i""'___'-'_"‘
= :

Figure 2.2.1.
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proceeds as follows (ibid., 242-245). In figure 2.2.1 let area ABD =z,
BD=y and AB=ux;.let further BB=0 and let BK =2 be chosen such

that area BDSfS=area BKHb/=o0v. Consider, as example, the curve
for which _ - _

7 =%x3/2 (2.2.11)
that is (removing roots to get a polynomial equation),
Fi=gx3; _ (2.2.12)
then also _
(& +0v)?=5(x+0)>, C(2.2.13)
from which
2%+ 2200 + 0%0% = §(x® + 3x%0 + 3x0% + 08). (2.2.14)

Now by removing the terms without o, which are equal on both sides
trom (2.2.12), and dividing the remainder by o, we obtain

220+ 0v% = §(3x% 4+ 3x0 + 0?). (2.2.15)

Now Newton takes Bf ° infinitely small ’, in which case, as the figure
suggests, v =y and the terms with o vanish :

23y = $x°. (2.2.16)
Inserting the value of z from (2.2.11), he obtains
y=ux12 _ (2.2.17)

Clearly the procedure is applicable to all polynomial relations between
x and 2. It consists in essence of calculating the derivative (in this
case the y) for any algebraic function 2 of «.

Newton saw clearly that the problem of quadratures was to be
approached in this inverse way: by calculating y for all manner of
algebraic 2, he could find all manner of curves (y, x) which are quadrable.
Indeed, he calculated many such quadrable curves, writing them together
in extensive lists, which are thus nothing less than the first tables of
integrals (compare Papers, vol. 1, 404-411).

The essential element in the foregoing procedure is the substitution
of* small * corresponding increments o and ov for x and =z in the equa-

tion. In studies on the determination of maxima and minima, tangents

and curvature, Newton had extensively made use of this method, and
he had worked out various algorithms for these problems, by which he
could calculate the slope of the tangent or the curvature in any point of

an algebraic curve. (In modern terms, he had developed algorithms

to determine the derivative of any algebraic function.) Later he re-

formulated these algorithms and their proofs in terms of fluents and

tluxions, and we shall come back to them after discussing these concepts.!

' Compare, for instance, Newton 1671a, in Papers, vol. 3, 72-73.
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The terms ¢ fluents ’ and ‘ fluxions ’ indicate Newton’s conception
of variable quantities in analytical geometry : he saw these as * flowing
quantities ’, that is, quantities that change with respect to time. Thus,
when considering the curve of figure 2.2.1, he would conceive the point D
as moving along the curve, while correspondingly the ordinate y, the
abscissa x, the quadrature 2 or any other variable quantity connected
with the curve would increase or decrease, or in general change or
‘flow’. He called these flowing quantities ‘fluents’ (as opposed to
the constant quantities occurring in the figure or in the problem at
hand), and he called their rate of change with respect to time their
“fluxion’. In his earlier researches he indicated fluxions by separate
letters ; in 1671a he introduced the dot-notation, where the fluxions of
the tluents x, y, 2 are %, p, 2 respectively.

It should be remarked that the way in which the fluents vary with
time is arbitrary. Newton often makes, for simplicity, an additional
assumption about the movement of the variables, supposing that one
of the variables, say x, moves uniformly, so that x=1. Such assumptions
can be made because the values of the fluxions themselves are not of
interest but rather their ratio, such as y/x; which gives the slope of the
tangent. By this conception of quantities moving in time Newton
thought himself able to solve the foundational difficulties inherent in
considering ‘ small ’ .corresponding increments of variables, which are
so small that we may discard them, and yet are not equal to zero, as we
want to divide through by them. In his approach to this problem,
his theory of prime and ultimate vatios, which we shall discuss 1n section
2.10, his conception of flowing quantities is essential ; through this
conception he comes very near to a use of limits as foundation of the
calculus.

We now return to the algorithms mentioned above. The corres-
ponding increments of variables, can be expressed in terms of fluxions :
let 0 now be an infinitesimal element of time, then the corresponding
increments of the fluents x, y, 2, ... are %o, yo, 2o, ... respectively.
The ratio of y to & can now be &w\momgws@& in a way which 1s evident
in the following example, which Newton gives himself in 1671a (Papers,
vol. 3, 79-81). Let a curve be given with equation

x3 —ax®+axy —y*=0. (2.2.18)

Substituting x + %0 and y + yo for x and y respectively yields

(x® + 3x0x® + 3%20%x + %30%) — (ax® + 2axox + ax®0?)
+(axy + axoy + ayox + axyo*)
—(y343y0y® + 3y20%y + y30%) =0.  (2.2.19)
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Deleting x3—ax?+axy—y® as equal to zero from (2.2.18), dividing
through by o and discarding the terms in which o is left, yields

3xx? —2axx + axy + ayx — Jyy* =10, (2.2.20)
from which the ratio of y and x is easily obtained :

y_ 3x% — Nma+@

(2.2.21)

x  Jy*—ax

We note that the numerator and the mmsagmzmgw in the result are Amwmﬁ
from a sign) the partial derivatives f, and f, of f(x, y) = x* — ax® + axy — .ﬁ u
the left hand mﬁmm of the equation of the curve. Thus

y_ Is (2.2.22)

Indeed, this relation is implicit in the algorithms which, as we mentioned
before, Newton worked out for problems of tangents, maxima and

‘minima, and curvature. He even at one time introduced special nota-

tions in this connection (see Papers, vol. 1, 289-294), writing & for the
left hand side of the equation of the curve (with the right hand side zero).
He then wrote ‘% and % for what we would write as xf, and yf, res-
pectively (the so-called ‘ homogeneous partial derivatives '), using
further symbols for homogeneous higher-order partial derivatives oc-
curring in connection with curvature. However, the connection of
Newton’s ‘¥ and &- with modern partial derivatives should not be
considered without some qualifications ; he defined them formally as

| ‘modifications of the formula %, and he did not explicitly view % as a

function of two variables which assumes also other values than the zero
in the equation.
With these algorithms, and further finesses which we cannot g0

‘into here, Newton was able to solve what he formulated as one of the

two fundamental problems in infinitesimal calculus : given the tluents
and their relations, to find the fluxions. | _
The second problem is the converse of the first : given the relation

of the fluxions, to find the relation of the fluents. Transposed 1n

modern terminology, this means : given a differential equation, to find
its solution. This of course is a much harder problem than the first.
Newton did more about the problem than formulate it; his integral
tables, m:mmmw mentioned, form a means toward its solution, and he also
studied various individual differential equations (or rather, fluxional
equations).

As we have seen in the previous section, Newton’s calculus was not
to have the influence which Leibniz’s achieved. Therefore, within the
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space and organisation of this chapter, we must leave it at this short
summary of the fluxional calculus and some more remarks on its founda-
tions in section 2.10, turning now our attention to the more successful
rival, the Leibnizian calculus.

2.3. The principal ideas in Leibmz’s discovery

One of the most precious documents of the Leibniz archive at Hanover
is a set of mathematical manuscripts dated 25, 26 and 29 October, and
1 and 11 November, 1675.1 On these sheets Leibniz wrote down his
thoughts, more or less as they came to him, during a study of that most
important problem of 17th-century mathematics : to find methods for

the quadrature of curves. In the course of these studies he came to
‘introduce the symbols *{

3

and ‘d’, to explore the operational rules
which they obey in formulas, and to apply them in translating many

geometrical arguments about the quadrature of curves into symbols and

*

formulas. In short, these manuscripts contain the record of Leibmiz’s

invention > of the calculus. We will discuss them in more detail

below, but first we will mention three principal ideas which guided him
in those fateful studies in 1675. |

The first principal idea was a philosophical one, namely Leibmz’s
idea of a characteristica generalis, a general symbolic language, through
which all processes of reason and argument could be written down in
symbols and formulas ; the symbols would obey certain rules of com-
bination which would guarantee the correctness of the arguments.
This idea guided him in much of his philosophical thinking ; 1t also
explains his great interest in notation and symbols in mathematics and
in general his endeavour to translate mathematical statements and
methods into formulas and algorithms. Thus, in studying the geometry
of curves, he was interested in methods rather than in results, and
especially in ways to transform these methods 1nto algorithms per-
formable with formulas. In short, he was looking for a calculus for
infinitesimal-geometrical problems. |

The second principal idea concerned difference sequences. In

studying sequences «,, d,, 4,, ..., and the pertaining ditference se-
quences b, =a;, — ay, by=a,—a,, by=a,—a,, . .., Leibniz had noted that
bi+b,+...+b,=a;,—a,,,. (2.3.1)

This means that difference sequences are easily summed, an insight
which he put to good use in solving a problem which Huygens suggested

' They are discussed in Hofmann 194%a, and an English translation is given in

Child 1920a.
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to him in 1672: to sum the series 1+3i+ 3+ 4 ++75+..., the de-
nominators being the so-called ‘triangular numbers’ #(r +1)/2. He
found that the terms can be written as differences,

2 2 2

— R 2.3.2
rir+1) r r+1 A )
and hence
" 2 2 :
—_— =2 . 2.3.3
= or(r+1) n+ 1 A )

In particular, the series, when simmed to infinity has sum 2. This
result motivated him to study a whole scheme of related sum and
difference sequences, which he put together in his so-called * harmonic
triangle * (figure 2.3.1), in which the oblique rows are successive dif-
ference sequences, so that their sums can be easily read off from the
scheme (Leibniz Writings, vol. 5, 405 : compare Hofmann 1949, 125
1974a, 20).

1 i 1 _ . N 3
[ 3 80 8 30 &
1 1 1 1 1 1. !
ry: 105 140 i05 ig
Figure 2.3.1.
Leibniz’s ¢ harmonic triangle ’. The numbers in the n-th row are

oo )]

Summations can be read off from the scheme as, for example :

i 1 1 1 1 1

M+m+wﬁ+m@w+ma+. L=
These results were not exactly new, but they did make Leibniz
aware that the forming of difference sequences and of sum sequences
are mutually inverse operations. This principal 1dea became more
significant when he transposed it to geometry. The curve in figure
2.3.2 defines a sequence of equidistant ordinates y. 1If their distance
is 1, the sum of the y’s is an approximation of the quadrature of the curve,
and the difference of two successive y’s yields approximately the slope
of the pertaining tangent. Moreover, the smaller the unit 1 1s chosen,

the better the approximation. Leibniz concluded that if the unit could
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Figure 2.3.2.

be chosen wnfinitely small, the approximations would become exact: in
that case the quadrature would be equal to the sum of the ordinates,
and the slope of the tangent would be equal to the difference of the
ordinates. In this way, he concluded from the reciprocity of summing
and taking differences that the determination of quadratures and tan-
‘gents are also mutually inverse operations. |

Thus Leibmiz’s second principal idea, however vague as it was in
about 1673, suggested already an infinitesimal calculus of sums and
differences of ordinates by which quadratures and tangents could be
determined, and in which these determinations would occur as inverse
processes. The i1dea also made plausible that, just as in sequences the
determination of differences is always possible but the determination
of sums 1s not, so 1n the case of curves the tangents are always easily to
be found, but not so the quadratures. _ |

The third principal 1dea was the use of the  characteristic triangle ’
in transformations of quadratures. In studying the work of Pascal,
Leibniz noted the importance of the small triangle cc’d along the curve
in figure 2.3.3, for it was (approximately) similar to the triangles formed

Figure 2.3.3.

Jl.llllfr
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by ordinate, tangent and sub-tangent, or ordinate, normal and sub-
normal. The configuration occurs in many 17th-century mathematical
works ; Pascal’s use of it concerned the circle. Leibniz saw its general
use in finding relations between quadratures of curves and other quanti-
ties like moments and centres of gravity. For instance, the similarity
of the triangles yields ¢c’ x y=cd xn; hence

Yo' xy=) cd xn. (2.3.4)

The left hand side can be interpreted as the total moment of the curve
arc with respect to the x-axis (the moment of a particle with respect to
an axis is its weight multiplied by its vertical distance to the axis),

whereas: the right hand side can be interpreted as the area formed by

plotting the normals along the x-axis.

o b b
Figure 2.3.4.

As an example of Leibniz’s use of the characteristic triangle, here 1
his derivation of a special transformation of quadratures which he callec
‘ the transmutation’ and which, for good reasons, he valued highly
(compare Hofmann 1949a, 32-35 (1974a, 54-60), and Leibniz Writings
vol. 5, 401—402). In figure 2.3.4 let the curve Occ’C be given, with

characteristic triangle c¢dc’ at ¢. Its quadrature 9=0CB, the sum o
the strips bcc’d’, can also be considered as the sum of the triangle:
Occ’ supplemented by the triangle OBC : _

2=Y AOcc’ + AOBC. (2.3.5
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Now
AOcc’

H !
3cc' x Op
1cd % Os

(since the characteristic triangle c¢dc’ is similar to AOsp)
= 1bqq'b’. (2.3.6)

Now for each ¢ on Occ’C we can find the corresponding ¢ by drawing the
tangent, determining s and taking bg=Os. 'Thus we form a new curve

Ogq’' O, and we have from (2.3.5) :
92 =1 (quadrature O¢q’ Q)+ AOCB. (2.3.7)

This is Leibniz’s transmutation rule which, through the use of the

characteristic triangle, yields a transformation of the quadrature of a
curve into the quadrature of another curve, related to the original curve
through a process of taking tangents. It can be used in those cases
where the quadrature of the new curve is already known, or bears a
known relation to the original quadrature. Leibniz found this for
instance to be the case with the general parabolas and hyperbolas (see
section 1.3), for which the rule gives the quadratures very easily. He

also applied his transmutation rule to the quadrature of the circle, in
which investigation he found his famous arithmetical series for 7 :

—1—34+i-d+5—F+. ... (2.3.8)

I

The success of the transmutation rule also convinced him that the
analytical calculus for problems of quadratures which he was looking
for would have to cover transformations such as this one by appropriate
symbols and rules.

The transmutation rule as Leibniz discovered it in 1673 belongs to
the style of geometrical treatment of problems of quadrature which was
common in the second half of the 17th century. Similar rules and
methods can be found in the works of Huygens, Barrow, Gregory and
others. Barrow's Lectiones geometricae (1670a), for instance, contain a
great number of transformation rules for quadratures which, if trans-
lated from his purely geometrical presentation into the symbolism and
notation of the calculus, appear as various standard alogrithms of the
differential and integral calculus. This has even been used (by J. M.

Child in his 71920a) as an argument to give to Barrow, rather than Newton

or Leibniz, the title of inventor of the calculus. However, this view can
be sustained only when one disregards completely the effect of the
translation of Barrow’s geometrical text into analytical formulas. It
is the very possibility of the analytical expression of methods, and hence

'2.3. The principal ideas in Leibniz’s discovery 6!

the understanding of their logical coherence and generality, which wa
the great advantage of Newton’s and Leibniz’s discoveries.

It 1s appropriate to illustrate this advantage by an example. To d

this, I shall give a translation, with comments, of Leibniz’s transmuta.
tion rule into analytical formulas.

The ordinate 2 of the curve Ogq’'Q 1is, by nommﬁmommmu

X = Ia&\ |
=y ¥ (2.3.9

(note the use of the characteristic triangle). The transmutation rule
states that, for OB =x,),

.w..e dx=1% M 2 dx+ Lx,,. (2.3.10]

Inserting 2z from (2.3.9), we find

.M_%&RHWM %IR..MW dx + $2, ),
=1 .ﬂ%&xlw wﬂ_&@&&xfwx
) ) * dx 5% o
Hence
Fydet [ 02 dyenyy (2.3.11)
0 0 dx e o

so that we recognise the rule as an instance of ‘ integration by parts ’,
Apart from the indication of the limits of integration (0, x,) along

the m;_mwm? the symbolism used above was found by Leibniz in 1675,
The advantages of that symbolism over the geometrical deduction and

‘statement of the rule are evident : the geometrical construction of the

curve Ogq'Q 1s described by a simple formula (2.3.9), and the formalism
carries the proot of the rule with it, as it were. (2.3.11) follows im-
mediately from the rule

d(xy)=x dy+vy dx. (2.3.12)

These advantages, manipulative ease and transparency through the rules

of the symbolism, formed the main factors in the success of Leibniz’s
method over its geometrical predecessors.

But we have anticipated in our story. So we return to October 1675,

when the transmutation rule was already found but not yet the new
symbolism.
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2.4. Leibmiz’s creation of the calculus

In the E_mmﬁmoi@.ﬂm of 25 October-11 November 1675 we have a close
record of studies of Leibniz on the problem of quadratures. We find

him attacking the problem from several angles, one of these being the

use of the Cavalierian symbolism ‘ omn.’ in finding, analytically (that 1s,
by manipulation of formulas) all sorts of relations between quadra-

]

tures. ‘Omn.’ is the abbreviation of ‘ omnes lineae’, ‘all lines’;
in section 1.10 it was represented by the symbol * @ .
A characteristic example of Leibniz’s investigations here is the follow-

ing. In a diagram such as figure 2.4.1 he conceived a sequence of

ult x
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Figure 2.4.1.

ordinates y of the curve OC ; the distance between successive ordinates
is the (infinitely small) unit. The differences of the successive ordinates
are called w. OBC is then equal to the sum of the ordinates y. The
rectangles like @ x x are interpreted as the moments of the differences w
with respect to the axis OD (moment=weight x distance to axis).
Hence the area OCD represents the total moment of the differences w.

OCB is the complement of OCD within the rectangle ODCB, so that
Leibniz finds that ‘ The moments of the differences about a straight
line perpendicular to the axis are equal to the complement of the sum
of the terms’ (Child 1920a, 20). The ‘terms’ are the y. Now w 1s
the difference sequence of the sequence of ordinates y; hence, con-
versely, y is the sum-sequence of the w’s, so that we may eliminate y
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and consider only the sequence w and its sum-sequences, which yields :
‘ and the moments of the terms are equal to the complement of the sum
of the sums’ (¢bid.). Here the ‘terms’ are the w. Leibniz writes
this result in a formula using the symbol ‘ Omn.’ for what he calls
‘asum’. We give the formula as he gave it, and we add an explana-
tion under the accolades ; [ 1s his symbol for equality, ‘ ult. x’ stands
for ultimus x, the last of the x, that 1s, OB, and he uses overlining and

commas where we would use brackets (261d. ) :

omn. xw [ ult. x, omn. w, — omn.omn. w
N L N — N
moments of ~ total sum of the sums

the terms w

of the terms (2.4.1)
e —— J!IIII.II"I\.
complement of the sum of the sums

of the terms

(Compare the form of (2.4.1) with that of (2.3.11).) Immediately he

sees the possibility to obtain from this formula, by various substitutions,
other relations between quadratures. For instance, substitution of

xw=a, w=alx yields

a a
omn. ¢ [ ] ult, x, omn. ——omn. omn. —, | (2.4.2)
X X

which he interprets as an expression of the ‘ sum of the logarithms in
terms of the quadrature of the hyperbola ’ (zbid,. 71). Indeed, omn. a/x
is the quadrature of the hyperbola y=a/x, and this quadrature 1s 2

logarithm, so that omn. omn. a/x is the sum of the logarithms.

We see in these studies an endeavour to deal analytically with prob-
lems of quadrature through appropriate symbols and notations, as well
as a clear recognition and use of the reciprocity relation between dif-
ference and sum sequences. In a manuscript of some days later,
these insights are pushed to a further consequence. Leibniz starts here
from the formula (2.4.1), now written as

omn. x/ [ x omn. /—omn. omn. /. (2.4.3]

He stresses the conception of the sequence of ordinates with infinitely
small distance : ... [is taken to be a term of the progression, and x is
the number which expresses the position or order of the / corresponding
to it ; or x is the ordinal number and [ is the ordered thing ’ (¢bid., 80).
He now notes a rule concerning the dimensions in formulas like (2.4.3),
namely that omn., prefixed to a line, such as /, yields an area (the
quadrature) ; omn., prefixed to an area, like x/, yields a solid, and so on
Such a law of dimensional homogeneity was well-known from the
Cartesian analysis of curves, in which the formulas must consist of
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terms all of the same dimension. (In (2.4.3) all terms are of three
dimensions, in x% + y% = @® all terms are of two dimensions ; an expression
like a?+a is, if dimensionally interpreted, unacceptable, tor it would

express the sum of an area and a line.)
This consideration of dimensional homogeneity seems to have sug-

3

gested to Leibniz to use a single letter instead of the symbol ‘omn. ’,

for he goes on to write : ‘ It will be useful to write { for omn, so that
{ I stands for omn. [ or the sum of all I's” (zbd.). Thus the {-sign is

introduced. {’ is one of the forms of the letter ‘s’ as used in script
(or italics print) in Leibniz’s time: it is the first letter of the word

summa, sum. He immediately writes (2.4.3) in the new formalism :

_ fal=xf1-ff1; O (244)
he notes that
fx=x2/2 and | x*=u°[3, (2.4.5)

and he stresses that these rules.apply for ‘ series in which the differences
of the terms bear to the terms themselves a ratio that is less than any
assigned quantity ’ (¢bid.), that is, series whose differences are infinitely
small. _

Some lines further on we also find the introduction of the symbol *
for differentiating. It occurs in a brilliant argument which may be
rendered as follows: The problem of quadratures is a problem of
summing sequences, for which we have introduced the symbol “§
and for which we want to elaborate a calculus, a set of useful algorithms.
~ Now summing sequences, that is, finding a general expression for | y
for given y, is usually not possible, but it zs always possible to find
an expression for the differences of a given sequence. This finding ot
differences is the reciprocal calculus of the calculus of sums, and there-
fore we may hope to acquire insight in the calculus of sums by working
out the reciprocal calculus of differences. To quote Leibmiz’'s own

words (1bid., 82):

“Given I, and its relation to x, to find { . This is to be obtained
from the contrary calculus, that is to say, suppose that § I=ya.
Let /=ya/d; then just as | will increase, so 4 will diminish the
dimensions. But { means a sum, and 4 a difference. From the

¥

given y, we can always find y/d or /, that 1s, the difference of the y’s.

Thus the ‘d’-symbol (or rather the symbol ‘1/d’) is introduced
Because Leibniz interprets { dimensionally, he has to write the @’
in the denominator ; [ is a line, { / is an area, say ya (note the role of
‘4’ to make it an area), the differences must again be lines, so we must
write ‘ ya/d’. In fact he soon becomes aware that this 1s a notational
disadvantage which is not outweighed by the advantage of dimensional
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interpretability of | and d, so he soon writes ‘ d(ya)’ instead of ‘ ya/d’
and henceforth ré-interprets ‘d’ and ‘|’ as dimensionless symbols.
Nevertheless, the consideration of dimension did guide the decisive
steps of choosing the new symbolism.

In the remainder of the manuscript Leibniz explores his new

symbolism, translates old results into it and investigates the operational

rules for { and d. In these investigations he keeps for some time to the
idea that d(uv) must be equal to du dv, but finally he finds the correct
rule

duv)=udv+v du. (2.4.6)

Another problem is that he still for a long time writes | x, { x2, . .. for
what he is later to write consistently as { x dx, | x®dx, .. . .

A lot of this straightening out of the calculus was still to be done
after 11 November 1675 ; it took Leibniz roughly two years to complete
it. Nevertheless, the manuscripts which we discussed contain the
essential features of the new, the Leibnizian, calculus : the concepts of
the differential and the sum, the symbols 4 and {, their inverse relation

‘and most of the rules for their use in formulas.

et us summarise shortly the main features of these Leibnizian
concepts (compare Bos 1974a, 12-35). 'The-differential of a variable y
is the infinitely small difference of two successive values of y. That 1s,
Leibniz conceives corresponding sequences of variables such as y and x

in figure 2.4.2. The successive terms of these sequences lie infinitely

close. dy is the infinitely small difference of two successive ordinates y,
dx is the infinitely small difference of two successive abscissae x, which,
in this case, is equal to the infinitely small distance of two successive y’s.
A sum (later termed ‘integral’ by the Bernoullis) like {y dx is the

sum of the infinitely small rectangles y xdx. Hence the quadrature

of the curve is equal to | y dx.

dx

=

‘ & - l_.ll.-L - - r ol

X

Figure 2.4.2.
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- Leibniz was rather reluctant to present his new calculus to the general
mathematical public. When he eventually decided to do so, he faced
the problem that his calculus involved infinitely small quantities,
which were not rigorously defined and hence not quite acceptable in
mathematics. He therefore made the radical but rather unfortunate
decision to present a quite different concept of the differential which
was not infinitely small but which satisfied the same rules. Thus in

his first publication of the calculus, the article ‘ A new method for

Figure 2.4.3.

maxima and minima as well as tangents ’ (1684a) in the issue for October
1684 of the Acta, he introduced a fixed finite line-segment (see figure
2.4.3) called dx, and he defined the dy at C as the line-segment satisfying

the proportionality
y:o=dy:dx, (2.4.7)

o being the length of the sub-tangent, or
dy um dsx. (2.4.8)

So defined, dy 1s also a finite line-segment. Leibniz presented the
rules of the calculus for these differentials, and indicated some applica-

tions. In an article published two years later (1686a) he gave some

indications about the meaning and use of the {-symbol. This way of
publication of his new methods was not very favourable for a quick and
fruitful reception 1n the mathematical community. Nevertheless, the
calculus was accepted, as we shall see in the following sections,

2.5. UHopital’s textbook version of the differential calculus

Leibniz’s publications did not offer an easy access to the art of his new
calculus, and neither did the early articles of the Bernoullis. Still, a
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good introduction appeared surprisingly quickly, at least to the dif
ferential calculus, namely ’Hoépital’'s Analyse (1696a).

As a good textbook should, the Analyse starts with definitions, o
variables and their differentials, and with postulates about these dif
ferentials, 'The definition of a differential i1s as follows: ‘ The in
finitely small part whereby a variable quantity is continually increase

or decreased, 1s called the differential of that quantity ’ (ch. 1). Fo

further explanation I'Hoépital refers to a diagram (figure 2.5.1), in which

D

i _
A P p

Figure 2.5.1.

with respect to a curve AMB, the following variables are indicated
abscissa AP=x, ordinate PM=y, chord AM=3s, arc AM=s anc

mcm&mgﬁ.w AMP=29. A second ordinate pm ‘infinitely close’ to PN
1s drawn, and the differentials of the variables are seen to be : dx=Pp

dy =mR, dz=S8m, ds=Mm (the chord Mm and the arc Mm are taker
to comncide) and d2=MPpm. 1I'Hbpital explains that the ‘d’ is :
spectal symbol, used only to denote the differential of the variable
written after 1t. 'The small lines Pp, mR, ... in the figure have to b
considered as ‘infinitely small’. He does not enter into the questior

whether such quantities exist, but he specifies, in the two postulates
how they behave (ibid.) :

Postulate 1. Grant that two quantities, whose difference 1s an
infinitely small quantity, may be used indifferently for each other :
or (which 1s the same thing) that a quantity, which 1s increased or
decreased only by an infinitely smaller quantity, may be considered
as remaining the same.

This means that AP may be considered mﬂ:.m_ to Ap (or x=x-+dx)
MP equal to mp (y=y+dy), and so on.
T'he second postulate claims that a curve may be considered as the
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assemblage of an infinite number of infinitely small straight lines, or
equivalently as a polygon with an infinite number of sides. The first
postulate enables I'Hopital to derive the rules of the calculus, for
instance :

d(xy) = (x -+ dx)(y + dy) — x
=xdy+y dx+dx dy (2.5.1)
=xdy+ydx

“because dx dy 1s a quantity infinitely small, in respect of the other
terms y dx and x dy: for if, for example, you divide y dx and dx dy
by dx, we shall have the quotients y. and dy, the latter of which 1s in-
finitely less than the former ’ (zbid., ch. 1, para. 5). [’"Hopital’s concept
‘ot differential differs somewhat from Leibniz’s. Leibniz’s differentials
are infinitely small differences between successive values of a variable.
I’Hopital does not conceive variables as ranging over a sequence of
infinitely close values, but rather as continually increasing or decreasing ;
the differentials are the infinitely small parts by which they are increased
or decreased.

In the further chapters 'Hopital explains various uses of differentia-

tion in the geometry of curves: determination of tangents, extreme
values and radii of curvature, the study of caustics, envelopes and
various kinds of singularities in curves. For the determination of
tangents he remarks that postulate 2 implies that the infinitesimal part
Mm ot the curve in figure 2.5.2, when prolonged, gives the tangent.

* Figure 2.5.2.

‘Theretfore Rm : RM, or dy : dx, 1s equal to y : PT, so that PT = y(dx/dy),
and the tangent can be constructed once we have determined y dx/dy

(2D2d., ch. 2, para. 9):
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Now by means of the difference of the given equation you can
obtain a value of dx in terms which all contain dy, and if you
multiply by y and divide by dy you will obtain an expression for
the sub-tangent PT entirely in terms of known quantities and free
from differences, which will enable you to draw the required
tangent MT.

To explain this, consider for example the curve ay?=x3. The ° dif-
ference of the equation ’ 1s derived by taking differentials left and right :

2ay dy =3x* dx. (2.5.2)
dx can now be expressed in terms of dy :
2ay
dx =- , 5.3)
¥ = dy o (2.5.3)

Hence
_ydx  2ay Zay’

PT _y LAy
dy  ° 3x% 3x2

(2.5.4)

which provides the construction of the tangent. _

The ° difference of the equation’ i1s a true differential equation,
namely an equation between differentials. I'Hépital considers ex-
pressions like °dy/dx’ actually as quotients of differentials, not as
single symbols for derivatives.

2.6. Johann Bernoulli’s lectures on integration

In 1742, more than fifty years after they were written down, Johann
Bernoulli published his lectures to ’'Ho6pital on ‘ the method of integrals °
in his collected works (Bernoulli 71691a), stating in a footnote that he
omitted his lectures on differential calculus as their contents were now

-accessible to everyone in I’Hopital’s Analyse. His lectures may be

considered as a good summary of the views on integials and their use in
solving problems which were current around 1700.

Bernoulli starts with defining the integral as the inverse of the
differential : the integrals of differentials are those quantities from which
these differentials originate by differentiation. This conception of the
integral—the term, in fact, was introduced by the Bernoulli brothers—
differs from Leibmz’s, who considered 1t as a sum of infinitely small
quantities. Thus, in Leibniz’s view, {y dx=2 means that the sum
of the infinitely small rectangles y xdx equals 2; for Bernoulli it
means that d2=1y dx.

Bernoulli states that the integral of ax? dx is (e¢/(p+ 1))xP*1, and he

=



