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The Modern Analysis of the Infinite:  Introductory Notes 

 

PART I.  BACKGROUND IDEAS 

 

1.  Introduction 

The purpose of these notes is to set out simply and clearly the core 
technical ideas in the modern mathematical theory of the infinite.  The goal is not 
to train readers in the tools of mathematics or logic.  Here there are few proofs or 
technical exercises, and those that occur are offered only because they help 
explain ideas.  Rather the objective is to provide a reference tool for the general 
reader, above all philosophy students and those interested in ideas.   These 
notes therefore are mainly definitions and discussions of definition.  Becuse it is 
the nature of the subject, the definitions are progressive, later concepts being 
defined in terms of earlier ones.  To some degree it is possible to pick up the 
material and start reading in the middle.  But to do so it will be necessary to 
master the rudiments of set theoretic notation that is used throughout.  The 
basics of set theory and other background ideas are set out in Part I.  Part II 
develops the properties of the infinite as exemplified in the various number 
systems invented by mathematicians in part to explain just these ideas: the 
natural numbers, integers, rationals, reals, hyperreals and metric spaces.   It is 
possible to read their definitions independently so long as it is done with the 
understand that the definitions have hostages, concepts that themselves need 
definitions.  Among these especially are the  relations like ≤ and operations like 
addition and multiplication that are defined for one type in terms of those on the 
previous type.  Part III sets out the elementary ideas of the theory of transfinite 
sets, both ordinals and cardinals. 

In the nineteenth and twentieth centuries mathematicians discovered that 
it was possible to replace earlier philosophical accounts of the infinite with a 
precisely defined theory.  This theory both provides for general accounts of what 
infinite sets are and general definitions of the various kinds of numerical 
structures that illustrate their properties.  There is a deliberate progression both 
in the order of ideas defined and an order of the results the definitions yield.  In 
particular is was discovered how to define progressively more powerful kinds of 
“numbers” which at each stage exhibit some new and important property of “the 
infinite.”  For example, the natural numbers (0,1,2,…) allow us to count and 
describe a set as infinite if in counting it we never come to an end.  Unlike the 
natural numbers, the integers (positive and negative whole numbers, plus 0) 
allow us to count backwards as well as forward, in a way that exhibits more of the 
infinite structure of space and time. The rationals (ratios of integers) unlike the 
integers are “dense” like space and time – in between any two there is another, 



 The Modern Analysis of the Infinite 

 Page 2 

and this divisibility goes on forever.  The real numbers (rationals plus irrational 
numbers, like √2 and π) exhibit even more of the structure of space and time than 
do the rationals because they are also “continuous” in the sense that they allow 
any line to be cut at any point such that its neighbors both above and below 
approach every closer and closer to it, forever.  We shall even have occasion to 
mention a particularly abstract variety of number, the hyperreals, which have the 
property that some of them are literally infinitesimal, so infinitely small that they 
have no measurable size.  Lastly, we shall review general definitions of the 
infinite that abstract from numbers entirely and depend only on the notion of 
order and counting.  These are the so-called ordinal and cardinal numbers 
studied in set theory.  We shall discover that among these there are in fact 
multiple levels of the infinite – some infinite sets are bigger than others. There 
are infinities of larger and larger infinities.  Moreover, these the two notions – 
order and counting – lead to two different but related notions of the infinite.   

This entire progression, in which one type of number is used to built up a 
yet more powerful type, all starts with the basic idea of set.  We shall begin then 
with a short introduction to the ideas of elementary, also called “naïve,” set 
theory. 

 

2.  Metaphysics, Universals and Sets 

From a philosophical perspective the story of sets began long ago in 
ancient Greece.  The first philosophers posed a famous problem that goes 
under several names, the problem of the one and the many, or the problem of 
sameness and difference, but is probably best know as the problem of 
universals.  Briefly put, it seeks an answer to the question: how can two distinct 
things be the same and yet different.  For example, how can Socrates and Plato, 
who are distinct people, both be human or both be white?  In later philosophy the 
problem was rephrased as one about the truth of propositions: under what 
conditions are two subject-predicate sentences with the same subject term but 
different predicate terms both true together?  For example, under what conditions 
are the propositions Socrates is a human and Plato is a human, or the 
propositions Socrates is white and Plato is white both be true together. 

The traditional answer is to posit the existence of special “explanatory 
entities.”  The technique is part of scientific method.  To explain puzzling 
phenomena philosophers and even scientists often posit entities attributing to 
them special laws for the purpose.  For example, in philosophy creation has been 
explained by hypothesizing the existence of a god, and likewise life is “explained” 
by positing the soul.  In science the phenotypic behavior of red and white sweet 
peas (the ratio of the populations of different colors differ according to a set 
patter over generations) was explained by Mendel by positing the existence of 
genes governed by laws of dominance and recession.   Pasture explained 
fermentation by positing an unseen catalytic agent.  In atomic theory observed 
chemical reactions are explained by positing the table of elements with their 
atomic properties of combination.   
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The problem of sameness and difference too was “solved” by positing the 
existence of appropriate entities.  First are posited ordinary things.  These are the 
familiar objects that make up the world.  They obey the “law” that they can be 
named by the subject terms (proper nouns) of propositions.  In technical 
metaphysics such objects came to be called substances. In addition a second 
category of entity is posited.  These came to be called  universals.  They obey 
the unusual “law’ that they can be instantiated wholly and completely in more 
than one substance at a time.   An explanation of why Socrates and Plato can 
both be human yet different, is then possible: there are universals like humanity 
and whiteness that inhere simultaneously in many substances.  The propositions 
Socrates is human and Plato is human are both true together because the 
subject terms stand for different substances but the predicate terms stand for the 
same universal, humanity.  Likewise in  Socrates is white and Plato is white the 
predicate stands for the same universal, whiteness.  Hence Socrates and Plato 
are the same.  On the other hand, there are other universals like snub-nosed that 
inheres in some of these (Socrates) but not others (Plato).  Hence Socrates is 
snub-nosed is true but Plato is snub-nosed is false.  Hence Socrates and Plato 
are different. 

But the status and real existence of universals was highly debated in 
philosophy.  Those who believe in the existence of universals are called realists 
(they think universals really exist) and those who doubt their existence are called 
nominalists (there are “names” like the predicates humanity and white but there 
is not universal in the world to which they correspond).  Realists face many 
difficulties.  First though everybody admits the existence of normal objects 
(substances), universals are counter-intuitive.  Nobody would have thought they 
existed if they had not be posited for the purpose of the explanation. Second,  
explanatory entities are accepted in science only as part of a larger theory  
within which they are defined and their properties explained.  Moreover, in the 
empirical sciences at least the larger theory should be open to experimental 
confirmation or refutation.    Nobody could explain, however, what universals are 
beyond the observation that they exist to solve the problem they were introduced 
to solve.  The are ad hoc inventions about which there is no independent 
knowledge.  Another problem is that at a basic level the theory seems 
incoherent.  How can one and the same universal be wholly and completely “in” 
more than one substance at the same time? Ordinary objects cannot be in two 
places at once. How can universals? William of Ockham, a famous foe of 
universals, noted that if Socrates were to be annihilated so presumably would all 
the parts that make him up, including the universal humanity if it is wholly and 
completely “in” Socrates.  God, Ockham observes, is omnipotent and could 
certainly annihilate Socrates and all his parts.  God could meanwhile spare Plato.  
But if God does annihilates Socrates together with his parts, he annihilates the 
universal humanity, which is a wholly and completely “in” Socrates.  But the 
universal is in Plato as well.  Hence a key “part” of Plato would cease to exist, 
and so too would presumably Plato himself.  Hence annihilating Socrates seems 
to entail annihilating Plato.  Hence it follows from the theory of universals that 
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God’s power is limited and that he is not omnipotent.  Ockham regarded this 
argument as a reduction to the absurd of the theory of universals.  

Set theory may be regarded as a replacement for universals that avoids 
many of their problems.  Rather than universals, set theory posits the existence of 
sets and their elements.  Unlike the earlier account, set theory states “laws” that 
detail the properties of sets.   These are its axioms, definitions, and the theorems 
they entail. The theory succeeds in meeting the original explanatory goal of 
universals because sameness and difference can be explained in terms of sets.   
By convention the Greek letter ∈ (epsilon) is used to indicate set membership: 
x∈A is read x is a member A or x is an element of A.  (Epsilon is used because 
set membership is one of the senses of the verb to be, as in Socrates is a 
human,  and in Greek the verb to be (enai) begins with ∈).  Socrates and Plato are 
the same because they are both members the same set.  Indeed they are 
members of many sets.   For example, they are both members of the set of 
humans and the set of white things.  They are different because there are other 
sets that contain one but not the other.  For example, Socrates but not Plato is in 
the set of snub-nosed things.   

Sets can also be used to explain how the relevant propositions are true 
and false.  Let the subject terms Socrates and Plato stand for the individual men, 
and let the predicate terms human, white, and snub-nosed stand for their 
respective sets of humans, white things and snub-nosed things.  Hence in the 
actual world the following propositions are all true: 

Socrates ∈ human,  
Plato ∈ human,  
Socrates ∈ white,  
Plato ∈ white, and 
Socrates ∈ snub-nosed 

However the following proposition is false:   
Plato ∈ snub-nosed  
Set theory moreover is formulated in a rich theory.  It has carefully stated 

axioms and definitions from which an entire body of results can be logically 
proven as theorems, many of which are interesting in their own right or useful for 
solving other problems in mathematics.  In short, it meets the rigorous standards 
for a theory in mathematics of the sort science aspires to.  Indeed set theory is 
used extensively in mathematics as the general foundational theory in which 
other important mathematical theories are developed and proved.  One of the 
major applications of set theory is to the theory of numbers and the infinite. 
Accordingly, before taking up the topic of the infinite itself, we must introduce the 
relevant parts of set theory.   

 

3.  Axiom Systems 

  An axiom system consists of a set of basic propositions called axioms 
that are assumed to be true.  In mathematics these are carefully formulate, often 
in a symbolic language.  From the axiom other propositions called theorems are 
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deduced one at a time by the rules of logic. A series of propositions each of 
which is an axiom or a theorem, or follows from previous propositions is the list 
by a rule of logic is called a proof.  Within an axiom system it is possible to set 
out clearly exactly in what sense an idea can be explained.   

Ideas are “explained” in two ways. The first is in what is called an explicit 
definition.  A definition of this sort is really a declaration that some group of 
symbols is to function as an abbreviation for a longer set.  What they say is that 
whenever you see the abbreviation strictly speaking it should be erased and 
replaced by the longer expression it abbreviates.  Propositions in which no 
abbreviations occur are said to be in primitive notation. Abbreviations of this 
sort are generally laid out in one of two syntactic forms, as either a biconditionals 
or an identity.   

A biconditionals is a formula in which two propositions are connected by 
the words if and only if, which are themselves abbreviated in mathematics 
books by the expression iff.  In logic books iff is often expressed by the symbol 
↔, ⇔, or ≡.  Syntactically the expressions that flank iff are propositions, i.e. 
entire declarative sentences that are either true or false.  At the risk of getting 
ahead of ourselves it may be useful at this point to look as some real examples 
from logic of  abbreviative definitions that make use of iff.  In these definitions 
the subscript def is added to the iff to indicate that it is being used in a definition.  
The technical symbolism is translated into English.  You should be looking at the 
way in which a shorter expression is used to abbreviate a longer one, rather than 
concerting yourself with what the concepts in question really mean.  In reading 
these it may help to know that ∨ is the symbol of or,  ∼ is the symbol for not, ∃ 
symbolizes there exists a, ◊ symbolizes possibly¸� symbolizes necessarily, ∀ 
stands for for all, ∧ represents and, and → stands for if…then. 

 
P∨Q  iffdef ∼(∼P∧∼Q)  P or Q  means not(not P and not Q 
x exists iffdef ∃y(y=x)   x exists means there exists a y such that y=x. 
◊P iffdef ∼�∼P  possibly P means not necessarily not P 
Q(1x | P(x)) iffdef    

∃x((P(x)∧∀y(P(y)→y=x)∧Q(x))  the one and only P is Q means  there exists an x  
such that it is P, and for any y if it is P it is the 
same as x, and x is Q 

Note that in all cases the abbreviation is shorter than what it abbreviates. 
A second syntactic form of abbreviative definitions is identities. These are 

expressions of the form s=t where s and t are terms that stand for sets of 
elements of sets.  Definitions of this sort are used extensively in set theory.  Here 
are some examples that will be explained more fully shortly: 

 
−A  =def  {x|x∉A}   the complement of A is the set of all elements not in A 
A∪B  =def  {x|x∈A∨x∈B}   the union of A and B is the set of all objects that are 

 either in A or in B 
 
Obviously, not all terms in a system can abbreviate others because the 

system has to start with the basic primitive vocabulary.  Though the primitives 
cannot themselves be given abbreviative definitions, they can be explained in a 
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second sense.  In a sense they are explained by the axioms in which they occur.  
Indeed, the axioms are said to give the terms an implicit definition.  
 

4.  The Axioms and Definitions of Naive Set Theory 

 The first axiom of set theory says in effect that any set that can be defined 
exists.  The “definition” always consists of a sentence that describes what must 
be true of all and only the objects in the set.  Syntactically the definition takes a 
special form.  It always refers to an arbitrary object in the set by what is called a 
free variable.  This is usually a lower case letter from the end of the alphabet.  
Usually it is x,y or z.   But it could be u, v, w or indeed any other letter if it is 
convenient to the discussion at hand.  What is important is that the variable 
functions as a pronoun to pick out a potential member of the set, but that its 
specific referent is not yet fixed either by a prior antecedent in the syntax or by 
the context of its use.  It is because its referent is not yet fixed that it is called 
free.  

The sentence that makes use of the variable states what must be true of 
this object named by the variable if it is to be in the set.  For example, the 
sentence x is red is an open sentence containing the free variable x.  It says of x 
that it is red.  Because this sentence makes use of a free variable is said to be 
open.  Thus an open sentence is the technical term for a sentence that contains 
at least one free variable.  We shall use sentences containing a single free 
variable to define sets, but note that in general a sentences may contain more 
than one free variable, for example, x loves y, or x loves y but hates z. Sentences 
with more than one free variable will be used later to define relations and 
functions. 

Spotting free variables is easy if we are writing real sentences.  We just 
look at its syntax to see if it contains any free variables.  But in technical settings 
we sometimes want to abbreviate an open sentence and represent it by a single 
letter but at the same time we want to indicate that it contains some particular 
free variables.  To do so, we adopt a couple of conventions.  First, we use upper 
case letters like P, Q and R to stand for sentences.  Next, to indicate that a 
sentence P is open and exactly which variables are free in it, we write P with 
those variables in parentheses immediate after it.  For example, the notation P(x) 
indicates that P is an open sentence that contains the free variable x.  Likewise 
the notion Q(x,y) indicates that Q is an open sentence that contains the two free 
variables x and y. 

We can now make use of an open sentence to construct a name for a set. 
Such a name always has a special syntactic from.  It has two parts, the open 
sentence and a prefix that indicates a set is being named.  The prefix specifies 
the free variable used in its description.  For example, the prefix the set of all 
objects x such that combines with the open sentence x is red to make up the set 
name the set of all x such that x is red.  In technical settings the prefix the set of 
all x such that … is abbreviated {x | …}.  Thus {x | P(x)} is read the set of all x 
such that P(x).  A set name of the form {x | P(x)}   is called a set abstract 
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because it picks out the set by “abstracting” from its elements what they all have 
in common, namely the fact specified in the defining open sentence P(x).   

The first axiom of set theory can now be stated. It lays out in general 
terms the conditions under which a set exists: it exists if it a condition P(x) for 
membership may be formulated in language.     It says that if P(x) is an open 
sentence, then there is an entity A (a set) such that x is an element of A if and 
only if P(x) is true.  The axiom can also be stated using set abstract notation: 
there exists a set {x | P(x)} such that for any y, y∈{x | P(x)}  iff P(y).  

The second axiom of naïve set theory states the so-called “identity 
conditions” for sets, the conditions under which two sets are strictly identical.  
According to the axiom, two sets are identical if and only if they have the same 
members.  Let us adopt the terminology that the set of objects that posses a  
property is called the properties extension.  Similarly let us call the set of all 
objects that make the open sentence P(x) true is called the extension as well.    
Then another way of stating the axiom is that two sets are identical iff their 
defining properties or open sentences have the same extension.   

Historically, it was controversial whether universals like humanity or 
redness “exist”  because philosophers could not agree on  a set of conditions 
spelling out the existence conditions of universals.  Axiom 1 states flat out that 
sets exist under the condition that they are “definable”, i.e. they exist whenever 
there is an open sentence in the language that may be used to describe 
elements in the universe.  

Traditional philosophers also had difficulty explaining when two properties 
were identical.  Unlike sets properties need not be identical if they have the same 
extensions.  It is perfectly possible for all and only red things to be square but 
that coincidence would not, according to philosophical usage at least, make the 
properties of redness and squareness the same.  Axiom of 2 of set theory settles 
the matter for sets by declaring that two sets are identical if they have the same 
extensions. 

The fact that set theory is set forth in terms of axioms and definitions 
makes it a genuine mathematical theory.   Its axioms entail a large body of 
applicable to a wide variety of subjects.  Set theory has in fact proved useful as a 
kind of general background theory in which large parts of modern mathematics is 
formulated.  It is used in this way in these notes.  The modern theory is 
formulated making use of its terms.   
  
Axioms of Naïve Set Theory 

1. Principle of Abstraction.  Let P(x) be an open sentence. 
i. There is an set A  such that for all x, x∈A iff P(x), (or equivalently) 
ii. There is a set {x| P(x) } such that for all y,  y∈{x| P(x) } iff P(y))       

 
2. Principle of Extensionality. Let P(x) and Let Q(x) be open sentences. 

i. A=B     iff     for all x (x∈A iff x∈B)   (or equivalently) 
ii. {x | P(x) } = {x | Q(x) }     iff      for all y (y ∈ {x | P(x) } iff y ∈ {x | Q(x)}) 
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Definitions                                  Technical Name: 
x≠y x is not identical to y ∼(x=y)          non-identity or 
   inequality 
x∉A x is not an element of set A ∼(x∈A) non-membership 
A⊆B Everything in A is in B ∀x(x∈A→x∈B)  A is a subset of B 
A⊂B A⊆B & some B is not in A A⊆B&∼A=B  A is a proper subset of B 
∅ or Λ set containing nothing {x| x≠x}  the empty set 
V set containing everything {x| x=x}  the universal set 
A∩B set of things in both A and B {x| x∈A&x∈B}  the intersection of A and B 
A∪B set of things in either A or B {x| x∈A∨x∈B} the union of A and B  
A−B   set of things in A but not in B {x| x∈A&x∉B} the relative complement  
    of B in A 
−A  set of things not in A {x| x∉A} the complement of A 
PPPP(A) the set of subsets of A {B| B⊆A}  the power set of A 
 
Here is an example of a “truth” of set theory and its proof. 
 
Theorem.  A∩B⊆B. 
 
Proof.  Consider an arbitrary x and assume for conditional proof that x∈A∩B.  Hence by the 
definition of intersection, x∈{y| y∈A∧y∈B}.  [Notice the need here to change variables to avoid 
confusion.]  Hence by the Principle of Abstraction, x∈A∧x∈B.  Hence by simplification, x∈B.  
Thus by conditional proof, it has be proven that x∈A∩B→x∈B.  Since we have been general in x 
(i.e. since x has be “arbitrary”), we may universally generalize, ∀x(x∈A∩B→x∈B).  Thus, by the 
definition of subset, A∩B⊆B.  QED. 
 
Below we list without proof a number of useful facts that follow directly from the 
definitions. 
 
Theorems 

1. A⊆A 
2. A∩B⊆A⊆A∪B 
3. A=− −A 
4. ∅⊆A⊆V 
5. ∅=−V 
6. V=−∅  
7. (A⊆B & B⊆A) ↔ A=B 
8. A∩B = B∩A 
9. A∪B = B∪A 
10. A∩(B∩C) = (A∩B)∩C 
11. A∪ (B∪C) = (A∪B) ∪C 
12. A∩A = A= A∪A 
13. −(A∩B)=−A∪−B 
14. −(A∪B)=−A∩−B 
15. −A=V−A 
16. A⊆ PPPP(A) 
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5.  Relations and Functions 

Just as properties were posited in traditional philosophy to name what 
two objects have in common, e.g. humanity or redness, philosophers also 
posited explanatory entities called relations to explain what two pairs of things 
have in common. The pairs Cain and Able, Castor and Pollex , Romulus and 
Remus all share the “relational” fact that they are brothers.  Being a brother 
requires there be two people.  They are said to stand in the brotherhood relation.  
Realists explain what Cain and Able have in common with the Castor and Pollex 
by “reifying” (making something into a “thing”) relations.  Relations therefore are 
a special sort of universal.  They can be exemplified wholly and completely  in 
multiple pairs simultaneously.   

Relations have several important properties to which attention should be 
drawn.  First, in some relations the order of the pairs matters.  Consider the less 
than relation.  There are many pairs <x,y> such that x is less than y.  For 
example, <1,2>,  <5,7>, <36,215>.  These all share the feature that the first is 
less than the second.  But they cannot be revered.  In technical jargon, the less-
than relation is asymmetric.  That is, if x is less than y, we know it is not the case 
that y is less than x.  

Here <x,y> is called an ordered-pair, and it is stipulated by convention that 
the order makes a difference. That is, the pair <x,y> is always different from the 
reversed pair <y,x> except in the unusual case in which x and y are one and the 
same individual.  It is ordered pairs then that share a relation and “have it” in 
common.  

Second, relations that hold between pairs, the so-called two-place 
relations, are not the only sort of relation.  There are also relations that hold 
among triples.  For example, it takes three things (in order) for cases of 
betweeness to happen.  Utah is between Nevada and Colorado, Cincinnati is 
between Dayton and Lexington.  George II is between George I and George III.  
These are three-place relations.  In principle there are also four-place relations 
that hold among ordered quadruples.  Likewise there are n-place relations 
exemplified by sets of ordered grouping of n objects, for any number n.   As in 
the case of two-place relations, the order continues to matter.  If x is between y 
and z, then y cannot be between x and z.  Thus, an n-place relation is the 
commonality shared by what are called ordered n-tuples, which are represented 
by the notation <x1,…,xn>. 

Third, relations are tied to characteristic grammatical forms.  Two place 
relations between x and y, for example, are typically expressed in English by 
subject-verb-object sentences, like x loves y  and x teaches y.  Two place 
relations are also expressed by sentences that link a subject to an “oblique 
object” by intransitive verb and a prepositions, for example x talks to y and x sits 
under y.  Comparative adjectives also link two relata: x is taller than y, x is less 
than y, and x is sillier than y.  Possessive expressions link two objects: x is the 
brother of y and x is the creator of y.  All these syntactic forms share the feature 
that they link two proper noun phrases.  Three place relations link three proper 
noun phrases, like x is between y and z,  x talked to y about z, and  x saw y 
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sitting on z.  In general, an open sentence P with n free  variables x1,…,xn, i.e. 
P(x1,…,xn), can be used to describe what is shared by a group of ordered n-
tuples <x1,…,xn>. 

Lastly, like properties but even more so, there has been controversy in 
philosophy about whether relations really exist, and if so, how the behave.  
These controversies are settled in set theory by the simple technique.  First the 
notion of an ordered n-tuple is in terms of sets.  Then n-place relation is defined 
as a set of n-tuples.  

The first task of defining  <x1,…,xn> as a set is accomplished by finding 
some definition – it does not matter which – so long as it insures that  <x1,…,xn> 
different from <y1,…,yn> except in the unusual case in which each xi is identical 
to yi.  The definition that works is not very intuitive, but it works. 

 
Définition 

<x,y> =  {x,{x,y}} 
<x1,…,xn+1>  =   <<x1,…,xn> xn+1> 
 

Theorem.  <x1,…,xn+1>  =   <y1,…,yn+1>  iff for all i=1,…,n, xi = yi. 
 

An n-place  relation is a set of n-tuples.  If P(x1,…,xn) is an open sentence, then 
there is a relation R (a set) such that the n-tuple <x1,…,xn> is in R  if and only if 
x1,…,xn in order satisfy  P(x1,…,xn).  One way to name the relation R is by using 
the notation for a set abstract: 
 
Notation 

{<x1,…,xn>| P(x1,…,xn)}  read  the set of all n-tuples <x1,…,xn> 
  such that P(x1,…,xn).   

 
Since relations are special cases of sets the axioms of set theory apply to them.  
It follows as a theorem that an  n-place relation exists if it can be defined by an 
open sentence P(x1,…,xn).   
 
Theorem. For any open sentence P(x1,…,xn), 

1. there exists an R such that for any x1,…,xn,   
<x1,…,xn>∈R   iff   P(x1,…,xn). 

2. there exists a set {<x1,…,xn>| P(x1,…,xn)} such that for any y1,…,yn+1, 
<y1,…,yn+1>∈{<x1,…,xn>| P(x1,…,xn)}   iff   P(y1,…,yn). 

 
Because relations are sets and obey the Principles of Abstraction and 
Extensionality, relations exist if they are definable.  Because relations are sets 
and obey the Principles of Extensionality,  two relations are identical if they have 
the same members, i.e. if they are true of the same n-tuples. 
 
Theorem. If R and S are n-place relations, then  
 R=S iff for any x1,…,xn,  <x1,…,xn>∈R   iff   <x1,…,xn>∈S.       
 

There is a special sort of relation called a function or, equivalently, an 
operation.  An n+1-place relation relates by definition n+1 objects.  If it does so 
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in the special way that given the first n we can uniquely determine the n+1st, then 
the relation is a function.   

Take the simple case of the 2-place relation is fathered by.  This relation, 
call it f, is a function because given the first member of a pair, a child, the relation 
pairs with it a unique second member of a pair, the child’s father.   The fact that 
there is one and only one entity paired with the first element of a pair in f permits 
a new notation.  The fact that Able is fathered by Adam in the fathered by 
function f in expressed as <Able,Adam>∈f.  This may be rewritten as 
f(Able)=Adam.  The first element of the pair is called the function’s argument, 
and the second its value.  A function is a relation that pairs with each argument a 
unique value.  Hence f(Able)=Adam is read the value for the function f for the 
argument Able is Adam.  The set of all arguments (inputs, left members of pairs) 
is called the function’s domain.  The set of all values (outputs, second members 
of pairs) is called its range.  

Note that some two-place relations, like is the brother of, are not  functions 
because they contain two pairs with the same argument, e.g. <Able,Cain> and 
<Able,Seth>.  There is no unique entity that is “the” brother of Able. In arithmetic 
has as its absolute value is a function, though contains both <-2,2> and <2,2>, 
every argument has a unique value, |-2|=2 and |2|=2.  However has as square 
root is not a function because it contains both <4,2> and <4,-2>. 

Likewise a 3-place relation, which is a set of triples, is a function if the 
ordered pair that makes up the first two parts of a triple uniquely determines the 
third element of the triple.  In arithmetic, for example, <1,5,6>, <5,1,6> <3,3,6>, 
<4,2,6>,<2,4,6> are all in the three-place relation +.  Accordingly, we express 
<1,5,6>∈+ by the functional notation +(1,5)=6, or in its more usual “infix” form, by 
1+5=6.  In an n+1-place relation an argument is any n-tuple that makes up the 
first n-places of any of the n+1-tuples it contains, and a value is any object that 
occupies the n+1st place.  The domain is the set of all arguments and the range 
is the set of all values.  Because any n+1-place relation f that is a function has 
exactly n-places in any of its arguments, it is also called an n-place function and 
we write <x1,…,xn+1>∈f as f (x1,…,xn)= xn+1.   

We shall be encountering functions primarily is two contexts.  First they 
will occur with selected sets and relations as components of what are called 
abstract structures.  A structure is a mini-world in which categories of entities are 
classified and related in specified ways, and in which some entities are linked as 
functions.  In these worlds functions may be viewed as input-output processes or 
as rule-like production procedures.  Structures of these sorts will differ in 
systematic ways reflected in the general laws governing their components.  The 
structures we shall study will exhibit infinity in its various forms.  The second way 
we shall use functions is to count.  A so-called 1 to 1 correspondence is a 
function that maps each entity in the domain to one and only one entity in the 
range and is such that no entity of the range is left unpaired with an entity in the 
domain.  We shall use such correspondences to “count” by pairing objects in a 
set 1 to 1 a set of counting numbers.    
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Definitions                                   
AxB Cartesian product of A and B {<x,y>| x∈A&y∈B}  
A2 Cartesian product of A and A AxA 
An Cartesian produce of A1,…,An A1x…xAn  
V2 The universal (binary) relation VxV  
PPPP(V2) the set of 2-place relations  
PPPP(Vn) the set of n-place relations  
 
R is a binary relation   R⊆V2 

R is a n-place relation   R⊆Vn 

f is a 1-place function f is a binary relation and f is “functional”: 
  ∀x∀y∀z((<x,y>∈f & <x,z>∈f)→y=z) 
f is a n+1-place function f is an n-place relation and  
                ∀x1…∀xn∀y∀z((<x1,…,xn,y>∈f & <x1,…,xn,z>∈f)→y=z) 
 
If f is a 1-place function,    f(x)=y means <x,y>∈f 
  If f(x)=y, then x is an argument of f and y is a value. 
  Domain(f) = {x| ∃yf(x)=y} 
  Range(f) = {y| ∃yf(x)=y} 
  f –1 = {<y,x,>| f(x)=y)}    f –1 is called the inverse of f  
If f is a n-place function,    f(x1,…,xn)=y} means <x1,…,xn,y> 
  If f(x1,…,xn)=y, then <x1,…,xn> is an argument of f and y is a value. 
  Domain(f) = {<x1,…,xn>| ∃yf(x1,…,xn)=y} 
  Range(f) = {y| ∃yf(x1,…,xn)=y} 
f(Ainto>B)  f is a 1-place function, Domain(f), and Range(f)⊆B 
f(Aonto>B)  f is a 1-place function, Domain(f), and Range(f)=B 
f(A1-1 onto>B) f is a 1-place function, Domain(f), Range(f)=B, and  
           f –1 is a 1-place function 
f is a partial function on A Domain(f)⊆A 
 

6.  Axiomatic Set Theory 

The axioms of naïve set theory are seemingly simple and self-evidently.  
However, Bertrand Russell discovered at the turn of the 20th century that these 
axioms entail a contradiction that bears his name. By convention a contradiction 
that cannot be explained because it seems to follow from premises that are true 
and self-evident is called a paradox.  Russell’s contradiction is a paradox 
because it is entailed by the axioms of naïve set theory that appear to be simple 
and true. 
 
Theorem (Russell’s Paradox).  The Principle of Abstraction is false. 
 
Proof.  Let us assume the Principle of Abstraction.  By the Principle (applying it to the open 
sentence ‘x∉x’): 
 

(1)  For some A, for any x, x∈A iff x∉x.  
 
Let us consider one such A.   
 

(2)  for any x, x∈A iff x∉x. 
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Since this is true of any x,  it is true of A: 
 

(3) A∈A iff A∉A. 
 
But this is a contradiction.  Hence the Principle of Abstraction is false. QED. 
 

Since the two axioms of naïve set theory are contradictory, they somehow 
contain a falsehood.  Logicians speculate that the problem lies in the fact that the 
Principle of Abstraction allows for the existence of sets that are too large.  On this 
line of thinking, the Principle errs in positing the existence of any definable set 
whatever, even sets that are not built up from previously members.  They may 
even be circular in that the set itself appears is a member of itself or a member of 
sets that in turn are in it.  It is speculated that if a set is built up in a careful way 
from elements that we already know exist will not contain a contraction.  In the 
branch of logic known as axiomatic set theory the Principle of Abstraction is 
replaced by a series of axioms that insure the existence of restricted categories 
of progressively larger sets.  They start with a severely restricted version of the 
Principle of Abstraction that says that it is possible to define any set you like but 
only on the condition that this set is to be separated as a subset from another set 
that is previously defined and known to exist.  The new axiom is therefore called 
the Axiom of Separation.  Subsequent axioms insure the existence of additional 
categories of sets: the union of two previously defined sets exist, the ordered-pair 
(a kind of set) of two elements exists, the power set (i.e. the set of subsets) of a 
set exists, and a subset of a function’s range exist.  The last axiom is the most 
powerful and generates the “largest” sets.  It says that given any family of sets, 
you can form a new set by choosing one representative element from each set in 
the family.  Accordingly it is called the Axiom of Choice.   To state the axioms 
two definitions are helpful. 
 
Definitions. 

1. If f is a function and A is a set, then the image of A under f, briefly f ”A, is {x | ∃y (y∈A & 
f(x)=y)}.  (In English, f ”A is the set of all values of f for arguments in A.) 

2. If F is a family of sets, then A is a choice set for F iff for any B∈F, there is one and only 
one element x of A such that x∈B. 

 
Zermelo-Frankle (ZF) Axioms for Set Theory 

1. Axiom of Separation. Let P(x) be an open sentence. 
For any A, there is a set B such that B⊆A, and for all x, x∈B then iff P(x) 

2. Union Axiom.  For any A and B, the union A∪B of A and B exists. 
3. Pair Axiom.  For any x and y, the ordered-pair <x,y> of x and y exists. 
4. Power Set Axiom.  For any A, the power ser PPPP(A) of A exists. 
5. Axiom of Infinity.  An infinite set exists. 
6. Axiom of Replacement.  For any A and any function f, the image f “A of A under f exists. 
7. Axiom of Choice.  For any family of sets F, some choice set of F exists. 

 
The Axiom of Choice may be formulated in equivalent ways, two of which are 
relevant to these notes:   
 
The Well Ordering Principle.  For any set A there is some relation ≤ such that <A,≤> is a well 
ordering. 
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Zorn’s Lemma.  If every chain C (i.e. for any x and y of C, either x≤y or y≤x) of  a partially 
ordered structure <X,≤> has an upper bound, then <X,≤> has a maximal element. 
 
Because the Axiom of Choice is the most powerful of the existence axioms of ZF 
and is somewhat less obvious, it is more controversial than the others.  Its 
consistency with and independence of the other axioms has therefore been the 
subject of investigation.  Here are the two of the most famous results in the field. 
 
Theorem (Gödel). The negation of the Axiom of Choice is consistent with the earlier axioms of 
ZF. 
 
Theorem  (Cohen).  The Axiom of Choice cannot be proven from the earlier axioms of ZF. 
 

In the notes any theorem that requires the Axiom of Choice for its proof is 
prefixed with *. 
 

7.  Abstract Structures  

We all have a good intuitive idea of a "structure." Examples include 
buildings, governmental institutions, ecologies, and polyhedral.  In the branch of 
mathematics known as abstract or universal algebra the general properties of 
structures are studied, and these ideas help explain the structures we find in 
logic like those of grammars, semantic interpretations, and inferential systems.   
 The raw intuition behind the mathematical definition of a structure is that of 
an architect's blueprint.  The blue print succeeds in describing a building by first 
listing its various materials and then by a diagram describing the relations that 
must obtain among these "building blocks" in the finished structure.  In algebra a 
structure is defined in a similar way.   First a list of set  A1,...,Ak is given.  These 
may be viewed as list of building blocks divided into various kinds or classes.   
Next are listed the relations  R1,...,Ri  and functions  f1,...,fm that hold among 
these materials.  (Recall that functions are just a sub-variety of relations.)  Lastly 
it is useful to list some specific individual building blocks O1,...,Om that have 
special importance in the structure.  It is customary to list all the elements of the 
structure in order, i.e. as an ordered tuple: < A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,Om >.   
Definition.  An abstract structure is any <A1,...,Ak,R1,...,Rl,f1,...,fm,O1,...,On> such that: 

for each  i=1…k, AI is a set, 
for each  i=1…l, Ri is a relation on C = U{A1,...,An}, 
for each i=1…m, fi is a function on C = U{A1,...,An}, and 
for each i=1…n, Oi ∈C = U{A1,...,An}.    

  
It is also common to investigate a family of structures with similar properties, and 
to assign the family a name, e.g. group, ring, lattice, or Boolean algebra.  The 
properties defining such a family are usually formulated as defining conditions on 
the type of sets, relations, functions and designated elements that fall into the 
family.  Sometimes these restrictions are referred to as the "axioms" of the 
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structure-type.  Strictly speaking they are not part of a genuine axiom system.  
Rather they are clauses appearing in the abstract definition of a particular set 
(family) of structures.  Let us review some familiar examples. 

The familiar "less than" relation on numbers, symbolized by ≤,  and the 
subset relation on sets, symbolized by ⊆,  are instances of what is known as 
partial ordering.  In algebra such orderings are viewed as structures.  To define 
such a structure, however, we must first  define some standard properties of 
relations.  We then define several common varieties of ordered-structures. 
Definitions.  Properties of Relations.  A binary relation ≤ is said to be: 

1. reflexive iff for any x, x≤x; 
2. transitive iff for any x,y, and z, if x≤y and y≤z, then x≤z; 
3. symmetric iff for any x and y, if x≤y then y≤x; 
4. asymmetric iff for any x and y, if x≤y then not (y≤x); 
5. antisymmetric iff for any x and y, if x≤y and y≤x, then x=y; 
6. connected iff ≤ for any x and y, either x≤y or y≤x; 
7. x is a ≤≤≤≤-least element of B iff x∈B and for any y∈B, x≤y. 
8. x is a ≤≤≤≤-greatest element of B iff x∈B and for any y∈B, y≤x. 
9. x is a ≤≤≤≤-greatest lower bound (infimum) of B iff x is a lower bound of B, and for any y, if 

y  is a lower bound of B, then x≤y. 
10. x is a ≤≤≤≤-least upper bound (supremum) of B iff x is an upper bound of B, and for any y, 

if y  is an upper bound of B, then y≤x. 
 
Definitions.  Any structure <B,≤> such that B is a non-empty set and ≤ is a binary relation on B is 
called: 

1. a pre- or quasi-ordering  iff   ≤ is reflexive, transitive;; 
2. a  partially ordering iff ≤ is a pre-ordering and antisymmetric; 
3. a total or linear ordering iff ≤ is partial and connected;   
4. a well-ordering iff,  ≤  is a partial ordering and for any subset C of B, B has a ≤-least 

element. 
5. a dense ordering iff it is a total ordering and for any x and y  in B such that x≤y, there is 

a z in B such that x≤z and z≤y. 
6. a continuous ordering d to have the Dedekind completeness property iff every 

nonempty subset C of B that has an ≤-upper bound has a ≤-least upper bound. 
 
Definitions. Properties of Binary Operations (aka Functions).  Let • and ♦ be binary operations 
on a set B, and let us write •(x,y) using “infix” notation as x•y. Likewise for ♦(x,y). Then, 

1. B is closed under •  iff for all x,y of B,  x•y∈B, 
2. • is associative iff for all x,y of B,  x•y=y•x, 
3. • is commutative iff for all x,y of B,  x•(y•z)=(x•y)•z,  
4. • is idempotent iff for all x,y of B,  x•x=x, 
5. e is an identity element for • iff for all x of B, x•e = x, 
6. e is an inverse element relative to an identity element i of B iff for all x of B,  

x •i =e 
7. • and ♦ are distributive for all x,y,z of B,  

i. x • (y ♦ z ) = (x • y) ♦ (x • z), and  
ii. (x ♦ y) • z =  (x • z) ♦ (y • z) 

   

Definitions.  Types of Ordered Structures. 

1. A structure <B,∧>/<B,∨> is a meet/join semi-lattice iff ∧/∨ is a binary operation under which B 
is closed and ∧/∨ is associative, commutative, and idempotent. 
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2.  If <B,∧> is a meet semi-lattice, then the ordering relation ≤≤≤≤ on B is defined as 
  x≤y iff x∧y=x. 
3.  If <B,∧> is a  join semi-lattice, then the ordering  relation ≤≤≤≤ on B is defined as 
  x≤y iff x∨y=y. 
4. The structure <B,∧,∨> is a lattice iff <B,∧> and <B,∨> are receptively meet and join semi-

lattices, and the ordering relation ≤≤≤≤  on B is defined as:          x≤y iff x∧y=x iff x∨y=y. 
5.  If <B,∧,∨> is a lattice, then 0 is the least element of B iff 
  0∈B 
  for any x in B, 0≤x,  
  0∧x=0 and 
 0∨x=x. 
6.  If <B,∧,∨> is a lattice, then 0 is the greatest element of B iff 
  1∈B 
  for any x in B, x≤1,  
  1∧x=x and 
 1∨x=1. 
7.  If <B,≤> is a partially ordered structure and x and y are in B, then the greatest lower bound 

(briefly, glb) of {x,y} (if it exists) is the z∈B such that  
   z≤x and z≤y 
   for any w in B if w≤x and w≤y, then w≤z. 
8.  If <B,≤> is a partially ordered structure and x and y are in B, then  the least upper bound 

(briefly, lub) of {x,y} (if it exists) is the z∈B such that  
   x≤z and y≤z 
   for any w in B if x≤w and y≤w, then z≤w. 
9.  A lattice  <B,∧,∨> is distributive iff  
  x∨(y∧z)=(x∨y)∧(x∨z), and  
  x∧(y∨z)=(x∧y)∨(x∧z). 
10.  If <B,∧,∨,0,1> is a structure such that <B,∧,∨> is a lattice and 0 and 1 are respectively its 

least and greatest elements, then − is a (unique) complementation operation on the 
structure iff 

  − is a one-place operation on B  −1=0 
  for any x∈B, −x∈B   −0=1 
  x∧−x=1     −(x∧y)=−x∨−y 
 x∨−x=0     −(x∨y)−x∧−y 
  −x=x     x≤y iff −x∧y=0 iff −y≤−x iff −x∨y=1 
11.  A structure <B,∧,∨,−,0,1> is a Boolean algebra iff 
  <B,∧,∨> is a lattice 
  <B,∧,∨> is distributive 
  0 and 1 are respectively the least and greatest elements of <B,∧,∨> 
  − is a complementation operation on <B,∧,∨,0,1> 
 
Theorems. 

1. If <B,∧,∨> is a lattice, then <B, ≤> is a partial ordering. 
2. If ≤ is a partial ordering on a set B and if for any x and y in B, the glb{x,y} and the 

lub{x,y} exist and are in B, and if ∧ and ∨ are binary operations on B defined as follows  
3. x∧y = glb{x,y},  and  x∨y = lub{x,y}, 
4. then the structure <B,∧,∨> is a lattice with ordering relation ≤. 

  



 The Modern Analysis of the Infinite 

 Page 17 

8.  Sameness of Structure 

One of the most important ideas in algebra is sameness of structure.  Two 
teacups from the same set and two pennies have the same structure.  So too do 
two twins.   In these cases the structures match very closely.  But family 
members and even members of the same species have some features of 
structure in common.  More abstractly, the reason maps work is that there is a 
similarity of structure between geographical features in the world and the 
symbols on the map that represent them.  Blueprints work for this reason too.  
Mathematically this sameness is explained by saying that there is a mapping 
from the entities of one structure into the entities of a second in such a way that 
the mapping "preserves structure."  Informally, if we have two structures and 
entity x1  in the first that "corresponds" to an entity  x2  in the second, we may call 
x2  the representative of x1. Often one structure may be more complex than the 
other, yet both exhibit some structural features in common.  One way this 
happens occurs when elements of the more complex are "identified" or viewed 
as a unit in the second.  This happens, for example, in our representative 
democracy in which a single individual in Congress represents all the citizens in 
an election district.  Thus for a "similarity of structure" to obtain we require as a 
minimum that each entity of one structure corresponds to one and only one entity 
in the second.  In mathematical terms, there is an into-function that assigns a 
value in the second structure to each argument in the first.   If h is the mapping 
function, then h(x1)=x2.  Here h(x1)  is the representative of x1.  Such a mapping 
is called a homomorphism (from the Greek homos = the same and 
morphos=structure.) 
 
Definition.  Two structures S=<A1,...,Ak,R1,...,Rl,f1,...,fm,O1,...,On> and S′=<A′1,...,A′k, 
R′1,...,R′l,f′1,...,f′m,O′1,...,O′n> are said to be of the same character  or type iff 
    for each i=1,…,l, there is some n such that Ri and R′i are both n-place 
     relations, and 
 for each i=1,…,n, there is some n such that fi and f′i are both n-place 
     functions. 
 
 Very often a discussion is clearly limited to structures of the same type.  
When this restriction is clear, it is tedious to keep mentioning it, and it is usually 
assumed without saying so explicitly. 
 
Definition. If S=<A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,On> and S′=<A′1,...,A′k,R′1,...,R′i, 
f′1,...,f′m,O′1,...,O′n> are structures of the same character, h is called a homomorphism from S to 
S′ iff h is a function from U{A1,...,An} into U{A′1,...,A′n} such that 
   1. for each i=1,…,k, if x∈Ai, then  h(xi)∈A′i; 
   2.  for each i=1,…,l,  <x1,...,xn>∈ Ri iff  <h(x1),...,h(xn)>∈ R′i; 
   3.  for each i=1,…,m,  h(fi(x1,...,xn) = f′i(h(x1),...,h(xn); 
   4.  for each i=1,…,n,  h(Oi)=O′i. 
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9.  Sameness of Kind  

Sameness is one of the "great ideas."  Aristotle was the first to clearly 
distinguish numerical identity (he coined the term) from other sorts of 
sameness. Two entities are numerically identical if they are literally one and the 
same thing. Sometimes we say that things that are identical in this sense are “the 
same”.  But sameness is also used in ordinary speech for a less discriminating 
relation that in effect classifies entities into groups that are same in some 
relevant sense though not literally identical.  This is sameness of kind or 
similarity.  In algebra “sameness” relations, including both numerical identity and 
similarity, as “equivalence relations”. 
 
Definition.  A binary relation ≡ on a set A is said to be an equivalence relation on A iff ≡ is 
reflexive, transitive and symmetric.  The equivalence class of x under ≡, briefly [x]≡,  is  defined 
as {x| x≡x}. 
 

Clearly numerical identity counts as an equivalence relation, but so do many 
other relations of “sameness.”  

Sameness of kind is also discussed in terms of sets. One way to show 
things are the same is to sort them into mutually exclusive sets.  Informally we do 
this if we say what property defines each set, e.g. the set of red things, the set of 
blue things, etc.   We often do this in mathematics by means of “set abstracts.” 
We may go through everything there is and find such defining characteristics for 
"kinds" or "sorts," and classify then into sets {x| P1(x)},...,{x|Pn(x)}.  If the sets are 
mutually exclusive and exhaustive (i.e. leave nothing out) they are called a 
partition of A.  
 
Definition.  A family F={B1,...,B n}  of sets is a partition of a set A iff, A=U{B1,...,Bn} and no two Bi 
and Bj overlap (i.e. for each i and j, Bi ∩Bj = ∅). 

There is moreover a way to generate a partition from a sameness relations and 
vice versa.  
 
Theorems 

1. If a family F={B1,...,B n}  of sets is a partition of a set A, then the binary relation ≡ on A is 
defined as follows:  x≡y  iff for some i, x∈Ai and y∈Ai is an equivalence relation. 

2. The family of all equivalence classes  [x]≡ for all x in a given set A is a partition of A.   
 
The set of all entities from the first structure that have the same representative 
are in a sense "the same:" they form an equivalence class.   For example, the set 
of citizens represented by the same congressman is a equivalence class.  One of 
direct consequences of these ideas is the fact that equivalence classes do not 
overlap and that they exhaust all the entities of the first structure. 
 
Theorem 
Let h be a homomorphism from S=<A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,On> to 
S′=<A′1,...,A′k,R′1,...,R′i,f′1,...,f′m,O′1,...,O′n>, and let the binary relation ≡h on C=U{A1,...,An} be 
defined as follows: 
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                         x≡hy  iff  h(x)=h(y).  
 It follows that: 

1.   ≡h is an equivalence relation on C. 
Furthermore, if [x]h, called the equivalence class of x under h is defined as {y| y≡hx}, then it 
follows that: 

2.  the family F of all equivalence classes,  i.e. {[x]h | x∈C }, is a partition of C.   
 

10.  Identity of Structure 

If a structural representation is so tight that it  exhausts the elements of 
the second structure in the sense that all of its elements are representatives of 
some entity in the first, then the representation function is said to be onto.   
There are, for example, no voting members of Congress that do not represent 
some state.  In Germany, however, where some members of Parliament are 
allotted to parties due to national voting percentages there are members that do 
not represent a specific district.   

In some instances the representation is so fine grained that no two entities 
of the first structure have the same representative.  Such a mapping would be 
too cumbersome for Congress, but it is essential for social security numbers.  
Such mappings are said to be 1 to 1.  Any mapping that is 1 to 1 and onto  totally 
replicates the structure and entities of the first structure.  It is called an 
isomorphism (from isos=equal).  
 
Definition.  If h is a homomorphism from S =<A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,On> to 
S ′ =<A′1,...,A′k,R′1,...,R′i,f′1,...,f′m,O′1,...,O′n>, then h is said to be an isomorphism from S to S ′ if 
h is a 1-1 and onto mapping. 

 
It follows from the definitions that given a homomorphism from a first 

structure to a second we can define a third structure made up of the equivalence 
classes of the first and this new structure can be made to have exactly the same 
structure as (be isomorphic to) the second.  This new structure is called the 
quotient algebra.  

 
Definition. If h is a homomorphism from S=<A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,On> to 
S′=<A′1,...,A′k,R′1,...,R′i,f′1,...,f′m,O′1,...,O′n>, then the quotient algebra for 
<A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,On> under h is 
S′′=<A′′1,...,A′′k,R′′1,...,R′′i,f′′1,...,f′′m,O′′1,...,O′′n> defined as follows: 
  given  x≡hy  iff h(x)=h(y) and [x]h to be {y| y≡hx}, 
  A′′i = {[x]h | x∈ Ai } 
  <[x1]h,…, [xn]h>∈R′′i iff <x1,...,xn>∈ Ri 
  f i([x1]h,…, [xn]h)= [fi(x1,...,xn)] 
  O′′=[Oi]h 
 
Theorem.  If h is a homomorphism from S=<A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,On> to 
  S ′=<A′1,...,A′k,R′1,...,Ri,f′1,...,f′m,O′1,...,O′n>,  
then S is homomorphic to its quotient algebra S′′ under h , and S′  is isomorphic to S′′. 
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11.  Computation as an Abstraction from of Numbers 

 There are various ways in which “the infinite” is studied by the use of 
abstract  structures.  We shall begin with one of the most basic.  The construction 
of numbers.   Infinity, at least in one sense, is a feature of counting.  Counting 
uses numbers.  A group is infinite if counting it with numbers never stops.  Infinity 
is also a property of divisions.  Spatial distances and temporal intervals appear to 
be divisible into smaller and smaller parts forever.  One way these ideas have 
been studied in modern mathematics is by the definition of structure that exhibits 
the relevant properties.  In this section we define a series of structure with 
progressively more structure.  The simplest called a semi-group has scarcely any 
structure at all, only am associative single binary operation.  The most complex, 
that of the real numbers, has a wide variety of relations and operations.  It allows 
for the counting of infinite sets, and even of sets that are bigger than countably 
infinite.  It also allows for the sort of infinite divisibility typical of distances and 
intervals.  We begin by defining some rather structures with relations and 
operations that exhibit features common to those of ordinary arithmetic. 
 
Definitions 

1. A semi-group is a structure <B,•> such that • is an associative binary operation on B. 
2. A monoid is a structure <B,•,1> such that <B,•> is a semi-group and 1 is an identity 

element on <B,•> relative to •. 
3. A (commutative) ring is a structure <B,+,•,0,1> such that  

i. + and • are binary operations on B that are associative and commutative,  
ii. 0 is an identity element relative to • (the additive identity) and  
iii. 1 is an identity element relative to • (the multiplicative identity). 
iv. for any x  in B, there exists a y  in B (the additive inverse of x)  such that x + y =0 
v. + and • are distributive in B 

4.   The subtraction operation − relative to a commutative ring  <B,+,•,0,1> − is a binary 
operation on B defined as follows: for any x and y of B, x−y = x + (−y).   Hence a ring 
<B,+,•,0,1>  may be identified with the structure <B,+,•,−,0,1> such that − is the 
subtraction operation on <B,+,•,0,1>. 

 
Theorem.  Every for every element x of a ring <B,+,•,0,1> there is an + inverse element called 
−x. 
 
Definitions 

1. An ordered ring is a structure  <B,≤,+,•,−,0,1> such that   
i. <B,+,•,−,0,1> is a ring, 
ii. is a total ordering on B,  
iii. for any x, y,  and z  of B, if x ≤ y then x + y ≤ y +z, and 
iv.  
v. for any x, y,  and z such that  0≤z  of B, if x ≤ y then z • x ≤ z • y. 

2. An identity relation  relative to a ring <B,+,•,0,1> is a binary relation = on B defined as 
follows: 0≠1 and for any x in B such that x≠0, there is a y in B such that x • y = 1 

3. A field is a structure  <B,=,+,•,−, 0,1> such that <B,+,•,−,0,1> is a  ring and = is an 
identity relation on <B,+,•,0,1>. 

4. An ordered field is a structure <B,≤,=,+,•,−, 0,1> such that <B,≤,+,•,−,0,1> is an ordered 
ring and <B,=,+,•,−, 0,1> is a field. 
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12.  Extensive Measurement 

 Among the elements of a set of physical objects or quantities – sets that 
are not mathematical entities like numbers -- comparisons (e.g. is taller than, is 
more beautiful than, is better than) are made by non-mathematical means.  We 
use relations that are defined in physical, non-mathematical terms, but which 
nevertheless amount to orderings.  Typically, these are named in natural 
language by comparative adjectives, which are often associated with sets of 
what are called by linguists scalar adjectives.  Scalar adjectives are used to 
name regions of various ranks in an ordering.  For example, the comparative 
adjective happier than describes a physical ordering in nature.  Associated with it 
is the family of scalars adjectives ecstatic, happy, content, so-so, sad, unhappy, 
miserable.   
 We have seen how a relation ≤ may posses a more or less rigorous 
structure, ranging from pre-orderings to the dense continuous orderings of the 
real numbers.  Here we shall investigate the standard features of natural 
structures that make them amenable to numerical measurements open that allow 
arithmetical computations on the measurement values by means of the standard 
arithmetical operations like addition and multiplication. 
 Let B be a set, and let ≤ be a binary relation that orders them elements 
in B.  A measurement is an assignment m of numbers to the elements of B in 
such a way that various order properties of the elements in B are reflected in 
their measurement values, e.g.  for x and y in B, if x≤y then m(x)≤ m(y).   
Measurement theory (a branch of abstract algebra) studies the what must hold of 
B and ≤ in order for the order properties of their measurements to truly reflect 
properties of B and ≤.    
 For meaningful measurement to take place the basic requirement is that 
it must be possible to place the elements of the set in physical proximity to one 
another, e.g. laying rods next to one another or heaping up bricks in a pile.  
Intervals of time may likewise be viewed as being joined together if they follow 
one another successively in temporal order.  The process of “laying out” or 
“heaping up” is called concatenation indicated by a binary operation ♦ on 
elements of B: x♦y is read “the concatenation of x and y.”  Iterated acts of 
concatenation produce a “heap”, or what may be called an extension.  (The set of 
extensions relative to B and ♦ may be defined inductively: all elements of B are 
(basic) extensions; if x and y are extensions, then x•y is an extension; nothing 
else is an extension.) 
 Mathematically, the minimal properties required for meaningful 
measurements are met in what is called an “extensive structure.”1 
 
<B,≤,♦> is a (positive) closed extensive structure iff for any x,y,u,v ∈B: 
                                            
1 On the theory of measurement see David H. Krantz, R. Duncan Luce, Patrick Suppes, and 
Amos Taversku, Foundations of the Theory of Measurement. vol I. (N.Y.: Academic Press). 
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1. is a weak ordering on B 
2. ♦ is associative: x♦y = y♦x 
3. ≤ is monotonic: x≤y iff (x♦u)≤(y♦u) iff (u♦x)≤(u♦y) 
4. ♦ is positive:  for any x,y∈B x ≤ x♦y.  (Hence x ≤ x♦x). 
5. ≤ is Archimedean: Let nx (read the concatenation of x n times) be (recursively) 

defined as follows 
i. a.  1x=x  and   
ii. (n+1)x=nx♦x 

6. If x<y , then for any u,v∈B, there exists a positive integer n such that (nx♦u) ≤ (ny♦v)  
  

 
(Note that here nx means the result of concatenating  x with itself n times.  Thus, nx is the 
physical object x1♦…♦ xn, not a number.) 
 Condition 1 is a minimal condition for considering ≤  to be an “ordering.”  Conditions 2-5 
insure that concatenation will provide the basis for assigning numerical measure whose numerical 
order properties reflect order properties of ≤ in B. 

Intuitively, Condition 4 is the most difficult to understand.  Intuitively, it says that no matter 
how big a head start (u) you give a lesser extension (x), you can always find enough units, 
namely  n, of the larger extension y (possibly enlarged by v) so that n units of y together with v 
will be bigger than n units of x with its the head start u. 

There is a less general by more intuitive way to state the idea.  Condition 4 insures the 
following “Archimedean” result: if x<y in a physical sense in which we can compare physical 
sizes, then we can extend x by some finite number n of iterations so that the result nx is bigger 
than y.   That is, Condition 4 entails the following theorem: 
 
Theorem.  Let <B,≤, ♦> be a positive extensive structure, and x,y ∈B.   If x<y , then there exists 
a positive integer n such that y≤nx 
Proof.  Assume  

(1) x<y.   
By Condition 4, (1) entails for u=v=x,  

(2) ∃n (x1♦…♦ xn+1 ≤ y1♦…♦ yn♦ x),  
By Condition 3, ≤ is monotonic; hence (2) entails:   

(3) ∃n (x1♦…♦ xn ≤ y1♦…♦ yn).   
Let m be the least such n, so that: 

(4) x1♦…♦xm ≤ y1♦…♦ ym, and  
(5)  not (x1♦…♦ xm1 ≤ y1♦…♦ ym1) 

By Condition 1, ≤ is complete; hence (5) entails: 
(6) y1♦…♦ ym1 ≤  x1♦…♦ xm1. 

By Condition 5,  the structure is positive; hence, 
(7) y ≤  y1♦…♦ ym1. 

By Condition 1, ≤ is transitive; hence by (6) and (7): 
(8) y ≤  x1♦…♦ xm1 

By definition, (8) may be rephrased: 
(9)  y ≤  (m x.  QED. 

 
Example.  To see that the Archimedean property as stated in Condition 4 fits 

measurement cases, consider the example of 3≤9.  Even though 3≤9 we can increase the size of 
3, say three times, and then add 6 we get 15, a number that is larger than a similar augmentation 
of the larger number 9 by the same factor and then adding a lesser number, say 2: 

3x3 + 6 > 3x9 + 2 
But eventually the fact that 9 is larger than 3 emerges if we up the increase, say in this case from 
3 times to 4.  We then arrive at the number predicted by the Archimedean property, namely one 
that makes the increase of the larger number, in this case 9, with 2 added to it , greater than the 
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increase of the smaller number, in this case 3, with a number greater than 2, in this case 15, 
added to it: 

3x3 + 6 ≤ 4x9 + 2 
 

 
Any number n greater than 4 will continue to fit the Archimedean inequality.  The fact that this sort 
of property holds depends on the numerical measurability of concatenation increments and 
(somewhat surprisingly given the obscurity of its formulation) is characteristic of structures that 
admit of numerical measurement. 
 

That the notion of extensive structure captures the necessary and 
sufficient conditions for the possibility of arithmetical measurement is shown by 
the following theorem: 
 
Theorem.  Let B be a non-empty set, ≤ a binary relation on B and ♦ a binary operation closed on 
B.  Then <B,≤, ♦> is a closed extensive structure iff there exists a function m mapping B into the 
set of real numbers such that for all x,y∈B, 

1. x≤y iff m(a)≤m(y), 
2. m(a♦b)=m(a)+m(b). 

Further, a function m′ satisfies 1 and 2 iff there exists an n such that 0<n and for any x∈B, 
m′(x)=nm(x).  (That is, intuitively, any other measurement assignment m′ will be a “scale” value of 
m.)  Moreover, the structure is positive iff any x∈B, 0<m(x) 
 
 

PART II.  NUMBERS AND THE PROPERTIES OF THE INFINITE2 

 

1.  The Natural Numbers 

 One of the core intuitions about what constitutes the infinite is formulated 
in terms of counting.  A collection is infinite if when we start counting its elements 
we do not come to an end.  To make sense of this we must first make sense of 
what it is to count, and we must do so in a way that allows for the possibility that 
counting will not terminate.  For this purpose we invent a system of counting 
                                            
2 For background on the history of the theory of numbers as developed within logic see 
http://planetmath.org and Raymond L. Wilder, Introduction to the Foundations of Mathematics, 
2nd ed. (New York: Wiley, 1967). 
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markers.  We might for some purposes use marks on a bone like the caveman.  
But we want an unending collection of markers, all in order, and all different.  For 
that purpose we construct using the tools of set theory the collection of “whole” or 
counting numbers: 0,1,2,3,….  Logicians call these natural numbers.  
 Natural numbers were first studied in modern logic means of axiom 
systems.  Below is an example of how the theory was first formulated.  A series 
of “primitive” or undefined terms is listed, and then a series of axioms. 
 
Peano's Postulates (Axioms) for Arithmetic (Arithmetices Principia, 1889) 
 Primitive Symbol: English Translation: Mathematical Idea: 
    NN   the set of natural numbers  {0,1,2,...}     
    S(x)=y  the successor of x is y the successor relation   
    ∈ is a member of  set membership 
 
The Postulates 
Formulation in English:   Formulation in Logical Notation: 
1. 0 is a natural number.       0∈ NN  
2. Natural numbers are closed under successor.   ∀x[x∈ NN  →S(x)∈ NN )]  
3. 0 is the successor of no natural number.     ∀x[x∈ NN  →∼S(x)=0)] 
4. If the successors of two natural numbers    ∀x∀y([S(x)=S(y)]→x=y) 
      are the same, so are those numbers. 
5.  Mathematical Induction.  If 0 has a pro-     {0∈A&x∀y([x∈ NN & y∈ NN &x∈A&S(x)=y]→y∈A)} 
      perty (is in A) and if a natural number has       →∀x(x∈ NN  →x∈A) 
      that property (is in A) only if its successor 
      does also, then all natural numbers have  
      that property (are in A). 
 

Today these same ideas are recast in a framework that defines an 
“abstract structure” of natural numbers. 
 
Definition.  The structure of natural numbers is the structure < NN ,≤,S,+,•,0,1> such that 

1. S is a unary operation (the successor operation) on sets such that S(x) =x ∪ {x} 
 2.   0=∅ and 1= S(0) 

3.   NN (the set of natural numbers) is the least set B such that 
a.   ∅∈B 
b.   for any x, if x∈B, then S(x)∈B, 
c. nothing else is in B 

4. ≤ is a binary relation on NN (the les than relation) defined as follows: x≤y iff x ⊆ y. (By 
convention x<y abbreviates x≤y and x≠y.) 
2. + is a binary operation of NN (addition) defined (recursively): 

a. for all x in  NN , x + 0 = x, 
b. for all x and y NN , x + S(y) = S(x + y) 

3. • is a binary operation (multiplication) of  NN defined (recursively): 
a. for all x in  NN , x • 0 = 0, 
b. for all x and y NN , x • S(y) = (x • y) + x 

 
Definitions 2= S(1), 3= S(2), 4= S(3), etc. 
 

Note that according to these definitions each natural number is a set.  The 
set definition is designed to insure that their set theoretic properties coincide with 
numerical properties that we are more familiar with. 
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0 is the empty set ∅. Hence 0 is the set with no members.   
1 is the set containing 0, i.e. 1 is the set containing ∅: 1={0}={∅}. Hence 1 

is a set with just one member.  Note also that since ∅ is a subset of every set, ∅ 
is a subset of {∅}.   

 2 is the set containing 0 and 1, i.e. 2={0,1}={∅,{∅}}.  Hence 2 is a set 
containing just two members, and is in fact the set containing all the natural 
numbers less than itself.  Note also that both ∅, which is 0, and {∅}, which is 1, 
are subsets of {∅,{∅}}, which is 2.  Hence the relation ⊆ of subset captures the 
less than relation ≤ for numbers less than 2.   

3 is the set containing 0,1, and 2, i.e. 3={0,1,2}={∅,{∅},{∅,{∅}}}.  Hence 3 
is a set that contains just three elements, namely all the natural numbers less 
than 3.  Note also that ∅, which is 0, and {∅}, which is 1, and {∅,{∅}}, which is 2, 
are subsets of {∅,{∅},{∅,{∅}}}, which is 3.  Hence the relation ⊆ of subset 
captures the less than relation ≤ for numbers less than 3.   

In general, the definitions insure that a natural number n is a set that 
contains exactly n elements, and that these are exactly all the natural numbers 
less than n.  Moreover, the numbers are defined as sets in such a way that any 
number less than n is a subset of n.  
 
Theorem 

1. S is defined for all elements of  NN ,and S(x)≠0 
2.    for all x and y of  NN ,  if S(x)=S(y) then x=y 
3.   (Mathematical Induction) for any set A,  

if 0∈A and, for any x, if x∈A then S(x)∈A, then for any x∈ NN , x∈A) 
4. ≤ is a total ordering of   NN , 
5. < NN ,≤,=,+,•,0,1> where = is the identity relation on sets  in  NN  is an ordered 

ring with identity relation =. 
 
It is a relatively easy matter to prove that  NN  is infinite in the sense of Cantor.  
Though we shall not prove so here  NN is also the smallest infinite set (any set that 
is infinite is either larger than or equipollent to it). 
 
Theorems.   

1. NN is infinite. 
2. For any A, if A is infinite, then either A≈ NN or  NN <A. 
 

Definition.  A set A is countably infinite or denumerable iff it can be put into 1-1 
correspondence with  NN , i.e. A≈ NN  
 

2.  The Integers 

Infinite however goes not only upward but downward.  Indeed the 
discovery that an infinite descending series is logically possible was one of the 
advances in mathematics with direct relevance to issues in philosophy, like 
whether infinitely receding causal chains are logically coherent.  The next step in 
the definition of number is, therefore, to introduce the negative integers. 
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Definition.  The structure of integers is the structure <ZZ , ≤,+,•,−,0,1> such that 
1. ZZ  is the set of (integers) defined as the set of all equivalence classes [n,n′ ]≡  

of ordered pairs of natural numbers determined by the equivalence relation ≡ 
defined (on pairs of natural numbers) as follows: for any x,y,u and v in NN , 

<x,y>  ≡ <u,v> iff x+v = y+u. 
That is,  for any x and y in NN , 

[x,y]≡  = {<u,v>| u∈ NN & v∈ NN & x+v = y+u} 
2. ≤ is a binary (less than) relation on ZZ defined as follows: [x,y]≡ ≤ [u,v]≡ iff x+v 

≤ y+u in  NN .  (By convention x<y abbreviates x≤y and x≠y.) 
3. + is a binary (addition) operation on ZZ defined as follows: [x,y]≡ + [u,v]≡ = 

[x+u, y+v]≡ 
4. • is the binary (multiplication) operation on ZZ  defined as follows: [x,y]≡ • 

[u,v]≡ = [(x•u)+(y•v), (x•v)+(y•u)]≡  
5. 0 = [0,0]≡ and 1=[1,1]≡ 
6. − is a unary (minus) operation on ZZ  defined as follows: −[x,y]≡ = [y,x]≡ 

 
Definitions.  In the structure of integers <ZZ , ≤,+,•,−,0,1> 
  n =def  [x,y]≡ such that y≤x, and x = y + n, 

−n =def  [x,y]≡ such that x≤y, and x + n = y  
|n| = n if n = [x,y]≡ such that y≤x, and |−n| = n if −n = [x,y]≡ such that x≤y. 
 

Theorem.  <ZZ , ≤,=,+,•,−,0,1> such that such that <ZZ , ≤,+,•,−,0,1> is the structure of integers and 
= is the identity relation on sets is an ordered field. 
 
Theorem.  If <ZZ , ≤,+,•,−,0,1>is the structure of integers, then <ZZ , ≤> is a total but not a dense 
ordering. 
 

3.  Rational Numbers 

Integers however do not exhibit an important feature of the infinite as we 
encounter in cases of divisibility. Unlike distances and times, which always seem 
to admit a degree intermediate between a larger and smaller, integers are not 
“dense”.  For that property we must add to the integers all whole number 
fractions, thus generating the  rational numbers. 
 
Definition.  The structure of rational numbers is the structure <QQ , ≤,+,•,−,0,1> such that 

1. QQ is the set of (rationals) defined as the set of all equivalence classes [n,n′ ]≡  of ordered 
pairs of integers, such that n′ ≠ 0, determined by the equivalence relation ≡ defined (on 
pairs of rationals) as follows: for any x,y,u and v in ZZ , 

<x,y>  ≡ <u,v> iff x•v = y•u. 
That is,  for any x and y in ZZ  such that y ≠ 0, 

[x,y]≡  = {<u,v>| u∈ ZZ & v∈ ZZ & x•v = y•u} 

 It is conventional to abbreviate [x,y]≡  in “fraction” notation as x/y or  xy  

2. ≤ is a binary (less than) relation on QQ defined as follows: xy  ≤ uv  iff x•v ≤ y•u in ZZ  

 (By convention x<y abbreviates x≤y and x≠y.) 
3. + is a binary (addition) operation on QQ defined as follows:  

 x
y  + uv  = (x•v)+(y•u)

 y•v    
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4. • is the binary (multiplication) operation on QQ  defined as follows:  

 x
y  • uv  = x•u

 y•v   

5. 0 = 01  and 1=1
1   

6. − is a unary (minus) operation on QQ  defined as follows: − 
x
y  = −x

y   

 
Theorem.  <QQ , ≤,=,+,•,−,0,1> such that <QQ , ≤,+,•,−,0,1> is the structure of rationals and = is the 
identity relation on sets is an ordered field. 
 
Theorem.  If <QQ , ≤,+,•,−,0,1> is the structure of rationals, then <QQ , ≤> is a dense but not a 
continuous ordering. 
 

4.  Real Numbers 

In remains to construct the real numbers which culminate our structural 
progression by embodying continuity.  
 
Definition.  The structure of real numbers is the structure <RR , ≤,| |,+,•,−,0,1,-1> such that   

1. RR is the set of (reals) defined as the set of all subsets C of QQ  such that 
a. C and −C are non-empty  
b. C and −C partition QQ (i.e. C∪−C = QQ )  
c. C contains no greatest element (i.e. for any x in C, there is a y in C such that x≤y) 
d. C is closed dowardly under ≤ (i.e. for any x in C and any y in  QQ , if y≤x, then y is 

in C) (Note that the pair <C, −C> meeting conditions a-d is called a Dedekind 
cut and Dedekind himself identified reals with these pairs.) 

2. ≤ is a binary (less than) relation on   RR defined as follows: x≤y iff x ⊆ y.  (By convention 
x<y abbreviates x≤y and x≠y.) 

3. − is a unary (minus) operation on QQ  defined as follows: − x = {y| y ∈ QQ  &−y∉x & −y is not 
the least element of  QQ −x} 

4. + is a binary (addition) operation on RR defined as follows:  
 x + y  = {u+v| u∈ QQ  & v ∈ QQ  & u∈x &  v∈y} 

5. 0 (the additive identity) is {x | x∈ QQ  and x≤0} 
6. 1 (the multiplicative identity) is {x | x∈ QQ  and x≤1} 
7. | | is the binary (absolute value) operation on RR  defined for x in  RR , 

if 0≤x, |x| = x, and  
if x≤0, |x| = −x 

8. • is the binary (multiplication) operation on  RR  defined in stages as follows:  
a. • is first defined for reals greater than 0: if 0<x and 0<y, then  

x•y = {z| z ∈ QQ  &  
(either z≤0 or (there exist u  and v in QQ such that 0<u & 0<v and z=u•v}   

b. • is now defined for all reals: for any x and y in  RR , 
if x=0 or y =0, then x•y = 0; 
if (0<x & 0<y) or (x<0 & y<0), then x•y = |x|•y|; 
if (0<x & y<0) or (0<x & y<0), then x•y = −(|x|•y|). 

9. –1  is the unary (inverse) operation on  RR  defined  

if 0≤x, x −1 = {y | y∈ QQ  and (either y≤0 or [0<y and  1y ∉x and 1y is not the least 

element of QQ −x])} 
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if x≤0, x −1 = −(|x|)−1 
 

Definitions.  In the structure of reals   <RR , ≤,| |,+,•,−,0,1,-1>,  n  in RR  is said to be irrational iff n 
contains no least element. 
 
It is now possible to prove what the special properties related to infinity that the 
real numbers exemplify.  Though like the rationals, the real line is dense – 
between any two “points” on “the line,” there is a third -- the real line has the 
property which the rationals lack that it may be divided at a point is such a way 
that other reals may approach is closer and closer ad infinitum both from below 
and above. 
 
Theorem.  Let <RR , ≤,+,•,−,0,1> be the structure of the real numbers 

1. (The Completeness Property.) <RR , ≤> is continuous and has the Dedekind 
completeness property, i.e. every non-empty subset A of real numbers that is bounded 
(i.e. such that there is some x in RR such that for any y∈A, y≤x) has a ≤-least upper bound 
(a supremum) in  RR . 

Proof.  Let A be an arbitrary non-empty subset of RR and let x in RR be an arbitrary upper 
bound of A, i.e. let us assume that for any y∈A, y≤x.  We define a set , namely the union of all 
the reals in A, which are themselves sets of rationals:  n = U{z|z∈A}.  We claim that (1) n is a 
real, (2) n is an upper bound of all elements in A and (3) n is a least upper bound of elements 
in A.   

To show (1) we must show that n meets the defining conditions a-d of  RR .  (a) By 
definition the elements of A are in  RR and are therefore themselves non-empty.   Hence their 
union is non-empty.  Moreover. since x is a real number, it is non-empty.  Hence RR −n, which 
contains x, is non-empty.  (b) Moreover by set theory n and  RR −n are disjoint and their union 
is   RR .  They therefore partition RR .  (c) Let us assume  for a reduction to the absurd that for 
some x in n, for every y in n, y<x.  Then, since x is in n then for some z in A, x∈z. But then x 
would be the greater than any element in z, and z  would both be a real number and contain 
a greatest element, which is absurd.  Hence the assumption leads to a contradiction and is 
false.  Hence that for all x in n, for some y in n, x≤y.  (d) Let x be an arbitrary element in n and  
y an arbitrary rational number in  QQ .  Suppose further that  y≤x.   Since x is in n,  x is in some 
real, call it z, in A.  Now since z is a real it is downwardly closed.  Hence since x∈z and y∈ QQ , 
y∈z.  But z⊆n.  Hence y∈n. 

(2) Let x be an arbitrary element of A.  Then x⊆U{z|z∈A}, i.e. x⊆n.  But then by definition 
x≤n.  Hence for all x∈A, x≤n.  Hence n is an ≤-upper bound of A. 

(3)  Since x is an arbitrary upper bound of A, it will suffice to show n≤x. Let y∈n.  Then, 
for some z in A¸ y∈z. But since x is an upper bound of all elements of A, it is an upper bound 
of z.  Hence, since y∈z, y≤x.  Hence n is a least upper bound of A. QED. 
2. If B  and −B  are non-empty subsets of RR  that partition  RR into upper and lower “halves” 

(i.e. B∪−B=RR , and for any x if x ∈ B then for any y if y ∈ −B, then x≤y) then there exist a 
unique z in RR such that z is the ≤-greatest element of B or the ≤-least element of −B: 

If all points of the straight line fall into two classes such that every point of the 
first class lies to the left of every point of the second class, then there exists one 
and only one point which produces this division of all points into two classes, this 
severing of the straight line into two portions. ( 

 
Though it is a relatively simple matter to show directly that natural numbers, 
integers, and rationals all exhibit Archimedean properties, that fact that reals are 
Archimedean (and hence that the more basic types are too) requires the 
completeness property.    
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Corollaries  (Archimedean Properties) 
1. (Fundamental Archimedean Property of RR ) For any x,  if x∈ RR , then there 

exists a y such that y∈ NN and x<y. 
Proof.  Let x be an arbitrary real number in  RR  and let A be {y|y∈ NN & y≤x}.  Case 1. 
A  is the empty set.  Now 1∉∅.  Hence 1∉{y|y∈  NN & y≤x}.  Hence not(1∈{y|y∈ NN & 
y≤x}).  Hence not(1∈  NN & 1≤x).  Thus either 1∉ NN or (not1≤x).  But 1∈ NN .  Hence not 
1≤x.  Hence x<1. Case 2. A is non-empty. Since NN ⊆ RR  and A⊆  NN , A⊆ RR .  
Moreover, by definition every element z  of A is such that z≤x.  Hence x is an upper 
bound of A.  Hence A is a bounded non-empty subset of RR .  Therefore, by the 
completeness property, there is some w in RR that is a least upper bound of A. 
Moreover w−1<w and is therefore not a least upper bound of A.  Hence there exist a 
u in A such that  w−1<u.  Let y  be u+1.  Since by definition of A,  u∈ NN , y∈ NN .  
Moreover, since w<y and w is an upper bound of A,  y∉A. Further, since y∉A by 
definition of A, not(y∈ NN & y≤x), i.e. either   y∉ NN or not y≤x.  But y∈ NN . Hence, not 
y≤x. Therefore x<y. QED. 
 
2. For any x and y, if  x and y are in RR such that 0<x, there exists a z such that  

z∈ NN and  y< n•x. 
Proof.  Let x and y be arbitrary real numbers in  RR such that 0<x.  Since x and y  are 

in RR  and x≠0, yx is defined and is in  RR .By the previous theorem there is some   z∈ NN  

such that yx < z.  It follows then that y< x•z. QED. 
 
3. For any x and y, if   x∈ RR  and 0<x, then there exists a y such that   y∈ NN and   

0<1
y <x. 

 
 

5.  Cauchy Sequences and Metric Spaces 

An equally well known and theoretically somewhat more fruitful definition 
of the reals in terms of the rational makes use of what are called Cauchy 
sequences of rationals after their discoverer.  Like the sets making up a 
Dedekind cut these approach ever closer to real in a way characteristic of it.  The 
basic definitions are given below both because the construction is well known as 
a classical alternative to Dedekind’s, and because we will later indicate how thee 
definitions provide the grounds for showing that the properties of completeness 
represented by the real numbers may be studied in yet more abstract structures 
called metric spaces.  
 
Definitions 

1. If s  and s′  are sequences on A, then the interleave sequence of s and s′ in A is the 
sequence s’’ =s1, s′1, s2, s′2, s3, s′3, …, sn, s′n,…, i.e.   

i. s′′ (x)=s ( x2 ) if x is even,   

ii. s′′ (x)=s′ ( x2 ) if x is odd. 
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2. If s  is a sequence in the set QQ of rational numbers, then s  is a Cauchy sequence of 
rationals iff for every rational number ε in QQ ,  if 0<ε, there exist a natural number x in 
NN  such that for any y  and z in QQ , if x<y  and x<z, then |sy−sz|< ε. 

3. If s  and s′ are Cauchy sequences of rationals, then s≡s′ iff the interleave sequence 
s′′ of s and s′ in sequence in QQ of rational numbers, is also a Cauchy sequence of 
rationals. 

4. If s  is a Cauchy sequence in the set QQ of rational numbers, then the ≡-equivalence 
class of s, briefly [s]≡, is {s′ | s′  is a Cauchy sequence of rationals and s≡s′}. 

 
Theorem.  The set  RR of real numbers is the set of all equivalence classes  [s]≡ such that s is a 
Cauchy sequence of rationals. 
 
Though the definitions of the various types of numbers and their properties are 
now modern classics, modern mathematics has shown that they are not the most 
fundamental or abstract definitions possible for structures that exhibit the sort of 
continuity typified by the real number line.  The notion of “completeness” is 
definable more abstractly for what are called of metric spaces.  The basic 
definitions are given here to indicate the direction such studies take. 
 
Definitions 

1. A sequence in A is a function s from the set of natural numbers  NN into some set A.  
When the context makes it unambiguous that it is the sequence s that is in question, 
the series of s-values s(1), s(2), s(3), …, s(n), … for the arguments 1,2,3,..,n,… is 
customarily written as s1, s2, s3, …, sn,…. 

2. A metric space is a structure <S,d> such that d is a function (called the metric or 
distance function) on pairs of real numbers (i.e. the domain of d  is RR ×  RR ) such 
that for any x, y, and z in S,  
a. if x=y  then d(x,y)=0; 
b. if x≠y then 0< d(x,y); 
c. d(x,y) = d(y,x); 
d. d(x,z) ≤ d(x,y) + d(y,z). 

3. If <S,d> is a metric space and s  is a sequence in S, then s is a Cauchy sequence in 
<S,d> iff for every real number ε  if 0<ε, there exist a natural number x in NN  such that 
for any y  and z in , if x<y  and x<z, then d(sy, sz)< ε. 

4. If <S,d> is a metric space, x is an element of S, and s  is a sequence in S, then s 
converges to x and x is  the limit point of s iff for every real number ε  if 0<ε, there 
exist a natural number y in NN  such that for all z in NN , if y<z, d(x, sz)< ε.  If there is an 
x  in S such that s converges to x  then s  is said to converge. 

5. A metric space <S,d> is complete if every Cauchy sequence in S converges. 
 
Theorem.  If <RR , ≤,| |,+,•,−,0,1,-1>  be the structure of the real numbers, then < RR , | |> is a 
complete metric space. 
 
 

6.  Hyperreals, Introduction 

Those ancient, mediaeval and Enlightenment philosophers and 
mathematicians discussed seriously and made efforts to construct coherent 
accounts of true “infinitesimals” the idea was not needed to explain modern 
mathematics grew up with the invention of the infinitesimal calculus by Newton 
and Leibniz in the seventieth century.  The theory of real numbers, which rejects 
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the notion of a true infinitesimal, has proved adequate to account for the calculus 
and number theory.   

In the `940 however Abraham Robinson invented a theory of numbers that 
supplements the reals by adding to them new numbers that fall in between and 
have the property of hovering as “clouds” infinitesimally close – in a well defined 
sense – to both 0 and to each real.   

Like the construction of the earlier numerical structures that of the 
hyperreals is defined in terms to the next simpler structure, in this case the reals.  
Just as integers are a certain equivalent class of naturals and rational of integers, 
and reals of rationals, the hyperreals are special equivalence classes of defined 
in terms of reals.  In particular, they are equivalence classes of infinite sequences 
of reals of a certain sort.  Now, an infinite sequence of reals, indicated by the 
notation s1, s2, s3, …, sn,…, or even more briefly as {sn },  is a function s from the 
set of natural numbers  NN  into that of the reals RR .  The sequence is said to 
“index” elements of  RR  because for each “address” in NN  it assigns an “occupant 
in  RR .  The construction identifies hyper reals with equivalent classes of such 
sequences.  The ordinary real number r then becomes identifies with the 
equivalence class of the special series that just repeats r  and infinite number of 
times: r = r1, r2, r3, …, rn,….  The “new” numbers are those formed by series that 
do not have this constant repletion.  

The trick is to define the equivalence relation ≡ on sets of these series so 
that the right results follow from the definition.  For example, we want the 
resulting “numbers” to form an ordered field, as well as allow for the relevant 
definition of “infinitesimal”.  The construction proceeds by first defining an order 
relation ≤ on sets of infinite sequences of reals, and then defining ≡ in terms of ≤. 

How should ≤ be defined? . We might simply say that  one series was 
“less than” another if each number at each address was so.  That is, we might 
say s1, s2, s3, …, sn,… ≤ s′1, s′2, s′3, …, s′n,… iff for each n ,   sn,≤s′n.  But this is 
too restrictive.  We are going to allow one series to be “less than” another if just a 
selected subsets of their components are so.  The trick is to pick out a way to 
characterize the relevant subsets of “addresses” to be considered.   

The construction first sets out the relevant subsets of NN  to be used in 
these order comparisons.  It turns out that an adequate family of subset for 
defining the right notion of ≤  are those that we arrayed vertically in a diagram in 
terms of the subset relation ⊆ make a picture that looks something like a filter.  It  

We pause to define this family precisely.   We first repeat the earlier 
definition of the algebra of subsets of a given set B. 

 
Definition. A structure <B,∧,∨,−,0,1> is a Boolean algebra iff it is a structure satisfying the 
following conditions.  Let x, y and z be arbitrary members of B. 

1. <B,∧,∨> is a lattice, i.e. 
  L1.  x∧y=y∧x; x∨y=y∨x 
  L2.  (x∧y)∧z=x∧(y∧z); (x∨y)∨z=x∨(y∨z); 
  L3.  x∧x=x=x∨x; 
  L4.  x∨(x∧y)=x=x∧(x∨y). 

2. <B,≤> is a partially ordered structure, i.e. by definition x≤y ⇔ x∧y=x ⇔ x∨y=y and 
  P1. x≤x; 
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  P2  x≤y & y≤z .⇒ x≤z; 
  P3.  x≤y & y≤x .⇒ x=y. 

3. <B,∧,∨> is distributive, i.e. 
  D1.  x∨(y∧z)=(x∨y)∧(x∨z); 
  D2.  x∧(y∨z)=(x∧y)∨(x∧z). 

4. 0 and 1 are respectively the least and greatest element of B in <B,∧,∨,0,1>, i.e. 
  G1.  0≤x≤1; 
  G2.  1∧x=x; 
  G3.  1∨x=1; 
  G4.  0∧x=0; 
  G5.  0∨x=x. 

5. − is a unique complementation operation on one-place operation on <B,∧,∨,−,0,1>, i.e. 
  B is closed under  − and 
  C1. x∧−x=0  
  C2. x∨−x=1  

C3. −−x=x, −1=0, −0=1; 
C4. x≤y ⇔ x∧−y=0 ⇔ −y≤−x ⇔ −x∨y=1 
C5. −(x∧y)=−x∨−y, −(x∨y)=−x∧−y. 

 
Theorem. <B,∧,∨,−,0,1> is a Boolean algebra iff ∧ and ∨ are binary and − a unary operation on B 
under which B is closed, 1,0∈B and  
  L1.   x∧y=y∧x; x∨y=y∨x;    C2. x∨−x=0  
  D1.  x∨(y∧z)=(x∨y)∧(x∨z);   G2.  1∧x=x; 
  D2.  x∧(y∨z)=(x∧y)∨(x∧z);   G5.  0∨x=x; 
  C1.  x∧−x=1  
 
Example.  A three element Boolean Algebra 

 

 
A Boolean Algebra of the Power set of {a,b,c} 

 
We shall let BBBB=<B,∧,∨,−,0,1>  range over Boolean algebras, distinguish one 
algebra from another by prime marks on its various components. 
 
Theorem.  Although any congruence relation for a Boolean Algebra <B,∧,∨,−,0,1> has (by 
definition) the substitution property for ∧,∨,−, it does not in general have the substitution property 
for ≤.  That is, there are some Boolean Algebras with congruence relation ≡ such that for some 
a,b,c in B, a≡b, c≡d, and a≤c, yet not(b≤c). 
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 Consider the function f diagrammed below mapping one Boolean algebra to another and hence 
determining a congruence relation ≡f . That is f  is defined:  Here f(1)=1 f(a)=1, f(b)=0, f(0)=0.)  
Here f(x∧y)=f(x)∧f(y) and x≡fy & z≡fw .⇒ x∧z≡fy∧w, and likewise for ∨.  But, 0≡fb & 1≡fa & 0≤1, 
yet not(b≤0).   QED 
 

 
 
Example.  A four element Boolean Algebra 
 

 
A Boolean Algebra of the Power set of {a,b,c,d} 
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7.  Filters and Ideals  

A important subset of the universe of a Boolean algebra is the set of 
elements above x, or dually the elements below x.  The former is called a filter, 
the latter an ideal.  A maximal filter of x and dual maximal ideal of −x have the 
very nice property that they partition the algebra into just two equivalence classes 
that also determine a congruence relation.  In other words, they proved a two 
element Boolean algebra with the "same structure" as the original.  This binary 
structure "represents" the original and allows all Boolean algebras to be 
simplified into the structure on {0,1}.  In the next section we shall apply this 
representation to the matrix interpretations of classical logic, where we shall find 
that the family of Boolean algebras is characteristic of classical deducibility, but 
by means of the representation theorem these may all be simplified to the 
familiar classical matrix on {T,F}.  
 
Definitions.  Filters and Ideals.3 
 
Let        BBBB=<B,∧,∨,−,0,1> be a Boolean algebra and A⊆B. 
 
A is a filter on BBBB iff 
   1.  ∀x,y∈B, x∈A⇒x∨y∈A, and 
   2.  ∀x,y∈B, x,y∈A⇒x∧y∈A 
(equivalently, iff ∀x,y∈B, x,y∈A⇔x∧y∈A). 
 
A is an ideal on B B B B iff 
  1.  ∀x,y∈B, x∈A⇒x∧y∈A, and 
    2.  ∀x,y∈B, x,y∈A⇒x∨y∈A 
(equivalently, iff ∀x,y∈B, x,y∈A⇔x∨y∈A). 
 
For any x∈B, by [x]↑↑↑↑ we mean {y|x≤y} and by [x]↓↓↓↓ we mean {y|y≤x} 
 
Theorem. For any Boolean algebra        BBBB=<B,∧,∨,−,0,1>a and any x∈B, 
 [x]↑ is a filter on BBBB, and 

[x]↓ is an ideal on BBBB. 
 
Definition 3. For any Boolean algebra        BBBB=<B,∧,∨,−,0,1>a and any x∈B, 

[x]↑ is the prime (or principle) filter on BBBB relative to x and 
[x]↓ is the prime (or principle) ideal on BBBB relative to x. 

 
Example.  The prime filter of a and the prime ideal of its complement −a={b,c}. 
 

                                            
3 A note on symbolism.  We abbreviate the conjunction x∈A & y∈A as x,y∈A. 
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Theorem. For any Boolean algebra BBBB=<B,∧,∨,−,0,1>, every filter/ideal of BBBB is prime iff B is finite. 
 
Definition.  A filter/ideal of a Boolean algebra BBBB is maximal iff  
   1.  for some filter/ideal H, B⊂H, and  
  2.  for any filter/ideal G, if there is a filter/ideal H such that G⊂H, then,  
        if B⊆G, B=G  (i.e. if G is a proper filter/ideal then B is not properly contained in it.) 
 
Theorem. For any Boolean algebra BBBB=<B,∧,∨,−,0,1>, 
1. F is a maximal filter/ideal of BBBB iff, d ∀x∈F, not(x∈F ⇔ −x∈F). 
2. F is a maximal filter/ideal of BBBB iff, B−F is a maximal ideal/filter of BBBB 
3. F is a maximal ideal of BBBB iff, the function q from B into its power set PPPP(B) defined as 

follows: ∀x∈B, 
    q(x)=F if x∈F, and 
    q(x)=B−F if x∉F 
 is a homomorphism from BBBB onto the Boolean  
    <{F,B−F},∩,∪,−,F,B−F> 
 
Definition.  Let <X,≤> be a partially ordered structure. 

A chain in <X,≤> is any non-empty subset Y if X such that  if x,y∈Y then  
x≤y or y≤x. 

  An upper bound of a chain Y is <X≤> is a member x of X such that for all y∈Y, y≤x. 
An element x of is a maximal element of <X,≤> iff, for x,y∈X,  x≤y ⇒ x=y  

 
Any ⊆-chain of subsets A1,A2,… clearly posses an upper bound and lower 
bounds, namely their union and intersection.  Since filters are closed with respect 
to the union of any chain of its elements, and ideal with respect to their 
intersection, they each contain respectively at least one upper or lower bound.  
Zorn’s lemma insures that there is a lowest or highest respectively.   
 
Theorem. *For any Boolean algebra BBBB=<B,∧,∨,−,0,1>, any x∈B and any filter/ideal F of BBBB that 
does not contain x, there exists a minimal/maximal (ultra) filter/ideal M of BBBB such that M⊆F/ F⊆M 
and x∉F. 
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Theorem.  *For any Boolean algebra BBBB=<B,∧,∨,−,0,1>,  and any x and y of B, if not(y≤x), then 
there exists a minimal/maximal (ultra) filter/ideal F of BBBB such that x∈F and y∉F. 
 
In the case of filters, the existence of an upper bound to ⊆-chains and of an 
ultrafilter remains is true even if the filter is limited to infinite sets.  It is such ultra 
filters of infinite sets, called non-principal, that are used to categorize the 
acceptable subsets of natural numbers that are used to as indices for the infinite 
series used below to construct the hyperreals. 
 

8.  Properties of Hyperreal4 

The hyperreal numbers or nonstandard reals (usually denoted as  *RR ) 
are an extension of the real numbers RR  that adds infinitely large as well as 
infinitesimal numbers to  RR . The study of these numbers, their functions and 
properties is called nonstandard analysis which some find more intuitive than 
standard real analysis. When Isaac Newton and Gottfried Leibniz introduced 
differentials, they used infinitesimals and these were still regarded as useful by 
Leonhard Euler and Augustin Louis Cauchy. Nonetheless these concepts were 
from the beginning seen as suspect, notably by Bishop Berkeley, and when in 
the 1800s calculus was put on a firm footing through the development of the 
epsilon-delta definition of a limit by Augustin Louis Cauchy, Abraham Robinson 
showed how infinitely large and infinitesimal numbers can be rigorously defined 
and used to develop the field of nonstandard analysis. Because his theory in its 
full-fledged form makes unrestricted use of classical logic and set theory and, in 
particular, of the Axiom of Choice, it is suspected to be nonconstructive from the 
outset. The construction given below is a simplified version of Robinson's more 
general construction and is due to Lindstrom.  

The hyperreals   *RR  form an ordered field containing the reals  RR  as a 
subfield. Unlike the reals, the hyperreals do not form a metric space, but by virtue 
of their order they carry an order topology.  

The hyperreals are defined in such a way that every true first-order logic 
statement that uses basic arithmetic (the natural numbers, plus, times, 
comparison) and quantifies only over the real numbers is also true if we presume 
that it quantifies over hyperreal numbers. For example, we can state that for 
every real number there is another number greater than it:  

∀ x ∈  RR  : ∃ y  ∈RR  : x < y  
The same will then also hold for hyperreals:  

∀x ∈ * RR  : ∃ y ∈  * RR  : x < y  

                                            
4 Adapted from Wikipedia at 
http://www.campusprogram.com/reference/en/wikipedia/h/hy/hyperreal_number.html.  

 See  also http://mathforum.org/dr.math/faq/analysis_hyperreals.html. and  
Jordi Gutierrez Hermoso, Nonstandard Analysis and the Hyperreals. 
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Another example is the statement that if you add 1 to a number you get a bigger 
number:  

∀ x ∈  RR  : x < x + 1  
which will also hold for hyperreals:  

∀ x ∈ *RR  : x < x + 1  
This however doesn't mean that  RR  and  *RR  behave the same. For instance, in  
*RR  there exists an element w such that  

1< ... 1+1+1+1< w 
but there is no such number in  RR . This is possible because the nonexistence of 
this number cannot be expressed as a first order statement of the above type. A 
hyperreal number like w is called infinitely large; the reciprocals of the infinitely 
large numbers are the infinitesimals.  

 

9.  Construction of the Hyperreals 

We are going to construct the hyperreals via sequences of reals. This is 
nice, because we can immediately identify the real number r with the an 
equivalence class of the  sequence (r, r, r, ...), i.e. with [r, r, r, ...]≡, and we can 
also add and multiply sequences:  
 

[(a0, a1, a2, ...)]≡ + [(b0, b1, b2, ...)]≡ = [(a0 + b0, a1 + b1, a2 + b2, ...)]≡  
 

and analogously for multiplication.  
We may also compare sequences in terms of an ordering relation ≤, and 

there we run into trouble: some entries of the first sequence may be bigger than 
the corresponding entries of the second sequence, and some others may be 
smaller. We have to specify "which positions matter". Since there are infinitely 
many indices, we don't want finite sets of indices to matter. A consistent choice of 
"index sets that matter" is given by any free ultrafilter U on the natural numbers 
which does not contain any finite sets. Such an U exists by Zorn’s 
Lemma(equivalent to the Axiom of Choice). (In fact, there are many such F, but it 
turns out that it doesn't matter which one we take.) We think of F as singling out 
those sets of indices that "matter": We write  

 
(a0, a1, a2, ...) ≤ (b0, b1, b2, ...)    iff  the set of natural numbers {n | an ≤ bn } is in F.  

 
This is a total preorder and it turns into a total order if we agree not to distinguish 
between two sequences a and b if a≤b and b≤a. With this “identification”, the 
ordered field  *RR  of hyperreals is constructed.   That is, we define an equivance 
relation: 
 

(a0, a1, a2, ...) ≡ (b0, b1, b2, ...) iff  
         (a0, a1, a2, ...) ≤ (b0, b1, b2, ...) or (b0,b1, b2, ...) ≤ (a0, a1, a2, ...) 
 

and an equivalence class: 
 

http://www.campusprogram.com/reference/en/wikipedia/u/ul/ultrafilter.html
http://www.campusprogram.com/reference/en/wikipedia/n/na/natural_number.html
http://www.campusprogram.com/reference/en/wikipedia/a/ax/axiom_of_choice.html
http://www.campusprogram.com/reference/en/wikipedia/t/to/total_preorder.html
http://www.campusprogram.com/reference/en/wikipedia/t/to/total_order.html
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    [(a0, a1, a2, ...)]≡  =  {(x0, x1, x2, ...) | (x0, x1, x2, ...) ≡  (a0, a1, a2, ...)} 
 
The set of hyperreals *RR  is then defined as the set of all such equivalence 
classes of real number sequences.  The operations of an odered field may then 
be defined as indicated earlier.  For example, 
 

[(a0, a1, a2, ...)]≡ + [(b0, b1, b2, ...)]≡ = [(a0 + b0, a1 + b1, a2 + b2, ...)]≡  
 
A hyperreat that is not a real is called non-standard. 
 

10.  Infinitesimal and Infinite Numbers 

A nonstandard real number e is called infinitesimal if it is smaller than 
every positive real number and bigger than every negative real number. Zero is 
an infinitesimal, but non-zero infinitesimals also exist: take for instance the class 
of the sequence (1, 1/2, 1/3, 1/4, 1/5, 1/6, ...).   (This is a hyperreal because F 
contains all index sets whose complement is finite.  Sowing that is it smaler than 
any non-zero positive real is more complicated.)   

A non-standard real number x is called finite if there exists a natural 
number n such that – n < x < +n; otherwise, x is called infinite. Infinite numbers 
exist; take for instance the class of the sequence (1, 2, 3, 4, 5, ...). A non-zero 
number x is infinite if and only if 1/x is infinitesimal.  
Now it turns out that every finite nonstandard real number is "very close" to a 
unique real number, in the following sense: if x is a finite nonstandard real, then 
there exists one and only one real number st(x) such that x – st(x) is infinitesimal. 
This number st(x) is called the standard part of x. This operation has nice 
properties:  
 

st(x + y) = st(x) + st(y) if both x and y are finite  
st(xy) = st(x) st(y) if both x and y are finite  
st(1/x) = 1 / st(x) if x is finite and not infinitesimal.  
the map st is continuous with respect to the order topology on the finite hyperreals.  
st(x) = x   iff   x is real  

 

http://www.campusprogram.com/reference/en/wikipedia/c/co/continuous_function.html
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PART III.  ORDER, COUNTING, CARDINAL AND ORDINAL NUMBERS5 

 

1.  Ordinal Numbers 

In this section we approach anew the concept of the infinite in a way that 
abstracts from numbers as we are familoiar with them in arithmetical calculation 
to focus directly on the relation of infinity to the concepts of order and counting.  
In this section we discuss order and the main tool developed for that purpose, the 
notion of ordinal number. 

An infinte set is one that is ordered.  In the order one element follows 
another.  What makes the order infinite is that the order does not end. In this 
section we use set theory to construct a pardigm of such orderings.  This order 
will exhibit these properties as little else.  The details are familiar from the earlier 
construction of the natural numbers.  We start the construction with a single 
stater element, called 0.  In a general recursive manner we then  specify what it 
is to add one more to the order to follow an element that is already there. All that 
is required is that the element be new, not the same as any previous element, 
and that it be placed next in the order.  To do this we adopt the device of viewing 
the elements of the order as sets, identitfying 0 with ∅ and constructing mew 
elements in the order by means of the successor operation S defined as follows: 
S(x) is x∪{x}.   We then defined the ordering relation ≤ in terms of set inclusion:: 
x≤y if x⊆y. 
 
Definition. The set ω of (finite ordinals) is defined as 

1. 0∈ω, 
2. for any x, if x∈ω, then S(x)∈ω 
3. nothing else is in ω. 

 
Note that earlier ω was called the set of natural numbers NN , and later this same 
set will be identified with the and the first infinite cardinal number and called ℵ0.  
As we know from the natural numbers, arithmetical operations are definable on 
the finite ordinals and these form a ring.  We repeat the earlier results here 
reformulated to refer to ω so that we may compare them with the arithmetical 
properties of with those of later construction to follow. 
 
Definitions   

1. ≤ is a binary relation on ω (the less than relation) defined as follows: x≤y iff x ⊆ y. (By 
convention x<y abbreviates x≤y and x≠y.) 
6. + is a binary operation of ω (addition) defined (recursively): 

a. for all x in  ω, x + 0 = x, 
b. for all x and yω, x + S(y) = S(x + y) 

7. • is a binary operation (multiplication) of  NN defined (recursively): 
a. for all x in  ω, x • 0 = 0, 

                                            
5 For further background see Raymond M. and Melvin Fitting Smullyan, Set Theory and the 
Continuum Problem (Oxford: Clarendon Press, 1996). 
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b. for all x and y in ω, x • S(y) = (x • y) + x 
 
Definitions 2= S(1), 3= S(2), 4= S(3), etc. 
 
Theorem 

1. S is defined for all elements of  ω,and S(x)≠0, 
2. for all x and y of  ω,  if S(x)=S(y) then x=y, 
3. Mathematical Induction) for any set A,  

if 0∈A and, for any x, if x∈A then S(x)∈A, then for any x∈ω, x∈A) 
≤ is a total ordering of  () 

4. ω, 
5. <ω,≤,=,+,•,0,1> where = is the identity relation on sets  in  ω is an ordered ring with 

identity relation =. 
 

2.  Infinite and Transfinite Ordinals 

 It has been observed since antiquity that there are cases in the 
natural world in  which there seem to be both an infinite number of things and 
more that come after them.  Consider the number of fractions distances between 
“here” and “there”, as in Zeno’s dichotomy paradox.  Achilles goes half way, then 
half the distance of what of what’s left, then half of that, etc.  When you get gets 
there it seems that he must have traversed an infinite number of fractional 
distances, a possibility Zeno suggested was absurd.  How are we to make sense 
of the idea that there are items in an order on the other side of an infinite number 
of prior elements? Infinite ordinal numbers are constructed to represent such 
orderings.  We add a new element “beyond” all those in the set ω.  To carry on with 
the construction use to define ω, the new element should be a set and it should come after all the 
elements in ω according to the ordering relation ≤ , which is just set inclusion. We 
achieve this result if we simply identify the new element with ω itself.  Because of 
the way ω is inductively defined in set theory by the successor operation, there 
are alternative ways to refer to it.  Another name for ω is “the union of all 
elements in ω” (i.e. Uω), and yet another way is “the union of all ⊆-chains of 
elements in ω”  (i.e. U{C | C is a ⊆-chain of elements of ω}).  Either of these two 
descriptions uniquely define the set of all its ⊆-prior elements made up 
inductively by S, and either may be used to define a general way to make up a 
new element to add to the earlier ordering.  In the construction below we use the 
second.  Once we have added ω to the ordering, we may then apply the 
successor relation to it and its successors: ω+1 = ω ∪ {ω}, ω+2 = ω+1 ∪ 
{ω+1},ω+3 = ω+2 ∪ {ω+2}, etc.  The result is one infinity following another: 

0,1,2,3,…, ω, ω+1, ω+2,ω+3,… 
Because we have a general method for generating a new element from such an 
ordering, we may add yet a further element beyond this double infinity, and then 
commence to take the successors of it.  In this way we develop the  hierarchy of 
what are called ordinal numbers. It turns out that every set may be put into 1 to 
1 correspondence with one and only one ordinal number, and the family of sets 
of that correspond in this way to an ordinal is called an order types, and every 
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set then falls into a unique order type. Ordinal numbers can therefore be used in 
a sense to “count” or “measure” other sets, and to rank sets by their “size” as that 
notion is defined by the construction in terms of the successor operation and the 
ordering relation ⊆.   
Definition.  A family C of subsets is called a chain iff it is ⊆-complete: i.e. for any y and z in C, 
y⊆z or z⊆y. 
 
Definition. 

4. 0∈Or, 
5. for any x, if x∈Or, then S(x)  (recall that S(x)=x∪{x}) ,  
6. for any chain C of subsets of Or, UC∈Or. (Here UC is called a limit ordinal). 

 
Theorem.   ω is the first (least) limit ordinal.   
 
Theorem.  Mathematical Induction on Ordinals. 
If the following three conditions are met: 

1. 0∈A 
2. for any x in Or, if x∈A only if S(x)∈A, 
3. for any B if B is a union chains of elements of Or, B∈A  

then it follows that Or⊆A. 
 
Definition. For any ordinals x and y, 

1. x < y iff x⊂y, 
2. x ≤ y iff x⊆y 

 
Theorems  

1. For any ordinals x and y in Or,  
x < y iff x⊂y iff x∈y. 

2. For any ordinals x and y in Or,  
x < y or x = y or y < x. 

3. For any x, if x∈Or, then x={y| y∈Or & y<x}. 
4. If λ is a limit ordinal, then for any ordinal x if x<λ, then S(x)<λ. 
5. Counting Theorem.  For any A if <A,≤> is a well ordering, there exists a unique x in Or 

such that there is an f such that f is an issomorphism from <A,≤> to <x,≤> 
 
Definitions.  Ordinal Arithmetic.  Let x and y be in Or and let  λ be a limit ordinal in Or. 

1. Ordinal Addition +:  
i. x+0=x  
ii. x+S(y)= S(x+y)  
iii. x+λ=Uy<λ(x+y) 

2. Ordinal Multiplication • : 
i. x•0=0  
ii. x•S(y)= (x•y)+x 
iii. x•λ=Uy<λ(x•y) 

3. Ordinal Exponentiation • : 
i. Dd x0=1  
ii. xS(y) = (xy)•x  
iii. xλ=Uy<λxy 

 
Defintions.  Let x be in Or. 
x+1=S(x) 
x+2= S(S(x)) 
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x+3= S(S(S(x))), etc. 
 
Theorem.  Ordinal addition is not commutative, and ordinal arithmetic does not form a 
communative ring. 
Proof.  Let x be in Or.  By definition x+1=x∪{x}.  Hence, ω+1=ω∪{ω}.  But ω is a limit ordinal.  
Hence 1+ω=Uy<ω (x+y)= ω.  But ω≠ω∪{ω}.  Hence ω+1≠1+ω.  QED. 
 
Theorem.  Let x, y, and z  be ordinals in Or. 

1. 0+x=x 
2. x≤x+y 
3. x+(y+z)=(x+y)+z 
4. if x≤y then x+z≤y+z 
5. ω•2≠2•ω 
6. 1•x=x•1 
7. x•(y•z)=(x•y)•z 
8. x1=x 
9. 1x =x 
10. x(y+z) =(xy)•(xz) 

 

3.  Cardinal Numbers 

 Ordinal numbers exhibit many features of infinite sets.  They  are ordered,  
and even allow for one inifinity to be order aftr another.  The also possess 
arithemetical operations that are normal (constitute a ring) on finite ordinals ad 
exhibit some of the familiar properties on higher ordinals. They also capture 
some concept of size because according to the Counting Theorem every set 
whatev er is issomorphic to some ordinal, and hence can be placed in “order” of 
“size” compared to any other set whatever.  Moreover the ordinals up to ω  
consist of the counting numbers 0,1,2,… Georg Cantor adopted a straghtforard 
conception of counting: to count a set A is to place it in  1 to 1 correspondence to 
an ordered set of the counting numbers.  Using the construction for the finite 
ordinals defined above n={0,1,2,,…,n-1}.  To say then that a set A has n 
elements means that there is a 1 to 1 correspondence between it and the set n.  
This notion of counting can then be used to compare the “size” of sets.  Two sets 
are the same size if they have the same number of elements.  That is, if they 
cam be put in 1 to 1 correspondence to the same number and hence to each 
other.  The idea is straightforwardly generalizable to sets of any size, including 
infinite sets.  They are the same size, or equipollent iff they can be put into 1 to 1 
correspondence. 
 Using this notion of “same size,” however, Cantor discovered or, perhaps 
it is more accurate to say, reformulated in precise terms a “paradox” that has 
been known since ancient times: some infinite sets are bigger than others.  
Gallileo put the paradox this way.  Draw a right triangle ABC with its vertex B at 
0, A on the y-axsis and C on the x-axsis.  Now for any point x on the segment BC 
there is unique point <x,y> on the hypotheuse AC, and conversely for any point 
<x,y> on AC there is the unique point x  on BC.   Hence there is a 1 to 1 
correspondence between BC and AC.  Hence AC and BC are the same length.  
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But the length of AC is hypotheuse of the triangle and hence its length is greater 
than that of BC.   
 This is not what a logician tems a genuine paradox because it can be 
explained.  It is resolved by asknowledging the trueh of the proposition that some 
sets can be set in one to one correspondence with its proper subsets.  For 
example is is a simple matter to define a 1 to 1 correspondence f between the 
complete set of positive finite ordinals greater than 0 and a proper subset, the 
even finite ordinals: f(x)=2x.   
 Indeed, the property of being equipollent to a proper subset seems to 
characteristic of infinite set.  We know in a crude counting sense that the set 
{0,1,2,3,..} is infinite, and given the Cantorian notion of same size that every set 
equipollent to {0,1,2,3,…} is infinite.  Moreover this set can be put into one to one 
correspondence with some of its proper subsets.  This invites the generalization 
that an infinite set is characterize by the fact that it is equipollent to one of its 
proper subsets. 
 Cantor, moreover, discovered that not all infinite sets in this sense are 
equipollent.  That is, using his notion of “same size” and “greater than”  it follows 
that some infinite sets are larger than others.  This result depends on two ideas, 
the notion of “same size” that we have already met and a new definition of “is 
smalle than.”  One finite set is smaller than another than another if they are 
equipollent finite ordinals that are ranked by the relation < on ordinals.    But this 
criterion will not work for infinite sets.  As the foloowing results shows  a set that 
is bigger than another from the point of view of the ordinal construction in terms 
of successor and set inclusion can be the same size from the perspective of 
equipollence: 
 
Theorem.  For any finite ordinal (natural number) n in ω and any ordinal x in Or, 

1. ω ≈ ω+n but 
2. ω < ω+n 

Proof.  Part 2 was proved earlier.  Part 1 is proven by off setting the pairing of ω with ω by n 
places.    
 
 What then is the appropriate ordering relation for size as measured by 
equipollence?  Cantor discovered that not all infinite sets are equipollent.  For 
example, he showed that infinite set is not equipollent to its powerset – the set of 
all its subsets.  We shall review the proof below, but first let us see how this 
discovery leads to the appropriate sense of order among categories of 
equipollent sets.  A set, we must grant, is at least as large as its own powerset 
because the set is a subset of its powerset – every element of the set is an 
element of the powerset as well.  It follows then that an infinite set that is not 
equipollent to its powerset must be smaller than its  powerset.  Cantor makes this 
idea precise. One set is smaller that another if it is not equipollent to it but is 
equipollent to one of its proper subsets.   
 This notion of order  generalizes from both from finite and infinite sets.   
Lets consider the case of finite sets first.  Let n and m be finite ordinals such that 
n<m.   Clearly if n<m, it follows on the earlier construction of ω that n⊂m and that 
n cannot be put into 1 to 1 correspondence with m. Hence the smaller is not 
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equipollent to the larger but is equipollent to one of the larger’s proper subsets, 
namely the smaller set itself.  Consider more generally any finite sets A and B 
such that A is smaller than B because A is equipollent to some finite ordinal n 
and B to some finite ordinal m such that n<m.  Then, there is a mapping f that is 
1 to 1 from m onto B.  Since Consider n⊂m, n is included in the range of f.  
Consider the set C of all values of f for arguments in n. (In the jargon of set 
theory C is f “n, the image of n relative to f.)  Now n is also in 1 to 1 
correspondence with B by, say, the mapping g from B to n.  Clearly, C is a proper 
subset of B.  Moreover, C can be put in 1 to 1 correspondence with A by a 
function h defined as follows:  for any x in B define h(x)=g(f(x)).    Consider now 
infinite sets.  The notion that A<B iff A⊂B and A is not equipollent to B is well 
defined.  It determines a strict pre-ordering (it is non-reflexive,  asymmetric, and 
transitive), and we have examples to show the relation is non-empty.  The more 
general definition that applies even to cases in which A is not a subset of B is 
therefore  well defined and non-empty.  It too determines a strict pre-ordering:  
A<B iff for some C,  A is equipollent to C, C⊂B, and A is not equipollent to B.      
 
Definitions 

1. A is the same cardinality as or is equipollent to B, abbreviated as A≈B, iff there is a 1-
1 correspondence between A and B (i.e. there is a 1 to 1 onto function with domain A to 
range B). 

2. A  has less cardinality than B, abbreviated A<B, iff for some C, C⊂B and A≈C, but it is 
not the case that (B≈C) 

3. A  has the same or less cardinality than B, abbreviated A B iff, A≈B or A<B  
 
Theorem (Cantor). For any set A, A<PPPP(A) 
 
Proof.  We show first that it is not the case that A≈PPPP(A).  We do so by a reduction to the 
absurd. To begin the proof, we assume the opposite, that A≈PPPP(A).    Then, there is a 1-1 mapping 
f from A onto PPPP(A).  Now consider the set: 
 B = {x| x∈A & ∼x∈f(x)}. 
Clearly B is a subset of A.  Hence, since f maps A onto PPPP(A), there must be  some y in A, such 
that f(y)=B.  Consider now two alternatives. 
I.  Suppose first that y∈f(y).  Then, since f(y)=B, we may substitute identities and obtain y∈B.  But 
then by the definition of B, ∼y∈f(y).  Hence, y∈f(y)→∼y∈f(y). 
II.  Suppose the opposite, alternative, namely that ∼y∈f(y).  Now, since y∈A by hypothesis, y 
meets the conditions for membership in B, briefly y∈B.  Then, since f(y)=B, by Substitutivity of 
identity, y∈f(y).  Hence, ∼y∈f(y) iff y∈f(y). 
By I and II, it follows that y∈f(y) iff ∼y∈f(y).  But this is a contradiction.  Hence the original 
hypothesis is false, and we have established what we set out to prove, namely  it is not the case 
that A≈PPPP(A).  There remain two possibilities: either PPPP(A)<A or A<PPPP(A).  However, we can apply 
the argument above to any B⊆A, showing that it is not the same size as PPPP(A).  Hence we may 
generalize that for all B⊆A, ∼[B≈PPPP(A)].  But logically, this fact entails that there no proper subset B 
of A such that B≈PPPP(A). We have therefore eliminated the possibility that PPPP(A)<A.  It follows that 
the only remaining alternative must be true, namely that  A<PPPP(A). QED 
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It is natural accodingly to investigate the properties of this new order and the 
quivalence relation  ≈.  We do so by construct abstract entities that represent this 
order, the cardinal numbers. 
 
Definition.  For any x, x is a cardinal number in Cr iff x is an ordinal in Or and there is not y 
such that y is an ordinal in Or such that y<x and x≈y.   
 
Cantor labels the infinite cardinals ℵ0, ℵ1, ℵ2, etc.     ℵ0 is pronounced “aleph 
null” or “aleph naught.” (Note that ℵ is the first letter of the Hebrew alphabet.) 
Sometimes ℵ0 is abbreviated to just ℵ.  Note that ℵ0, aka ℵ, is just another 
name for ω the set of finite ordinals ω and for the set of natural numbers  NN .  
 
Definition. The set ℵ is defined as 

1. 0∈ℵ, 
2. for any x, if x∈ℵ, then S(x)∈ ℵ 
3. nothing else is in ℵ. 

 
Definitions.   

1. A is infinite iff for some B, B⊆A and B≈ℵ0. 
2. A is countably infinite or denumerable iff for some A≈ℵ0. 

 
Theorem.  A is infinite iff for some B, B⊂A and A≈B. 
(Note: the proof of this theorem depends on higher axioms of set theory.) 
 
Lemma.  For any A and B, there is some A′ and B′, such that A≈A′,  B≈B′,  and A∩B′ =∅. 
 
Theorem  (Schöder-Berstein).  For any x and y in Cr, if   x<y and y<x, then x≈y. 

Theorems.  Let A and B be an arbitrary set. 
1. If A is denumerable, then for some B, B⊂A and A≈B. 
2. For any i=1,2,..,n,  if Bi is denumerable, then U{Bi} is denumerable. 
3. If A and B are denumerable, then A×B is denumerable. 
4. If A is denumerable, then An  is denumerable. 
5. If A is denumerable and B is finite, then A∪B is denumerable. 
6. If A is infinite, then there exists a B such that B⊆A and B is denumerable. 
7. If A is infinite, then there exists a B such that B⊂A and B≈A. 
8. *If A is infinite, then A×A≈A. 
9. * If A is infinite, A<B, B≠∅, then  A×B ≈A. 

 
Theorems.   

1. (Tricotomy) For any x and y in Cr, either A<B or B<A or A≈B. 
2. For any x n Or, there is a y in Or such that x<y. 

 
Definition.  For any set A, |A| = the one and only x in Cr such that A≈x. 
 
Theorems. Let A and B be an arbitrary set. 

1. A≈B iff |A|=|B|  
2. A<B iff |A|<|B|  
3. A B iff |A|≤|B| 
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Theorems. Let x and y be arbitrary cardinals in Cr. 
1. x≈y iff x=y 
2. x<y iff x<y  
3. x y iff x≤y 

  
Definitions.  Let x and y be arbitrary cardinals in Cr. 

1. x+y = |x′ ∪y′ | such that x≈x′, y≈y′, and  x′ ∩y′ =∅. 
2. x•y = |x × y|  
3. xy =  |{ f | such that f is a function from y into x}| 

 
Theorems (Transfinite Cardinal Arithemetic).  Let x, y and z be arbitrary cardinals in Cr. 

1. x+y = y+x 
2. x+(y+z) = (x+y)+z 
3. x+0 = 0 
4. If x y then x+z y+z 
5. If x≠0 and x y, then x •y = y 
6. x•y = y•x 
7. x•(y•z) = (x•y)•z 
8. x•0 = 0 
9. x•1 = x 
10. If x y then x•z y•z 
11. <Cr, ,≈,+,•,0,1> an ordered ring with identity relation ≈. 

 

4.  The Cardinality of Numbers Systems 

It is possible now to apply the notion of cardinality to the traditional 
numbers systems developed in Part II.  The naturals, integers, and rationals are 
all denumerable sets.  The Reals have the same cardinality as the power set of  
ω.    The issue of whether there is a set of intermediate cardinality between ω 
and its power set is an open question 
 
Theorem.  NN , ZZ , and QQ  are equipollent (have the same cardinality). 
 
Theorem.  The cardinality of the set of reals   RR is the same as that of the set of subsets of NN  
(i.e.        PPPP( NN ) ≈ RR ) and is greater than that of the rationals, integers and natural numbers  ( NN < 
RR ,   ZZ < RR , and  QQ < RR ). 
 
Continuum Hypothesis. There is no x such that,   NN  < x <  RR .  
 
Generalized Continuum Hypothesis. There are no x,y, and z such that,  

1. NN ≈x,  
2.  x < y < z, and  z ≈ RR .   

 
Theorem  (Gödel). The Generalized Continuum hypothesis is consistent with the earlier axioms 
of ZF. 
 
Theorem (Cohen).  The Generalized Continuum Hypothesis is independent of the earlier axioms 
of ZF inculding the Axiom of Choice (i.e. neither it nor its negation follow from the axioms of ZF). 
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