WINES

Their
Sensory Evaluation

Maynard A Amerine
Edward B. Rocssler University of Califomia. Davis
W. II. Frecman and Company

Sara Franciseo

II STATISTICAL PROCEDURES

mendampatals

Today it is standard practice in many wineries and wine. distributing companies (and, indeed, throughout the entire food industry) to have regular panel evaluations, not only for quality control of their own products, bat also for comparisons with competing products. The data obtaned in such calnations should be subjected to appropriate statistical analysis. Unfortunately, reported differences among wines often imply significance when there is, in fact, no statistical justification for such a conclusion. It is the purpose of Part II of this book to encourage the use of statistical procedures for the anajysis of sensory clata.

Fundamentals

In Part 1 of this book we have referred to the importance of statistical procedures in providing tests of significance. A discussion of significance of experimental data is usually based on a comparison of the actual results with those that would be obtained if chance alone were the determining factor. Since the interpretation of such tests depends upon the probabilities of the events in question, some understanding of the concept of probability is essential.

Probability. Bnefly, the probability of an event can be defmed as the relative frequency of that event in a large number of trials. From this defnition it is clear that probability is a number between 0 and 1. An event with probability $p=0$ cannot occur, and one with probability $p=1$ is certain to occur. When we say that the probability of getting heads on the toss of a well-balanced coin is $1 / 2$, we mean that one of every two tosses, on the average, will give heads. In other words, it is probable that in a large number of tosses 50% heads and 50% tails will be obtained. This does not mean that in 10 tosses of a coin we will get exactly 5 heads and 5 tails, nor that in 100 tosses we will get exactly 50 heads and 50 tails. However, if we continue tossing the coin indefinitely, the ratio of the number of heads (or tails) to the total number of tosses will ap proach the ralue $1 / 2(0.5)$ ever more closely.

Imagine that a judge is presented with three glasses, two of which contain the same wine and the third a different but very

smilar wine. If he annot detect a difference among the threc, chance alone will determine his ability to pick the odd wine. The probability that he will be successful in doing this is $\%$; the probability that he will fall is $\%$.

In a sequence of trals in each of wheh a certain result may or may not occur, the occurrence of the result is called a success and its nonoccurrence a failure. In a sequence of com tosses, for cxample, getting heads might be designated a success; getting tails would therefore constitute a falmre. This terminology is purely conventional, and the result called success need not necessarity be the desired one. The sum of the probabilities of success and falure for a given result is aluays equal to 1 . Therefore, if the probability of success is p, the probability of failure is $1-p$.

Problems requiring a statistical treatment of events (or results) often ental decisions based on a limited number of observations. the conclusions from which are to apply to a much larger category of events, of which those actually observed are only a part. The larger category about which we wish information is called the population (or miverse) and the actualobservations constitute the sample. If the sample is selected in such a way that all components of the population have an equal chance of being included, the sample is called a random sample. A quantity calculated from a sample, e.g., its standard deviation (see page 130), is called a sample statistic, or simply a statistic. Using a statistic to draw conclusions concerning a population trom a sample of that population is called statistical inference. For such conclusions to be valid the sample must be randomly selected.

Null Hypothesis. The statistical method used in any scientific investigation originates with an investigator's idea, which leads to a tentative hypothesis about the population to be studied. This hypothesis, commonly called the null hypothesis, must be a specific assumption, made about sone statistical measure of the population, with which to compare the experimental results. For example, in the toss of a fair com the null hypothesis, $p=1 / 2$,
states that in a single toss the chances are one in two (50:50) that a head will show.

In a consideration of a judge's ability to differentiate between two wine samples of differing quality, the wull hypothesis, $p=1 / 2$ states that the chances are 50.50 that the pudge will make the correct decision. i.e., it states that he does not have the semsory ability to detect a difference. In the previous example of the judge trying to select the odd wine sample from three, two of which are alike, the null hypothesis, $p=1 / 3$, states that the chances are one in three that the judge will correctly select the odd sample, i.e., it states that he does not lave the sensory ability required for this task. In a comparison of the average quality ratings (scores) of two different wines, the null hypothesis, $\mu_{1}-\mu_{2}=0$, states that the difference between the mean scores μ_{1} and μ_{2} for the two popula tions is zero, i.e., there are no quality differences between the two wine populations from which the samples were selected.

Statistical methods allow us to predict whether or not a null hypothesis is likely to be true or false. A statistical test, which is a decision rule or procedure, is then applied to the observed results to decide whether they agree sufficiently well with the expected values to support the null hypothesis or to suggest its rejection in favor of an altemative hypothesis. An alternative to the nul hypothesis ($p=1 / 2$) of no sensory ability to differentiate between two wine samples might be $p>1 / 2$. This altemative hypothesis states that in a single trial the probability of the judge's making the correct decision is greater than $1 / 2$, i.e., it states that he does have some sensory ability to perform the task. If this hypothesis is true, the chances of his being successful in detecting a difference are therefore better than 50:50. Analogously, an alternative to the null hypothesis of $p=1 / 2$ might be $p=1 / 3$. The null hypothesis is usually designated H_{0} and the alternative hypothesis H_{1}

An alternative hypothesis is called a one-sided altemative and the corresponding test a one-talled test if the hypothesis specifies a value on only one side of the valuc stated in the null hypothesis. The alternative hypotheses $p>1 / 2$ and $p>1 / 3$ are therefore both
onesided. If. houtever, an altemative hypothesis specifies values on both skes of the alte stated in the null hypothesis, it is called a two-sided attematne and the corresponding test is called a twotalled test. Onc-and two-tailed tests are illustrated in Figures 1 and 2. We will discuss these illustrations in detail shorty

Types of Errors. Decision rules are seldon infalible and way lead to rejection of a true hypothesis, which is called an crror of the frst kind, or a type 1 encr. Or they may lead to acceptance of a false hypothesis, which is called an error of the second kind, or a type 11 error. The probabilities of occurrence of these crors can be minmized but never reduced to zero.

Experimental results rarely lead to obvous conclusions, and the question immediately arises as to the diveling line between acceptance and rejection of the null hypothesis. By a commonk accepted convention the mull hypothesis is rejected it, ander the

mgure ;
One-laled test, sce level

Flotikl 2
Twotaled test. Selevel.

reglancy distributions

hypothesis, the result observed in the sample would occur by chance alone at most once in 20 trals ($P \leq 0.05$). Such a result is called significant. If, under the null hypothesis and by chance alone, the result would occur at most once in 100 trials ($P \leq 0.01$). it is called highly significant, and if it would occur at most once in 1000 trials ($\mathrm{P} \leq 0.001$), it is called sery highly significant. These are known as the $5 \%, 1 \%$, and 0.1% levels of significane, respectively. It should be understood, however, that, although we accept or reject the null hypothesis on the basis of these levels, we have not proved or disproved it, because there is ahws the possibinty, however remote, that the difference between the observed result and that expected under the mull hypothesis could have arisen by chance alone. At the 5% level of significance ($P=0.05$) we wrongly reject the mull hypothesis 5% of the time; at the 1% level ($P=0.01$) we wrongly reject it 1% of the time; and at the 0.1% level $(P=0.001)$ we wrongly reject it 0.1% of the time, or once every 1000 times, on the average.

Frequency Distributions

For large sets of data comprising many values of a given variable, some form of summarization is needed so that the man features can be readily observed. The simplest method of arranging the data is to divide the whole range of values into a number of equal intervals called class intervals and to count the number of values falling within each such interval. The number of values within a lass interval is called the class frequency, or simply the frequency. This set of frequencies is called a frequency distribution. If the actual frequencies are expressed as fractions of the total frequency, the resulting distribution is called a probability distribution. Before considering specific testing procedures we will briefy discuss the usefulness of two frequency distributions-the nomal

[^0]

Normal Distribution. The nomal distribution can be used to estimate the probabilities of chance results in a judge's performance, but omly in a task in which there are only two possible cents, such as piching the odd sample corrctly (success) or picking it incorrectiy (tailure). Probabilities in the distrbution are represented by arcas under the normal probability curve, which is boll-shaped and symmetrical about the mean, μ of the distribu fion. Because the alue of any nomally distributed variable must fall somewhere, i.e. because the probability of its falling anywhere is 1 , the totalarea (probability) under the curve is equal to 1 . Tables for the nomal probability curve hist the values of the areas (probabilities) corrcsponding to various values of z, the normal deviate, which is defned as the devation $X-\mu$ neasured in terms of the standard deviation, o:

$$
\begin{equation*}
z=\frac{X-\mu}{\sigma} \tag{01}
\end{equation*}
$$

Here X is the value of any normally distributed variable with mean a, and σ, the standard deviation, is a measure of the dispersion (scatter) in the distribution of X-vhues about the mean. The smaller the whe of o, the more tightly the X values cluster about the mean; approwimately z of them fall between $\mu-\sigma$ and $\mu+\sigma$. The probability of a chace rcsult is a maximum inidpoint on the curve) when $z=0$, i.c., when $X=\mu$.
In sensory evaluations in which the wull hypothesis, H_{0}, specifes the probability p of success (correct choice) in a single trial, the mean μ (expected number of successes) in n trials is equal
to $n p$, and the standar de to $n p$, and the standard devation o can be shown to be $\sqrt{n p(-p)}$. The observed number X of successes is obtained by comting and is therefore always a whole number (integer). When it is used in frading areds under the normal probability curve-which is continuous and therefore pormits fractional as well as integral values $-\lambda$, if at is greater than μ, must be reduced by the nmmer 0.5. This is called a correction for continuity. For

Table 1. Valaes of z and x^{2} at threc levels of significance.

Levir in memperach	Difermis (O, ! - - A1! F		PRr.FRKWNOT (TWO-TMAH)	
	$=$	x^{2}	$=$	x :
5\% (significant	± 1.64	2.71	1.96	3.84
1% (highty significant)	± 2.33	3.47	2.58	6.64
01\% (very highly signficant)	± 309	0.55	3.30	10.82

example, 5 or more on a counting scale is recorded as 4.5 or more on a continnous scale. Then the nomal devate becomes

$$
\begin{equation*}
z=\frac{(X-0.5)-\mu}{\sigma}=\frac{(X-0.5)-n p}{\sqrt{n p(1-p)}} \tag{2}
\end{equation*}
$$

Appendix A gives areas under the nomal probability curve to the right of positive values of z or to the left of the corresponding negative values of z. Because the curve is symmetrical the two areas are the same, so only the area to the right of a positive value of z is shown in the graph there and only positive values of z are listed. For a one-tailed test the notation $\div z_{.16}$ is used to denote that value of z to the right of which 5% of the total area hes, as shown in Figure 1. Analogously, - $z_{\text {a }}$ wonld be the value to the left of which 5% of the area lies. From Table I we see that, in a onetailed test, $+z_{.155}=+1.64$ and $-z_{01}=-2.33$. In a two-tailed test the notation $z_{.0}$, denotes that value of z that defines two tail areas, each of which contains 2.5% of the total area, as shown in Figure 2. From Table 1 we see that, in a two-taled test, $z_{05}=1.96$ and $z_{01}=2.58$.

Example 1. A judge is presented with three glasses of wine. Two glasses contain the same wine and the third glass a different but similar wine. He is asked to pick the odd sample. What is the probability that, by chance alone, he will be successfui 9 or more times in 18 trials?

The formulation of the question $(9 \leq X \leq 18)$ implies that we need to find the area under the nomal probability curve betreen the z values corresponding to $X=9$ and $A=18$. Be-

FREQUENCY DIStributions

The distribution of x^{2} depends upon the number of independent differences, called degrees of freedom (df). Since the sum of all the expected frequencies, $\sum e$, must agree with the sum of all the observed frequencics. $\Sigma 0$, the sum of all the differences is $\sum(0-e)=0$. Therefore only $k-1$ of the expected values are independent, and the remaing one can be calculated from the rolation $\sum(0-e)=0$. The number of degrees of freedom is thersfore, $k-1$. Values of χ^{2} for vanous combinations of probabilities and numbers of degrees of frectom are given in Appendix B.

Imagine a series of n trials, with X obsenved successes and $n-X$ fallures. If the null hypothesis specifies the probability of success in a single trial as p, and therefore that of failure as $1-p$, x^{2} takes the form

$$
\begin{align*}
x^{2} & =\frac{(\mathrm{X}-n p)-0.5)^{2}}{n p}+\frac{1(n-X)-n(1-p)-0.5)^{2}}{n(1-p)} \\
& =(\mathrm{X}-n p)-0.5)^{2}(1 / n p+1 / n(1-p)) \\
& =\frac{(\mathrm{X}-n p)-0.5)^{2}}{n p(1-p)} \tag{t}
\end{align*}
$$

where $X-n p$ is the absolute value of the expression $X-n p$, i.e., it is the value withont regard to algebraic sign (it can therefore be interpreted as a positive quantity). As in the normal distribution, the number -0.5 is a correction for continuty because the χ^{2} curve is also continuous, whereas the observed frequencies can only be integers. This correction is applicable only for 1 df , which holds for the examples we have been considering, because $k=2$ (success and failure). In this case the onetailed probability associated with a value of χ^{2} equals the twotaled probability associated with the corresponding value of z, the normal deviate.

Example 2. Use χ^{2} to estimate the probability in Example 1.

$$
\begin{aligned}
x^{2} & =\frac{(\mid X-n p-0.5)^{2}}{n p(1-p)}=\frac{(19-6 \mid-0.5)^{2}}{18(1 / 3)(2)}=\frac{(2.5)^{2}}{4} \\
& =1.56
\end{aligned}
$$

From Appendix B we see that, for $1 d f, \chi^{2}=1.56$ is wery close to the value 1.64 , which corresponds to a probability of 0.20 .

stathstcai procedures

Since this equals the total probability for both tails of the normal distribution, the one-tailed probability is close to 0.10, which agrees with the result obtained in Example 1.

The applications and appropiateness of the statistical tems and reasoning outlined above will be crident in the discussions and examples that follow

Difference Tests

Diffrence tests are used in the comparison of two wines to craluate objectively the differences between them, to test the ability of judges to nake comparisons of chemical constituents or sensory clanacteristics, and, on the basis of preference ratings, to establish quality differences.

Senson evaluations are usually conducted by a small laboratory pancl of fudges or by members of the consuming public. The number of panelists in laboratory testing varies with conditions, such as the number of qualifed persons avalable. Many investigators recommend panels of 5 to 10 members; we agree. Large panels are customary in preference tests in which the only critenon for the sclection of members is representativeness of some consumer population. Laboratory panels can suggest probable consumer reactions but any resulting conclusions relating to the consuming public should be very carcfully evaluated. We view such conclusions with considerable skepticism because the relation of the laboratory panel to the consuning public is generally not clear.

The results of a sensory evaluation have little meaning unless the panelists have demonstrated the ability to detect differences that can be detected, and to do so consistently. These differences are often very subtle and difficult to detect. Obviously the panel should consist of individuals with the greatest sensitivity and experience. When no difference can be established, the question of preference is obviously imelevant.

Althongh in the usual statistical analysis the assumptions and test procedures used for one judge making n comparisons are the same as those used for n judges making a single comparison each

mpference tests

these two experiments are not the same. In all difference tests it is custonary to assume an monanging fundamental probability. Tests based on this assumption are more reliable when performed by one "competent" iudge, but even then their validity is doubtful owing to the possibility of fatigue and the effects of varions psychologieal factors see page 50, The probiems encountered in panel or consumer tests are cene more complicated because of varying theshoids and differing directions of preference. To conform to basic assumptions in detecting possible differences it is clealy imporiant to use the best judge or judges avalable.

It has alrcady been pointed out (page 62) that in all trials in wine coaluations the samples should be presented as uniformt. as possible - at the same temperature, in identical glasses, but in different orders. Three testing procedures in common use are the paired-sample, duo-trio, and triangle tests.

Paired-Sample Test. In this test the judge is presented with two samples and asked to identify the one with the greater intensity of a specific constituent or well-defned characteristic (sec Figure 3) Or, he may be asked to express a preference. This procedure may be carried out by one judge several times or by a pancl of judges one or more times. Based on the null hypothesis of no difference, about one-half of the responses should be correct by chance alone, i.e.. $H_{n}: p=1 / 2$.

Type of test c.g., swectness of wine

Faste both samples. Circle the sweeter of the two.

phgief 3
Record form for pared-sample test

statismea prockdures

The paired-sample test is uscful not only in quality control and preference evaluation but also in the selection of judges. The presence of more or less of some constituent in one of the samples may already be known to the cxpermenter, or it can be determined by a specific chemical test. If, in several trats, the judge makes the differentiation contectly signifiontly more often than would be expected by chance $(p=1 / 2)$, the expermenter can infer that the pudge does possess some ability to detect that particular constituent. In this case a one-taled test is applicable and the altemative hypothesis is $H_{3}: p>1 / 2$ because the pudge shows ability only if he can make the correct choice more often than he could by guessing. The one-taled region of significance in the nomal distribution is shown in Figure + for the 5 , level. Calcu lated ralues of z that exceed $+1.6+$, the value at the 5 . leve $\left(+z_{n-}\right)$, indicate a significant differentration ability

In preference testing the judge is asked to express a preference between tho whes. A statistically signifiont preponderance of selections of one wine over the other then indicates a significant preference difference and, therefore (assuming the judge's tastes are conventional, a significant, obiective quality difference. Since either wine may be the preferred one (i.e., since the selection of a given whe wery infrequently is just as meaningful as its selection very frequently, the altenative hypothesis here is $H_{1}: p \neq 1 / 2$ and the twotalled test is applicable. The two-taled region of significance in the nomal distribution is shown in Figure 5 for the 5\%

manke +
One-Lalled lest, 5s level. $H_{6}: 1-H_{3}: \eta=1$

Manas:
Ino-talled test. in level. $H_{0}: p=1 / 2 . H_{1}: p \neq \frac{1}{2}$.
level. Calculated values of z that numerically exceed 1.96, the value at the 5% level $\left(z_{0}\right)$, indicate a significant preference or quality difference.

Duo-Trio Test. This test is a modified pared-sample test, in which a reference sample is identified and presented first, followed by two coded samples, one of which is identical to the reference sample. The judge is asked to decide which of the two coded samples is the same as the reference sample isee Figure 6). As in the paired-sample test, the null hypothesis is $H_{0}: p=1 / 2$ because, by chance alone. the judge will pick the correct sample abont one-

Type of test
(e.g. comparison of old and new blends)

1 iste or sinell (or both) the reference sample and the two coded sample Decide which of the latter is the same as the reference sample.

Name
 Date \qquad
meune 6
Record fom for duotrio test.

smammal procedurfs

balf of the tine. Since this is a difference test. it is one-tailed. It in especially applicable in quality control, in wrich a sample is to be compared with a reference standard

Triangle Test. In the triangle test the judge is presented with three samples, two of which are identical. He is asked to select the odd sample see Figure 7). The probability of a correct choice by chance alonc is one-third, i.e., the null hypothesis is $H_{0}: p=1 / 3$. The tect is easy to administer and is alon useful in quality control.

The duotro and triangle procedures should be used only for difference (one-tailed) testing, as described above, because it has been shown that having two samples of one wine and one sample of the other tends to cause bias in preference judgments.

For various numbers of trials in the paired-smple and duo-trio tests, Appendix C gives the minimum numbers of correct judgments required to establish a significant difference fone-tailed test) at the $5 \%, 1 \%$ and 0.1% levels. Also given, for the pairedsample test, are the minmum numbers of agreeing judgments required to establish a significant preference (two-talled test). Appendix D gives andogous information for establishing a significant difference in the tnangle test. Values for $X>\mu$ that are not in the tables can be fomd by solving the following equations:

Type of test

ieg. difference in wine flavord by two agents)
I whte on smell or both all thee samples. Deede which of the the es make the other two

Dat \qquad
monke ${ }^{-}$
Reard fom for iriangle lest.

difference tests

$$
X=\frac{n+z \sqrt{n}+1}{2} \text { or } X=\frac{n+\sqrt{n \chi^{2}}+1}{2}
$$

for $p=1 / 2$ (one- or two-tailed)

and

for $p=1 /$ (one-talled only)
In n trals (number of judges or judgnents) the minimum number of correct or agreeing judgments required for significance is the next greater integer above the value of X obtaned from the appropriatc equation above, for the value of z or χ^{2} found in Table 1. Values of z for other levels of significance can be found in Ap. pendix A, and values of X^{2} in Appendix B

Example 3. In a paired-sample test a judge is given two glasses containing a dy white table wine, to one of which a small amount of ethyl acetate has been added. Fourteen times in 20 trials he correctly identifies the adulterated sample. From Appendix C we see that in 20 trials at least 35 correct judgments are required for significance at the 5% level. On the basis of this test, therefore, the judge is not able to detect the ethyl acetate that has been added.

Example 4. In a paired-sample test 50 judges are asked to express their preference for one of two wines. Thirty-six preferences are expressed for wine S_{1} and $1+$ for wine S_{2}. From Appendix C we see that the minmum number of agreeing judgments required for siguificance at the 5% level in a twotailed test is 33 , and at the 1% level, 35 . On the basis of this test, wine S_{1} is judged better than wine S_{2} at both the 5% (significant) and 1% (highly significant levels. Therefore the chances of being wrong in rejecting the null hypothesis $\left(H_{0}\right.$ $p=1 / 2$) of there being no difference between the wines are less than one in 100.

statistical proclederes

Example 5. In a duo trio test of 24 trials, how many correct identifications of the dentical samples are required for signif. cance at the 5% and 1% levels? From Appendix C we see that, for a one-taled test, at least 17 and 19 correct udentifications are required for significance at the 5% and 1% levels, respectively.

Example 6. In a triangle test a judge correctly identifies the odd sample in 13 of 23 trials. He therefore indicates ability at the 5% level of significance because, from Appendix D , at least 13 correct identifications are required at this level.

Fxample 7. In a paired-sample preference test with $6+$ trials, how many agreeng judgments are required for significance at the 5 \% level? Since $n=6+$ does not appear in Appendix C, we use Equation 5 to determine X, the number of agreeing iudg. ments requirect.

$$
X=\frac{6 t+1.96 \sqrt{6 t}+1}{2}=\frac{64+1.96(8)+1}{2}=403
$$

Therefore at least 41 agreeing judgments are required at the 5% level of significance.

In testing procedures entailing two or more wines, differences anong wine samples can be establisiced by quantitative measures obtained from score cards or other means of scoring, by ranking, or by hedonic rating. We will discuss cach of these procedures, but first we must examinc in more detal the procedures for selecting judges.

Sequential Procedure for Selection of Judges

When pared sample, duo-trio, and triangle tests are used in the selection of judges, a predetermined number of trials is cm ployed and those candidates showing the greatest ability are selected. Questions have been raised regarding the mumber of trials needed and the qualit: of the pulges thus obtamed. Often too
sequential procedure for selfetion of judges
little testing is done because of limitations of time and suitable experimental material.

Sequential procedures can provide considerable inprovement over other selection procedures and can save valuable time and materials. In a sequential testing plan the number of trials is not predetermmed, and the decision to termmate the experiment at any time depends upon the previons results. The sequential procedure described here is a modification of that developed by Wald (1947) and adapted by Bradley (1953)

Let p be the true proportion of correct decisions that would be obtaned in paired sample. duo-trio, or trangle tests if the potential judge were to continue testing indefinitely. This is a measure of his inherent ability in the test in question. Values of p_{0} and p_{1} are specified such that indivicuals having abilities equal to or greater than p_{1} will be acecpted as pudges, and those with abilities equal to or less than p_{1} will be rejected. The testing plan depends upon the values assigned to p_{0} and p_{1} and also upon the values of α and β. the probabilities of committing errors of the first and second kind, respectively (α is the probability of rejecting a qualified judge and β is the probability of accepting an unqualified onel. Potential judges are accepted or rejected on the basis of their performance with respect to a chart of two parallel straight lines L_{0} and L_{1}. which are uniquely determined by the assigned values of p_{0}, p_{1}, α, and β. These lines divide the plane into three regions: one of acceptance, one of rejection, and one of indecision, as shown in Figure 8.

The equations of the lines are

$$
\begin{equation*}
L_{0}: d_{0}=a_{0}+b n \text { and } L_{1}: d_{1}=a_{1}+b n \tag{7}
\end{equation*}
$$

where n is the total number of trials, d (either one) is the accumulated number of correct decisions, b is the common slope of the two lines, and a_{0} and a_{1} are the intercepts on the vertical axis. The common slope b of L_{0} and L_{1} is

$$
\begin{equation*}
b=k_{2} /\left(k_{1}+k_{2}\right) \tag{18}
\end{equation*}
$$

and the intercepts a_{0} and a_{1} are

$$
\begin{equation*}
a_{0}=-e_{1} /\left(k_{1}+k_{2}\right) \text { and } a_{1}=e_{2} /\left(k_{1}+k_{2}\right) \tag{9}
\end{equation*}
$$

mount 8
Sequential test chath.

$$
\begin{aligned}
& \text { wher } \\
& \qquad \begin{array}{l}
k_{1}=\log \left(p_{1} / p_{0}\right)=\log p_{1}-\log p_{0} \\
k_{2}=\log \left[\left(1-p_{0}\right) /\left(1-p_{1}\right)\right]=\log \left(1-p_{0}\right)-\log \left(1-p_{1}\right) \\
e_{1}=\log [(1-\beta) / \alpha]=\log (1-\beta)-\log \alpha \\
\left.e_{2}=\log (1-\alpha) / \beta\right)=\log (1-\alpha)-\log \beta
\end{array}
\end{aligned}
$$

After each trial the experimenter plots the point (d, n), representing the accumulated number of correct decisions vertical scale versus the total mubler of trals horizontal scale). Each plotted point is therefore one n mit to the nght of the preceding point, and is cither one d unt above the preceding point or on the same horizontal lexel, depending on whether the decision was correct or incorrect, respectively. Testing continues until a plotted point falls on or above the upper line. resulting in acceptance of the candidate as a fudge or on or below the lower line, resulting in his rejection.

The number of trials required depends upon the ability of the potental indge and on the assigned values of $p_{0}-p_{1}, \alpha$, and β, whid are determined by the expermenter. Before committing
himself to a given set of values the experimenter may wish to know the average number of trials that can be expected for that set of values. The number of trials required can be decreased by increasing the difference between p_{0} and p_{1} or by increasing α or β, or both. If competent judges are in good supply the experimenter may wish to increase a and aceept a greater risk of rejecting a competent judge.

The average number of trials to be expected, \bar{n}, can be obtained from anong four calculated values comesponding to special values of p, as shown below.
$p=0$ (no ability)

$$
\bar{n}_{0}=e_{1} / k_{2}
$$

$p=p_{6}$ (maximum unacceptable ability)

$$
\bar{n}_{p_{0}}=\frac{(1-\beta) e_{1}-\beta e_{2}}{\left(1-p_{0}\right) k_{2}-p_{0} k_{1}}
$$

$p=p_{1}$ (minimum acceptable ability)

$$
\bar{n}_{p_{1}}=\frac{(1-\alpha) e_{2}-\alpha e_{1}}{p_{1} k_{1}-\left(1-p_{1}\right) k_{2}}
$$

$p=1$ (intallible ability)

$$
\bar{n}_{1}=e_{2} / k_{1}
$$

The average number of trials to be expected is the largest of these four values.

Example 8 . Suppose that a triangle test is used as a basis for selecting judges in a sequential procedure. For the assigned values $p_{0}=0.45, p_{1}=0.70, \alpha=0.10$, and $\beta=0.05$, find the average number of trials to be expected. (Competent judges are in good supply, so α is being taken as 0.10 .

We begin by finding the values of k and e :

$$
\begin{aligned}
& k_{1}=\log (0.70 / 0.45)=0.1919 \\
& k_{2}=\log (0.55 / 0.30)=0.2632 \\
& e_{1}=\log (0.95 / 0.10)=0.9777 \\
& e_{2}=\log (0.90 / 0.05)=1.2533
\end{aligned}
$$

We then use these vaues in the fone cquations for \bar{n} :

$$
\begin{aligned}
& \bar{n}_{\mathrm{i}}=0.977 /(0.2622=3.7 \\
& \bar{n}_{p_{\mathrm{s}}}=\frac{(0.95)(0.9777)-(0.05)(1.2553)}{(0.55)(0.2632)-(0.45)(0.1919)}=\frac{0.866}{0.058}=14.9 \\
& \bar{n}_{p_{1}}=\frac{(0.90)(1.253)-(0.10)(0.9777)}{(0.70)(0.1919)-0.30)(0.2632)}=\frac{1.032}{0.055}=18.8 \\
& \bar{n}_{1}=1.2553 / 0.1919=6.5
\end{aligned}
$$

We see that the test will reque an average of 19 trials. The mmber required for each candidate will, of course, depend upon his inherent ability, p.

Example 9 . Using the values of k and e calculated in Example
8 , Find the equations of the lines L_{4}, and L_{1}
From Equations 8 and 9 we obtain

$$
\begin{aligned}
b & =0.2632 / 0.4551=0.578 \\
a_{0} & =-0.9777 / 0.4551=-2.15 \\
u_{1} & =1.253 / 0.551=2.76
\end{aligned}
$$

The equations of the lines are therefore

$$
\begin{array}{ll}
L_{11}: & d_{0}=-2.15+0.578 n \\
L_{1}: & d_{1}=2.76+0.57 \mathrm{Bn}
\end{array}
$$

Example 10. The pefformances of two candidates for wine judge, A and B, are shown m the table below, where a 1 indi cates a correct decision and a 0 an incorrect decision. Evahate their performances with respect to the lines L_{0} and L_{1} and dotemine the number of trials after which each candidate is either accepted or rejected.

No. of trals $n: 123+5678910111213141516171810$ Decisoms A: 1010001011000

The pefomances of A and B are shown in Figure 9 , in which the number of corect decisions is plotted against the

mevR1: 9
Performances of candidates A and B in asequentidi test procedure.
total number of trials. By the criteria specified for the sequential procedure, we see that A is rejected as a judge after 13 trials and B is accepted after 19 trials.

Scoring

With experienced judges scoring is usually the most acceptable procedure for establishing differences among wine samples because it measures the magnitudes of the differences. The scoring scale to be used must be clearly defined and understood by all the judges. A 9 -point quality scale (see Figure 10) has been widely used. It is an example of an ordinal scale (Stone et al., 1974). The judge
\qquad
Check the approprize atality

Wedhent - Very good . Gued - Holougood, abowt - Fan - Below tar, abowe - Pum - Verypoor Fxtromeh par

\qquad
\qquad
HGure 10
A 9pont quality scale.
chocks the appropriate quality, which is comerted to a mumerical soore: I for extremely poor to 9 for excellent

In the evaluation of overall wine quality, score cards usually provide for 10 pomt or 20 -point rating seales. On the basis of a 20 point scale the following groupings are suggested: (a) superior (17-20 points)-wines of Sue quality, well-balanced, no pronownced defects, and free of excess "young" character; (b) standard (13 - 16 points) - the wincs of commerce (including ordinary bottled wines), not deficient in any important characteristic, but lacking proper age or the balance required for fine quality: (c) below siondard (9-12 ponts) - wines lacking sone required characteristic or suffering from some malady wimes with off odors or of taste or high volatile acidity); (d) unacceptable, or spoiled (1-8 points; - wines so spoled that they must be discarded. See pages 130-161 for methods of analyzing the results.

Davis Score Card. The originai, socalled Davis score card (see Figure 1l) was developed be the staff of the Departnent of Vitionture and Enology at the University of Calfonma, Davis. as a method of rating the lagge number of experinental wines that were produced there. Later it was used as a traming devec for students who were hegining their educatom in the sonsory evalua on of whes. This sore card overmphasized some factors

Wine sample

Charaterst\%	Weight
Appearace	-
Culor	2
Aroma med bmupet	4
Vhatile achive	2
Totalaodit:	-
Swectiess	1
Boch,	!
Hator	-
Bitemes	\because
Cencral qualts	2

Ratings: suferior (17-20); stardurd (13-16): below standard (9-12); unacceptable, or spoiled (-8)

Name \qquad Date \qquad
MGURE 11
The Davis score card. The meanings specifed for the total scores serve to assure relative uniformity of the pudges interpretations of these terms.
(acescence, for example) and underemphasized others (aroma and bonquet being the worst examples). Anong its other defects was that it did not differentiate between bitterness and astringency (page 42). The concepts of flavor (now generally regarded as odor perceived via the mouth) and general cuality were not clearly defned. It also became apparent that the definitions of superior ($17-20$ points), standard ($13-16$ points), below standard (9-12 points), and unacceptable, or spoiled (1-8 points) varied from judge to judge, depending on the judge's experience and the severity of his judgment

Despite these deficiencies the Davis score card has been suc cessfully used by highly skilled judges at Davis without serious difficulty. In fact, the staft has leamed to use it with remarkable precision of the results and their interpretation. As a pedagogical tool it has proved useful for both regularly enrolled students and those taking adult wine-appreciation courses. The above-mentioned problems are always explained to the students. A modified Davis score card is shown in Figure 12

 matcepteble or spoled 1 - B

Nane \qquad)ate \qquad
figare 12
A modified Davis score cord.

In recent years the Davis score card has been used (or misused) by professional and amateur groups with less success. Most of the difficults arises fron varying interpretations of the score card. Some amateurs assign high scores to all the wines, whereas professomals asially spread their scores over a larger range. Disaster occurs when anateurs and professionals judge together and the average scores for the individual wines are used to rank the wines. Thus camot be done safely without appropnate statistical analysis of the data, and the latter is hardly ever done.

One solution to this problem would be to hold one or more practice sessions of the group and discuss the meaning of the scores. Another possible solution would be to use the shorter, 10 -point score card devised by Ough and Baker (1961). Iowever, bunching of the scores in the 8 -to-10-pont range would then be even more ante than bunching in the 17 -to-20 point range of the 20 -point scale.

We recomend using only professional judges if the obicctive is to rank a group of whes im order of merit by their scores. The hidges. thongh expericuced, will still require one or more practice

scorive

sessions in which their scores are compared. Although it may em barrass a judge to be found scoring too high or too low, it is essential that this be revealed if the average scores are to be memingful. Aho, judges may have very different standards of excellence for different types of wines With samples before them the judges should discuss the various types of wines to be evaluated. Questions such as the following must be discussed: What range of color will be tolerated in a given type of wine? What is the typical tarictal aroma? How much fermentation bouquet can be allowed especially in young white wines)? Are dry and sweet wises to be pudged together? How much credit should be given for bottle bouquet (as in a well-aged red wine? $\mathrm{W} /$ ith respect to these and similar questions the differences between superior and standard wines must be clear to ail the judges.

Other Score Cards. A 20 -point score card that a voids the detailed evaluation required for the Davis score ard is shown in Figure 13 and appears very useful. Two noteworthy features of this score card are the provision for listing specific defects and the specification of the minimum acceptable number of points for each of the three categories. One disadvantage is the heavy weight given to taste in evaluating the wine.

Klonk (1972) has used the following. very similar 20 -point score card: color, 2: appearance, 2; odor, 4; taste, 12. Again the taste contribution to quality seems to us to be greatly overemphasized. In competitions in which this scale was used, the gold medal was given to wines that scored 19.6 to 20 , the silver medal to wines scoring 18.6 to 19.5 , and the bronze medal to wines scoring 17.6 to 18.5. For example, Nlenk gives data for 8 wines, each of which was judged by 4 judges. The averages were 20 and 19.9 (gold medal), 19.0, 19.0, and 18.8 (silver medall, and 18.5, 18.5, and 17.8 (bronze medal). Statistical analysis of Klenk's data shows that differences of less than 0.51 between average scores were not significant. Therefore the silver-medal wines and the first two bronze-medal wines were not significantly different from one another.

Klenk has also used a 40 point score card scaled as follows: color, 3; appearance, 3; odor, 10; taste, 24. We believe that this is too

 monimum mall three categores. Unless it also exceeds the minmmu in at beast one categor, it canot moet the overal mmmon of 9 ponts.

HGURE 13

A 20 pont score card.
(Comtesy of loseph E. Seagran © Sons, Fac.)

sCorinc:

grat a range for nomal use becanse judges camoot differentiate 40 lovels of quality.

The typical 20 point score card is well suited for the evaluation of still table wines, but it requeres modification for other types of wines. For example, the persistence of the sparkle in spathong wines must be taken into account; either favor or general quality may be moked as a means of subtrachag points for lack of per sistence. In dessert wines except muscatels) aroma is not a promment charactenstic; greater emphasis must be given to bouquet.

Another score card that has been used in internationaljudgings is that of the Office Intemational de la Vigne et du Vin, in Paris (see Figure 14). The perfect score is 0 . Defects are marked on an increasing scale for each category as a multiplying factor $(\times 0, \times 1$, $\times 4, \times 9, \times 16$. As with all score cards, some degrec of fanmarity with the temm is necessary. Odor intensity and odor quality seam clear enough. The diffarence between taste intensity and taste quality is by no means so clear. 'Taste intensity would seem to pertain to the positive aspects of swectness, soumess, and bitterness, u., the ideal intensity of each. Taste quality would then pertain to the balance (or lack of it) in the overall taste character.

Chamaterstic	Weight	Multiplymg factor for increasing deffects				
		$\times 16$	$\times 1$	$\times 4$	$\times 4$	$\times 15$
Appearance	1	---	--	-	-	--
Cotor	1	-	--	--	---	
Odor internts	1	---	--	-	-	
Odor çuelit:	2	-	-	--	-	-
Taste intensity	2	--	--	-	-	
Taste quilty	;	-	-	- -	-	-
Harmosy or balance	2	---	--	-	-	-

Muituplyng factors catatanding (0); very good 11. good 4; acceptable (9); unaceptable (16).

Name \qquad Datc
hare 14
Score card of the Office Intemational de la Vigne et du Vin, Paris

The Associazione Enotecnici Italiani (1975), in Milan, has proposed a 100 point score card (see Figure 15, This systen will probably work as well as most others, althongh it has several disadvantages: a 100 point scale is too large, the words finesse and harmony are diffenlt to define in sensory terms, and old red whes and most dessert wines would score low in freshess. It does have the advantage, however, of forcing the judge to quantify his judgmonts, from bad to excellent, on several wine attributes.

When other evaluation methods are used, such as ranking or bedonic rating, it is stili nocessary that the pudges understand the problems cliscussed above and that they agree as closely as possible on the definitions and interpretations of the terms to be used in descrbing the wines

motre 15
Sore card adapted from that pubished bo the Associazionc Euotecnici Italian (19:5), Milun

Rank the 6 smples morder of nocrassine cthanol content.

 \qquad

migurf 16

Ranking wines in order of percent ethanol.

Ranking

In the ranking procedure the pudges are asked to arrange a series of two or more samples in increasing or decreasing order with respect either to the intensity of a particular characteristic or to their own preference (see Figure 16). The test is simple to admin ister, may not require highly skilled judges, and makes possible a distribution-free analysis. It does, however, disregard degrees of difference among the wines and is therefore usually less sensitive to the effects of such differences than tests bascd on scoring. See pages 161-167 for methods of analyzing the results.

Hedonic Rating

I Iedonic rating is what the name implies: quality evaluation based on the pleasure that the judge finds in the wine. The evalua tions are usually made on 5 - to 9 point balanced scales ranging from extreme disapproval to extreme approval, such as the one shown in Figure 10. The results are converted to numerical scores, which are then treated by rank analysis or the analysis of variance (these topics are discussed later). The procedure is used by both experts and untrained consumers, but is more appropriate for the latter group.

What do the results of hedonic rating mean? Are they merely a subjective preference opinion? If so, averaging the scores is not very meangeful. However, if they denote a degree of quality relative to some theoretical, agreed-apon standard of perfection, then the arerage score may have ohjective value In fact, if tested by appropiate statistical procedures, the differnces anong the average scores of the varions wines may reveal significant differences among the wines, or they may indicate no significant differences. See page $1+5-147$ for methods of analyzing the resuits.

Tests of Significance of Scores

Regardless of the type of evaluation procedure used, the overal results for each winc in the test are usually expressed in terms of a single numerical seore. These scores can be analyzed statistically to detemine if significant differences exist. Although the usual statistical procedures presuppose a nomal distribution of scores. moderate deviations from such a distribution do not invalidate the results. Studies have shown that the distribution of scores in most tests is only moderately asymmetrical, and the usual test procedures are vahid. Sonetimes the scores fit a bimodal distribution fone with two peaks mits graph, which means that we may be dealing with two types of fudges who differ significantly in their quality standards or preferences. It may then be desirable to separate and compare the scores for the two groups making up the bimodal distribution

Variability. Tests of significance entailing means (averages) of sores are bascd on estimates of the variability of that population of which the scores constitute a random sample (see page 102). The onstomarily used estimates of the vabibity are the variance, v, of a sample distribution of scores and its square root, $s=\sqrt{ }$. The latter represents what is called the best estimate of the standard devation of the population, as determined from a sample of that

tests of sicnificance of scores

population.* The variance is thus a measure of the dispersion of the observed values of a variable (here, the score) about the mean value. If $X_{1}, X_{2}, X_{3}, \cdots, X_{n}$ represent n sample scores, their mean value is

$$
\begin{equation*}
\bar{X}=\frac{X_{1}+X_{2}+X_{3}+\cdots+X_{n}}{n}=\frac{\sum X}{n} \tag{10}
\end{equation*}
$$

where, in analogy with our previous wage, the Geeck letter Σ denotes the sum of the n yalues of X.

The best estimate of the variace of the population of which the n scores are a random sample is defined as

$$
\begin{equation*}
y=s^{2}=\frac{\sum(X-\bar{X})^{2}}{n-1}=\frac{\sum X^{2}-\left(\sum X\right)^{2 / n}}{n-1}=\frac{\sum X^{2}-C}{n-1} \tag{11}
\end{equation*}
$$

where $C=\left(\sum X\right)^{2} / n$ is a correction term that converts the sum of the squares of the deviations of the scores from $0 . \Sigma(X-0)^{2}$ $=\sum X^{2}$, into the sum of the squares of the deriations of the scores from their mean value, $\bar{X}, \Sigma(X-\bar{X})^{2}$. It is customary to refer to the numerator of the expression for v as the sum of squares (SS) and to the denominator as the corresponding number of degrees of freedom (df). The latter is $n-1$ because $\sum(X-\bar{X})=0$ and therefore only $n-1$ of the differences $X-\bar{X}$ are independent. A sun of squares divided by the number of degrees of freedom gives an unbiased estimate of the variauce of the population.

Example 11. From the 8 sample scores $X=8,7,6,5,5,6,8$, and 7 , verify numerically that $\sum(X-\bar{X})=0$ and that $\sum(\mathrm{X}-\overline{\mathrm{X}})^{2}=\sum \mathrm{X}^{2}-\mathrm{C}$. Find the value of s, the best estimate of the standard deviation of the population from which the sample was selected.

Partial calculations are shown in Table 2 , from which we see immediately that $\sum(X-\bar{X})=0$. Using the other sums shown there, we obtain $C=152)^{2} / 8=338$, so
*Note that the standard deviation of the popmation is denoted bo a see page toe, the the best estimate of it, based on the actual sampls, is denoted by s.

Table 2. Partial calculations for the scomes given m Example 11.

	X	$\lambda \bar{\lambda}$	$\mathrm{A}-\mathrm{B}^{2}$	X
	8	1.5	2.25	64
	7	0.5	0.25	49
	6	-0.5	0.25	36
	5	-1.5	2.25	25
	5	--1.5	2.25	25
	6	-0.5	0.25	36
	8	1.5	2.25	04
	$\overline{7}$	0.5	0.25	49
Total	52	0	10.00	348
Mean	6.5			

$$
\Sigma X^{2}-C=348-338=10=\Sigma(X-\bar{X})^{2}
$$

From Equation 11 we obtam $y=10 / 7=1.43$, so

$$
s=\sqrt{9}=\sqrt{1.43}=1.20
$$

We will encounter calculations of this kind again (see page 137) in the discussion of anatysus of varance.

The t-Distribution

When the standard deviation of the population is known, the nomal distribution is applicable in "either-or" decision problems, such as: is there a significant difference between these two mean seores or not? If σ is umkown and must be estimated from a sample by calculatings, the sampling distribution of the resulting statistic (see page 130) is no longer a normal one. The appropriate test statistic in this case is denoted by t. Like χ^{2}, thas a different distribution for each whe of the number of degrees of freedom. When the population is normal, the t-curve is symmetrical and bell-shaped, but non-nomal. As the size of the sample from which

The t-distriburion

s is mathated moreases, the t-curve approadies the nommat curve as a limiting form.
\backslash alues of t for various combinations of probabilities and num bers of degrees of freedom are given in Appendix. E. The probabilities shown at the top of the table pertain to a twotaled test, and those shown at the botton of the table are the conesponding values for a one-tailed test.

Two Sets of Scores (Unpaired). Statistical tests for significant difference are based on the null hypothesis that no difference exists. This assumption apphes both to population mean scores and standard derations. The statistic t is usetul in determining significance in such tests. If, for two sets of scores, no score from one set corresponds to any particular sore from the other set as. e.g., in the sets of scores obtaned for one wine by two different panels of judges, the scores are independent, or umpaired, and the t-distribution fumishes the appropriate test of significance for comparing the mean scores of the two sets. Suppose there are n_{1} X-scores and n_{2} Y-scores (n_{1} may or may not equal n_{2}); t is then clefined as

$$
\begin{gathered}
t=\frac{\bar{X}-\bar{Y}}{\sqrt{\left(\frac{n_{1}+n_{2}}{n_{1} n_{2}}\right)\left[\frac{\sum X^{2}+\sum Y^{2}-\left(\sum X\right)^{2} / n_{1}-\sum \sum Y^{2} / n_{2}}{n_{1}+n_{2}-2}\right]}} \\
\left(d f=n_{1}+n_{2}-2\right)
\end{gathered}
$$

The significance of the result is determined by comparing the calculated value of t with the two-talled values given in Appendix E, for the appropriate number of degrees of freedom. Calculated values of t that exceed those in the table indicate significant dif ferences between the mean scores \bar{X} and \bar{Y}, at the level of significance in question. In other words, such values of t lead to rejection of the null hypothesis of no difference.

Example 12. A panel of 6 judges scores a wine on a 10 point scale (see X-scores in Table 3) and a second panel of 8 judges scores the same wine, using the same scale (see Y-scores in

Table 3. A wine scored by two pancls of judges (sce Example 12).

	Paxal		X^{2}	Y^{2}
	8	Y		
	9	8	81	$6+$
	6	7	$6+$	49
	7	6	19	36
	9	$\overline{5}$	81	35
	7	5	+9	25
	8	6	$6+$	36
		8		64
		7		49
Total	48	52	38.8	348
Mcan	8.0	6.5		

Table 3i. Is there a significant difference at the 5 level between the nean scores for the two panels?

Using the total and mean values obtamed in Table 3, we solve Equation 12 :

$$
\begin{aligned}
t & =\frac{80-6.5}{\sqrt{\left[\frac{6+8}{6(8)}\right]\left[\frac{388+348-(48)^{2} / 6-(52)^{2 / 8}}{6+8-2}\right.}} \\
& =\frac{1.5}{\sqrt{0.340}}=\frac{1.5}{0.583}=2.57
\end{aligned}
$$

From Appendix E we see that $t_{.0}(12$ df $)=2.179$. Since the calculated value $t=2.57$ is greater than the tabular value 2.179 , the null hypothesis of no difference must be rejected, and the analysis indicates that the mean scores for the two panels are significantly different. The two panels are therefore not using the same standards of judgment in evaluating the wine.

Two Sets of Scores (Paired). If one judge compares the same two wines on several different occassions, or if each member of a panel

the t-distribution

of judges compares the same two wines, a set of paired scores results. For the n paired scores X and Y, the differences $D=X-Y$ are then computed, and the mean difference $\bar{D}=\Sigma D / n$ between the mean scores $\overline{\mathrm{X}}$ and $\overline{\mathrm{Y}}$ is tested with the t-distribution. The expression for t in this case is
$t=\frac{\bar{D}}{\left(\frac{1}{n}\right) \sqrt{\frac{n \sum D^{2}-\left(\sum D\right)^{2}}{n-1}}}=\frac{\sum D}{\sqrt{\frac{n \sum D^{2}-\left(\sum D\right)^{2}}{n-1}}}$

$$
\begin{equation*}
(d f=n-1) \tag{13}
\end{equation*}
$$

Agan the calculated value of t is compared with the twotailed values given in Appendix E to determine the significance of the result.

Example 13. A pancl of 7 judges scores two wines on a 20 point scale, as shown in Table 4. Is there a siguificant difference at the 5% level between the mean scores of the wines?

Using the total values for D and D^{2} obtained in Table + , we solve Equation 13:

Table 4. Two wines socoed by 7 judges (see Example 13)

Fuber	Wine		D	D^{*}
	X	Y		
A	15	$1+$	i	1
B	12	$1+$	-2	4
C	14	15	-1	1
D	$1{ }^{-7}$	14	3	9
E	11	11	0	0
F	16	14	2	$+$
C	15	13	2	4
Tota	100	95	5	23
Mean	14.3	13.6	0.714	

$$
t=\frac{5}{\sqrt{\frac{7\left(23-(5)^{2}\right.}{7-1}}}=-\frac{5}{\sqrt{22.7}}=\frac{5}{4.6}=1.05
$$

From Appendx E we see that $t_{\text {of }}(6 d f)=2.447$. Since the calculated whe $t=1.05$ is less than the tabular value 2.44^{7}, there is no reason to reject the null hypothesis. Therefore the mean soores of the wines are not siguificantly different, i.e. this pand of judges camot distinguish between the two wines.

Analysis of Variance

Scores for Several Wines. In conparing the mean scores of more Han two wines, the t-distribution is no longer appropriate. Instead, the statistical technique called analysis of variance is used to determine whether there are significant differences in the mean scores of the wines. The analysis of variance is essentially an arithmetic process for partitioning a total sum of squares page 131) into components associated with various sources of variation.

To analvze a number, say k, of wines, for each of which n scores are awalable, a so-ciled oneway, or single-classification, analysis of variance is appropriate. Such a classification is shown in Table 5 ,

Table 3 . One way analysis of vanance.

	Hine					
	1	2	3	.	k	
	$x_{1:}$	X_{2}	$\mathrm{X}_{3 i}$		$\lambda_{k i}$	
	$X_{i 2}$	X_{22}	X_{3}	. .	$X_{k 2}$	
	X_{1}	X_{2}	X:	-	$\mathrm{X}_{k}=$	
	\vdots	\vdots		$X_{i j}$		
	K_{60}	$x_{2 n}$	λ_{i}		$X_{k n}$	
Total Mean	$\begin{aligned} & W_{i}^{\prime} \\ & X_{1} \end{aligned}$	$\frac{X_{2}}{X_{2}}$	$\begin{aligned} & \mathrm{X}_{*}^{*} \\ & \overline{\mathrm{X}}_{3} \end{aligned}$		$\frac{\Pi_{k}}{X_{k}}$	Grand total $G=E W$ lotalno. of scores $=k n$

andiysis of variance

where X_{i}, represents the j th score of the i-th wine sample if can have any value from 1 to k, and j can have any walue from I to n,

The variance of this classification of soores can be estimated in three ways, from three sums of squares two of which include a relevant correction tem, C) and their corresponding numbers of degrees of frecdom. The three sums of squates in question are the total sum of squares, the sample sum of squares (i.e., the sum of squares between means of wine samples), and the error sum of squares (i.e., the sum of squares within samples). The comection tem and the three sums of squares ate defned as follows:

$$
\begin{align*}
& C=(\text { Grand total })^{2} / k n=G^{2} / k n \tag{14}\\
& \operatorname{Total} S S=\sum_{i j} X_{i j}^{2}-C \quad(d f=k n-1) \tag{15}\\
& \text { Sample } S S=n\left(\sum_{i} X_{i}^{2}-G^{2} / k l^{2}\right) \\
& =W W_{2}^{2}+W_{2}^{2}+\cdots+W_{i}^{2} / n-C \\
& =\sum_{i} W_{i}^{2} / n-C \quad(d f=k-1) \tag{6}\\
& +\left(\sum_{j} X_{k j}^{2}-W_{k}^{2} / n\right) \\
& =\sum_{i j} X_{i j}^{2}-\sum_{i} W_{i}^{2} / n \quad[d f=k(n-1)] \quad(17) \\
& \text { From these relations it follows that } \\
& \text { Total } S S=\text { Sample } S S+\text { Error } S S \tag{18}\\
& \text { and } \\
& \text { Total } d f=\text { Sample } d f+\text { Error } d f \tag{19}\\
& \text { The within-sample sum of squares (Error } S S \text {) is usually calcu- } \\
& \text { lated by subtracting the between-sample sum of squares (Sample } \\
& S S \text {) from the total sum of squares (Total SS). The value of the } \\
& \text { error mean square (the error variance) is given by } v=\text { Error } S S \text { / } \\
& \text { Error df. It is often referred to as a generalized error term because } \\
& \text { it is a measure of the error variation contributed by all the samples }
\end{align*}
$$

statistical procedure

It is independeni of any differences that might exist among the sample means. The value of the sample mean square Sample SS/Sample df), on the other hand, is a measure of the differences among the sample means; the larger the differences, the larger the sample mean square. The null hypothesis is that the samples come from k populations, all having the same means a aud the same sarances v. This implies cquality among the sample means

The sample mean square and the error mean square provido two mdependent estimates of the common population sariance They are compared by calculating their ratio. Which is a statistic called H

$$
\begin{equation*}
F=\frac{\text { Sample mean square }}{\text { Error mean square }} \tag{201}
\end{equation*}
$$

This calculated F-value is compared with the tabular alues given in Appendixes F-1, F-2, or F-3. The F-distribution is represented by double-entry tables with respect to the degrees of freedom. The degrees of freedon for the momerator are shown in the top rows of the tables, and the degrees of freedon for the denominator are shown in the left-hand colums. Calculated F-values that exceed the tabular values for the appropriate valucs of of indicate rejection of the null hypothesis of no differences among the sample means, i.e. there are signicant differences. If the sample mean square is less than the error mean square, $F<1$ and the result is nonsignificant by defmeni. The null hypothesis is then accepted without the nced to refer to the table: A significant Fvalue implies that the evidence is sufficiently strong to indicate differences anong the sample means, but it does not reveal which of the various differences among the sample means may be statistically significant. To determine these differences is the next step in the analysis.

Least Significant Difference, One procedure for determining which wine-sample means are significantly different, following the demonstration of a significant F value, is to calculate the least significont difference (LSD), which is the smallest difference that coud exist between two significatly diferent sample means:

analysis of variance

$$
\begin{equation*}
L S D=t_{a} \sqrt{2 v / n} \quad\{d f=k(n-1)\} \tag{21}
\end{equation*}
$$

where t_{α} is the t-value, with $k(n-1)$ degrees of freedom, at the significance level α, v is the crror varance, and n is the number of scores on which each mean is based. For the difference between two means to be significant at the level of significance selected, the observed difference must exceed the LSD-value.

Example 14. Given 5 scores for each of + wines, as shown in Table 6 , analyze the results for significance.

$$
\begin{align*}
C & =(142)^{2} / 20=1008.2 \\
\text { Total } S S & =(10)^{2}+(8)^{2}+\cdots+(6)^{2}-C \\
& =1066-1008.2=57.8 \quad(19 \mathrm{df}) \\
\text { Wine } S S & =\frac{(42)^{2}+(43)^{2}+(31)^{2}+(26)^{2}}{5}-C \\
& =5250 / 5-1008.2=41.8 \tag{3df}\\
\text { Erros } S S & =57.8-41.8=16.0 \quad(3 d f) \tag{16df}
\end{align*}
$$

It in customary to combine these results into a so-called analysis of variance table, as shown in Table 7 , where $m s=S S / d t$ is the mean square the error m is also denoted by n as we have seen above).

Table 6. Five sores for each of 4 wincs (see Example 1t).

	Wixs				
	S;	S_{2}	S_{3}	S	
	10	9	7	6	
	8	9	5	5	
	7	8	6	4	
	9	10	7	5	
	8	7	6	6	
Total	42	$t 3$	31	26	$G=1+2$
Mean	$8 .+$	8.6	6.2	52	

Table 7. Analysis of varime table for the data mexample 14.

Sourct.	ss	d	ms	F	$F_{i=}$	$F_{\text {" }}$	$1{ }_{\text {F }}$
Total	57.8	19					
Winces	+1.6	3	13.9	$1398=$	$3.2+$	5.29	960
Emar	160	16	10				

Since the calculated Ftalue is larger than any of the three tabular valucs from Appendixes F , signifeant differences among the means of the wine scores are indicated at all three levels. The level of significmee of a calculated F value is often denoted by onc or more asterisks: one for the 5 F kevel, two for the 1 क level, and three for the 0.1 blecl. In this example the signif. cance of the calculated F talue is denoted by $13.9 *=$. Signif. cance at any given lcyel obvionsly inplies significance at an lower levels.
For the 1 盾 level we use the t-walue from Appendix E to calculate the $L S D$ by Equation 21 :

$$
L S D=t_{.01}(16 d f) \sqrt{2(1.0) / 5}=2.921 \sqrt{0.40}=1.85
$$

Significance is usually shown by ranking the mean scores and moderlining those that are not significantly different. The difference between any two scores that are not connected by an underine is therefore significme. For the mean scores in the present example we would white

\[

\]

Thus there is no signincant difference between wines S_{1} and S_{2} because the difference betweon their mean scores, 0.2 , is less than 185, the calculated LSD. However, ach of these wines is significantly better than wines $S_{\text {; }}$ and S_{+}. Whes S, and S_{i} are not siguificantly different from cach other

analysis of varlanct

Duncan's New Multiple-Range Test. Some expermenters preter one of the newer tests for establishing signifeance amone the sanple means. These tests do not require the prehminary Ptest but are applied directly to the mem scores. One such test is Duncan's new multiplerange test, in which, after making, each smple nean is compared with cverv other sample mean, using a set of signifiant diffrences that depend upon, and increase with the increase in the range between the ranked means. The smallest whe is obtamed for adjecent means, and the largest valite for the extremes. In Duncan's test the shortest significant range R for comparing the largest and smallest of p mean scores, after they nave been ranked. is given by

$$
\begin{equation*}
R_{p}=Q_{p} \sqrt{3 / n} \quad[d f=k(n-1) \mid \tag{22}
\end{equation*}
$$

where the number of degrees of fiedom is that for the error variance s. The appropriate value of Q_{i}, can be obtaned from Appendixes $\mathrm{G}-\mathrm{L}, \mathrm{G}-2$, or $\mathrm{G}-3$.

Example 15. Use Duncan's new maltiplerange test to establish significance for the data in Example It.

For the 1 level, $\sqrt{1 / n}=\sqrt{0.0 / 5}=\sqrt{0.2}=0.447$, and the values of Q_{2}, for $p=2,3$, and 4 are obtained from Appendix G-2. The results are summarized in Table 8 . We see that the R_{v}-valies are appropriate for making the following comparisons:

$$
\begin{array}{ll}
R_{2}=1.85 & S_{2} \text { with } S_{3}, S_{1} \text { with } S_{3} \text {, and } S_{5} \text { with } S_{4} \\
R_{3}=1.93 & S_{2} \text { with } S_{5} \text {, and } S_{1} \text { with } S_{4} \\
R_{4}=1.95 & S_{2} \text { with } S_{4}
\end{array}
$$

Table 8. Duncan's new multiple-range test (19 level) for the data
in Example 1t (see Example 15)

Shortes ticmetint river				Compasions				
p)	2	3	4					
Q_{i}	+13	$+31$	+.t?	Hine	$S=$	S_{1}		5
R	1.85	1.93	1.08	Mean	8.6	8.4	6.2	3

The results are the same as those obtained in Example it. There is uo signficant difference between wines S_{1} and S_{2}, but each of thesc wines is significantly better than wines S; and S_{+}. Wines S_{3} and S_{4} are not significantly different from each other.

If the mean scores of the wines are based on different number of individual scores, that is, n_{1} scores for the first wine, n_{2} scores for the second wine, n_{k} scores for the k-th wine. the analyss is very similar but the following modifations must be made

1. Sample $S S=W / \frac{2}{i} / n_{1}+W \frac{2}{2} / n_{2}+\cdots+W / \frac{1}{k} / n_{k}-C$
2. Effective number of replications $n_{\text {efi }}$ replaces n :

$$
n_{\mathrm{cif}}=\left(\frac{1}{k-1}\right)\left(\frac{\sum n_{i}-\sum n_{2}^{2}}{\sum n_{j}}\right)
$$

where $\sum n_{j}$ is the total number of wine semples in the experi ment.
3. $L S D=t_{\alpha} \sqrt{2 v / n_{\mathrm{eff}}}$ and $R_{p}=Q_{p} \sqrt{v / n_{\mathrm{eff}}}$
where t_{z} and Q_{p} are based on $\sum n,-k$ degrees of freedom.

Table ?. Two way andyse of satace
randonized complete-block designi

Jamer	Wint					Tois.
	1	2	$亏$...	k	
1	X_{11}	X_{2}	X_{3}	\cdots	X_{k}	T
2	X_{1} :	$X_{2 z}$	X_{3}	\cdots	$\mathrm{X}_{\mathrm{k} 2}$	T_{2}
\%	$X_{1} ;$	$\mathrm{X}_{2} ;$	x_{3}	...	X_{5};	T_{3}
:				$\chi_{i j}$		
n	$X_{1 n}$	$\mathrm{X}_{2 n}$	$X_{3 n}$	\cdots	X_{k}	T_{n}
Total Mean	$\begin{aligned} & W_{1} \\ & X_{1} \end{aligned}$	$\frac{W_{2}}{x_{2}}$	$\frac{W}{X_{i}}$		\vec{X}_{k}	$\begin{aligned} & G=\Sigma T_{i}=\Sigma W_{1} \\ & \text { Totalno. of scores }=k n \end{aligned}$

Scoring of Several Wines by Several Judges. In the customary sensory craluation in which a panel of n judges scores cach of wines, the so-called two way or donble-chassification, analysis of vanance is approprate in testing for significance. In this classificafion the total sm of squares, calculated as the variation amons all cores, is subdinided into three parts: a sum of squares based on the fariation among wines, a sum of squares based on the wation among fudges, and a remander sum of squares. The latter is not the result of variation among wines or judges but is a measure of the unexplaned variation, or error variation. The degrees of freedom are subdivided in the same way. This is known as a randomzed complete-block design; its pattern is shown in lable 9 . The defmitions are follows (compare them with Equations 14-19):
(a) $C=G^{2} / k n$
$d t$
(b) $\operatorname{Total} S S=\sum X_{i j}^{i}-C$
$k n-1$
(c) Wine $S S=\sum W / 2 / n-C$
$k-1$
(d) Judge $\mathrm{SS}=\sum \mathrm{T}_{i}^{2} / \mathrm{k}-\mathrm{C}$
$n-1$
(c) $\operatorname{Error} S S=(\mathrm{b})-(\mathrm{c})-(\mathrm{d})(k n-1)-(k-1)-(n-1)$

From these sums of squares and the corresponding numbers of degrees of freedom, three independent estimates of the population varance are computed. On the assumption that the group making up the total set of measurements (scores) are randon samples from populations with the same means, the three esti mates of the population variance can be expected to differ only within the limits of chance fluctuation. There are two null hypotheses here, namely, that the population means for the wine are all the same and that those for the judges are all the same These hypotheses are tested by comparing the among-wine ariance and the among-udge variance, respectively, with the error variance. The comparisons consist of calculating the variance ratios

$$
F=\frac{\text { anance for wines }}{\text { oror variance }} \text { and } F=\frac{\text { variance for judges }}{\text { emor vance }}
$$

To establish signifinance, as before, the calculated values of F are compared with the tabular valucs at the three levels of siguificance.

Fxample 16. Five jadges score 4 wines on a 20 -point scale, as shown in Table 10. Are there significant differences among the sample means at the 1% level?

Substituting the data into the equations given above, we obtain

$$
\begin{align*}
& C=(267)^{2} / 20=3564.45 \\
& \text { Total } S S=(13)^{2}+\cdots+(12)^{2}-C=14255 \quad(19 d f) \\
& \text { Wine } S S=\frac{(6)^{2}+\cdots+(52)^{2}}{5}-C=112.95 \quad(4 d f) \\
& \text { hdge } S S=\frac{(56)^{2}+\cdots+(56)^{2}}{+}-C=8.80 \quad(3 d f) \tag{3df}\\
& \text { Error } S S= 142.55-112.95-8.80=20.80 \\
&(19-4-3=12 d f)
\end{align*}
$$

These results and the remaining calculations are shown in Table 11.

Since the calculated F value for wines is greater than the tabular value, significant differences among the means of the

Table 10. Five pudes score 4 whes on a 20 point sale see Example 16).

Hoxe	Wint.				Turat
	5	S_{2}	S_{3}	S	
1	13	18	15	10	56
2	15	16	12	11	54
3	14	15	11	9	49
+	12	17	13	10	52
5	13	19	12	12	36
Total	0^{-}	85	63	52	$267=\mathrm{G}$
Man	13.4	$1-11$	12.6	10.4	

Table 11. Analysis of rariance table for the data in Example 16.

Sotrea	55	df	ms	1	I_{n}	$\mathrm{F}_{\text {sat }}$
Total	112.55	19				
Wines	112.95	4	28.2+	16.32 3	5.4	9.63
Judges	8.80	3	293	1.69	5.95	
Faror	20.80	12	1.7			

wine scores do exist at the l\% level. In fact, they exist at the 0.1% level, as implied by the three asterisks on the calculated F-value.) The calculated F-value for judges is less than the tabular value, so there are no significant differences among the fudges, i.e., they have been consistent in their seoring.

Specific differences anong the whes can be tested by caloulating the least signifiont difference:

$$
\begin{aligned}
L S D & =t_{u} \sqrt{2 \sqrt[3]{n}}=t_{0112}(1 f) \sqrt{2(173) / 5}=3.055 \sqrt{0.692} \\
& =2.54
\end{aligned}
$$

Therefore 2.5 t is the smallest difference that can exist between two significantly different sample meams. Again using the method of underlining mean scores that are not significantly different, we write

We see that wine S_{2} is significantly better than wines S_{1}, S_{3}, and S_{4}. Wine S_{1} is significantly better than wine S_{4}. Wines S_{1} and $S_{\text {; }}$ are not significantly different, and wines $S_{\text {; }}$ and S_{4} are not significantly different.

Hedonic Rating. Hedonic rating of wines is usually done with a scale of 5,7 , or 9 points. The usual 9 point sale comprises the following categones: like extremel) (f); like ver much (3), like
moderately (2); like slightly (1): neither like nor dislike (0); dislike slightly (-1); dislike moderately (-2); dislike very much (-3); dislike extremely (-4). (See also Figure 10.) To analyze the results the numerical vahes shom in parcntheses are used and the analusis of varinuce is applied. Any set of consccutive integers could be used instead of these numbers, but those used here result in the smallest intermediate values.

Example 17. Fifty udiges rate 4 wines on a 7 point hedonic scale, as shown in Table 12. Are there signifont differences in the indges' prefercnce among the wines?

$$
\begin{array}{rrr}
C & =(227)^{2} / 200=257.6 t & \\
\text { Total } S S & =729-257.64=471.36 & (199 d f) \\
\text { Wine } S S & =\frac{(109)^{2}+(89)^{2}+(28)^{2}+(1)^{2}}{50}-C & \\
& =411.74-257.64=154.10 & (3 d f) \\
\text { Eror } S S & =471.36-154.10=317.26 & (196 d f) \tag{3df}
\end{array}
$$

Table 12. Fifty judges assign hedonic ratings to twines isee Exumple 17 :

Ravive	Freprbicrur response, \dagger							
	Wine					If	SfX	Vf) ${ }^{\text {a }}$
	X	s	S_{2}	$S ;$	5.			
Lakeremmum	$亏$	$2 ?$	8	2	5	37	111	333
Like uoderately	2	1	23	13	8	63	126	252
Like shight	1	10	15	18	3	46	+6	46
Neither bine nor dishke	?	!	2	5	10	17	11	0
Dislike shghty	-1	1	0	4	15	20	-20	20
Dinke moderately	-2	0	0	6	9	15	- 30	60
Distike sen much	-3	\%	0	2	0	2	-6	18
Total $\mathrm{S}^{\text {b }}$		50	50	31	50	200		
$\Sigma \mathrm{S}$		169	59	28	-		227	C
- N								720
Mem SR/		2.15	1.78	0.56	0.02			

Table 13. Amalysis of variance table for the data in Example 17.

Sotrce	SS	d	mis	1	F_{45}	$H_{k=1}$	l^{\prime}
Total	+71.36	199					
Wines	154.10	3	51.4	$31.7 \times$	2.60	3.78	5.42
Error	317.26	196	1.62				

Table 14. Duncan's now multiplerange test (0.1 \% level) for the data in Example 17.

Shormest sommicant ravic				Conpmaison				
f)	2	3	4					
Q_{p}	4.65	480	400	Wine	S_{i}	S_{2}	S	S_{+}
R_{j}	0.85	$0.56+$	0.852	Mean	2.18	1.78	0.56	0.02

These results and the remaming calculations are shown in Table 13. [Since F-values for 196 degrees of freedon (denominator) are not given in Appenclixes F , the values for $d f=\infty$ are used.)

Siuce $F=31.7$ (calculated) exceeds $F_{001}=5.42$ (tabular), very highly significant differences among the mean scores of the whes are indicated. If Duncan's new multiplerange test is applied, we have

$$
R_{p}=Q_{p} \sqrt{v / n}=Q_{p} \sqrt{1.62 / 50}=Q_{p}(0.18)
$$

The results are summarized in Table 14. Again the numbers for $d f=\infty$ are used.

In this example we see that wines S_{1} and S_{2} are significantly better than wines S_{3} and S_{4}. Wine S_{1} is not significantly different from wine S_{2}, and wine S_{3} is not significantly different from wine S_{4}.

Interaction. The term interaction is used in statistics to describe a differential response to two variables, uswally referred to as factors, which may or may not act independently of each other. In
response of the judges to the factors time and, say, fatignc. Small departures from parallelism may be caused by variation in, or treatment of. wine samples or as a result of random sampling errors The problem is to test statistically whether an observed departure from parallelism is greater than could reasonably be expected to occur by chance alone.

The significance of an interaction is determined by comparing its estimate of variance with that of experimental eror. A signifi cant interaction is one that is too large to be explained on the basis of chance alone, under the mull hypothesis of no interaction A nonsignificant interaction leads to the conclusion that the factors in question act independently of each other. The existence or nonexistence of interactions can only be determined when scores are replicated.

Example 18. Five judges score 4 wines on two successive days, called time I and time II. The results are shown in Table 15. Analyze the results for significance, to determine whether there is interaction.

For the 40 individual scores we have

$$
\begin{align*}
C & =(310)^{2} / 40=2402.5 \\
\text { Total } S S & =(10)^{2}+(9)^{2}+\cdots+(5)^{2}-C \\
& =2504-2402.5=101.5 \tag{39df}
\end{align*}
$$

Table 15. Five judges score 4 wines on two successive days (see Example 18).

Time I						Ther If					
Jenct	Winf.				Toral	jupar	Wine				Toral
	S_{1}	S_{z}	S_{5}	S_{i}			S_{1}	S_{2}	S_{3}	S_{4}	
1	10	10	8	6	34	1	8	9	6	7	30
2	9	9	6	8	「?	2	7	8	6	6	27
3	10	10	9	8	37	3	9	8	7	9	33
4	8	8	8	5	29	+	10	9	8	5	32
5	8	7	6	4	25	5	9	10	7	5	\$1
Total	45	44	37	31	157	Total	43	4	34	32	153

Some possibe situations are shown monre 17 , which relates the scomig of two wines by two judges to the time of day. If the lines joining the morming and afternoon scores for each judge are parallel, there is no interaction. The greater the departure from parallohom, the greater the interaction, owing to the differential

Changes in sores with time. The two solid lines show no interaction between the judges scores and time. The lower solid hae and the two dashed lines show diferent degrees of interaction.

If the molvidual scores for the two times are added, as shown in Table 16 , the result is a classification of wines and judges called a two-way pattem. Since the entries in the table are the totals of two scores, the denominators of the equations for the sums of squares are twice as great as in the usual analysis, and the means are obtamed by dividing the totals by 10 (5 judges $\times 2$ tines). The correction term remams the same because it always pertams to the same totals. The total sum of squares for this pattem is called a subtotal sum of squares to distinguish it from the total sum of squares for the independent scores. The calculations follow

$$
\begin{align*}
\text { Subtotal } S S & =\frac{(18)^{2}+(16)^{2}+\cdots+(9)^{2}}{2}-C \\
& =2+81-2+02.5=-8.5 \quad(19 \mathrm{df}) \tag{19df}\\
\text { Wine } S S & =\frac{(88)^{2}+(88)^{2}+(71)^{2}+(63)^{2}}{10}-C \\
& =2+49.8-2402.5=47.3 \quad(3 \mathrm{df}) \\
\text { Judge } S S & =\frac{(64)^{2}+(59)^{2}+\cdots+(56)^{2}}{8}-C \\
& =2416.75-2402.5=1+.25 \quad(4 d f)
\end{align*}
$$

Table 16. Combined (twe-way) scores for times for the data in Table 15 .

Iumer	110				Toma
	S_{1}	S	$S ;$	S_{s}	
1	18	19	14	13	64
2	16	17	12	14	59
3	19	18	16	17	70
4	18	17	16	11.	61
$\overline{7}$	$1{ }^{-}$	17	15	9	36
Total	88	88	7	63	$310=0$
Mem	8.80	880	7.10	6.30	

analysts of variance

Interaction $S S=78.5-47.3-14.25=16.95$
(Wine \times Judge)
$19-3-4=12 d f$
The next step in the andysis is to combine the total scores for the 5 judges, which results in a two-way patten of wines and times, as shown in Table 17. Since the entries in the table are the totals of 5 individual scores, the denominators of the equations are 5 times as great as in the usual analysis. The calculations follow.

$$
\begin{array}{rlr}
\text { Subtotal } S S & =\frac{\left.(+5)^{2}+(t)\right)^{2}+\cdots+(32)^{2}}{5}-C \\
& =2451.2-2402.5=48.7 & (7 \mathrm{df}) \\
\text { Wine } S S & =47.3 \quad(\text { from preceding pattern }) & (3 \mathrm{df}) \\
\text { Time } S S & =\frac{(157)^{2}+(153)^{2}}{20}-\mathrm{C} \\
& =2402.9-2402.5=0.4 & (1 \mathrm{df})
\end{array}
$$

Interaction SS $=48.7-47.3-0.4=10$
(Wine \times Time)
$(7-3-1=3 d f)$
Next the total scores for the + wines are combined to give a two-way pattern of judges and times, as shown in Table 18. Since the entries in the table are the totals of + individual scores, the denominators of the equations are + times as great as in the usual analysis. The calculations follow.

Table 17. Combined (two-way) scores for puges for the clata in Table I5.

Tmas					
	Wene				Toma
	S_{i}	S_{3}	S	S	
I	45	44	37	31	17%
II	$+3$	44	34	32	153
Total	88	38	71	63	$310=C$
Mean	8.80	8.50	7.10	6.30	

Table 18. Combined twoway scores for whes for the data in Table 15

	Jemere					Tome
Tims.	1	2	;	4	5	
1	34	32	3	29	25	157
II	30	27	33	32	31	153
Tota	64	59	70	61	56	$310=0$
Mear	8 mm	7.38	8.75	7.62	700	

$$
\begin{array}{rlr}
\text { Subtotal } S S= & \frac{\left(3+f^{2}+(30)^{2}+\cdots+(31)^{2}\right.}{4}-C \\
& =2429.5-2402.5=27.0 & (9 d f) \tag{9df}\\
\text { fudge } S S=14.25 & (+d f) \\
\text { Time } S S=0.4 & (1 d f) \\
\text { Interaction } S S=27.0-1+25-0.4=12.35 & (9-4-1=4 d f) \\
\text { Ondge } \times \text { Time }) &
\end{array}
$$

These results and the remaing calculations are shown in Table 19. Recall the meaning of the aterisks on the calculated F-values, montioned in Example 14.

Table 19. Analysis of varance table for the data in Example 18.

Sourcs	SS	$d F$	ms	F	F_{n}	F_{01}	$F_{\text {gion }}$
Total	101.50	34					
Wines	47.30	3	15.77	20.48**	3.49	5.95	10.80
Judges	14.25	+	3.66	$4.62{ }^{*}$	3.26	5.41	
Times	0.40	1	0.41				
Interactions							
W $\times 1$	16.95	12	1.11	1.85	2.69		
$11 \times \mathrm{T}$	100	3	0.33				
1 $\times 1$	12.35	4	3.09	+.01*	3.26	5.71	
Error	9.25	12	0-7				

Anailsis of variance:

We see that the wines are siguificantly different at all three levels, and that the values for the judges and the fudge \times time interaction are significant at the 5% level. The significant interaction indicates that the judges have reacted differently at the two times, as can be seen from their total scores at the two times. The total scores for the first threce iudges are less at time Il than at time 1 . but the last two judges have total scores greater at time Il than at time 1. This might mean that we are daling with two different types of judges. It could be the result of different foods consumed on the two davs, varying mental or physical conditions, temperature differences. or other canses.

The least significant differences can now be used to make specific comparisons of the mean scores for the wines and tor the judges.

Wines: $L S D=t_{0,01}(12 d f) \sqrt{2(0.77) / 10}=4.318 \sqrt{0.154}$

$$
=1.69
$$

Judges: $L S D=t_{.05}(12 d f) \sqrt{2(0.77) / 8}=2.179 \sqrt{0.102}$

$$
=0.96
$$

	Hader				
	3	1	4	2	5
Mean	8.75	8.00	7.62	7.38	7.00

Some experimenters combinc the sum of squares and number of degrees of freedom for nonsignificant interactions with the sum of squares and number of degrees of freedom, respectively, for the error, and use the resulting value as a revised error term. This increases the number of degrees of freedom upon which the error is based. The results of these calculations for the data in Example 18 are shown in Table 20. The corresponding $L S D$, ahues are shown belos.

incomplete blocks

An incomplete-block design in which each block contains the same number of samples, k, and in which each pair of samples appears together in the same block the same number of times, λ, is callod a balanced incomplete-block design. In such designs all pairs of samples are compared with approximately the same precision.

Since only some of the wines are judged at the same time, and since each wine is compared with cery other wine, only certain arangements of blocks, samples within blocks, and replications are possible. The relevant procedures and possible incomplete block designs for specific numbers of samples and judges can be found in Fishet and Yates (1974) and Cochran and Cox (1957).

The customary notation and method of analysis is outlined below.
$t=$ number of samples (wines)
$r=$ number of replications
$b=$ number of blocks (judges)
$k=$ number of samples per block
$\mathrm{N}=$ total number of scores in the design $=t r=b k$
$\lambda=$ number of times each pair of samples appears in the same block $=r(k-1) /(t-1)$
$W_{i}=$ total score for sample i
$B_{i}=$ sum of totals for blocks in which sample i appears
$A_{i}=k W_{i}-B_{i}$ represents, for sample i, the sample effect adjusted for and free of the effects of the blocks in which it appears $\left(\sum A_{i}=0\right)$
The calculations and the analysis of variance follow the usual patterns except for the sample sum of squares adjusted for blocks, which is defined as

$$
\begin{equation*}
\text { Whe } S S(\operatorname{ad}) .)=\frac{\sum A_{i}^{2}}{k t \lambda} \tag{24}
\end{equation*}
$$

Since each A_{i} is free of block effects, it represents. for sample i, an estimated sample effect w_{i} that provides an adjustment to the

stamstical procedurys

general mean score, mancly, an adiusted mean score for the sample. The adpusted moan for cach sample is $n+w_{i}$, where $w_{i}=A_{i} / t \lambda$ [$W_{i}=0$). In using the $L S D$ or Duncan's new multiple-range test to compare adusted mom scores for samples, the value of the effective error vanace to be used instead of 1 is

$$
\begin{equation*}
y_{\mathrm{etf}}=v\left[\frac{k(t-1)}{t(k-1)}\right] \tag{25}
\end{equation*}
$$

Example 19. Six wines are sored on a lopont scale by judges in 10 blocks of $\overline{3}$ samples each. There are 5 seores for cach wine sample, each of which is compared twice with every other sample in the same block. The pattern is shown in Table 21 Analyze the data for significance.

In this design $t=6, b=10, k=3,5=5$, and $\lambda=2$. The calculations are shown below.

Table 21. Six wines scored on a 10 -pont scale by judges in 10 blocks of 3 samples each (inconplete-iblock design see Example 19.

$\begin{aligned} & \text { Buock } \\ & \text { giocer } \end{aligned}$	Hint						Tora
	S_{1}	s_{3}	S	s,	S_{5}	S.	
1	4	5			;		14
2	6	7				6	19
3	6		\square	5			18
$+$	7		5			7	19
5	4			6	t		14
6			6		4	10	20
-		8	-	5			20
8		10	4		6		20
9		6		t		9	19
10				4	5	8	17
Total V_{i}	27	36	29	24	24	40	$180=G$
k ${ }^{\text {\% }}$	81	108	8.	72	-2	120	$n=180 / 30$
B,	87	92	97	88	55	$9+$	$=6.00$
A	-3	16	-10	-16	--13	26	
w	-025	133	-0.43	-1.33	-108	2.17	
	$5 . .5$	- 3	5.17	4.6	+ 92	8.17	

incomplete blochs

$$
C=(180)^{2 / 30}=1080
$$

$$
\operatorname{Totat} S S=(+)^{2}+(5)^{2}+\cdots+(8)^{2}-C
$$

$$
\begin{equation*}
=1168-1080=88 \tag{29df}
\end{equation*}
$$

Block $S S=\frac{(1+)^{2}+(19)^{2}+\cdots+(17)^{2}}{3}-C$
$(9 d f)$
Whe $S S$ adi $)=\frac{\sum_{i}^{2}}{k t \lambda}=\frac{(-3)^{2}+(16)^{2}+\cdots+(26)^{2}}{3(6)(2)}$

$$
=1+66 / 36=40.72
$$

$$
\begin{aligned}
\text { Error } S S & =88-16-40.72 \\
& =31.28 \quad \text { (intrablock crror) } \quad(13 d f)
\end{aligned}
$$

These results and the remaining calculations are shown in Table 22

The analysis indicates significant differences among the sample means at the 5 每 level because the calculated value $F=3.89$ exceeds the tabular value $F_{05}=2.90$. If the $L S D$ is used to test for specific differences among the wines, we have

We see that there is no significant difference between wines S_{0} and S_{2}. Wine S_{6} is significantly better than wines S_{1}, S_{3}, S_{5}, and S_{4}. Wine S_{2} is not significantly different from wincs S_{1} and S_{3} but is significantly better than wines S_{5} and S_{4}. There are no significant differences among wines S_{1}, S_{5}, S_{5}, and S_{4}.

$$
\begin{aligned}
& \left.L S D=t_{.05}(15 d f) \sqrt{\frac{2 y}{r}\left[\frac{k(t-1)}{t(k-1)}\right.}\right\} \\
& =2.131 \sqrt{\left[\frac{2(2.09)}{5}\right]\left[\frac{3(5)}{6(2)}\right]}=2.131 \sqrt{(0.836)(1.25)} \\
& =2.131 \sqrt{1.04}=2.17 \\
&
\end{aligned}
$$

Table 22. Andysis of vanace table for the data in Example 19.

Sourct	SS	df	nis	F	$F \mathrm{~F}$	For
Total	88.00	29				
Blocks	16.00	9	1.78			
Wines (adi.)	40.72	5	8.14	3.89*	290	7.56
Error	31.26	15	2.09			

Sometimes it is possible to have the judges score each of the wines in an mcompleteblock design, scoring a part of the total number at different times. For each judge the incomplete blocks are grouped to form areplication. This design permits the removal of variations in replications from the block sum of squares. Balanced lattices are of this type of design. They are useful and the calculations are simple. The number of such designs is limited becanse the number of samples must be a perfect square, k^{2}. grouped in blocks of k samples with $k+1$ replications.

Example 20. Nine wines are scored on a 10 -point scale by t judges, each judge scoringall 9 samples in 3 incomplete blocks of 3 samples each, as shoun m Table 23 . Test the whescores for siguificance.

In this design $k=3, t=k^{2}=9, r=k+1=4$, and $\lambda=1$. The calculations are showi below.

$$
\begin{aligned}
C & =(211)^{2} / 36-1236.69 \\
\text { Total } S S & =(9)^{2}+(3)^{2}+\cdots+(3)^{2}-C \\
& =1399-1236.69=162.31 \quad(35 d f) \\
\text { Block } S S & =\frac{(9)^{2}+(16)^{2}+\cdots+(1+)^{2}}{3}-C \\
& =1255-1236.69=18.31 \quad(11 d f) \\
\text { Replication } S S & =\frac{(53)^{2}+(50)^{2}+(55)^{2}+(53)^{2}}{9} \cdots C \\
& =1238.11-1236.69=1.42 \quad(3 d f) \\
\text { Block (mrepl. } S S & =18.31-1.42=16.89 \quad(8 d f)
\end{aligned}
$$

$$
\text { Table 23. Nine wines scored on a 10-point scale by } 4 \text { judges in blocks of } 3 \text { samples each }
$$

statis rical procedures

$$
\begin{aligned}
\text { Wine SS ladi } & =\frac{\sum_{k}^{2}}{k t \lambda} \\
& =\frac{(2+)^{2}+(-1+)^{2}+\cdots+(-30)^{2}}{3(9)(1)} \\
& =131.33
\end{aligned}
$$

$$
\begin{aligned}
\text { Error } S S & =162.31-18.3]-131.33 \\
& =12.67 \text { (intablock error) }
\end{aligned}
$$

These results and the remaming calculations are shown in Table 24.

We will use Duncan's new multiple-range test to compare the adjusted mean scores of the wines. The standard error of an adjusted mean score is

$$
\frac{R_{w}}{Q_{p}}=\sqrt{\frac{v}{r}\left|\frac{k(t-1)}{t(k-1)}\right|}=\sqrt{\frac{0.79}{4}\left|\frac{3(8)}{9(2)}\right|}=\sqrt{0.26}=0.51
$$

The results are sunmarized in Table 25.
The incomplete-block designs that we have described involve only what is known as the intra-block error and are based on the assumption that the blocks are fixed. If the block effects are assumed to be random, hovever, more efficient estimates of the tratment means can somethes be obtaned by a procedure called recovery of inter-block information. This procedure is described in Cochran and Cox (1057). It is recommended only for large experments in which the numbers of degrees of freedom for blocks and error exceed 25.

Sotres	$S S$	$d f$	ms	F	$F_{\text {wel }}$
Total	162.31	35			
Blocks	15.31	11			
Replications	1.42	3			
Blocks (n reply	16.89	8	2.11	$2.6{ }^{-}$	
Wines (adij)	131.33	8	16.42	20,75 \% \%	6.19
Error	12.5	16	0.79		

Table 25. Duncan's now multiple-range test (1\% level) for the data in Fxample 20.

1	2	3	+	5	6	7	8	9	
\underline{O}	4.13	4.31	4.42	4.51	+.5\%	4.62	4.66	4.79	
R_{p}	2.11	230	225	2.311	2.33	2.36	2.36	2.40	
Comparison									
Wine	5.	S_{1}	$S_{;}$	S_{x}	S_{n}	S_{+}	S_{i}	S	S_{q}
Mean	8.97	8.53	-73	7.19	5.97	4.53	$+30$	3.19	2.53

Ranking Procedures

In evaluating wines, judges may find it difficult to express preferences in terms of a quantitative measure. They usually find it much easier to rank the wines. Since ranking gives no indication of the magnitudes of the differences among the wines under stady, it does not supply as much information as scoring. On the other hand, it not only simplifies the procedure for the judging panel, but also often represents as satisfactory a method of detecting the differences as is required.

Pairs of Ranks. When only two wines are being compared, pairs of ranks are obtained. One test that is then used is based on the signs of the differences between the paired values. The procedure is identical to that used in preference testing of paired samples. The mull hypothesis of equal numbers of positive and negative differences $\left(H_{0}: p=0.5\right)$ is tested approximately by calculating

$$
\begin{equation*}
x^{2}=\frac{\left(\left|n_{1}-n_{2}\right|-1\right)^{2}}{n_{1}+n_{2}} \tag{26}
\end{equation*}
$$

where n_{1} and n_{2} are the numbers of positive and negative differences, respectively, $\left|n_{1}-n_{2}\right|$ represents the numerical (nonnegative) value of the difference between them, and χ^{2} is based on one degree of freedom.

Example 21. Two wines, S_{1} and S_{2}, ire ranked 15 tines, as shom below. Is there a significat difference between them?

| S_{1} | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S_{2} | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 2 |
| Sign | + | + | - | + | - | 0 | 0 | - | + | + | + | - | + | + | + |

The + sign means that wine S_{1} was ranked above wine S_{z} and the - sign mems that wine S_{2} was ranked above wine S_{1}. Jies (demoted by 0) are disregarded mi the analyss. The + sign appears 9 times and the - sign + times. Therfore

$$
x^{2}=\frac{19-+1-1)^{2}}{13}=16 / 13=1.23
$$

Appendix B shows that $\chi_{\text {as }}^{2}(1 d f)=3.54$, which is larger than the alenated value. There is therefore no reason to reject the mull bypothesis, and no signifiont difference between the two wines is indicated.

The adanatages of this test are simplicity, no requirement of equal varances, and relative insensitivity to recording crors. The disadrantage, however, is that it distegards the magnitude of the difference, if any, between the wines. This probiem is imherent in ranking procedures.

Ranking of Several Wines by Two ludges. To determine whether two judges are significantly different in their rankings of several whes, Spearman's rank comelation coefficient can be used to test the agreenent between the rankings. This correlation coefficient is defined as

$$
\begin{equation*}
R=1-\frac{6 \sum d^{2}}{k k^{2}-1} \tag{27}
\end{equation*}
$$

Where $\sum d^{2}$ is the sum of the squares of the differences between the rank values given by the two judges to cach of k vine samples. If any wimes in one ranking are ticd, each is assigned the moan of the rank values the would otherwise have had) The value of R can (ary from -1 (totally opposite rankings by the two judges) to +1 (perfect agreement between the judges). The intermediate talue $R=0$ indicates that the two rankings are totally unelated, i.e.,

RANKING PROCEDURES

they are the result of chance alone. This, in fact, is the mill bypothesis, which can be written $H_{0}: \rho=0$, where ρ is the populdtion rank correlation.
Little relability can be placed on a value of R obtained from the rankings of fewer than 10 samples. The significance of a calcu. lated value of R can be determined by comparing the value of

$$
\begin{equation*}
t=R \sqrt{\frac{k-2}{1-R^{2}}} \tag{28}
\end{equation*}
$$

with the appropriate t-valuc, based on $k-2$ degrec of freedom, in Appendix E. For significance the calculated t-value must exceed the tabular value. A significant positive t-value indicates that the judges agree in their rankings. The significance of calculated R-values can also be determined by the use of Appendix H. Calculated values that exceed those in the table are significantly dif ferent from zero and indicate agreement in the rankings.

Example 22. Two judges rank 10 wines, as show below. Is there a significant difference in their rankings?

The null hypothesis $\left(H_{0}: \rho=0\right)$ is that there is no correlation between the rankings. Solving Equations 27 and 28, we obtain

$$
\begin{gathered}
R=1-\frac{6(28)}{10(99)}=0.830 \\
t=0.830 \sqrt{\frac{8}{1-0.689}}=4.21
\end{gathered}
$$

From Appondix E we see that t_{m} i $d f=-3.355$. Since tho calculated value $t=+21$ exceeds the tabular ralue, we reject (at the $[\%$ levol) the nall hypothesis and conclude that the alace $R=0.830$ is highly significantly different from 0 . The agreement between the rankings of the two judges is therefore lighly significant. If we use Appendix H (recalling that $d f=10$ $-2=8$) we see that any value of R greater than 0.7646 is significant at the 1% level. Therefore $R=0.830$ is highly significant. Using Appendix H elimmates the need to calculate t.

This procedure can also be applied in the evaluation of judging ability. Adding hereasing amomets of some constituent to a wine provides a set of samples of known order. If a panelist is asked to rank the set for increasing amounts of the constituent. we have an accurate standard with which to compare his ranking, and Spearman's rank correlation coefficient is appropriate for rating his compctence

Ranking of Several Wines by Two or More Judges. The ranking of k wines by n judges is a very common procedure. Two methods of analyzing the data are presented here.

Method l. A quick appraisal of possible significant differences anong a set of rankings can be made by the use of Appendixes I-1 and I-2. These tables list ranges of rank totals, which are the sums of the n individual rank values for a given wine. Rank totals that lie outside the ranges shown in the tables indicate results signifcantly different from those that would be obtained by chance alone

Example 23. Twelve judges rank 5 wines, vielding the following rank totals: $S_{1}(34), S_{2}(20), S_{;}(52), S_{7}(26), S_{;}$(48). Use Appendixes I to determine whether there are significant differences among these rankings.

Appendix $1-1$ shows that for 12 rankings of 5 samples there are significant differences at the 5 兵 level for rank totals not within the range $25-47$. Thus we sec that wine S_{2} is ranked significantly low, and whes $S_{\text {; }}$ and S, are ranked significantly
high. At the 1% level the range is $22-50$, so at this level wine S_{2} is ranked significantly low and wine $S_{\text {s }}$ is ranked significantly high.
For small values of k and n, there may be more signficance than is indicated by the tables of rank totals. In such situations the following method of andyzing the data is more effective.

Method2. Rankings can be replaced by a set of quantitiescalled nomal scores, which are listed in Appendix I. Then the usual procedures for analyzing nomally distributed data are appropriate For example, Appendix I shows that for 6 ranked wines the nomal sores that replace the rank values $1,2,3,4,5$, and 6 are 1.267 $0.642,0.202,-0.202,-0.642$, and -1.267 , respectively. This transformation converts the ranking into a normal population, and the usual analysis of variance procedure is applied. Since the positive and negative valucs of the normal scores are distributed symmetrically about their mean value, 0 , the total for each judge is zero and therefore the grand total, G, is also zero. This greatly simplifies the computations.

Example 24. Five judges rank 6 wines, as shown in Table 26 Use Appendix] to amalyze the results for significance.

The rankings are converted to normal scores as shown in Table 27. The calculations follow

Table 26. Six wines ranked by
5 juclges (see Example 2+).

Junce	Wix:					
	S_{1}	S_{2}	S;	S_{4}	$5 ;$	S_{5}
1	6	4	2	3	;)
2	3	6	+	1	5	2
3	1	2	;	3	6	+
t	5	6	;	1	+	2
5	6	5	\dagger	2	3	1
Ranktotal	21	23	18	10	23	

Table 27. Nomal scores for the rankugs in Table 26.

Jenct.	Whe						Toran.
	S	S_{2}	S_{3}	$S ;$	S	S	
1	-1.267	-0.202	0.642	0.202	-0.642	1.267	0
2	0.202	-1.267	-0.202	$1.26 ;$	-0.642	0.242	0
3	1.267	0.642	-0.642	0.202	-1.267	-0.202	0
4	-0.642	$-1.26 ?$	0.302	1.267	-0.202	0.042	0
5	-1.26	-0.642	-10.202	0.642	0.202	1.26?	0)
Total	-1.79	-2.386	-0.202	3.530	-2.531		- C
Mean	$-03+1$	$-0.5+7$	-0.040	0.716	--0.510	0,610	$=\mathrm{O}$

$$
\begin{align*}
C & =0 \\
\text { Total } S S & =10\left((1.267)^{2}+(0.642)^{2}+(0.202)^{2}\right) \\
& =20.583 \\
\text { Wine } S S & \left.=(-1.707)^{2}+(-2.36)^{2}+\cdots+(3.606)^{2}\right) / 5 \\
& =8.568 \\
\text { Erur } S S & =20.583-8.568=12.015
\end{align*}
$$

These rosults and the remaining calculations are shown in Table 28.
Since the calculated fralue of 3.41 exceeds the tabular value of 2.62 , significant differences at the 5% jevel are indicated, and the $L S D$ can be used to determine which wines are significantly different from each other.

$$
L S D=t_{.05}(24 d f) \sqrt{2(0.501) / 5}=2.064 \sqrt{0.200}=0.923
$$

Table 28. Analysis of variance table for the data in Example 24 .

Somees	s	d	$m s$	F	$F_{\text {\% }}$	$F_{\text {ni }}$
Total	20.585	29				
Wines	8.565	5	1.7	$3 .+1$ *	2.62	3.9\%
Error	12.015	24	0.501			S

Using the mean normal scores, the differences can be summarized as follows:

	Wine						
Mean	S_{0}	S_{7}	S_{5}	S_{1}	S_{5}	S_{2}	
0.723	0.716	-0.040	$-0.3+1$	-0.510	-0.547		

We see that at the 5% level there are no significant differences among wines S_{3}, S_{4}, and S_{0}, but wines S_{4} and S_{6} are significantly better than wines S_{1}, S_{2}, and S_{5}. There are no significant differences among wines S_{1}, S_{2}, S_{3}, and S_{5}. As in all such analyses Duncan's new multiple-rage test, which does not require the calculation of F, could be used instead of the LSD procedure.
The two methods that have been presented hore for analying ranked data have the advantage over other methods that they provide ways of establishing significant differences among individual wines. Other methods merely indicate whether significant differences do or do not cxist among the wines taken as a group.

Descriptive Sensory Analysis

The best-known method of descriptive sensory analysis is the flavor profile developed by the Arthur D. Little Company, Cambridge, Massachusetts. It has been used in product developmont, quality control, and laboratory research, by numerous food and drug companies (Amerine et al., 1965 a). In this method a panel of highly trained judges is used to identify the inclividual and overall odor and favor characteristics of a food, in terms of the sensory impressions they create. Properly trained panels achieve considerable agreement, after group discussion, on overall sensory impressions and the intensities and order of detection of the various sensory factors. Disadvantages of the flavor profile method are the expense of traming the judges, the possible bias introduced by a dominant (assertive) member of the panel during the group discussion, and the difficulty of statistical analysis of the results.

For an example of a record tom for the descriptive sensory analysis of wines, see Figure 18. As in the favor profice method many winery staff members and private groups make their decisions on the quality of a wine after group discussion of the results obtaned in the individual sensory exammations. Is group discas sion beneficial or does it ental too groat a risk of prejudicial in fuences? Weycrs mad Lamm (1975) have studied this problem; the answer is by no means as anequivocal as one would wish. There is first of all the danger of a dommant individuals smposing his judg. meat on the group, by either his reputation or force of personality If this occurs, group discussion is useless except as an cgocultivat ing exercise for the dommant molividual (e.g., the whery owner) lones (1958) and Poter ct al. (1955) have noted that a group fudgment is not the same as a group of judgnents, because an individual can sway the group judgnent. The obvious analogy with trial juries here is inescapable.)

Even if there is no dommant indmidnal, the group influence itself may be detrimental. As Meyers and Lamm say, "What people learn from discussion is mostly in the direction supporting the majority's initial preference." The problem is that, probably subconscionsly, members of the group usnally show a disproportionate interest in facts and opinions that support their initial peferences and tend to ignore those facts and opinions that do not: This appears to be truc for both serbal and written opinions If knowledge of the positions of other members of the panel has a polarizing effect and how can it help bat do so if the owner or wimenaker is present?, we recommend that all the panelists withhold information on their initial preferences.

Stone et al. $197+$ have introduced a quantitative method of deseriptive sensory analysis The various scmsory attributes of the product are coluated separately. For cadi attribute a seale of θ inches is provided, with twolabeled anchor points //inch from the ends of the scale and one at the conter. For example, the sale for sweetness would look like this

[^1]
some suggestrd exercise

tices. His main problem is finding a fixed frame of reference for each of the major odor and taste components of wines. What, for example, is low or high sourness? How does a low concentration of acetaldehyde smell compared with a high concentration? Can one distinguish low, moderate, and high concentrations of sulfur dioxide in wines?

The following exercises are intended to help answer these and similar questions. They should also prove useful in selecting the best judges for many sensory evaluation panels. However, there is certainly no direct relation between one's inherent taste or odo seusitivity and onc's ability to evaluate whe quality. For each specific sensory characteristic, one must also know the level of intensity that is appropriate in the wine in question, and one must be able to recognize the proper balance among the sarions sensory characteristics. Experience is what really counts.

Obvonsly most people do not have a supply of citric acid or glycerol or ethyl acetate, nor do they have the equipment for measuring or weigling such chemicals. We suggest that you solicit the interest and help of an enologically-indined chemist of pharmacist. They do have the necessary cheminals and equipment, or can get them without difficulty. (Sce also Marcus, 1974.)

Thresholds. A suggested serics of concentrations for testing sensitivity to sucrose (sweetness) in aqueous solution is 0.1, 0.3, 0.7 , and 1.25 by weight. The "A-not-A" type of test may be used, although other methods work equally well. In this test a water blank (the standard) is tasted first. Then one of the sucrose solutions (in a random order) or another blank is tasted. The judge decides whether the sample presented is the same as or different from the standard. (For a record form see Figure 19.) The test is repeated 6 times for each concentration, moluding the blank 30 times in all). Typical results for sucli a test might be the following:

	Sample				
	BLank	0.1%	0.3%	0.7%	1.2%
Correct decision	3	3	4	5	6
$\%$ Correct	50	50	66.7	83.3	100

Some Suggested Exercises

The serious amateur wine judge asually wishes to improve his judging ability, but how does he go abont it? Obviously he prac-

Affer tasting the product the judge marks a cross at the point representing the magnitude of the sensation in question. The distance from the end of the scale to the cross is a measure of this magnitude. Stone ef al. believe that the scale is linear, i.e., that with several data points a straight-line plot of measured distance versus true sweetness (or other sensory attribute) is obtained.
The procedure requires cxtensive training with the product (about 20 hours) and individual testing. The individual and pane] data are ceahated by malysis of variauce. Correlation coefficients are calcalated to determine the degrec of corrclation between the scales. Primary sensory values are measured by principal component analysis, factor andysis, etc. Finally, a multidimensional model can be developed and its relation to consumer response or other extemal factors can be established.

From the data one should be able to identify inconsistent responses (ndicating the need for more training) and the adequacy of the judges discrmmation between different lewels of a given sensory attributc. One can also determine whether individual scales are producing consistent results and whether the scales are adequately discriminating between products. Fimally, the extent to which products differ in the specific attributes can be measured, and the most accurate and consistent fuiges can be identified.

Computer programs for oneway and two-way analyses of variance are uscd to measure the agreement between a judge and the panel as a whole. The intcraction sum of squares is estimated for each judge and the F-ahe is calculated. A high F-value for an individual judge indicates his disagreement with the panel, i.e., there is interaction between the product and the judge.

Our conclusion is that descriptive sensory analysis, in the hands of highly tained persomel, should prove useful in solving certan industrial and research sensory evaluation problems.

Natare of differnce:
Caste for smell the standard (S) and the sample Decide whother the ample is the same as or differnt from the standard

Sampic mo	Samedes	Diftumatrons

Same \qquad Datc \qquad
Ficure 19
Record form for an A-notil test.

What is this judge's threshold for sucrose in water? Obviously 50% of his decisions should be correct by chance alone. The percentage of correct decisions above chance is defined as $P_{c}=2 \times$ $\left(P_{0}-50\right)$, where P_{n} is the percentage of correct decisions observed. In practice the threshold is usually taken to be that concentration at which the judge makes 50% correct decisions above chance $\left(P_{c}=50\right)$, i.e., 75% correct decisions observed $\left(P_{0}=75\right)$, since $2(75-50)=50$. In the present example the sucrose threshold is therefore somewhere between 0.3 and 0.7%. A more exact threshold could be established by repeating the test with solutions between 0.3 and 0.7% sucrose, e.g. $0.3,0.35,0.43,0.53$, and 0.68%.

The results can be plotted on log-probability paper, with P_{c} on the probability axis (ordinate) and concentration on the \log axis (abscissa). Draw a straight line as close to the data points as possible. The intersection of this line with a horizontal line drawn from $P_{\mathrm{e}}=50$ defnes the concentration threshold. For a still more accurate value the line can be plotted by the method of least squares, either manually or with an electronic calculator or computer. For purposes of demonstration we suggest that the group results be pooled and the average threshold calculated. However, it is instructive to compare the thresholds of various members of the group. For this purpose the test should probably be repeated until there are at least 15 correct decisions for each individual.

ome sucgested exercises

This type of test can also be used to determine the thresholds for many other substances, in either wine or water. For example, the following amomets of vanous chemicals could be added to the base wine or water (the standards), which constitutes the first of five samples in the series: acetaldelyde $(10,80,140$, and 200 mg por liter); acetic acid (3,5,9, and 14 grams per liter) biacetyl ($4,8,12$, and 20 mg por liter) , citric acd $(0.2,0.4,0.5$, and 1.6 grams per liter), ethyl acetate ($30,60,100$, and 150 mg per liter); sorbic acid ($50,100,175$, and 275 mg per liter); sulfur dioxide (40,90 . 150 , and 250 mg per liter), tartanic acid $(0.03,0.07,0.10$, and 0.15 gram per liter). The sulfur dioxide test should be the last one attempted, and should be made no more than once per day.

When water is used as the standard rather than a base winc, these tests establish the absolute thresholds of the judges (see page 73). When wines are used the thresholds should be interpreted as difference thresholds iexcept for sorbic acid), because the concentration of the component in the base wine may alteads exceed that corresponding to the absolute threshold. Care should be exercised in selecting a fairly neutral wine of normal composi tion as the base wine. If testing time is limited one may use four concentrations instead of five (omitting the lowest).

Thresholds can also be determined by the methods of just noticeable difference (ind) and just not noticeable difference (innd). In the former test the samples are presented in order of increasing concentration, from below threshold to well above threshold. The judge indicates the first sample that he finds just noticeably different (sweeter, sourer, etc.) from the preceding sample. (For a record form see Figure 20.) This test can be used for determining absolute as well as difference thresholds. Because the errors of expectation and habituation may occur, the test should be done in both directions, i.e., ind and imnd. In the latter test the samples are presented in order of decreasing concentration; the judge indicates the first sample that he finds just not noticeably different from the preceding sample.

For example, the test for a ind is done 5 times with a series of wines containing citric acid. The base wine (nothing added) contains 0.50 gram per 100 ml ; the amounts of citric acid added to

Nature of difference
Sample order: $C H / K N R T$
Iate for smoll the smaples. from the lowes concentratuon fleft to the micsi fighti. Indicate the frost sumple that is fust noticeably different m raste lor smelh from the preceding sample

Difermace frist notred in sample \qquad
Date \qquad
FGIRE 20
Record fom for a jusi-noticeable-difference zest
make the remaining four samples are 0.02, 0.05. 0.10 , and 0.25 gram per 100 ml , giving samples with $0.52,0.55,0.60$, and 0.75 gram per 100 m , respectively. In the ind series, the actual ind is 0.55 three times and 0.60 twice; in the corsesponding jand series (also done 5 thess) the actual fond is 0.55 thece times and 0.52 twice. The weighted means of these two sets of data are given by

$$
\begin{aligned}
& \frac{0.55(3)+(0.00(2)}{5}=0.57 \quad(m d) \\
& \frac{0.55(3)+0.52(2)}{5}=0.54 \quad \text { (mad) }
\end{aligned}
$$

and the overall mean salue is therefore 0.55. Thus this judge's difference threshold for citric acid in wine is $0.55-0.50=0.05$ gram per 100 ml . The uswal measures of central tendency. significmite, probable etror, ctc, can be appled.

Off Odors. The threshold tests for acetaldehyde, biacetyl, ethyl acetate, sorbic acid, and sulfur dioxide listed above can abo be used for fammarizing the student with common of odors. Other off odors can be produced by adding a small amonnt of the substance in question to a nentral wine. For example, about 5 to 10 parts per bllion of hudrogen sulfide will be detectable. For the higher alcohols, 400 mg per liter of 3 methyll butanol (isommy alcohol will be adequate to give a fusel oif odor to the wine. Securing wines with typical and casily detectable off odors of corkiness,
some suggested exercases
moldmess, or woodiness uay be diffcult. One should inquire of whe merchants or wineries for help in locating such wines.

Other Exercises. Most of the procedures discussed previonsly can also be used in the training and selection of fudges. For detecting differences of a nonspecific character an midentifed off odor, for example), the duotrio test (page 113) and triangle test (page 114) are most useful. Jadges who canor distinguish the off odor can be screened out. When potentral judges are being tamed. those who fail to detect the odor will know that they must practice to reach the requisite proficiency, or be disyualified. The duo-trio and triangle tests can also be used in blending wines to match a standard-an important winery operation. They are useful not only in whery operations but also in the training and selection of blenders.

Paired-sample tests (page 111) can be used for establishing ģality differences. However, ranking (page 129) and sconing (page 121) are often the preferred procedures. Can an individual correctly rank a senes of wines in increasing order of Cabernct aroma, sweetness, souness, ethanol content, ctc? Those who are deficient in one or more such skills need further training and practice, or should simply not be used on a sensory cealuation panel for which the skill in question is a requirement.

Because individuals differ in their moderstanding of the tests. some preliminary training is desirable so that all the potential judges start the test serics on an approximately equal basis. In all training tests, the statistical significance of the results must be calculated unless it is obvious from inspection of the data that the results are insignificant.

Quality. For judging the quality of wines we recommend the scoring of groups of 5 to 7 wines of a closely related ty pe. e.g, wines of the same varicty but from different wineties or of different vintages, wines of a given region or district, etc. Should the wines be served "hlind" or with the labels showing? For beginuing students we favor the latter method because it gives the student the best citance to associate the label with the odor, taste, and favor

matesticar procedures

of the wine. However, this assumes that the students, and especially the instrictor, are completely unprejudiced-a very big assumption. For more adwaced students, "blind" judgings are much to be preferred. At home the wines should be served with the labels showing unless some consensus opinion is desired. In this case the wines should be served "bind." Ranking procedures are then usually preferred, but if the group has had experience in using a particular soore card, scoring can be emploved. (Sce also pages 59-62.)

When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you camot measure it, when you camot express it in numbers. your knowledge is of a meager and insatisfactory kind: it may be the beginuing of knowledge, but you have sarcely, in your thoughts, advanced to the stage of science.
-Lond Kelvin

PuTLE 1
Wine glass painted black on the outside to present observation of appearance or color.

PLate 2
Lazy susan serving table. Note sections for separating samples. (Courtest of E. and). Gallo. Modesto. Cal.)

Appendix A Nomal Distribution
The entries in this table are the areas under the nomal probabinty cunce to the righ of the nargal ahue of the nomad devate \bar{a} ！om to the left of－a，i．e，they are the probabities that a radom calue of z whl equal of exceed the marginal shac

＊	（6）	a！	U2	13	$0 \cdot$	05	116	0^{-}	15	119
（1）	sur	＋095	． 1923	＋6811	＋+14	［si0］	＋50）	42	＋69	461
4.1	F02	＋56\％	452	4485	$4+43$	＋4，4	． 380	43	＋290	＋2\％
02	4207	－165	＋139	togy	462	＋693	39.4	agit	3 Cl	． 355
03	3831	3， 9	$: 45$	．205	\％ 819	3632	3545	－5：	352	，96\％
94	$2+46$	S 3119	A？	336	3304	． 3254	．223	5192	9136	$\therefore 121$
0.5	7615	3 n	－015	209	2060	3918	25.7	． 2×3	2316	Wh
06	$2{ }^{2}+3$	270	－nts	． 266	2611	．25\％	23＋6	2314	$3+85$	－451
0 ？	2720	2389	$\therefore 8$	272	2396	2266	2236	23m\％	215	1148
0.5	．2119	． 2800	2061	2037	2005	．19\％	．1949	192	$169+$	106\％
0.9	$18+1$	1814	T－ss	．96	150	．171	．1689	Iffic	1635	161
10	158	．1562	13^{3}	1515	1462	1＋6\％	．146	1ヵ゙	1＋61	．159
1.1	155	． 133	1814	129	127	． 125	．1230	1213	1109	．15
12	115	．1131	112	．1093	1105	．1056	108\％	1093	［1703	0985
1.5	19048	0951	048	097	1900	4885	0869	085	mas	1983
1.4	480\％	0792	0 O	ant	11499	1735	072）	O76	（6） 4	．ifs ${ }^{\text {a }}$
15	U60\％	0655	Nites	0， 3 30	， 16018	nefo	0594	11582	（55］	1559
1.5	0548	059	050	8976	0505	0.905	． $14+85$	0	00^{65}	HF_{5}
1.7	$14+6$	60＋36	$4+3$	$0+1 \%$	1209	Q40	$090 ?$	084	095	1136：
1．3	W29	（1075	818.4		． 0329	022	1214	0307	（130］	0294
1.9	den	nes	12\％	0264	0 On 2	02\％	0250	$12+4$	0239	23
20	1228	1122	121^{-}	1213	avi	nen：	Sit	$\mathrm{HfP}^{\text {a }}$	0.38	1115
21	4189	．1174	（176	A6\％	19162	715s	6154	，1\％ 19	0.140	H14
2.2	1159	1436	M182	．1929	0125	（1932\％	0119	H176	nils	n） 19
2.3	（1） 0	． 0 B 0	110	De9\％	（hums	0904	049	mese	［68）	Ond
24	mer	Ofly	U015	wor	OnP	．007	． 0069	．1016	0966	n064
2.5	（10262	（1）en	．1149	005：	1005	005	0062	1495：	0149	（1）4\％
3.6	St	difis	（1） 14	0042	8071	．1740	omos	21385	1013	． 1036
20	（1935	S134	M1033	（16n2	083	（1030）	．0929	．1023	0027	moze
2x	（0120	．025	．96E4	＊603	Uu23	0012	O021	．miv	0120	19010
2.9	（0019	6is	（mms	U17	1096	whio	0015	0015	0014	（101\％
B	W0］	．1013	mis	．012	U012	011	0011	（047	0010	9015
31	（010）	H10\％	mu9	（609）	（0048	0.1008	．0008	mmas	nome	wor
3.3	गun？	$00{ }^{5}$	．1076	wheo	0006	0006	0016	0045	． 1905	．100
3i	，mas	dow	． mb	（m）	0004	［100）+	0004	．1064	（10） 4	0065
34	（0）03	1007	．Whas	Whis	， 2003	（160）	0003	п\％\％	ntas	1002
36	．0002	0002	oul	（io）	Bun	（mon	0001	［10］	U00\％	1000
34	（6nli									

Appendixes
Appendix B ChiSquare Distribution
The entries in this table are the x^{2}－values for distributions wath fron i to 30 degrees of freedom， at 10 values of the probability．

$d\rceil$										
	0.00	0.195	11.50	0.30	022	910	13.15	002	0.01	0 OH
1	0.000	0.604	14.40	10	$16+$	27	584	$5+1$	064	16：8？
－ 2	0.20	0.163	139	2.4	$32:$	4.60	599	－s？	931	13 s ？
3	0.115	0.35	23	？ 6	4.64	0.25	－ 12	9.8 .4	1134	16.7
4	03	0.1	3.36	＋85	5.99	78	9，40	11．6 $=$	13．2x	15．49
$\cdots 5$	0.55	1.14	4.35	616	7.29	4.4	1117	13.39	15．10	24.2
6	097	1.64	535	7.25	8.56	10.67	1259	15.03	16.5	23.46
7	$1.2+$	2.15	6.35	83	9.80	12.12	14.19	10.02	1848	24.32
8	105	273	7.34	9.5	1103	1560	15.51	18.17	211.919	22.12
9	219	3.32	83_{3}	10.62	12： 2	14.68	1602	1968	21.6	27.8
10	2.56	3.9	9.3	11.8	15.7	159	18.31	31.16	23．21	295
4	3.65	4.58	11.34	12．9	$1+6 \%$	$1: 3$	1964	22.62	2 Cl 2	3120
$\because 12$	3.57	5.25	163	14.1	15.81	1559	2313	24.15	20.22	32.91
03	＋1］	5.99	12.34	15．12	16．4\％	1981	22 \％	2	27.69	3.53
$\cdots 3$	4.66	6.5	13.34	10.2	15.5	210 n	2sin	2685	$29.1+$	iol：
\％ 15	5.27	7.26	14.54	17.32	20.31	22.31	25910	23.36	303	5－5i
\％ 16	5 si	796	15.34	15．42	$20+6$	23.54	26.6	2963	3200	30.25
417	641	8.67	16.74	19.51	2162	2＋75	2759	31.00	53， 1	40.79
－18	719	4.39	17.34	29.69	23.6	3509	3 c	2.35	$3+80$	42.31
19	76	10.12	18.37	31.64	23.90	2， 24	317	53．50	36.19	4is：
30	8.26	10.85	19，34	22.74	25.64	28．7！	32.41	350	行嫁	＋532
	8.90	11.59	20.3 y	23.86	2617	29.62	江6	36.4	389	46.80
Y22	9.54	12.34	2134	$2+94$	2730	31． 8 ？	3342	37.66	＋6．29	$\because 6.27$
$\square 23$	10.20	13.99	2334	26．02	28.3	32.01	53	35.97	4164	49.5
67	10.86	13.85	23.4	27.10	2955	33.20	36.2	40.27	12980	51.15
35	11．5？	14.61	24．3．	2s：	30.58	2． 3 \％	35	＋1．5	＋4．31	5202
－ 26	12.8	1538	25.3 .4	29.25	31.50	35 56	30．s	12.86	45.54	5.155
527	1258	1615	26.34	3 m 5	32.91	is－${ }^{-1}$	＋0．41	14.14	＋6．95	348
－ 28	1756	16.93	27.34	31.30	34.13	50.92	41.34	55.42	48.8	56， 86
429	$1+26$	1771	25.34	32.46	35.14	39.10	f2 is	＋6．60	49.39	59.30
＋30	14.95	18.49	29．34	33．5？	36.25	4626	43.7	$4{ }^{-96}$	50.99	56

 Ltd，Edubugh．By permission of the zuthors and publisher

- Appendix C Signifance in PairedSanple and Duo-Trio Tests. $H_{\text {in }}: p=1 / 2$ The number ti is the momber ot thats, ie., the number of inders on juegnents in the test.

n	```Mmmancombetmbraters``````Dmfte:ve:```			Tinmot achemg rachats vicaste legetablob sevicutpraternes atwoturn ?sit		
	$p=0$ at 5	P-iven	$p=0.001$	$p=0,05$	$0=000$	$p=00$
-	-	-	-	-	-	-
8	7	*	--	8	s	-
9	8	9	-	s	9	-
10	9	1:	16	\%	i6	-
11	9	10	$1!$	10	11	11
12	10	$1:$	12	111	11	$1 ?$
13	10	12	13	11	12	15
$1+$	11	12	13	12	13	14
15	12	1	14	12	13	14
16	12	14	15	13	14	15
1	18	14	: 6	13	15	16
\%	13	15	16	if	15	17
10	14	15	!	15	16	17
20	15	16	3s	15	17	is
$3!$	15	12	is	16	17	19
2	16	15	19	17	18	19
$\stackrel{2}{3}$	16	15	30	1^{-}	14	30
24	17	10	23	16	1	21
25	18	19	31	15	2	2
30	23	22	2.	21	23	25
35	23	25	\because	$3+$	26	28
40	26	23	31	27	29	31
45	29	$3!$	7	31	32	3-1
50	3	$3+$	37	73	3	37
60	3	+1	+	24)	+ ?	4
70	13	4	7	\ddagger	t	50
89	教	51	5	5	32	50
90	54	57	6	5	58	t
1019	8	67	60	61	$6+$	67

Solus
$1996)$.

APPENDLXES
Appendix D Signincance in Triangle Tcests. $H_{4}: D=1 / 3$.
The unaber n is the numben of trials, 1.e. the number of udges or judgments a the test.

H.

1. Soukcr Adapted trom a table by [E B Roester, [. Watren and] F. Gumbon. Food Research 13. $503-505(10+8)$

Appendixes

apendix E t.Distmbution

The entres in this table are the t-ahnes for distributions wath from 1 to wo degrees of fredom, at 10 wabes of the two tailed probability (sum of the the tatitaras) and the lo cor responding whes of the one-thiod probibility (one tal areat.

d										
	0.5	1.7	13	02	11	0.015	0.02	0 ta	0.002	0100
1	1.900	1.776	1.90	\%ups	6.314	12706	3182	63.65%	31831	63660
2	11.816	1.061	1386	1886	2920	+ 815	0.065	9025	2n-	31.8
;	0.765	0.078	1.250	1.638	2,35	2 162	4591	5.811	11.314	12.94
4	074	094	1.190	1538	2.132	2.776	378	4.694	7.18	9.61%
$亏$	0.27	1)920	1156	1.4\%	2915	257	3.85	$+938$	5893	6.55
6	0718	0006	1.134	1.46	1.94	2.47	E14:	3.907	5.205	505\%
7	0711	0.856	1119	$1+15$	1985	2355	2005	8.400	4.785	5.45
*	0706	0.989	1108	1.39	1 xal	2.369	2.500	335	401	504
9		085	1108	$13{ }^{\text {a }}$	1833	2.262	3821	3250	4.297	$4{ }^{\text {4 }}$
$1: 1$	0.700	(0.870	[(4)3	1372	1812	2228	2.764	3169	$7.1+4$	+.5.85
11	1.697	180	1048	1853	$1-3$	2301	2.15	3.100	4.025	4.17
12	0605	10.873	1083	1386	1.88	2176	2681	3.155	3.930	$+50$
15	0609	10.870	1.0.9	1.85\%	17	2163	2.651	3,012	385	420
14	1)692	Obst	1076	1345	1.60	2.145	2.624	2.977	3.75\%	+1810
15	0.693	9885	1074	1.34	$1-5$	2131	2602	2.977	:-33	49^{10}
16	0690	0865	1.07	1515	1740	2130	2583	2.921	3686	4015
17	0685	0.863	1169	1333	1741	2.10	256	$2 \mathrm{Sb} \mathrm{\%}$	3,646	3.965
is	11688	0×62	1.667	1.33\%	17	2101	2.53	2.58	3650	3.923
19	0.688	0.503	1,066	13	1.29	2.093	2559	285	3.579	3885
20	0687	0.860	1064	1.35	1.725	3.06\%	2588	$2 x_{4}$	3.552	
21	0.686	0.859	1003	1.323	100	2408	2.51\%	2831	3.59	389
2	0.685	0s5\%	1.061	1.321	175	20.4	2508	2880	3.415	: 78
23	0685	0858	106%	1.319	1.74	2069	2500	2.80%	3.485	$3{ }^{2}$
24	0685	085	169	1318	1.21	21064	2.192	2797	3.467	3.75
23	0684	0×56	1.558	1.316	1.714	2.060	2.485	2787	3.450	578
26	$1068+$	0.50	1.658	135	1740	2,055	2.79	2774	; 155	$3-10$
37	$00^{8} 8$	0855	1.055	1.314	1.713	2052	≥ 173	2781	3.121	360
28	1683	0.85	1.056	1.313	176	2048	3.69	2.65	3.404	3.6.
29	0.58	0854	1055	1.31	1694	2.145	2.462	2.756	3.996	3.659
30	0.653	0854	1.055	1.319	1697	2.1943	2.457	2.70	3.385	3686
41	0.681	1885	1051	1.313	1.684	2021	2.23	2.704	370	3.531
0	1367	984s	1046	1.296	163	200	2391	2.660	5.23	3ta
170	4.67	$3 \mathrm{Cl}{ }^{3}$	1.44	$1-50$	1.65	1986	2.358	2.617	3160	355
∞	[1.6.t	4.342	11136	1242	1.65	1.960	$\underline{3.726}$	2.570	3.090	3.201
dt	03	32	0.85	01	005	0.025	0.01	9005	0 ma	0.005

[^2]Appendix F-1 F-Dstribution, 5% Level The entries on thas table are the F valnce for when the tat rea equals 0.05
(i5.

Appendix F－2 FDDistribution， 1 Lemel
The entries in this table are the 1 a alues for whoth the tail area equabs 601.

$\begin{gathered} d \text { yor } \\ \text { invominor } \end{gathered}$	df For nimakator									
	1	2	3	4	5	6	8	2	2－1	∞
1	＋is？	469	$3+113$	565	564	588	595	6106	6i4	6） 36
－	98.5	99．00	99.15	89.25	99.30	99.33	99，37	$99+2$	9 9 ＋6	90.0
；	412	20．32	29.16	287	28．24	－79	274	273	26.50	2612
；	21.20	19 9\％	10.69	150\％	15.52	15.21	$1+80$	14．3－	189\％	$13+6$
5	16.36	13.27	1218	11.39	10.97	16.67	1029	989	$9{ }^{+5}$	902
6	18.8	109	95	9.5	85	8.75	8.10	7.3	－ 31	$6 \cdots$
	1235	9.55	8禹	7.85	7.6	－19	6.84	6．t？	¢0：	565
8	11.26	885	759	719	6.67	637	6.15	50°	5.25	4 ta
4	10.26	802	6.99	6.42	6.06	5.81	5.4	511	4.73	4
10	004	$\because 56$	6.55	5.99	5.64	5.39	5.16	＋．． 1	\ddagger 「	59
11	9.65	7.20	632	50	5.2	5．0\％		＋．ti	＋103	36
12	9.3	6.93	59		5 mb	$+62$	4.50	$+16$	5.8	3 m
13	915	50	5	520	＋ s t，	$+6$	4.31	3.90	3.95	Sim
$1+$	8.86	6.51	556	\％ 113	469	4.46	＋14	7.89	3.45	5
15	8.65	6， 36	5.4	4×8	＋56	＋．32	4.10	3.6	3.24	2.
16	4.53	623	－39	47	4.4	4.20	3.89	3.55	3.18	2．5
17	$n+10$	6.14	518	40^{-}	＋ 34	$+16$	89	3.5		2\％
18	8.38	6.01	509	$+55$	4.3	4.61	3.71	3.37	3.01	35
19	818	5.93	5.13	＋5．5	$4.1{ }^{-}$	3.94	3.63	3.30	292	$3+4$
2	8.10	585	＋ 4	4.15	410	38	3.6	3.23	2.86	$2+3$
21	302	578	4.87	437	4.14	381	3.51	317	280	23
22	7.94	5.8	$4 \mathrm{x}=$	＋ 31	3.00	3.76	3.15	3.12	25	231
23	7.98	50	4.76	$+26$	394	3.71	3.41	3.07	2.70	2.20
2	3.6	5.61	473	4.22	3.90	3.57	3.36	3 O	266	321
25	7.7	5.5%	4.68	$4.1 \times$	3.86	3.63	3.32	209	262	215
26	772	5.53	4．tos	4.14	382	3.59	3.29	296	2.58	213
$2-$	7.58	5 \％	＋60	4.11	3%	356	3．26	2.93	255	214
38	7.64	5.5	$+57$	＋07	3.55	3.57	3.33	2.96	2.53	236
29	7.64	$5 .+2$	＋．54	＋ 115	3	7，90	323	2.87	2.99	213
31	7.56	539	4.51	4．122	3.70	3.4	317	2.85	$2+7$	201
40	733	5.18	4.31	389	3.51	329	2.99	2.66	3.29	18：
60	7108	＋ 9.98	4113	365	3.34	3.12	2.82	2.50	2.12	16%
120	685	49	3.95	3.48	317	2.96	2.66	2.34	1.97	1.38
∞	664	＋60	3.88	3.3	3.02	2.89	2.51	2.15	1.76	1 （\％）

Appendix F－ 3 F－Distribution， 0.1% Level The entnes in this table are the F a dines for which the tail area equals 0001.										
	dior wayertor									
Denomintor	1	2	；	$+$	ζ	6	＊	12	$2+$	∞
1	＋193）	ธиюи\％	¢＋6\％	50，	576＋11\％	－\％ 5	99x14．	61060	62340：	636419
2	598.5	999，11	909.2	499.2	49%	999 ；	¢94．）	$999+$	095	（my
3	167.1	148．5	1111	15	134.6	132．	1306	120：	1254	1235
4	74.1	H125	56.18	734	5171	505	＋9，06	f41	15.7	$4+15$
5	718	7712	33.20	31.00	20，	268	276	26.12	35．1＋	3 Br
，	35.51	27.16	23．70	21.92	21.81	2005	19.83	$1-99$	16.89	15－5
\％	29.5	21.69	18：	15.19	16.21	15.22	$1+63$	157	$12 \cdot 3$	1169
\％ 8	25.42	18．99	15 S	$1+39$	13.4	12.85	12，34	1.19	10.30	$9.3+$
\because	22.46	16.89	13.90	12.56	11.71	11.12	1113	9.57	4.2	781
10	21.04	$1+91$	12.55	1128	10.48	0.92	924	5.45	7.64	06
11	1969	13.81	11.56	10.35	9.58	9.05	8.35	－6． 6	6.85	6.10
12	$1 \times .64$	1297	110.80	963	4.89	838	－：	716）	6.5	iti
1	17.81	12.31	10.21	\％\square^{4}	8.35	$\because 86$	7.21	6.92	5.5	$+4$
$1+$	17.14	11.78	9.35	8.63	792	－ 13	6.89	0.13	5.1	4 tan
15	16.59	11.34	9.4	8.25	7．57	－69	6.7	5.81	； 11	＋．3］
1\％	1612	1097	0.00	$79+$	7.27	0.91	619	5.55	4.85	＋． 16
17	15\％	1606	8.78	768	762	6.5	506	83	463	35
18	15.38	10.39	8.40	7.36	6.51	6.35	5.6	5.13	＋ 5	3.6
19	5，	10.16	8.28	7.26	6.62	6.15	5.99	$+97$	$+.9$	； 52
20	$1+88$	9.45	8.11	-10	6.16	6.12	54	＋ 82	＋．15	3.38
21	$1+59$	9.77	794	6.95	63^{2}	588	$5: 1$	$+70$	4.05	： 26
22	17．3\％	9.61	28	6.81	0.19	$5 . .6$	5.19	4.58	3.02	3.15
23	$1+10$	9.47	7.67	6.69	6.08	5.65	5.96	＋．46	3.82	3.05
4． 24	$1+.63$	9.34	0.55	6.59	5.95	5.55	409	4.98	3， 3^{4}	297
25	13.88	9.22	$7 .+7$	6.49	5.85	5.6	491	4.31	366	299
26	13，74	9.12	7.36	6.17	580	5.38	483	4.24	5.59	2×2
27	13.61	9.02	7.27	6.3	5%	5.31	＋76	4.17	3.52	2.5
28	13.50	8.93	7.10	6.25	5.66	5.24	7.69	4.11	3.46	270
29	13.39	8.53	7.12	619	5.59	518	7.64	4.15	3.1	26
30	13.29	8.77	7.05	6.12	5.53	$\zeta .12$	t． 5	400	3.36	2.59
41	12.01	8.25	6.61	570	5.13	4.3	＋21	3.64	3.91	37
6䊾 60	11.97	7.6	617	5.31	4.76	＋．7	3.57	3.31	2.69	190
－． 120	11.38	7.32	570	$+.95$	4.42	＋64	3.55	3.112	270	1.54
	1083	6.91	5.42	＋．te	416	3.74	3.2	2.74	2.15	（1）

W．Sotree Abndged from Table V of R．A．Fisher nd F．Yates，Statistical ables gro Bological Agneulura！ Ltd，Edmbugh．By permission of the authors sul publisher．
Appendix G-1 Duncar's New Multiple Ranges, it Level

15

d	2	3	1	;	6	\because	8	9	10	11	1.	13	14	13	16	1	1.6	16
2	+1.69																	
;	18.28	18.45																
\dagger	12.15	12.52	126															
ξ	9.14	1005	16.24	10.35									The	last crit	m	rou	remar	He.
6	842-													for all	weceedt	ne calu	cs on p	
\%	O 0 + 4	7.943	8.127	8.25.	8.342	8.409												
\%	8130	7.407	7.584	8.708	7799	7.869	2.024											
9	6.76	7094	-195	7.316	T45	7.ta	3.335	2.54?										
19	6.45	6.736	6902	7081	2111	7192	? 210	7257	720									
11	6.275	6.510	6.676	6,701	6.880	6950	30048	719	-10\%	$\cdots 13$								
1.	0.10%	$6.3+0$	6.494	6. 617	6.69	0.765	08822	$65 \% 0$	6911	$0.94{ }^{\circ}$	0.978							
13	5970	6.195	6.3 to	0.4\%	6.543	6,6:?	6.670	6.15	6.399	6.053	0.586	6854						
$1+$	5.85	6005	6.223	0.332	0.416	6.185	6.512	6.590	0.631	6.66	0.699	6.53	6.55					
15	5.760	5.974	6.119	6.225	6309	6.377	$6+33$	6.481	632	6558	6.590	60.19	6.641	6.666				
15	7.63	5.858	6.030	6.135	6.217	6.284	6.34)	6.888	$6+29$	6.165	6.49:	0.525	6551	655.	0.995			
$1{ }^{-1}$	5603	5.833	5.953	6.076	0.178	6.214	6.60	$6.30{ }^{-1}$	6.348	6.389	0.416	6.tit	0.470	() +9	9714	6.593		
18	5.54	5.718	5.886	5.988	6068	0.14	6.159	6.36	6%	6.315	$63+5$	6.823	6394	$9+3$	6.183	万,th:	$4+80$	
19	5.492	5.691	5.820	5.927	6007	60.2	6.127	0.17	6214	6.2511	0.781	0.319	0.336	6.359	6381	6. + (1)	$6+18$	6.P3-1
4	5.444	; 6111	$5.77+$	5.8	5.932	6.017	6071	6.117	0158	6193	6.72	6.23t	6-9	0.3113	6.32+	63.4	6362	6.394
\%	8.297	5.4.4.	5.612	5.708					348.	$6\left(22^{\prime}\right)$	6.951	6.079	0.103	6129		$6.1: 0$		62015
il)	5.15\%	5.335	5.157	5.549	5.622	5.692	5734	5 F	7.81:	5851	5.88	5.910	5935	5935	3,985	bsum	6.018	6036
40	5,12?	5.191	5108	5.396	$5+66$	5.5.2.	5.77	5.017	5.65	5.654	5.38	$57+5$	5.770	5.793	7, $31+$	5,53.	3.852	5.869
0	+.894	5.055	5.160	5.249	5317	5.372	5.120	5.461	5.498	5.530	5.580	5.586	5.910	765	5.653	5.0%	3000	574
120	4.771	4.924	5.029	5.103	5173	5.226	5.271	5.311	5.346	5377	5.165	¢fil	3.154	$5+6$	5 496	5.515	553	$5.5+9$
∞	1.654	4.708	+898	+. 974	5034	5.085	5.128	5.166	5.199	5.229	5,250	5.280	5303	5.324	5.313	5.361	5.508	$5.39+$

Appendix C-3 Dancan's New Maltiple Ranges, 0.16 Level

Apyendixes
Appendix H Correlation Coeffcients
The entries in this table are the R-values for distributions when from 1 to too degree of freedom. at 5 whes of the probiblitite

$\stackrel{d j}{k-2}$	Probamimy of alarger valuf of R				
	119	0 O	$10 ?$		amb
1	94.6 ${ }^{\text {c }}$	09692	60950:	9904--	9yp90s8
2	90004	. 5 510:	94009	990006	9030,
\%	.845\%	578:	$93+33$	95473	cheld
4	. 7293	8114	ss?	9175	9746
5	6694	. 7545	8324	S745	.9504
0	6215	. 06	. 885	$83+3$	9849
\cdots	. 5822	.6664	+4,	7\%	8985
\checkmark	5+94	. 6319	. 7155	7640	521
Y	. 5214	662]	.6851	748	3471
10	. 1973	. 5700	.658:	7m9	A23:
11	.762	. 5529	6330	.6855	S914
12	+575	. 5324	.6120	$6 \mathrm{~h}+$	-806\%
13	. $4+60$	5139	5923	. 6411	7609
$1+$. 4259	+973	. 5712	.6236	7120 -245
15	. 4124	+823	557	. 605	7246
16	+000	465	. $2+25$. 889	-487-
I	i887	. 455	5285	.531	6935
18	3783	4438	5155	. $567+$	678
19	3685	. 4329	. 5034	. 545	665
20	. 3598	4227	+931	5368	6524
25	3233	3809	4451	4869	5974
30	2960	. 3494	. 4097	478	-5541
35	2746	3245	3810	415	. 5189
40	2573	$30+4$. 3578	. 393	.489\%
45	. $2+28$.255	. 3354	:1721	. $46+5$
50	2306	2732	. 3218	3541	+43:
61	2108	2500	2948	3248	. 4078
-0	1954	2319	.2737	.397\%	. 3790
S0	1829	212	256	3×34	. 3568
99	1726	20%	. 2422	267\%	$33-6$
100	1638	. 1946	2301	2340	3211

Source: Abridged from Table VII of R. A. Fisher and F. Yates. Statistical Tables for Biglogicul, Agricultural, and Medical Roserch/h, Gthed. 197 t. Longman Group Led. London prevomily published by Ohiver and

Appendix I-1 Rank Totals Excluded for Significant Differences 5% Level Any rank total outade the given range is significant

	Nimber or whes										
	2	;	i	ζ	6	-	8	9	10	$1 i$	12
3				+-14	$4-17$	1-20	+ 25	F-25	$5-28$	$5 \square$	5-3,
\dagger		511	5-15	$6-1.8$	6.22	$7-5$	$3-24$	S-32	$8-16$	S-39	$9-4$
5		6-14	7-1\%	8-22	9-26	9-31	$10-15$	11-39	$12-43$	$12-45$	13~\%
0	\%-11	:-16	9-7	10-26	113	$12-36$	1:-4	1+-46	15-51	1-5	jswit
	8.13	16-18	11-2+	12-30	$1+35$	15-4i	$17-46$	18-52	10-5\%	2) 69	22-6;
$\%$	9-1;	11-2]	$18-2$	1-ヶら	$1-34$	$16-46$	2-5	$22-56$	2--64	23--1	$2 \mathrm{C}-{ }^{-}$
9	$11-10$	$1 \% 23$!5-3!	17-8	19-44	22-90	24-57	36-64	26-71	34.-8.8	i?-e
it	12-18	+4-26	17-33	20-41	2-48	25-53	27-6;	3-70	32-7\%	35-b5	7209
11	13-20	$16-25$	10-ie.	$2 \mathrm{O}+4$	25.52	28-60	$31-68$	$34-76$	36-85	39-89	+3-104
12	15-7:	(x-3)	210	25-47	23-56	31.5	$3+-4$	3-82	f1-91	+i-imb	+7-164
13	16-23	21-32	24-+1	27-51	$31-64$	35-39	38-20	42-88	45-98	+9-117	- $-1{ }^{-}$
13	$17-25$	22-.31	36-74	31.54	34-64	3\%-4	+2-47	46-94	51.104	- $3-1 / 4$	5--124
15	19-2¢	23-37	$3 \mathrm{Sb-4}$	22-58	3-6!	41-79	+6-49	56-190	54-11:	5x-122	6₹-13:
16	230	25-34	3)-50	35-63	+0-72	45-85	40.95	54-196,	54-11:	63-129	-6-1+
17	22-34	2--4	3:-53	30-64	43-76	48-88	5-1m	$54-11 ?$	62--124	63-176	- - - 40
1 S	-3-3:	20-13	it-5	+0-6\%	4 6 - 8 ?	3-92	5-105	61-118	68-130	-3-143	9-13\%
10	24-3:	30.46	30-5.	43-7	44-4i	$55-37$	61-110	$5^{2}-123$	75-136	78-171	8+10
3	26-34	3-48	3-6!	45-75	5--8	35-102	65-11:	7-120	-- $1+3$	83-197	\%olm

Appondix I- 2 Rank Totals Exthded for Signincan Differences (if Level)
Ans rank total outsode the given range is signincont.

Number of aDes	Nembrer of mines										
	2	;	4	5	\%	7	s	9	m	11	12
3									t-29	+-5	+-8
\pm				$5-19$	5-23	5-27	6-30	6-34	$6-38$	$6-42$	$7-45$
5			6-19	7.23	$7-28$	8-32	\%-7	9-41	9-46	10.50	1:1-55
6		$7-17$	8-22	927	9-33	10.85	11-4\%	12-48	13-53	$13-50$	1465
"		\%-20	19-25	11-il	12-37	13-43	$14-49$	1-55	$16-61$	37-67	15-73
*	C-15	$10-27$	11-24	$13-35$	$1+-42$	16-7\%	17-55	10.-61	$20-88$	$21-75$	23-6i
9		$12-34$	1:-32	15 \%	17.46	19-53	21-fif	22-68	$2+-75$	26-82	27-90
10	11-19	$13-2$,	15-35	$18-4$	20-50	22-is	$24-66$	26-74	28.82	30-90	32-98
11	12-2]	15-29	17-38	20-16	22-55	25-6;	-7-72	$30-80$	$32-89$	$3+-95$	3-16
12	$1+-22$	1-31	19-4	27-50	25-.59	$28-68$	31-37	33-87	4,5-96	39-105	42-114
13	$15-24$	18-34	1-7\%	25-53	$2 \mathrm{Se}-63$	$31-7$	- $7-8$ -	--93	40-103	+i-11	+6-i2
14	$15-26$	20.36	2-46	3-5-	31-67	3-78	38-83	+1-0\%	$45-109$	48-120	5-131
5	15-2\%	22-38	26.49	3 B - m	3+7]	$5-83$	41-44,	$+-105$	+9-116	59-127	56-139
16	M-29	$23-+1$		82-64	36-76	+1-5	+5-99	49-111	S-123	57-135	62-140
10	O-31	25-4	30.55	$35-6$	29-30	+4-92	19-164	53	58-129	62-1+2	$6-15 \%$
is	\because	2--45	3-56	3.-7	1281	-17-9	$5-119$	5--133	62-136	67-149	$72-16$
19	23-34	29-47	$34-61$	40- ${ }^{\text {a }}$	4"-88	5-102	56-115	6i-129	क- 7 -12	$2-156$	$\bigcirc-10$
21	3 F	30-50	St-6-1	12.0	$4-92$	5-106	F01-120	$65-135$	7-149	-163	$82-18$

[^3]
Appendix $/$ Normal Scores

The entries in this table show the conversion of rankings in nomal soores. Negathe values are omitted for samples lirger than 10 .

Rans ORDER	Size of catiple									
		2	3	\ddagger	ζ	6	-	5	9	11
4 5 6 7 8 9 9		$\begin{array}{r} 0.564 \\ 0.654 \end{array}$	$\begin{gathered} 0864 \\ 6 \\ -0.864 \end{gathered}$	$\begin{array}{r} 1024 \\ 0.90 \\ -0.90 \\ -1.109 \end{array}$	$\begin{array}{r} 1163 \\ 1.405 \\ 0.009 \\ -6.405 \\ 1107 \end{array}$	$\begin{array}{r} 1065 \\ 0.64 \\ 0202 \\ -10202 \\ -1,6+2 \\ -1265 \end{array}$		$\begin{array}{r} 1+24 \\ 0.82 \\ 145 \\ 115 \\ -1153 \\ -4+23 \\ -1085 \\ -1+24 \end{array}$		
	11	12	13	H	15	16	1	is	19	23
1	1586	1.629	1.665	1.70	1736	186	124	1.520	$18+$	
2	1062	1116	1164	1.208	$12+5$	1245	1.109	1350	1.3818	$1+16$
3	11.20	6793	0.850	11001	$0.9+8$	939	1187	1166	11498	112
4	4.62	0.537	${ }^{1,603}$	0.662	0.715	0.765 0.70	0.807 0.615	$0.8+8$	$\begin{aligned} & 0.886 \\ & 070^{-} \end{aligned}$	0921
;	4.225	0.312	0.388	(1, 5 2\%	11.516	11570				
6	0100	0.103			$\begin{aligned} & 0.835 \\ & 0.165 \end{aligned}$	$\begin{aligned} & 0396 \\ & 023.4 \end{aligned}$	0.51	$\begin{aligned} & 6502 \\ & 0.5 i 5 \end{aligned}$	$\begin{aligned} & 0.54 \\ & \hline 182 \end{aligned}$	0,590
$\frac{7}{8}$							0.16	0208	0.26 .4	19:15
9							nter	6069	${ }^{\text {4, }}$: 31	!n"
									nowo	0.002
	21	22	33	24	25	26	27	28	29	\%
, 1	1.889	1.410	1.929	1.948	1.967	1.982	1908	2014	2.029	2047
+ 2	1.434	1.458	1.481	1.503	$1.52+$	1544	1.563	1581	1.599	1616
3	1.150	1.185	1.214	1.239	1.263	1.285	1305	1.327	1.36	1365
4	01954	0985	1014	10.1	1.067	1091	1.115	1.177	1.158	$1.10{ }^{-1}$
5	1.1.42	0.815	0.547	8.87	0.905	0.932	0.95	4.981	$1.00+$	1.026
+ 6	0.630	0.667	0.701	074	0.564	0.95	0820	$0.6+6$	0.7	0.59.
\% 7	0.491	0.532	0.569	0.614	0.677	066%	9,60?	0.725	0.753	0767
4. 8	4.362	0.146	0.46	19.48+	0.519	0.55	0584	0614	$06+2$	0
$\because .9$	6238	0.286	4.330	0.90	0. 409	6.44:	19.75	0.511	$0.5+0$	0.688
+. 10	0.118	0.174	0.215	0.262	0.303	0.34	037	0.11	$0.4+3$	0).
\% 11	0.000	0.056	0.108	0156	0.200	0.241		0.316	0.350	0.382 0.294
2- 12			0.000	0092	$\begin{aligned} & 0.100 \\ & 0.010 \end{aligned}$	$\begin{aligned} & 0144 \\ & 00948 \end{aligned}$	$\begin{aligned} & 0185 \\ & 0.002 \end{aligned}$	$0.224+$ 0.134	0.860	0.294
\& 14							0.000	1.14+	0.066	0.125
\% $\quad 15$									0.600	

Source: Abridged from tables conplad by H. L. Hater. Bionetrika 48. 151-165 (1901

[^0]: - The smaall p introduced eatice is used to denote the probability of a ample sent, such as getting heads in a single toss of a con The capital P is used to denote tire prolablity of a composite of simple events. such as getting 3 licads in ; tosest of a cons.

[^1]: Weak
 Moderate
 Strong

[^2]:

[^3]:
 1700ke Ahapted

