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Dialectica with Serpent resting  
on Aristotle with the Organon. 

Chartres Cathedral 
West Façade, Right Portal, ca. 1145-1155. 

 

nto the assembly of the gods came 
Dialectic, a woman whose weapons are 
complex and knotty utterances....In her left 

hand she held a snake twined in immense coils; 
in her right hand a set of formulas, carefully 
inscribed on wax tablets, which were adorned 
with the beauty of contrasting colors, was held 
on the inside by a hidden hook; but since her 
left hand kept the crafty device of the snake 
hidden under her cloak, her right was offered 
to one and all.  Then if anyone took one of 
those formulas, he was soon caught on the 
hook and dragged toward the poisonous coils 
of the hidden snake, which presently emerged 
and after first biting the man relentlessly with 
the venomous points of its sharp teeth then 
gripped him in its many coils and compelled 
him to the intended position.  If no one wanted 
to take any of the formulas, Dialectic 
confronted them with some other questions; or 
secretly stirred the snake to creep up on them 
until its tight embrace strangled those who 
were caught and compelled them to accept the 
will of their interrogator.  
 

Martianus Capella, The Seven Liberal Arts,  
327-329  (310-339 A.D.) 
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Part 3.  The Logic of Arguments 

INTRODUCTION 

 

In Part 1 we studied the properties of terms.  These were the words and 

phrases used to form sentences.  We investigated what sorts of entities “in the world” 

the various parts of speech refer to.  We reviewed the accounts of Plato, Aristotle and 

modern set theory.   In Part 2 we studied sentences themselves.  We investigated 

their grammar, and the different the truth conditions appropriate to each type of 

grammatical sentence.  We began with the relatively simple grammar of categorical 

logic, then discussed the complex sentences of propositional logic, and finished with 

first-order logic, which contains simple and complex formulas sufficient for formulating 

most mathematics and science.   In Part 3 we shall investigate deductive arguments.  

Our goal here is to review various attempts to distinguish good arguments from bad, 

and explain how they differ.  Indeed, we have been building to this investigation all 

along because logic is simply another name for the study of good and bad deductive 

arguments.   

As in Part 2, our investigation will be progressive.  We will start with arguments 

formulated in the simple grammar of categorical propositions, move on to those 

formulated in propositional logic, and finish with those of first-order logic.  Overarching 

this investigation, however, is one of the most interesting features of logic: there is 

more than one way to define “good and bad argument”.  First is the straightforward 

definition: “good arguments” are those that carry one from true premises to a true 
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conclusion.  Because this definition uses of the concept of truth, which consists of  

correspondence to the world,  it is called semantic.  The second  definition of “good 

argument”  is formulated in terms of the notion of proof.  An argument is good if we 

can prove that the conclusion follows from the premises.   The second approach 

requires that we be able to lay out how the conclusion follows in steps that are in 

some sense obvious. Each step then follows because it conforms to some simple 

logically obvious rule.  These rules are obvious because they are formulated in terms 

of the shapes of formulas in the proof.  Because they talk about shape they are said to 

be syntactic or proof theoretic.  There is yet a third way to distinguish good from bad 

arguments.  It makes use of what is called a decision procedure.  This is any 

calculation process that has several important features:  it works on any argument, it 

produce a judgment “yes” is if is a good and “no” if it is bad, it finishes in a finite time, 

and we can easily apply each step and understand its result.  If a decision procedure 

exists for the “good” and “bad” arguments of a language, its logic is said to be 

decidable.   

Our study will be divided according to this threefold division.  We shall study 

arguments first semantically, then proof theoretically, and finally in terms of 

decidability.  Each division will be progressive, moving from categorical, to 

propositional, and finally to first-order languages.  We shall also remark on arguments 

in set theory, which is a branch of mathematics formulated in a first-order language.  

As we move through the different approaches to the different languages, you will be 

introduced to some of the major discoveries of modern logic.   
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One major result is that the semantic and syntactic approaches to “good” 

argument turn out to coincide, at least in categorical, propositional and first-order 

logic.  This result, which is called the completeness metatheorem, is very important.  It 

shows that two quite different approaches to the central idea of logic – valid argument 

– arrive at the same place. 

One reason completeness is important is that it cannot be extended to other 

sciences. The completeness theorem for first-order logic entails that the set of logical 

truths are the same as those that can be proven as theorems in an axiom system. But 

the axiomatic method is not always successful.  In particular it cannot be used to 

“capture” the truths of arithmetic.  The Austrian logician Kurt Gödel showed in 1931 a 

famous result know as the incompleteness theorem for arithmetic.  He proved that in 

any axiom system for arithmetic there at least one truth of arithmetic that is not a 

theorem.  Since arithmetic is a subtheory of set theory, his result also shows that the 

axioms of set theory are incomplete.  They leave out at least one theorem of set 

theory.  Philosophers and mathematicians are still trying to figure out the implications 

of incompleteness for mathematics.  

Another important result is that the “good” arguments of categorical and 

propositional logic are decidable, but those of first-order logic and any subject matter 

formulated in a first-order language – like set theory, arithmetic, and much of 

mathematics and natural science – are not decidable.  Let us now see how this story 

unfolds. 
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Kurt  Gödel 

 

“If to the Peano axioms we add the logic of Principia mathematica .... (with the natural 
numbers as the individuals) together with the axiom of choice (for all types) we 
obtain a formal system S, for which the following theorems hold:  I.  The system S 
is not complete; that is it contains propositions A (and we can in fact exhibit such 

propositions) for which neither A nor ∼A is provable and, in particular, it contains 
(even for decidable properties F of natural numbers) undecidable problems of the 

simple structure ∃xFx where x ranges over the natural numbers.” 
  

Kurt Gödel,  “Some Metamathematical Results on Completeness and Consistency,”  1930 
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LECTURE 12.  VALIDITY, CONSISTENCY, AND LOGICAL TRUTH 

Semantic Entailment 

The Semantic Definition of Validity 

 An argument is just a series of declarative sentences divided into two: its 

premises {P1,…,Pn,…} and a conclusion Q.  It is much more difficult, however, to 

explain what is it is that makes some arguments “good” or “logical”, and others not.  

Whatever a “good” argument is, languages like English provide many synonymous for 

talking about them.  We can praise the argument from P1,…,Pn to Q in all the following 

equivalent ways: 

If P1,…,Pn are true, then Q must be true. 

Q is a logical consequence of P1,…,Pn . 

It is  necessary that if P1,…,Pn then Q. 

P1,…,Pn entail Q. 

P1,…,Pn imply Q. 

The argument from P1,…,Pn to Q is valid. 

Valid arguments are the topic of Part 3.  We will investigate how this set of arguments 

is properly defined and look into different ways to explain why some arguments are 

valid and others not.   Validity is also known as logical entailment, implication, and 

consequence.  It is also said to be logically necessary.   

To represent the entailment relation, we shall use the symbol ╞  .  Using “infix” 

notation, we place ╞  between the premises and the conclusion:   
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{P1,…,Pn }╞ LQ   

is read    

{P1,…,Pn } semantically entails Q in L,  

or 

   the argument from P1,…,Pn to Q is (logically) valid in L. 

To simplify the notation, we will often delete the set brackets {…} and L, and write: 

P1,…,Pn ╞ Q   for    {P1,…,Pn }╞ LQ . 

Let us start with the definition of validity.  The first point to make about the idea 

is that it is semantic.  It concerns “the way signs related to the world.”  More precisely, 

it is semantic because it is defined in terms of the concept of truth, which in turn is 

defined as a correspondence to the world.  A valid argument is one such that if its 

premises are true in a world, so is its conclusion.   

Valid arguments, as it were, pass truth from premises to conclusions.  That is 

why it is called entailment.  In mediaeval law entailment was a restriction on property 

transfer between generations: property necessarily passed from the legator to a 

special category of legatee.   In logical entailment truth passes necessarily from 

premises to a restricted category of sentences.   

This entailment is often expressed in ordinary English by the subjunctive mood.  

If the premises were true the conclusion would be true.  In modern logic the idea 

suggested by the subjunctive is usually explained in terms of “possible interpretations” 

or “possible worlds”.  Consider the argument: 

Every M is P 
Every S is M 
∴Every S is P 
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 No matter what sets S, M and P stand for, no matter what their interpretations, 

no matter what the world is like, if Every M is P and Every S is M are true in that 

interpretation or in that world, then so is Every S is P.  Accordingly the standard 

definition of validity quantifies over “all interpretations”: 

{P1,…,Pn }╞ LQ    iff     ∀ℑ (if ℑ(P1)=T &…& ℑ(Pn)=T) then  ℑ(Q)=T). 

Thus, an argument is invalid if there is an interpretation that makes the premises true 

and the conclusions false: 

{P1,…,Pn }╞  ⁄  LQ    iff     ∃ℑ (ℑ(P1)=T &…& ℑ(Pn)=T & ℑ(Q)=F). 

Showing Arguments are Valid 

By definition, to show that an argument is valid, i.e. to show 

{P1,…,Pn }╞ LQ ,    

we must show a universally quantified conditional: 

∀ℑ (if ℑ(P1)=T &…& ℑ(Pn)=T) then  ℑ(Q)=T). 

How do you prove a universally quantified conditional?  The short answer is that you 

assume the antecedent and then deduce the consequent.   That is, for an arbitrary ℑ, 

we prove the conditional: 

If ℑ(P1)=T &…& ℑ(Pn)=T, then ℑ(Q)=T. 

(Here we are using single and double underlines to highlight the antecedent and 

consequent of the conditional to be proved.)  How do we prove the conditional?  We 

adopt the strategy called conditional proof.  We set up a subproof: 

 Start of subproof 
 1. ℑ(P1)=T &…& ℑ(Pn)=T   Assumption for conditional proof 
 … … 

n. ℑ(Q)=T 
End of Subproof 
n+1    If ℑ(P1)=T &…& ℑ(Pn)=T, then ℑ(Q)=T  1-n, conditional proof 
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n+2 ∀ℑ (if ℑ(P1)=T &…& ℑ(Pn)=T) then  ℑ(Q)=T).  universal generalization, ℑ arbitrary 
n+3 {P1,…,Pn }╞ LQ   n+2,   def of ╞    

 

How do we complete the subproof?  Recall that the definition of ℑ allows us to 

calculate for each sentence type its “truth-conditions” in ℑ.  That is, the definition of ℑ, 

entails for each P an instance of the (T) schema: 

(T) ℑ(P)=T iff TCℑ(P) 

such that TCℑ(P) states in the terminology of set theory that some relation that holds 

among the ℑ-values of the smallest referring expressions in P.  We saw how to 

determine such truth-conditions for categorical propositions, sentences in 

propositional logic, and formulas in first-order logic.  We apply this technique for the 

premises and conclusion to determine the list of equivalences: 

ℑ(P1)=T iff TCℑ(P1)  

… 

ℑ(Pn)=T iff TCℑ(Pn) 

ℑ(Q)=T iff TCℑ(Q)  

Now, from the assumption of the subproof we know for each I 

ℑ(Pi)=T 

We also know 

 ℑ(Pi)=T iff TCℑ(Pi)  

From these two we may deduce by modus ponens: 

TCℑ(Pi) 

The combined information in these various truth conditions TCℑ(P1),…,TCℑ(Pn) lays 

out in detail what must be true in the world when P1,…,Pn are true.  This information 
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will in fact be sufficient to show, by appeal to logic and facts of set theory, that the 

conditions  TCℑ(Q) for making Q  true are met.  That is we can show from 

 TCℑ(P1)&…&TCℑ(Pn)   

that  

TCℑ(Q) 

But we also know  

ℑ(Q)=T iff TCℑ(Q)  

Hence by modus ponens again 

 ℑ(Q)=T 

Hence and the subproof is complete and we have shown by conditional proof the 

conditional: 

 TCℑ(P1)&…&TCℑ(Pn) → ℑ(Q)=T 

We may summarize the strategy for a “validity proof” in a schema. The schema 

is repeated below.  We use underlines and colors to indicate its structure.  The overall 

strategy is to show that a conditional is true: if the argument’s premises are true, then 

its conclusion is.  The technique used to prove the conditional is conditional proof, a 

rule which requires a subproof.  The if-part is assumed as the assumption of the 

subproof, and the then-part is deduced as its last line .  The subproof then “proves” 

the conditional.  To indicate the structure of the subproof, the if-part assumed as the 

subproof’s first line is underlined, and the then-part deduced as its last line is double 

underlined.   

Within the subproof, there are various applications of modus ponens.  The (T) 

formula for a proposition P, which is a biconditional of the form ℑ(P)=T iff TCℑ(P),  is 
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written as a line of the proof.  Using modus ponens one side of the biconditional is 

then shown to be true by showing that the other side is true.  To indicate the structure, 

the side being deduced is colored yellow, and the side previously proven is colored 

green.    

Schema for Proofs of Validity 

Metatheorem Proof Schema.  {P1,…,Pn }╞ LQ     

Proof   
Start of subproof 
 1. ℑ(P  1)=T &…& ℑ(Pn)=T Assumption for conditional proof, ℑ arbitrary 
 2. ℑ(P1)=T   line 1, conjunction 
 3. ℑ(P1)=T iff TCℑ(P1)   (T) schema entailed by the definition of  ℑ 
 4. TCℑ(P1)   modus ponens on the previous two lines 
 … …    …    
 3n+1. ℑ(Pn)=T   line 1, conjunction 
 3n+2.  ℑ(Pn)=T iff TCℑ(Pn)  (T) schema entailed by the definition of  ℑ 
 3n+3. TCℑ(Pn)   modus ponens on the previous two lines 
 3n+4. TCℑ(P1) &…&TCℑ(Pn), conjunction of previous TC lines 
 3n+5. TCℑ(Q)   by set theory and logic from the previous line 
 3n+6. ℑ(Q)=T iff TCℑ(Q)   (T) schema entailed by the definition of  ℑ 
 2n+7. ℑ(Q)=T   modus ponens on the previous two lines 
End of subproof 
3n+8. If (ℑ(P  1)=T &…& ℑ(Pn)=T) then ℑ(Q)=T  1 to n+5, conditional proof 
3n+9. ∀ℑ( if (ℑ(P1)=T &…& ℑ(Pn)=T) then ℑ(Q)=T) n+6, universal generalization, ℑ arbitrary 
3n+10. {P1,…,Pn }╞ LQ        n+7, definition of ╞ 

 
Although the details of the various truth conditions  TCℑ(P1),…,TCℑ(Pn), and TCℑ(Q) 

will vary from one argument to anther, if the argument is valid, the facts contained in  

TCℑ(P1),…,TCℑ(Pn) will allow us to jump by logic and set theory to those contained in 

TCℑ(Q).   That is, given the facts of TCℑ(P1),…,TCℑ(Pn), it follows by set theory that 

the facts of TCℑ(Q) hold.  We will justify this step by the simple annotation “by set 

theory.”   

Showing Arguments are Invalid 

By definition, to show that the argument from P1,…,Pn to Q is invalid, i.e.  



 12. Validity, Consistency, and Logical Truth 
  

Part 3, Page 11  Version2/18/2008 

{P1,…,Pn }╞  ⁄  LQ,     

we must prove an existentially quantified conjunction: 

∃ℑ (ℑ(P1)=T &…& ℑ(Pn)=T & ℑ(Q)=F). 

How do you prove an existentially quantified conjunction that quantifies over 

interpretations?  The short answer is that you construct an interpretation ℑ that 

satisfies the conjunction.  Construction here means “define.”  An interpretation is a set 

(a set of pairs), and we know that if we can define a set it exists.  All we need do is 

define an interpretation ℑ that makes true each of the conjuncts in the conjunction.  

Notice that what we must make true are facts about the truth-values of the 

sentences in the argument.  That is we must prove ℑ(P1)=T &…& ℑ(Pn)=T & ℑ(Q)=F.   

(Note that another way to say ℑ(Q)=F is ℑ(Q)≠T.)     

But how we prove facts about truth-values?  One way is through truth-

conditions.  For each of these sentences we know by its (T) schema when it is T or F 

in ℑ: 

ℑ(P1)=T iff TCℑ(P1)  

… 

ℑ(Pn)=T iff TCℑ(Pn) 

ℑ(Q)=T iff  TCℑ(Q) 

The working backwards,  we see that all we need to prove that P1,…,Pn are all T is to 

prove that there truth-conditions are satisfied 

ℑ(P1)=T 

… 

ℑ(Pn)=T 

If these were true, then given the (T) schemata, it would follows by modus ponens that 

P1,…,Pn are all T.  Similarly, we know the (T) schema for Q: 



 12. Validity, Consistency, and Logical Truth 
  

Part 3, Page 12  Version2/18/2008 

ℑ(Q)=T iff  TCℑ(Q) 

Then, to show that ℑ(Q)≠T all we would need to know is  ∼TCℑ(Q).  Given the (T) 

schema and ∼TCℑ(Q) it would follow by modus tollens that 

ℑ(Q)≠T 

The strategy of the proof then is to define an interpretation ℑ that makes all of 

TCℑ(P1),…,TCℑ(Pn) true but  TCℑ(Q) false.  How do we do this?  How do we make 

TCℑ(P1),…,TCℑ(Pn) true but  TCℑ(Q) false?  Recall what each of these clauses says.  

The each assert that ℑ assigns sets and set members to objects in the world in a way 

that makes the sentences in question T or F.  All we have to do is make sure that ℑ 

assigs sets and entities to the terms in  P1,…,Pn, and Q in the right way.  Recall and ℑ 

is just a set of pairs and we can make up a set just by defining it.  Therefore we make 

up ℑ by defining the ℑ-values of the words in P1,…,Pn, and Q it in such a way that 

TCℑ(P1),…,TCℑ(Pn) turn our true and TCℑ(Q) false.  What values these will be will 

depend on the grammar of P1,…,Pn, and Q  and the referring terms they contain.  In 

hard cases it also requires ingenuity, but the examples we will consider are all fairly 

easy.   We will use Venn diagrams and truth-tables to find the values we need.   
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We may summarize the strategy for proving invalidity in the following schema: 

Schema for an Invalidity Proof 
 
Metatheorem Proof Schema.  {P1,…,Pn }╞  ⁄  LQ     

Proof.  Let e1,…,em be the smallest referring terms that occur in P1,…,Pn , Q .  Let us ℑ  for these 
expressions be as follows:  ℑ(e1)=…,  …, ℑ(em)=….   [It is here is that ingenuity may be required.] 
1. TCℑ(P1) & … &TCℑ(Pn) &  not TCℑ(Q)  By set theory & the def of ℑ(e1),…,ℑ(em). 
2. TCℑ(P1)      1, conjunction 
3. ℑ(P1)=T iff TCℑ(P1)     (T) schema entailed by the definition of  ℑ 
4. ℑ(P1)=T       2,3 modus ponens 
… … 
n+4. TCℑ(Pn)      1, conjunction 
n+5.  ℑ(Pn)=T iff TCℑ(Pn)    (T) schema entailed by the definition of  ℑ 
n+6 ℑ(Pn)=T      n+4,n+5 modus ponens 
n+7 not TCℑ(Q)     1, conjunction 
n+8.  ℑ(Q)=T iff TCℑ(Q)    (T) schema entailed by the definition of  ℑ 
n+9 not ℑ(Q)=T      n+7,n+8 modus tollens 
n+10 ℑ(Q)=F      n+9, bivalence of ℑ 
n+11. ℑ(P1)=T &…& ℑ(Pn)=T & ℑ(Q)=F   4, …,n+6,n+10 conjunction 
n+12. ∃ℑ (ℑ(P1)=T &…& ℑ(Pn)=T & ℑ(Q)=F).  n+11, existential construction 
n+13. {P1,…,Pn }╞  ⁄   LQ        n+13, definition of ╞  ⁄   

 

Consistency 

The Semantic Definition of Consistency 

A second logical concept closely tied to validity is consistency.  A set of 

sentences is consistent if all the sentences contained in it can be true together, and is 

inconsistent if they cannot.   

{P1,…,Pn } is consistent iff ∃ℑ(ℑ(P1)=T&…&ℑ(Pn)=T). 

{P1,…,Pn } is inconsistent iff ∼∃ℑ(ℑ(P1)=T&…&ℑ(Pn)=T). 

To simplify notation we will often leave off the set brackets.   There are a variety of 

synonyms for inconsistency.  An inconsistent set is also said to be contradictory, 

absurd, impossible, and unsatisfiable.  A single sentence that is never true is also said 
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to be inconsistent.  That is, P is inconsistent means ∼∃ℑ(ℑ(P)=T.  (In other words the 

one element set  {P} is also inconsistent.)  For example, in propositional logic p1∧ ∼p1 

is inconsistent because there is no ℑ such that ℑ( p1∧ ∼p1)=T.  Such sentences are 

also called contradictions.   

 Like validity, inconsistency is a matter of grammatical form, and indeed the two 

ideas  can be defined in terms of each other.  To say that the set {P1,…,Pn ,∼Q} is 

inconsistent means that there is not way to make P1,…,Pn all true and Q false, but this 

is just to say that the argument from P1,…,Pn  to Q  is valid.   

Note also a consequence of the definitions.  If a set  {P1,…,Pn } logically implies 

every sentence Q, it must be contradictory because it would imply contradictions 

along with everything else.  Conversely, if  {P1,…,Pn } implies a contradiction, it implies 

every sentence whatever because every sentence follows from a contradiction. For 

example, the argument p1∧ ∼p1╞ q is valid because ∀ℑ (if ℑ(p1∧ ∼p1)=T the ℑ(q)=T ) 

since its antecedent ℑ(p1∧ ∼p1)=T is always false.  Hence, the following equivalence is 

true: 

  {P1,…,Pn } implies a contradiction  iff  {P1,…,Pn } implies every sentence.   

We use this fact below: 

Interdefinablity of Consistency and Validity 

{P1,…,Pn }╞ LQ  iff {P1,…,Pn ,∼Q} is inconsistent. 

{P1,…,Pn  is consistent iff  for no Q, {P1,…,Pn }╞ Q∧∼Q  

 iff  for some Q, {P1,…,Pn }╞  ⁄  Q 
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Logical Truth 

The Semantic Definition of Logical Truth 

A third important logical idea is logical truth.  Some sentences are always true.  

That they are so is a function of their grammatical form.  For example, Ever S is S, 

and  p1∨ ∼p1 are always true.  Again “always” is explained in terms of “all 

interpretations” or “all worlds”: 

P is a logical truth in L iff ∀ℑ( ℑ(P)=T) 

Necessity is a synonym for logical truth, and in the special case of the propositional 

logic, logical truths are called tautologies.  If the language in question (like 

propositional logic) contains the connectives ∧ and →  , it is possible to define validity, 

consistency and logical truth in terms of each other.   

Interdefinablity of Validity, Consistency and Logical Truth 

Theorem  

{P1,…,Pn }╞ Q   iff  {P1,…,Pn ,∼Q} is inconsistent 

     iff (P1∧…∧Pn )→Q  is a logical truth 

{P1,…,Pn}  is consistent iff  for no Q, {P1,…,Pn }╞ Q∧∼Q  

 iff  for some Q, {P1,…,Pn }╞  ⁄  Q 

 iff  ∼(P1∧…∧Pn ) is not a logical truth   

 

 

P is a logical truth  iff  for every Q,  Q╞ P 

   iff ∼P is inconsistent 
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The fact that these ideas are interdefinable makes the task of logical theory simpler.  It 

means that there is really one fundamental idea in logic, valid argument, which can be 

expressed in different ways.  In the lectures that follow we shall investigate the idea in 

detail.  First we shall see what validity is for the three increasingly powerful languages 

we investigated in Part 2: the syllogistic, propositional logic, and first-order logic.  We 

shall explore both how the semantic definition of validity must adapt itself to the 

different notions of “interpretation” appropriate to each language, and how the set of 

valid arguments expands along with the language’s expressive power.  Later in Part 2 

we shall investigate syntactic proofs and decision procedures for valid arguments.  

These provide techniques independent of semantic that impart to our knowledge of 

validities a degree of certainty virtually unequaled in any other science.   
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LECTURE 13.  CATEGORICAL LOGIC: VALIDITY 

The syllogistic form is one of the most beautiful of the human spirit, and indeed one of the most 
important.  It is a kind of universal mathematics, one  that is not sufficiently appreciated.  You 
might even say that it contains an art that leads to infallibility.     

Leibniz, New Essays IV, xvii, 4. 

 

Categorical Logic 

In this lecture we shall investigate our first extended example of a “logical 

theory”.  The theory we start with is nice and simple, the logic of categorical 

propositions that were introduced in Lecture 7.  Traditionally this logic is divided into 

two parts, arguments that have a single premise, called immediate inferences, and 

those with two premises and three terms called syllogisms.  These two groups will 

suffice to explain valid arguments composed of categorical propositions with any 

number of premises.  

In the last lecture we defined the two main logical ideas we will be investigating, 

validity and invalidity.  But because categorical logic antedates modern logic – it is 

literally 2,400 years old – its terminology has some quaint quirks.  One is the way to 

refer to a valid argument with a single premise.  If the argument from P to Q is valid, Q 

is said to be a subaltern to P .  Q is also said to stand in the subalternation relation to 

P.   (This usage persists in British army jargon: a lieutenant is a “subaltern” to a higher 

officer.)   
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 Another logical idea important in categorical logic is contrariety.  Two 

propositions are said to be contrary if they are never true together.  In ordinary 

language, red and green are said to be contrary because nothing can be (completely) 

red and (completely) green at the same time.  We will find that in categorical logic, ASP 

and ESP cannot both be true.  Similarly, propositions that cannot both be false are said 

to be subcontraries.  Neither contraries nor subcontraries need have opposite true-

values, because two contraries may be simultaneous false, and two subcontraries may 

be simultaneously true.  Propositions that must have opposite truth-values are said to 

be contradictories.  Of these terms, contrary and contradictory are still used in modern 

logic, but outside categorical logic subcontrary has also passed out of usage. 

Definition of Logical Concepts 

1. P1,…,Pn ╞ SLQ    ↔     ∀ℑ ( ℑ(P1)=T &…& ℑ(P1)=T) →  ℑ(Q)=T) 

2. P1,…,Pn ╞  ⁄  SLQ    ↔     ∃ℑ ( ℑ(P1)=T &…& ℑ(P1)=T & ℑ(Q)=F ) 

3. P and Q and are contradictories  ↔  ∀ℑ (ℑ(P)=T ↔  ℑ(Q)=F) 

4. P and Q and are contraries ↔  ∼∃ℑ (ℑ(P)=T & ℑ(Q)=T) 

5. P and Q and are subcontraries ↔  ∼∃ℑ (ℑ(P)=F & ℑ(Q)=F) 
 

To prove facts about these logical ideas we will appeal to the truth-conditions of 

for categorical propositions as proven in Lecture 7. For convenience we summarize 

these here in the following metatheorem: 

Theorem.  The following instances of the (T) schema are true: 

 Truth-conditions 
 ┌──────────┐ 

TC1. ℑ(AXY)=T   ↔   ℑ(X)⊆ℑ(Y) 

TC2. ℑ(EXY)=T   ↔   ℑ(X)∩ℑ(Y)=∅ 

TC3. ℑ(IXY)=T   ↔   ℑ(X)∩ℑ(Y) ≠∅ 

TC4. ℑ(OXY)=T   ↔   ℑ(X)−ℑ(Y) ≠∅ 
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Some of the proofs below will also depend on the Assumption of categorical 

semantics that terms always refer to a non-empty set: 

 

Theorem.  For any term X  and any interpretation ℑ, 

ℑ(X)≠∅ & ℑ(X)⊆U  

 

Since we have already proven quite a few basic truths of set theory in Part 1, 

here we will assume that they are true without further argument.  We will, for example, 

write a fact of set theory down as a line in a proof, or advance to a new line of a proof 

by substituting a set theoretic identity or equivalence with any further justification than 

“by set theory”.    

 Among the facts about sets that we have previous proven is: 

(1) A⊆B  iff ∼(A∩−B ≠∅).   

A special case of (1) would be:  

(2) ℑ(F)⊆ℑ(G) iff ∼(ℑ(F) ∩−ℑ(G) ≠∅).   

This is one of the set theoretic equivalence we shall use in a proof.  Lets us see how.  

Note that the (T) schemata stated in the definition of ℑ for A and O propositions are:  

(3) ℑ(AXY)=T  iff  ℑ(X)⊆ℑ(Y) 

(4) ℑ(OXY)=T  iff  ℑ(X)−ℑ(Y) ≠∅ 

It then follows by the substitution of equivalents (3) and (4) into (2) that 

(5) ℑ(AFG)=T iff ℑ(OFG)=F.   

Likewise, we proved earlier in set theory that  

(6) A∪B≠∅ iff ∼(A∩B=∅).   

A special case of (6) is 
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(7) ℑ(F)∪ℑ(G)≠∅ iff ∼(ℑ(F) ∩ℑ(G)=∅). 

You will need to cite this equivalence in one of your exercises when you show: 

(8) ℑ(EFG)=T iff ℑ(IFG)=F.   

Another elementary fact of set theory is  

(9) If A−B≠∅, then A≠∅.   

We shall also use this fact in a proof below.  In exercises you may want to cite other 

relevant facts about sets.  So long as it is a fact about sets, you may write it down as a 

line of a proof justifying it with the worlds “by set theory”. 

 The syntax and semantics of categorical propositions are short and sweet and 

enables us to prove that arguments are valid and invalid with simple and clear 

applications of the paradigms sketched in the introductory lecture to Part 3.  (If these 

are not fresh in your mind, go back and review the paradigms for proving an argument 

is valid or invalid.) 

Immediate Inference 

   We start by showing a simple case of validity that hold among pairs of 

propositions.  Because in these cases inference holds between a pair of propositions 

without the need of mediating additional premises, the relation is called an immediate 

inference. 
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Metatheorems 

Theorem.  AXY╞ SLIXY    (An I-proposition is subaltern to an A-proposition.) 

Analysis of the Proof.  First note that by the definition of ╞SL,  
 AXY╞SL IXY means ∀ℑ(ℑ( AXY)=T→ℑ( IXY)=T). 
But ∀ℑ(ℑ( AXY)=T→ℑ( IXY)=T) is a universally quantified.  To prove it, we must first prove the conditional 
ℑ(AXY)=T→ℑ(IXY)=T for an arbitrary ℑ, and then add the ∀ℑ by Universal Generalization.  We show the 
conditional ℑ(AXY)=T→ℑ(IXY)=T by Conditional Proof, i.e. by constructing a subproof that starts by 
assuming the antecedent ℑ(AXY)=T as its first line, and concludes with the  consequent ℑ(IXY)=T as its 
last line.  So the general form of the proof will be: 
 Start of Subproof. 
  ℑ( AXY)=T Assump. for conditional proof, assuming ℑ is arbitrary 
  … 
  ℑ(IXY)=T  
 End of subproof 
 ℑ(AXY)=T→ℑ(IXY)=T Conditional Proof given the successful subproof 
 ∀ℑ(ℑ( AXY)=T→ℑ( IXY)=T). Previous line by Universal Generalization, ℑ arbitrary. 
Note that ℑ( AXY)=T and  ℑ(IXY)=T are explained by (T) schemata in the definition of ℑ, which provides 
for each an equivalent formulation in terms of facts about the sets ℑ(X) and  ℑ(Y): 
 ℑ(AXY)=T  ↔  ℑ(X)⊆ℑ(Y) 
 ℑ(IXY)=T  ↔  ℑ(X)∩ℑ(Y) ≠∅ 
So, the lines ℑ( AXY)=T and  ℑ(IXY)=T may be replaced by equivalents ℑ(X)⊆ℑ(Y) and ℑ(X)∩ℑ(Y) ≠∅.  
The task then would be to prove ℑ(X)∩ℑ(Y) ≠∅ from ℑ(X)⊆ℑ(Y).  Recall that we also  know that ℑ(X)≠∅ 
and ℑ(Y)≠∅.  It is a fact of set theory that if ℑ(X)⊆ℑ(Y) and ℑ(X)≠∅, then ℑ(X)∩ℑ(Y) ≠∅.  Moreover we 
can now assume any fact from set theory that we need.  Hence, by appeal set theory we can go from 
ℑ(X)⊆ℑ(Y) and ℑ(X)≠∅,  to ℑ(X)∩ℑ(Y) ≠∅.   

 
Proof. Start subproof. 

1. ℑ( AXY)=T    assumption conditional proof, ℑ arbitrary in SI 
2. ℑ(AXY)=T  ↔  ℑ(X)⊆ℑ(Y)  TC1 
3. ℑ(X)⊆ℑ(Y)   1, modus ponens 
4. ℑ(X)≠∅     definition of ℑ 
5. ℑ(X)∩ℑ(Y)≠∅   3 and 4, set theory (note that we need line 4) 
6. ℑ(IXY)=T  ↔  ℑ(X)∩ℑ(Y) ≠∅ TC3 
7. ℑ(IXY)=T     5 and 6, modus ponens 

End subproof 
8. ℑ( AXY)=T→ℑ(IXY)=T   1-4, conditional proof 
9. ∀ℑ(ℑ( AXY)=T→ℑ(IXY)=T)   5, universal generalization, ℑ arbitrary 
10. AXY╞SL IXY    6, definition of ╞ 

Theorem.  EXY╞SL OXY 

∗Exercise:   EXY╞SL OXY 

Theorem.  AXY and  OXY are contradictories 
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Analysis of the Proof.  First note that by the definition of contradictories, what me must prove is: 
 ∀ℑ (ℑ(AXY)=T ↔  ℑ( OXY)=F) 
which by the bivalence of ℑ, means 
 ∀ℑ (ℑ(AXY)=T ↔  ∼ℑ( OXY)=T) 
Since this is universally quantified, we must prove ℑ(P)=T ↔  ℑ(Q)=F for an arbitrary ℑ.  Note that each 
half of this biconditional asserts something about the way ℑ assigns truth-values.  But the definition of ℑ 
provides (T) equivalents for these assignments formulated in terms of the sets ℑ(X) and  ℑ(Y): 
 ℑ(AXY)=T  ↔  ℑ(X)⊆ℑ(Y) 
 ℑ(OXY)=T  ↔  ℑ(X)−ℑ(Y)≠∅ 
So if we replace the facts about ℑ’s truth-value assignments by their equivalents in terms of conditions on 
the sets ℑ(X) and  ℑ(Y),  we must prove is: 
 ℑ(X)⊆ℑ(Y)↔ ∼(ℑ(X)−ℑ(Y)≠∅) 
which by double negation is just 
 ℑ(X)⊆ℑ(Y)↔ ℑ(X)−ℑ(Y)=∅) 
Now, A⊆B iff A−B=∅ is a truth of set theory, so it remains a truth when A is replaced by ℑ(X) and B by 
ℑ(Y).    Since we can now simply write down a truth of set theory if we need it, we can simply write down 
this truth and justify it by appeal to set theory.  (Notice that this entire analysis consists of “working 
backward”.) 
 

Proof  
11. ℑ(X)⊆ℑ(Y)↔ ℑ(X)−ℑ(Y)=∅   truth of set theory   
12. ℑ(X)⊆ℑ(Y)↔ ∼ℑ((X)−ℑ(Y)≠∅)   1, Double Negation 
13. ℑ(AXY)=T  ↔  ℑ(X)⊆ℑ(Y)   TC1 
14. ℑ(OXY)=T  ↔  ℑ(X)−ℑ(Y) ≠∅   TC4 
15. ∼ℑ(OXY)=T  ↔  ∼ℑ(X)−ℑ(Y) ≠∅   4, ∼ on both sides 
16. ℑ(OXY)=F  ↔  ∼ℑ(X)−ℑ(Y) ≠∅   5, bivalence of ℑ 
17. ℑ( AXY)=T ↔ ℑ( OXY)=F    2, 3, and 6, substitution of equivalents 

Theorem.  EXY and  IXY are contradictories 

∗Exercise.   Prove:  EXY and  IXY are contradictories 

Theorem.  AXY and  EXY are contraries 

Analysis of the Proof.  First note that by the definition of contraries, what me must prove is: 
 ∼∃ℑ (ℑ(AXY)=T &  ℑ(EXY)=T) 
One common way to show an negative existential proposition is to assume its opposite and deduce a 
contradiction.  That is, if we can construct a subproof that starts in the first line with the assumption 
 ∃ℑ (ℑ(AXY)=T &  ℑ(EXY)=T) 
and then terminates in the last line with a contradiction, then we have proven the opposite of the first line 
by the rule Reduction to the Absurd.  So, we start a subproof with that assumption. 
Then by Existential Instantiation we drop the initial ∃ℑ, giving the interpretation in question the temporary 
name ℑ: 
 ℑ(AXY)=T &  ℑ(EXY)=T 
Now, each side of this conjunction asserts something about ℑ assigning truth-values.  But the definition of 
ℑ provides (T) equivalents for these assignments formulated in terms of the sets ℑ(X) and  ℑ(Y): 
 ℑ(AXY)=T  ↔  ℑ(X)⊆ℑ(Y) 
 ℑ(EXY)=T  ↔  ℑ(X)∩ℑ(Y)=∅ 
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So if we replace the facts about ℑ’s truth-value assignments by their equivalents in terms of conditions on 
the sets ℑ(X) and  ℑ(Y),  we know is: 
 ℑ(X)⊆ℑ(Y) & ℑ(X)∩ℑ(Y)=∅ 
Recall that we also  know that ℑ(X)≠∅ and ℑ(Y)≠∅.  It is a fact of set theory that 
 (ℑ(X)⊆ℑ(Y) & ℑ(X)≠∅) → ℑ(X)∩ℑ(Y)≠∅.   
Since this is fact of set theory we may simply assert it. 
It then follows by modus ponens that  
 ℑ(X)∩ℑ(Y)≠∅.   
But since we already know 
 ℑ(X)∩ℑ(Y)=∅.   
We have deduced a contradiction.  We may then terminate the subproof, concluding the negation of its first 
list by appeal to the rule Reductio. 
 
Proof .  Start of subproof. 

18. ∃ℑ(ℑ( AXY)=T & ℑ(EXY)=T )  assump. for reductio 
19. ( AXY)=T & ℑ(EXY)=T   1, Existential Instantiation,  ℑ not arbitrary 
20. ℑ(AXY)=T  ↔  ℑ(X)⊆ℑ(Y)   TC1 
21. ℑ(EXY)=T  ↔  ℑ(X)∩ℑ(Y)=∅  TC2 
22. ℑ(X)⊆ℑ(Y) & ℑ(X)∩ℑ(Y)=∅   2, 3 and 4, substitution of equivalents 
23. ℑ(X)⊆ℑ(Y)     3, conjunction 
24. ℑ(X)∩ℑ(Y)=∅    3, conjunction 
25. ℑ(X)≠∅     2, definition of ℑ 
26. ℑ(X)⊆ℑ(Y) & ℑ(X)≠∅   4 and 6, conjunction 
27. (ℑ(X)⊆ℑ(Y) & ℑ(X)≠∅)→ ℑ(X)∩ℑ(Y)≠∅ set theory 
28. ℑ(X)∩ℑ(Y)≠∅    7 and 8, modus ponens 
29.  (ℑ(X)∩ℑ(Y)=∅) & ℑ(X)∩ℑ(Y)≠∅  5 and 9, conjunction 

End of subproof. 
30. ∼∃ℑ(ℑ( AXY)=T & ℑ(EXY)=T)   1-10, reductio 
31. IXY and  OXY are subcontraries 
 

Theorem.  IXY and  OXY are subcontraries 

∗Exercise.  Prove:  IXY and  OXY are subcontraries 

 

The Square of Opposition 

The theory of immediate inference is traditionally summarized in a famous 

diagram called the Square of Opposition, a teaching tool that has been faithfully 

reproduced in elementary logic texts since at least the logic of Apuleius (124-170 A.D.)  

Here is a version that incorporates the grammar, truth-conditions, and metatheorems  

we have just reviewed.  The diagram incorporates the usual assumption of traditional 

logic that for a universal affirmative to be true its subject term must stand for at least 
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one object.  Moreover this assumption is a necessary underpinning of some of the 

logical relations we have just proved.  However, the assumption that a term has a non-

empty extension is rejected by modern logic, which leaves open that a set might be 

empty.  Hence, a number of the logical relations claimed to hold in traditional logic are 

rejected by modern logic.  The rejected assumptions and claims are indicated below by 

red type.  The formulations and relations depicted in black type are all accepted in 

modern logic.  
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The Square of Opposition 
(Diagram of Immediate Inferences) 

 

A:  Every S is P  (ASP)                                   E:  No S is P (ESP) 
    ℑ(S) ≠∅ & ℑ(S)⊆ ℑ(P)               ℑ(S) ≠∅ & ℑ(P) ≠∅ & ℑ(S)∩ℑ(P)=∅ 
      ∃xSx & ∀x(Sx→Px)         ∃xSx  & ∼∃x(Sx&Px)  

 
I:  Some S is P  (ISP)           O:  Some S is not P (OSP) 
ℑ(S)∩ℑ(P)≠∅                                 ℑ(S)−ℑ(P)≠∅ 
∃x(Sx&Px)                                                         ∃x(Sx&∼Px)  

 

For completeness we now list two related metatheorems, which are rather obvious but 

which we will have reason to refer to later.  The first of these follows from the truth 

conditions for E and O propositions and the trivial set theoretic facts that A∩B=B∩A, 

and A∩B=∅ ↔ B∩A=∅. 

Theorem (Simple Conversion) 

1. EXY╞ SLEYX 

2. OXY╞ SLOYX 
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 This theorem plus the relations of subalternation on the Square of Opposition entail 

the next theorem. 

Theorem (Conversion per Accidens) 

1. AXY╞ SLIYX 

2. EXY╞ SLOYX 
 

∗The Logic of Empty Terms and Negations 

 The syntax and the semantics for the extended language that incorporates term 

negations is summarize below: 1 

Definitions 

1. Trms+ = Trms ∪ { X 
−
 | X∈Trms} 

2. Prop+={ZXY | Z∈{A,E,I,O} & X∈Trms+ & Y∈Trms+} 

3. The set SI+ is the set of all  interpretation ℑ for SSyn+ relative to a 

domain U that meet these conditions:  ℑ is a function (set of pairs) that 

pairs a term in Trms+ to a  non-empty subset of U and that pairs a 

proposition in Prps+ to one of the two truth-values T or F, and is such 

that, for all terms X and Y, 

a.  ℑ(X)⊆U & ℑ(X)≠∅ 

b.  ℑ(X 
−
)=  U− ℑ(X) 

c.  ℑ(AXY)=T ↔ ℑ(X)⊆ℑ(Y) 

d.  ℑ(EXY)=T ↔ ℑ(X)∩ℑ(Y)=∅ 

e.  ℑ(IXY)=T ↔ ℑ(X)∩ℑ(Y) ≠∅ 

f.  ℑ(OXY)=T ↔ ℑ(X)−ℑ(Y) ≠∅ 

4. SL+, the enlarged syllogistic language, is < SSyn+, SI+> 

5. Let ℑ stand for interpretations in SI+.  

 P1,…,Pn ╞ SL+Q)  ↔  ∀ℑ ( (ℑ(P1)=T &…& ℑ(Pn)=T) → ℑ(Q)=T) 

                                            
1 This and later supplementary section may be omitted without loss of continuity. 
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Obversion 

 A special set of logical relations among propositions that depend on negative 

terms were  summarized in the mediaeval period as the syllogistic rule called 

obversion.2  Let a term and its predicate negation be called opposites.  The rule may 

be formulate as follows 

Obversion.  If P and Q are of the same quantity but different quality, and have the 

same subject term but opposite predicate terms, then  P and Q logically entail each 

other.   

 
By this rule the following logically entail each another: 

Every F is G    No F is G 
−
   

Every F is G 
−
     No F is G 

Some F is G    Some F is not  G 
−
  

Some F is G 
−
     Some F is not G 

To summarize these facts in logical notation, it will help to introduce an 

abbreviation for “mutually entailment”: 

  P ╡╞ SL Q   means  (P╞ SL Q and Q╞ SL P).    

The proofs are straightforward, and since they introduce no new ideas, will be omitted 

here. 

Theorem 
 

A FG ╡╞ SL E F G 
−
  

A F G 
−
  ╡╞ SL EFG 

I FG ╡╞ SL OF G 
−
 

 IF G 
−
 ╡╞ SL OFG 
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Terms with Empty Extensions 

 The syntax and semantics of the extended language amended so as to allow 

that terms have empty extensions is summarized below.   We retain the syntax  SSyn+ 

that includes negative predicates, but alter the definition of an interpretation so that it 

may assign the empty set to a term.  The new set of interpretation is SI+∅, the 

language that uses these interpretations is SL+∅, and the logical entailment relation for 

this language is ╞ SL+∅. 

 Formal Syntax and Semantics 

Definitions 
  

1. Trms+ = Trms ∪ { X 
−
 | X∈Trms} 

2. Prop+={ZXY | Z∈{A,E,I,O} & X∈Trms+ & Y∈Trms+} 

3. The set SI+∅ is the set of all  possibly empty interpretation ℑ for SSyn+ relative 

to a domain U that meet these conditions:  ℑ is a function (set of pairs) that 

pairs a term in Trms+ to a  possibly empty subset of U and that pairs a 

proposition in Prps+ to one of the two truth-values T or F, and is such that, for 

any terms X and Y,  

a. ℑ(X)⊆U 

b. ℑ(X 
−

)=  U− ℑ(X) 

c. ℑ(AXY)=T ↔ ℑ(X)=∅ & ℑ(X)⊆ℑ(Y) 

d. ℑ(EXY)=T ↔ ℑ(X)∩ℑ(Y)=∅  

e. ℑ(IXY)=T ↔ ( ℑ(X)∩ℑ(Y) ≠∅ or ℑ(X)=∅ or ℑ(Y)=∅ ) 

f. ℑ(OXY)=T ↔ ( ℑ(X)−ℑ(Y) ≠∅ or ℑ(X)=∅ ) 

4. SL+∅, the enlarged syllogistic language, is < SSyn+, SI+∅> 

5. Let ℑ stand for interpretations in SI+∅.   

     P1,…,Pn ╞ SL+∅ Q) ↔ ∀ℑ ( ℑ(P1)=T &…& ℑ(Pn)=T ) → ℑ(Q)=T) 

                                                                                                                                          
2 The rule was know to Proclus in the 7th century. 
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 It should be noted that allowing terms to be “empty” (i.e. stand for empty sets) 

complicates the number of ways a universal proposition may be false, and the 

conditions under which particular propositions may be true.  

 A universal affirmative A proposition  Every S is P is true only if two conditions 

are met: (1) its subject term must be non-empty and (2) the set it stands for must be a 

subset of that named by the predicate.  If either condition fails the proposition is false.  

Moreover, its contradictory opposite I proposition is Some S is not P.  This means that 

whenever the one is true the other is false.  It follows that there are now two cases in 

which the I propositions must be true: (1) when the subject term is non-empty and 

stands for a set that is not a subset of the one named by the predicate, which is the 

usual case, or (2) when the subject term is empty – this is a new and somewhat odd 

case.   The new case is dictated by two desires: to allow for empty terms, and to retain 

the relation of contradictoriness across the diagonal of the Square of Opposition. 

 A similar complication arises for the universal negative No S is P and its 

contradictory Some S is P.    In the new theory No S is P now false in three cases: (1) 

when the two terms are non-empty and name sets with an empty intersection, which is 

the normal case, (2) when the subject term is empty, and (3) when the predicate term 

is empty.  Accordingly, its contradictory opposite the O proposition Some S is P must 

be true in any of the three cases.   

 What Aristotle found interesting about predicate negation is that when it is 

combined with the possibility of empty terms the logic of term negation is different 

from that of sentence negation.  That is, there are two logically distinct forms of 

negations.   Predicate negation is the logically stronger or “more informative” because 
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when applied to a sentence’s predicate, a predicate negation entails a sentence 

negation, but not conversely.  This difference appears when the subject term  is not 

truly predicated of anything that exists at the time of the predication, or in modern 

terms if the subject term stands for the empty set.   Aristotle’s example of such an 

empty term is goatstag.  In De Interpretatione X he summarize the facts in a square of 

opposition, which may be rendered in our terms as follows: 
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Square of Opposition for Predicate Negations 

Every S is P  (ASP)                                   Every S is P −  (ASP −) 

 
∼Every S is  P −   (∼ASP −)                        ∼Every S is P  (∼ASP) 

 
Theorems 
 

1. AXY╞ SL+∅ ∼AXY 
−
 

2. AXY 
−
╞ SL+∅ ∼AXY 

3. AXY and  ∼AXY are contradictories (with respect to ╞ SL+∅) 

4. AXY 
−

 and  ∼AXY 
−
 are contradictories (with respect to ╞ SL+∅) 

5. AXY and  AXY 
−

 are contraries (with respect to ╞ SL+∅) 

6. ∼AXY 
−
 and  ∼AXY are subcontraries (with respect to ╞ SL+∅) 
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The Syllogistic 

 

Basic Concepts 

 In this lecture we shall study what are unquestionably the most well known 

logical arguments, syllogisms.  It is syllogisms that educated people think of 

when they hear the word “logic”.  Etymologically syllogism is simply the Greek 

word for argument, but the term was used by Aristotle for a special class of 

arguments.  These are the arguments he singled out as central to scientific 

reasoning, and it is these that formed the core of his logical studies.  In the 

Middle Ages as part of their regular course of studies university students learned 

to use syllogisms in the composition of their work, and their professors wrote the 

details of their scientific research in syllogistic form, regarding syllogisms as an 

important part of their “scientific method.” The graduation examination at 

European universities, at some universities as late as the 19th century, included a 

public disputation in which the student organized his points in syllogisms.   

 A syllogism is a three-line argument consisting of two premises and a 

conclusion, each line of which is a categorical proposition.  The subject term of 

the conclusion is called the minor term and it must occur in the second premise, 

which is called the minor premise.  The predicate of the conclusion is called the 

major term, and it must occur in the fist premise, which is called the major 

premise.  (The terminology derives from the fact that in Latin one of the 

meanings of major is first.  Likewise, minor means second.)  A third term, which 
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is called the middle term, must occur in both premises.  The major, minor, and 

middle terms are required to be different.    

It follows from these definitions that the three terms can be arranged in 

only one of four possible arrangements,  which are called figures.  These 

possibilities are: 3  

Figure 1.  The middle term is first in the major premise and second in the minor.  

Figure 2.  The middle term is second in both the major and the minor premises. 

Figure 3.  The middle term is first in the major and the minor premises. 

Figure 4.  The middle term is second in the major premise and first in the minor.     

Let  S, P, and M  represent terms in the set Trms.  Then the four patterns are: 

1st MP 2nd PM 3rd MP 4th PM 
 SM  SM  MS  MS 
 SP  SP  SP  SP 

These four patterns are used to state a more formal definition for a 

syllogism.  Since the basic theory does not allow for terms to be negated (i.e. to 

have a not- or un- prefixed to them), we need only assume in this formal 

definition the simpler of the syllogistic language defined in Part 2, which does not 

contain negated terms.  There are two stages.  We first give a formal definition of 

a syllogism in each of the four figures, and then combine them.  Below we shall 

use the Greek letters Φ, Χ, and Ψ as variables to represent (to stand for) the 

                                            
3 Aristotle himself and logicians in the high Middle Ages recognized only three figures, conflating 
the fourth figure into the first.  This combined group was defined as any syllogism in which the 
position of middle term differed in the two premises.  The division of the group into what became 
know as the first and fourth figures, however, was recognized in ancient logic by the time of 
Galen (second century A.D.), and became a standard feature of the theory in the late Middle 
Ages and later. For a discussion of the origins of the fourth figure see Günther Patzig, Aristotle’s 
Theory of the Syllogism (Dordrecht: Reidel, 1968).  On the irrelevance of the order of the 
premises in Aristotle own account see Lynn Rose, Aristotle’s Syllogistic (Springfield, Ill., Thomas, 
1968).  Theoretically the order of the premises is irrelevant to whether the argument is valid, and 
in this sense Aristotle’s original version, which was followed by the leading mediaevals, is the 
more elegant. 
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operators A,E,I, and O.  When these variables are used below, they may stand 

for any operator, including the case in which they all stand for the same operator.  

(That is, even though Φ, Χ, and Ψ are different variables, they may all stand for 

the same operator, for example, A.)  As earlier, we let S, P, and M  represent 

terms in the set Trms.   Recall that by definition it is required that the three 

different terms in a syllogism are all different.    

First, we define the notion of a figure.  The first figure, for example, is the 

set of all syllogisms of the form <ΦMP, ΧSM, ΨSP> such that S, P, and M are all 

distinct terms.  This would include all cases in which Φ, Χ, and Ψ are replaced by 

any of the operators A,E,I,O.  For example, it would include <AMP, ISM, ESP>,  

<OMP, ESM, OSP>, and <EMP, ESM, ESP>.   

Given the four figures it is then a syllogism is defined any argument that 

fits one of the four figures. 

Definitions 

The set Fig1 of Syllogisms of Figure 1 is: 

{<ΦMP, ΧSM, ΨSP> | {Φ,Χ,Ψ} ⊆{A,E,I,O} & {S,P,M}⊆Trms & S≠ P & P≠ M & M≠S} 

The set Fig2 of Syllogisms of Figure 2 is:  

{<ΦPM, ΧSM, ΨSP> | {Φ,Χ,Ψ} ⊆{A,E,I,O} & {S,P,M}⊆Trms & S≠ P & P≠ M & M≠S} 

The set Fig3 of Syllogisms of Figure 3 is:  

{<ΦMP, ΧMS, ΨSP> | {Φ,Χ,Ψ} ⊆{A,E,I,O} & {S,P,M}⊆Trms & S≠ P & P≠ M & M≠S} 

The set Fig4 of Syllogisms of Figure 4 is:  

{<ΦPM, ΧMS, ΨSP> | {Φ,Χ,Ψ} ⊆{A,E,I,O} & {S,P,M}⊆Trms & S≠ P & P≠ M & M≠S} 

The set of Syllogisms is the union of the set of syllogisms of each figure: 

Fig1 ∪ Fig2 ∪ Fig3 ∪ Fig4 

 

The list, in order, of the operators used in a syllogism (in its major premise, minor 

premise, and conclusion) is called the syllogism’s mood.   



 13.  Categorical Logic: Validity  

Part 3, Page 35  Version2/18/2008 

Definition 

The mood of a syllogism <ΦMP, ΧMS, ΨSP> is the triple <Φ,Χ,Ψ>. 

Below we shall drop the pointy brackets and abbreviate <Φ,Χ,Ψ> as ΦΧΨ. 

 (The word mood here is just a translation of the Latin word modus, which means 

manner or fashion.  It has nothing to do with emotions.)   

What is interesting about moods is that given a syllogism’s mood and 

figure, its form is uniquely determined.  For example, using (as is customary) S 

for the minor term, P for the major term, and M for the middle term, the mood 

AEO in the fourth figure determines the syllogism <APM,EMS,OSP>, or in 

English: 

Every P is M 
No M is S 
∴Some S is not P 

The syllogism with mood OAI in the second figure is <OPM,ASM,ISP>, or: 

Some P is not M 
Every M is S 
∴Some S is P 

There are 64 syllogisms in each figure (three propositions, each of which 

may have one of four operators, makes 43 cases), and hence there are 256 

syllogisms in all.  Some of these are valid arguments and some not.  The 

remainder of this lecture will concern how we demonstrate which is which. 

Proving Syllogisms are Valid  

A valid argument is one such that whenever its premise are true its 

conclusion is true too, and an invalid argument is one such that there is some 

case in which its premises are true, but its conclusion false.  These facts are 
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straightforward consequences of the definition of valid argument, but since we 

will be using these facts a good deal, it is useful to state the relevant 

metatheorem for reference.  As defined, a syllogism is a triple of propositions 

<P,Q,R>.  Saying that the syllogism <P,Q,R> as a whole is valid is just an 

alternative way of saying that  the argument from P,Q to R is valid,  or in earlier 

notation that P,Q╞ SLR.  Recall that the definition says: 

P,Q╞ SLR ↔ ∀ℑ ( (ℑ(P)=T &ℑ(Q)=T) → ℑ(R)=T) 

This follow directly from the definition of valid argument:  

P1,…,Pn ╞ SLQ) ↔ ∀ℑ( (ℑ(P1)=T&…&ℑ(P1)=T)→ ℑ(Q)=T)). 

 Proofs of the Validity of Selected Syllogisms 

The definition makes clear how to prove that a syllogism <P,Q,R> is valid.  

You use a conditional proof.  You start a subproof by assuming that P and Q are 

T in an arbitrary ℑ.  Then in the subproof you deduce that R is T in ℑ.  You then 

conclude the subproof because you have shown the truth of the conditional 

(ℑ(P)=T &ℑ(Q)=T) → ℑ(R)=T.  Since ℑ is arbitrary, you can then generalize to 

∀ℑ ( (ℑ(P)=T &ℑ(Q)=T) → ℑ(R)=T), which by definition means that the syllogism 

is valid.  Consider an example. 

Theorem.  The syllogism AAA in the first figure (called Barbara), i.e. 

<AMP,ASM,ASP>, is valid. 

Analysis of the Proof.  First note what it is that must be proven: <AMP,ASM,ASP>is valid, or in 
alternative notation 
 AMP,ASM ╞SL ASP  
By the definition of ╞SL, this means: 
  ∀ℑ((ℑ( AMP)=T & ℑ( ASM)=T)→ℑ( ASP)=T). 
But ∀ℑ((ℑ( AMP)=T & ℑ( ASM)=T)→ℑ( ASP)=T) is a universally quantified.  To prove it, we must 
first prove the conditional (ℑ( AMP)=T & ℑ(ASM)=T)→ℑ( ASP)=T  for an arbitrary ℑ, and then add 
the ∀ℑ by Universal Generalization.  We show the conditional (ℑ(AMP)=T & ℑ( ASM)=T)→ℑ( 
ASP)=T  by Conditional Proof, i.e. by constructing a subproof that starts by assuming the antecedent 
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ℑ( AMP)=T & ℑ( ASM)=T  as its first line, and concludes with the  consequent ℑ( ASP)=T  as its last 
line.  So the general form of the proof will be: 
 Start of Subproof. 
 ℑ( AMP)=T & ℑ( ASM)=T  Assump. for conditional proof, assuming ℑ is arbitrary 
  … 
 ℑ( ASP)=T    
 End of subproof 
 (ℑ( AMP)=T & ℑ(ASM)=T) →ℑ( ASP)=T  Conditional Proof  
 ∀ℑ((ℑ( AMP)=T & ℑ(ASM)=T)→ℑ( ASP)=T) Previous line, Universal Gen., ℑ arbitrary. 
Note that ℑ( AMP)=T , ℑ(ASM)=T), and ℑ( ASP)=T are each provided by a (T) schema entailed by  
the definition of ℑ.  These provide for each an equivalent formulation in terms of facts about the sets 
ℑ(S), ℑ(M)  and  ℑ(M): 
 ℑ(AMP)=T  ↔  ℑ(M)⊆ℑ(P) 
 ℑ(ASM)=T  ↔  ℑ(S)⊆ℑ(M) 
 ℑ(ASP)=T  ↔  ℑ(S)⊆ℑ(P)  
So, the lines ℑ( AMP)=T , ℑ(ASM)=T), and ℑ( ASP)=T may be replaced by equivalents: ℑ(M)⊆ℑ(P), 
ℑ(S)⊆ℑ(M), and ℑ(S)⊆ℑ(P), respectively. The task then would be to prove ℑ(S)⊆ℑ(P) from 
ℑ(M)⊆ℑ(P) and ℑ(S)⊆ℑ(M).  It is a fact of set theory that if B⊆C and A⊆B, then A⊆C.   Hence, by 
appeal set theory we can go from ℑ(S)⊆ℑ(P) from ℑ(M)⊆ℑ(P) to ℑ(S)⊆ℑ(M.   

 

Proof. 
Start of Subproof. 

1. ℑ(AMP)=T &ℑ(ASM)=T Assump. for conditional proof. ℑ arbitrary 
2. ℑ(AMP)=T 1, conjunction 
3. ℑ(AMP)=T  ↔  ℑ(M)⊆ℑ(P) TC1 
4. ℑ(M)⊆ ℑ(P) 2,4 modus ponens 
5. ℑ(ASM)=T 1, conjunction 
6. ℑ(ASM)=T  ↔  ℑ(S)⊆ℑ(M) TC1 
7. ℑ(S)⊆ ℑ(M) 3,5 modus ponens 
8. ℑ(S)⊆ ℑ(P) 6,7 set theory 
9. ℑ(ASP)=T  ↔  ℑ(S)⊆ℑ(P) TC1 
10. ℑ( ASP)=T   8 ,9 modus ponens 

End of Subproof. 
11. (ℑ(AMP)=T &ℑ(ASM)=T) → ℑ(ASP)=T 1-10, conditional proof 
12. ∀ℑ(ℑ(AMP)=T &ℑ(ASM)=T)→ ℑ(ASP)=T)  8, universal generalization, ℑ arbitrary 
13. AMP,ASM ╞ SL ASP 9, definition of ╞ SL 

 
All proofs that a syllogism is valid follow this form.  They differ mainly in the 

statement of the truth-conditions of the premises (lines 4 and 5) and the 

conclusion (line 6), and in the citation of relevant set theoretic truths to justifying 

line 6.  (For several of the syllogisms the proof that the truth-condition for the 

conclusion are satisfied depends in part on the fact that the subject term stands 

for a non-empty set, and this fact must be cited in the proof. We will see an 
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example in the next lecture.)   Hence, the validity of the syllogisms turns on the 

fact that the categorical propositions have truth-conditions stated in set theory.  

Given that these conditions are met for the premises, it then follows straight from 

basic facts about sets, which we learned about in Part 1, that the condition for the 

conclusion is satisfied.  Accordingly proofs that syllogisms are valid are really 

quite trivial logically.4   

 

∗Exercise.  Prove that he syllogism EAE in the first figure (called Celarent), i.e. 

<EMP,ASM,ESP>, is valid. 

  

There are in fact 24 valid moods.  These are divided by figure and 

assigned traditional names, which encode information that will be explained in a 

later lecture.  Here it is sufficient to observe that the vowel sequence within the 

name records the mood of the syllogism.  The mood of Celaront, for example, is 

EAO. 

                                            
4 In the high Middle Ages, the central curriculum at the great universities in northern Europe, like 
Paris and Oxford, centered on the trivium, the three central subjects of the liberal arts.  These 
consisted of grammar, logic and rhetoric.  However, since students already knew grammar before 
they came to the university, and rhetoric was regarded as of lesser importance, it was logic that 
formed the core of the trivium and the main part of a  student’s university education.  (To a lesser 
extent students also studied the quadrivium, the four remaining liberal arts – arithmetic, geometry, 
astronomy, and music – which at that time were all really quasi mathematical subjects.)  When 
the humanists in Italy, where logical studies never took root, rediscovered the literature of 
classical Greece and Rome, they viewed (obviously quite wrongly) the logic chopping of the 
trivium at the northern universities as fatuous and silly, or as they put it, as “trivial.”  Our modern 
usage of trivial derives from this epithet applied to logic by the humanists. 
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The Names for the Valid Moods 

First Figure:  Third Figure: 
 
 AAA Barbara  AAI Darapti 
M,P EAE Celarent M,P EAO Felapton 
S,M AII Darii M,S IAI Disamis 
S,P EIO Ferio S,P AII Datisi 
 EAO *Celaront  OAO Bocardo 
 AAI *Barbari  EIO Ferison 
 
Second Figure:   Fourth Figure: 
 
 EAE Cesare  EIO Fresison 
P,M AEE Camestres P,M EAO Fesapo 
S,M EIO Festino M,S IAI Dimaris 
S,P AOO Baroco S,P AAI Bramantip 
 AEO *Camestrop  AEE Camenes 
 EAO *Cesaro  AEO *Camelop 
 

Those whose names are prefixed with an asterisk are the so-called the 

subaltern moods,  because their validity follows from that of an earlier valid 

syllogism in that figure by an application of the subalternation relation to the 

conclusion of the earlier syllogism.  Consider Celaront.  It’s validity follows from 

that of Celarent.  Suppose Celarent is valid, i.e. EMP,ASM╞ SLESP.  But by the 

subalternation relation (on the Square of Opposition) we know also that ESP╞ 

SLOSP.  Hence by the fact that╞ SL is transitive,  it follows that EMP,ASM╞ 

SLOSP, i.e. that Celaront  is valid. 

The syllogistic names contain various coded information.  Some of this will 

be relevant later when we investigate how the set of valid syllogisms is 

axiomatized.   
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We have seen how to prove, using the (T) schemata entailed by the 

definition of ℑ and facts of set theory, that the listed syllogisms are valid.  For 

centuries, however, students just memorized the list.  To help them, mnemonic 

poems were devised.  These date back to the 13th century.  Here is one 

contained in Henry Aldrich (1647–1710), Artis Logicae Rudimenta, which was a 

standard logic textbook at Oxford until the second half of the 19th century:5 

Barbara, Celarent, Darii, Ferioque prioris: 
Cesare, Camestres, Festino, Baroco secundae: 
Tertia, Darapti, Disamis, Datisi, Felapton, 
Bocardo, Ferison, habet; Quarta insuper addit 
Bramantip, Camenes, Dimaris, Fesapo, Fresison. 
Quinque Subalterni, todidem Generalibus orti, 
Nomen habent nullum, nec, si bene colligatur, usum. 

[Barbara, Celarent, Darii, Ferioque are of the First: 
Cesare, Camestres, Festino, Baroco are of the Second: 
The Third has Darapti, Disamis, Datisi, Felapton, 
Bocardo, Ferison; The Fourth adds in addition 
Bramantip, Camenes, Dimaris, Fesapo, Fresison. 
Fifth are the Subalterns, which all come from the Universals, 
They do not have a name, nor, if well connected, a use.] 

Exercise.  Memorize the poem (just kidding).6 

 Though there are only 24 valid syllogistic moods, they are sufficient for 

proving any valid argument that can be formulated in the syllogistic syntax, no 

matter how many premises that argument has, so long as it has only a finite 

number.   Though it would be inappropriate to actually give the proof here, we will 

state this fact now as a metatheorem because it shows that within the context of 

the language of categorical propositions, syllogisms have sufficient power to 

explain all finite arguments.  

 

                                            
5 See, Henry Aldrich Artis Logicae Rudimenta (Oxford: Hammans, 1862), H. L. Mansel, ed. and 
commentator, p.84. 
6 When the author started teaching at the University of Cincinnati in the 1970’s, he met an elderly 
alumna who had studied logic here in the 1920’s.  She had been asked to memorize a similar list. 
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Theorem.  If P1,…,Pn ╞ SLQ, then there is some finite sequence of valid 

syllogisms such that (1) the conclusion of the last syllogism is Q, and (2) each 

premise of any syllogism in the sequence is either in {P1,…,Pn} or is the 

conclusion of a previous syllogism in the sequence. 
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∗LECTURE 14.  CATEGORICAL LOGIC: INVALIDITY 

 
We know by definition that the syllogism <P,Q,R> is valid, i.e. that  

P,Q╞ SLR, if and only if  ∀ℑ ( (ℑ(P)=T &ℑ(Q)=T) → ℑ(R)=T) 

From this we know what it means for it to be invalid, which we write in notation as 

P,Q╞  ⁄  SLR (here the slash is really a form of negation7).  It is invalid if there is 

some interpretation in which the premises are true and the conclusion is false.  

Since this fact underlies the methods that will be occupying us for the rest of this 

lecture, let us state this fact formally as a metatheorem. 

Theorem 

P,Q╞  ⁄  SLR ↔ ∃ℑ ( ℑ(P)=T & ℑ(Q)=T & ℑ(R)=F) 

Any interpretation that makes an argument’s premises true but its conclusion 

false is called a counter-example to the argument.  Note that there is an 

existential quantifier in the last metatheorem.  How to we prove an existentially 

quantified claim?   By construction.  That is, to show that an argument is invalid, 

we must construct an interpretation ℑ that makes the premises true and the 

conclusion false.  Now, ℑ is a set of pairs <X,A> such that X is term and A is the 

set that X  stands for according to ℑ, and this set is some subset of the universe 

U.  To construct ℑ, therefore, all we have to do is specify its pairs.   In the proofs 

below we shall show that a syllogism is invalid by first specifying a universe U 

and then singling out special subsets of U to serve as the referents of the terms 

                                            
7 That is, P,Q╞  ⁄  SLR  means ∼( P,Q╞SLR).   
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in the syllogism.  (We will ignore terms of the language that do not occur in the 

syllogism under discussion because their interpretation is irrelevant to the validity 

of the syllogism in question.)  When we specify sets, we must be sure that U and 

the subsets we specify really exist.  To make sure we are dealing only with sets 

that exist, we will limit our constructions to sets that we have proven exist earlier 

in this series of lectures.  In particular, we will only use small sets of natural 

numbers, which we have shown to exist in Part 1.  These we know exist because 

we constructed them in set theory by appeal to the Principle of Abstraction.    

Traditional Term Rules for Invalid Syllogisms 

If there are 256 syllogisms and 24 or them are valid, then 232 must be 

invalid.  We turn now turn to valid syllogisms.  We shall divide them into 

subclasses by reference to a series of syntactic rules devised for weeding out 

invalid syllogisms.  As we shall see, a syllogism is invalid if and only it violates at 

least one of these rules.  Historically, the rules evolved out of some observations 

Aristotle himself made when he was describing syllogisms for the first in the Prior 

Analytics.  In the Middle Ages they were more carefully stated and generalized, 

and lists of these rule became a regular part of textbooks about the syllogism – 

and were duly memorized by centuries of undergraduates.    In the 16th century 

Antoine Arnauld (1612–1694) and Pierre Nicole (1625-1695) included a set of 

rules, which they called axioms, in their influential Port Royal Logic.   Leibniz 

(1646 -1716) reformulated Arnauld and Nicole’s list in more rigorous way.  

Though his formulations are quite rigorous from the perspective of modern logic, 

this and his other logical work was almost entirely unknown until the 20th century.   
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He proposed seven rules that were intentionally formulated in syntactic terms, 

and then argued that the rule set taken together was characteristic of the valid 

moods. 8   We shall use Leibniz’s rules here.  

The first two rules make use of a technical distinction between what 

Aristotle called universal and particular terms.  In the Middle Ages these were 

called distributed and undistributed terms.  Authors sometimes try to make the 

distinction semantically – it is roughly the difference between common nouns that 

stand for an entire set and ones that do not – but authors differ a good deal on 

the details.  What is important, however, is that the distinction can be clearly  

drawn syntactically, and then it can be used to identify invalid syllogisms.  Three 

syntactic features determine whether a term is distributed: 

1. whether it occurs in a proposition as its subject or predicate, 

2. whether the proposition in which it occurs is universal or  particular,  

3. whether the proposition in which it occurs is affirmative or negative. 

Clearly these features are determined by grammar alone.   

Definition of Distribution 

1. A subject term is distributed (universal) if and only it occurs in a 

proposition that is universal (A or E). A subject term is undistributed 

(particular) if and only if the proposition in which it occurs is particular (I or 

O). 

2. A predicate term is distributed (universal) if and only if its proposition is 

affirmative (A or I).  A predicate term is undistributed (particular) if and 

only if its proposition is negative (E or O). 

                                            
8 See Antoine Arnauld and Pierre Nicole, Book II,  Logic or the Art of Thinking, Jill Vance Buroker, 
ed.(Cambridge: Cambridge University Press, 1996).  On Leibniz’s formally more sophisticated 
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These distinctions are easily summarized in a table: 

 

 Subject Term S Predicate Term P 

A.  All S is P Distributed Non- Distributed 

E. No S is P Distributed Distributed 

I.  Some S is P Non- Distributed Non- Distributed 

O. Some S is not P Non- Distributed Distributed 

 

We may now state the term rules. 

Leibniz’s Term Rules  

Rule 1. Undistributed Middle.  No valid syllogism has an undistributed middle 
term. 
 
Rule 2.  Distributed Term in the Conclusion.  No syllogism is valid that has a term 
that is distributed in the conclusion but not in the premises. 
 
Rule 3.  Affirmative premise.  No syllogism is valid that has two negative 
premises.   
 
Rule 4.  Negative Conclusion.  No syllogism is valid that has negative conclusion 
without a negative premise.   
 
Rule 5.  Particular Premise.  No syllogism is valid that has particular premise and 
a universal conclusion.   
 
Rule 6.  Negative Premise.  No syllogism is valid that has a negative premise and  
an affirmative conclusion.   
 
Rule 7.  Universal Premise.  No syllogism is valid that does not have at least one 
universal premise.  

 

Leibniz demonstrated essentially the following metatheorem: 

                                                                                                                                  
extension see Wolfgang Lensen “On Leibniz’s Essay Mathesis rationis,” Topoi 9 (1990), 29-59).  
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Theorem. 9  A syllogism is valid iff it does not violate any of the rules 1-7.    

Examples of Applications of the Rules 

Let us now illustrate the rules.  It is easy to test by inspecting each of the 

valid syllogisms that none of them violate any of the rules.  We shall therefore 

now illustrate the converse, that any syllogism that violates a rule is invalid.  For 

each rule we shall cite a syllogism that violates it and then prove by construction 

that the syllogism is, in fact, invalid. 

Rule 1. Undistributed Middle  

No valid syllogism has an undistributed middle term. 

Let us illustrate by an example.   Consider the syllogism AIO in the fourth figure, 

i.e. <APM,IMS,OSP>.  This syllogism violates the rule because M is not 

distributed.  It is also invalid, as the following Venn diagram illustrates.  In the 

                                            
9The rule test can be generalized to categorical arguments of any finite number of 

premises.  To do so precisely, it is necessary to introduce distinction that allows us to ignore 
those premises listed but not actually used to justify the conclusion.  

Definition. The argument from P1,…,Pn to Q is minimally valid (briefly, P1,…,Pn ╞
min
SL Q)  iff there is 

some finite sequence of valid syllogisms such that (1) the conclusion of the last syllogism is Q, 
and (2) each premise of any syllogism in the sequence is either in {P1,…,Pn} or is the conclusion 
of a previous syllogism in the sequence. 

 
By this definition every proposition listed as a premise in a minimally valid argument is actually 
used to justify the conclusion by syllogistic reasoning.  In order to apply Rule 2 to the general 
case, we also define a generalize middle term as any term that occurs in a premise but not in the 
conclusion.   In the metatheorem below Rule 2 is to understood as applying to generalized terms 
in this sense.  

Theorem.  P1,…,Pn ╞
min
SL Q  iff the argument from P1,…,Pn to Q does not violated any of the rules 

1-7.   
 
Though proof is not difficult (an induction on the length of the series of the syllogisms associated 
with the argument), it requires techniques more advanced that we are using in these lectures.    
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diagram the major premise is true because the extension of M is a non-empty 

subset of that of P.  Moreover the minor premise is true because the intersection 

of the extension of S and M is non-empty.  But the conclusion is false because 

the region that S is true of but P is not is empty. 

 

We now illustrate how to prove that the syllogism is invalid. 

Theorem.  The syllogism AIO in the fourth figure, i.e. <APM,IMS,OSP>, is 

invalid.   

Analysis of the Proof.  First note what it is that must be proven: <APM,IMS,OSP> is invalid, or in 
alternative notation 
 APM,IMS ⁄╞SL  OSP 
By the definition of ⁄╞SL , this means: 
  ∃ℑ( ℑ( APM)=T & ℑ( IMS)=T)& ℑ( OSP)=F). 
How do you show an existential proposition?  Normally you do so by construction.  An interpretation 
is a set  – it is a set of pairs in which each term is paired with a set and each sentence with a truth-
value.  We know from the Principle of Abstraction that all we need do to insure a set exists is define 
it.  Hence the task is to define an ℑ such that ℑ(APM)=T & ℑ(IMS)=T)& ℑ(OSP)=F.  But (T) 
schemata entailed by the definition of ℑ tells us what these three facts means: 
 ℑ(APM)=T  iff  ℑ(P)⊆ℑ(M), 
 ℑ(IMS)=T  iff   ℑ(M)∩ℑ(S)≠∅, 
 ℑ(OSP)=F iff   ℑ(S)−ℑ(P)=∅.   
Hence, what we want to insure is that ℑ(P)⊆ℑ(M), ℑ(M)∩ℑ(S)≠∅, and ℑ(S)−ℑ(P)=∅.  Taking our 
clue from the Venn diagram above, we assign sets to ℑ(S), ℑ(P), ℑ(M) to fit the diagram.  Let us 
make up our universe out of numbers because we know that numbers exist (we constructed them 
earlier).  Let U={1}, ℑ(S)={1}, ℑ(P)={1}, ℑ(M)={1}.  It will then turn out that ℑ(P)⊆ℑ(M), 
ℑ(M)∩ℑ(S)≠∅, and ℑ(S)−ℑ(P)=∅ because, respectively, {1}⊆{1}, {1}∩{1}≠∅, and {1}−{1}=∅ are all 
facts of set theory, as you may check for yourself. 

 
Proof.  Let us define ℑ (as set of pairs) as follows: 

1. U={1}, ℑ(S)={1}, ℑ(P)={1}, ℑ(M)={1}  Set theory 
2. {1}⊆{1}      Set theory 
3. ℑ(P)⊆ ℑ(M)     1 and 2, sub of = 
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4. ℑ(APM)=T  iff  ℑ(P)⊆ℑ(M)   TC1 
5. ℑ(APM)=T           4,5 modus ponens  
6. {1}∩{1}={1}≠∅     Set theory 
7. ℑ(M)∩ℑ(S) ≠∅     1 and 6, sub of = 
8. ℑ(IMS)=T  iff   ℑ(M)∩ℑ(S)≠∅   TC3 
9. ℑ(IMS)=T     7,8 modus ponens  
10. {1}−{1}=∅     Set theory 
11. ℑ(S)∩ℑ(P)=∅     1,10 sub of = 
12. ℑ(OSP)=F iff   ℑ(S)−ℑ(P)=∅.    TC4 
13. ℑ(OSP)=F     11,12 modus ponens 
14. ℑ(APM)=T & ℑ(IMS)=T & ℑ(OSP)=F  5, 9, and 13, conjunction 
15. ∃ℑ(ℑ(APM)=T & ℑ(IMS)=T & ℑ(OSP)=F) 14, construction 
16. APM, IMS ╞  ⁄  SL OSP    15, def of ╞  ⁄  SL 

 

Rule 2.  Distributed Term in the Conclusion 

No valid syllogism has a term that is distributed in the conclusion but not 

in the premises. 

 

Consider the syllogism EOA in the first figure, i.e. <EMP,OSM,ASP>.  This 

syllogism violates the rule because S is distributed in the conclusion but not in 

the minor premise.   In the diagram below No M is P is true because their 

intersection is empty.  Moreover, There is an S that is not a M is true because x2 

is in the right region.  However, the conclusion Every S is P is false because 

there is an object that S is true of but not P, namely x2. 
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Theorem.  The syllogism EOA in the fourth figure, i.e. <EMP,OSM,ASP>, is 

invalid.   

Proof.   Let us define ℑ (as set of pairs) as follows: 
1. U={1,2,3}, ℑ(S)={2}, ℑ(P)={3}, ℑ(M)={1}  Set theory 
2. {3}∩{1}≠∅     Set theory 
3. ℑ(P)∩ℑ(M) ≠∅     1,2 sub of = 
4. ℑ(EMP)=T  iff ℑ(P)∩ℑ(M) ≠∅   TC2 
5. ℑ(EMP)=T           3,4 modus ponens 
6. {1}−{2}={1}≠∅     Set Theory 
7. ℑ(M)−ℑ(S) ≠∅     1,6 sub of = 
8. ℑ(OSM)=T iff ℑ(M)−ℑ(S) ≠∅   TC4 
9. ℑ(OSM)=T     7,8 modus ponens  
10. ∼({2}⊆{3})     Set theory 
11. ∼(ℑ(S)⊆ℑ(P))     1,10, sub of = 
12. ℑ(ASP)=T iff ℑ(S)⊆ℑ(P))   TC1 
13. ∼ℑ(ASP)-T     11,12 modus tollens 
14. ℑ(ASP)=F     13, bivalence of ℑ 
15. ℑ(EPM)=T & ℑ(OSM)=T & ℑ(ASP)=F  5, 9, and 14, conjunction 
16. ∃ℑ(ℑ(EPM)=T & ℑ(OSM)=T & ℑ(ASP)=F) 15, construction 
17. EPM, OSM ╞  ⁄  SL ASP    17, def of ╞  ⁄  SL 

Rule 3.  Affirmative premise 

Every valid syllogism has at least one affirmative premise.   

 

Consider the syllogism EOI in the first figure, i.e. <EMP,OSM,ISP>.  This 

syllogism violates Rule 3 because both premises are negative  In the diagram 

below No M is P is true because the intersection of the extensions of M, which is 

non-empty, and P is empty.  Moreover, Some S is not M is true because x1 is in 

the right region.  However, the conclusion Some S is P is false because the 

intersection of the extensions of S and P is empty.   
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Theorem.  The syllogism EOI in the fourth figure, i.e. <EMP,OSM,ISP>, is invalid.   

Proof.  Let us define ℑ (as set of pairs) as follows: 
1. U={1,2,3}, ℑ(S)={1}, ℑ(P)={2}, ℑ(M)={3}  Set theory 
2. {2}∩{3}=∅     Set theory 
3. ℑ(P)∩ℑ(M)=∅      1,2 sub of = 
4. ℑ(EMP)=T iff ℑ(P)∩ℑ(M)=∅   TC2 
5. ℑ(EMP)=T           3,4 modus ponens 
6. {3}−{1}={3}≠∅     Set theory 
7. ℑ(M)−ℑ(S) ≠∅     1 and 5, sub of = 
8. ℑ(OSM)=T iff  ℑ(M)−ℑ(S)≠∅   TC4 
9. ℑ(OSM)=T     7,8 modus ponens 
10. {1}∩{2}=∅     Set theory 
11. ℑ(S)∩ℑ(P) =∅     1,8 sub of = 
12. ℑ(ISP)=T iff  ∼[ℑ(S)∩ℑ(P)=∅]   TC3 
13. ∼ℑ(ISP)=T     1,12 modus tollens 
14. ℑ(ISP)=F     13, bivalence of ℑ 
15. ℑ(EPM)=T & ℑ(OSM)=T & ℑ(ISP)=F  5, 9, and 14, conjunction 
16. ∃ℑ(ℑ(EPM)=T & ℑ(OSM)=T & ℑ(ISP)=F) 15, construction 
17. EPM, OSM ╞  ⁄  SL ISP    16, def of ╞  ⁄  SL 

 

 Rule 4.  Negative Conclusion 

No valid syllogism has negative conclusion without a negative premise.   

 

Consider the syllogism AIO in the first figure, i.e. <AMP,ISM,OSP>.  This 

syllogism violates Rule 4 because the conclusion is negative but both premises 

are affirmative.   In the diagram below Every M is P is true because the extension 

of M is a non-empty subset of that of P.  Moreover, Some S is  M is true because 
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x1 is in the right region.  However, the conclusion Some S is not P is false 

because the extension of S is outside of that of P is empty.   

 

Theorem.  The syllogism AIO in the fourth figure, i.e. <AMP,ISM,OSP>, is 

invalid.   

Proof.  Let us define ℑ (as set of pairs) as follows: 
1. U={1}, ℑ(S)={1}, ℑ(P)={1}, ℑ(M)={1}  Set theory 
2. {1}⊆{1}      Set theory 
3. ℑ(P)⊆ℑ(M)      1 and 2, sub of = 
4. ℑ(AMP)=T iff ℑ(P)⊆ℑ(M)   TC1 
5. ℑ(AMP)=T           3,4 modus ponens  
6. {1}∩{1}={1}≠∅     Set theory 
7. ℑ(M)∩ℑ(S) ≠∅     1,6 sub of = 
8. ℑ(ISM)=T iff ℑ(M)∩ℑ(S) ≠∅   TC3 
9. ℑ(ISM)=T     7,8 modus ponens  
10. {1}−{1}=∅     Set theory 
11. ℑ(S)∩ℑ(P) =∅     1,10 sub of = 
12. ℑ(OSP)=T iff  ∼[ℑ(S)∩ℑ(P) =∅]   TC4 
13. ∼ℑ(OSP)=T     11,12 modus tollens 
14. ℑ(OSP)=F     13, bivalence of ℑ 
15. ℑ(APM)=T & ℑ(ISM)=T & ℑ(OSP)=F  5, 9, and 13, conjunction 
16. ∃ℑ(ℑ(APM)=T & ℑ(ISM)=T & ℑ(OSP)=F) 16, construction 
17. APM, ISM ╞  ⁄  SL OSP    17, def of ╞  ⁄  SL 

 

Rule 5.  Particular Premise 

No valid syllogism has particular premise and a universal conclusion.   

 

Consider the syllogism IEA in the first figure, i.e. <IMP,ESM,ASP>.  This 

syllogism violates Rule 5 because the conclusion is universal but one of the 

premises is particular.  In the diagram below No S is M is true because the 
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intersection of the extension of M, which is non-empty, with that of S is empty.   

Moreover, Some M is  P is true because x1 is in the right region.  However, the 

conclusion Every S is P is false because the extension of S outside of that of P is 

non-empty.   

 

Theorem.  The syllogism IEA in the fourth figure, i.e. <IMP,ESM,ASP>, is invalid.   

Proof.  Let us define ℑ (as set of pairs) as follows: 
1. U={1,2}, ℑ(S)={2}, ℑ(P)={1}, ℑ(M)={1}  Set theory 
2. {1}∩{1}={1}≠∅     Set theory 
3. ℑ(M)∩ℑ(P)={1}     1,2 sub of = 
4.  ℑ(M)∩ℑ(P)≠∅     3, set theory 
5. ℑ(IMP)=T  iff   ℑ(M)∩ℑ(P)≠∅    TC3 
6. ℑ(IMP)=T       4,5 modus ponens 
7. {1}∩{2}=∅     Set theory 
8. ℑ(M)∩ℑ(S)=∅     1.7 sub of = 
9. ℑ(ESM)=T iff  ℑ(M)∩ℑ(S)=∅   TC2 
10. ℑ(ESM)=T     8,9 modus ponens  
11. ∼({2}⊆{1})=∅     Set theory 
12. ∼(ℑ(S)⊆ℑ(P))     11, sub of = 
13. ℑ(ASP)=T iff  ℑ(S)⊆ℑ(P)   TC1 
14. ∼ℑ(ASP)=T     12,13 modus tollens 
15. ℑ(ASP)=F     14, bivalence of ℑ  
16. ℑ(IPM)=T & ℑ(ESM)=T & ℑ(ASP)=F  6, 10, and 14, conjunction 
17. ∃ℑ(ℑ(IPM)=T & ℑ(ESM)=T & ℑ(OSP)=F) 16, construction 
18. IPM, ESM ╞  ⁄  SL ASP    17, def of ╞  ⁄  SL 

 

Rule 6.  Negative Premise 

No valid syllogism with a negative premise, has an affirmative conclusion.   
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Consider the syllogism AEI in the first figure, i.e. <AMP,ESM,ISP>.  This 

syllogism violates Rule 6 because the conclusion is universal but one of the 

premises is particular.  In the diagram below Every M is P is true because the 

intersection of the extension of M, which is non-empty, is a subset of that of P.  

Moreover, No S is  M is true because the intersection of the extension of S, 

which is non-empty, with that of M is empty.   However, the conclusion Some S is 

P is false because the intersection of the extensions of S and P is empty.   

 

Theorem.  The syllogism AEI in the fourth figure, i.e. <AMP,ESM,ISP>, is invalid.   

Proof.  Let us define ℑ (as set of pairs) as follows: 
1. U={1,2}, ℑ(S)={2}, ℑ(P)={1}, ℑ(M)={1}  Set theory 
2. {1}⊆{1}={1}     Set theory 
3. ℑ(M)⊆ℑ(P)     1,2 sub of = 
4. ℑ(AMP)=T iff ℑ(M)⊆ℑ(P)   TC1 
5. ℑ(AMP)=T           3,4 modus ponens  
6. {1}∩{2}=∅     Set theory 
7. ℑ(M)∩ℑ(S)=∅     1,6 sub of = 
8. ℑ(ESM)=T iff  ℑ(M)∩ℑ(S)=∅   TC2 
9. ℑ(ESM)=T     7,8 modus ponens  
10. {2}∩{1}=∅     Set theory 
11. ℑ(S)∩ℑ(P)=∅     1,10 sub of = 
12. ℑ(ISP)=T iff  ∼[ℑ(S)∩ℑ(P)=∅]   TC3 
13. ∼ℑ(ISP)=T     11,12 modus tollens 
14. ℑ(ISP)=F     13, bivalence of ℑ 
15. ℑ(APM)=T & ℑ(ESM)=T & ℑ(ISP)=F  4, 9, and 14, conjunction 
16. ∃ℑ(ℑ(APM)=T & ℑ(ESM)=T & ℑ(ISP)=F)  15, construction 
17. APM, ESM ╞  ⁄  SL ISP    16, def of ╞  ⁄  SL 
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Rule 7.  Universal Premise 

No valid syllogism with at least one universal premise.  

 

Consider the syllogism IOI in the first figure, i.e. <IMP,OSM,ISP>.  This syllogism 

violates Rule 7 because the conclusion is universal but one of the premises is 

particular.  In the diagram below Every M is P is true because the intersection of 

the extension of M, which is non-empty, is a subset of that of P.  Moreover, No S 

is  M is true because the intersection of the extension of S, which is non-empty, 

with that of M is empty.   However, the conclusion Some S is P is false because 

the intersection of the extensions of S and P is empty.   

 

Theorem.  The syllogism IOI in the fourth figure, i.e. <IMP,OSM,ISP>, is invalid.   

Proof.  Let us define ℑ (as set of pairs) as follows: 
1. U={1,2}, ℑ(S)={2}, ℑ(P)={1}, ℑ(M)={1}  Set theory 
2. {1}∩{1}={1}     Set theory 
3. ℑ(M)∩ℑ(P)≠∅     1,2 sub of = 
4. ℑ(IMP)=T iff ℑ(M)∩ℑ(P)≠∅   TC3 
5. ℑ(IMP)=T           2,3 modus ponens 
6. {1}∩{2}={1}≠∅     Set theory 
7. ℑ(M)−ℑ(S)≠∅     1,6 sub of = 
8. ℑ(OSM)=T iff  ℑ(M)−ℑ(S)≠∅   TC4 
9. ℑ(OSM)=T     7,8 modus ponens 
10. {2}∩{1}=∅     Set theory 
11. ℑ(S)∩ℑ(P)=∅     1,10 sub of = 
12. ℑ(ISP)=T iff  ∼[ℑ(S)∩ℑ(P)=∅]   TC3 
13. ∼ℑ(ISP)=T     11,12 modus tollens 
14. ℑ(ISP)=F     13, bivalence of ℑ 
15. ℑ(IPM)=T & ℑ(OSM)=T & ℑ(ISP)=F  5, 9, and 14, conjunction 
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16. ∃ℑ(ℑ(IPM)=T & ℑ(OSM)=T & ℑ(ISP)=F)  15, construction 
17. IPM, OSM ╞  ⁄  SL ISP    17, def of ╞  ⁄  SL 

 

Exercise.  The two following syllogisms are invalid.  For each,  

• name which of the seven syllogistic rules it violates,  

• draw a Venn diagram illustrating that its premises are true but its 

conclusion false in that universe, and  

• ∗give a proof like those in the previous examples that the syllogism is 

invalid: 

1. AIE in the fourth figure 

2. IOA in the second figure 

 

∗Syllogism with Empty Subject Terms 

Let us conclude the topic of invalid syllogisms by discussing  those special 

cases that are valid according to Aristotle’s definitions, but which modern 

logicians would reject as invalid.  These are the syllogisms that are valid because 

Aristotle builds into the truth-conditions for universal propositions a condition that 

modern logicians reject, namely that their subjects terms that stand for non-

empty sets.   If unlike Aristotle, but like modern logic, we allowed universal 

affirmatives and negatives to be true when their subject extensions were empty, 

then some of the syllogisms that Aristotle accepts as valid would turn out to be 

invalid.  These are named in red in the earlier list of valid syllogisms. 

Let us consider the case of Felapton: <EMP,AMS,OSP>.  Suppose that 

the premise EMP (No M is P) is true because ℑ(M)∩ℑ(P)=∅ even when its 

subject term M stands for the empty set, i.e. even when ℑ(M)=∅.  Now consider  

the set ℑ(P) .  It does not matter what set this is, but for concreteness in the Venn 
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diagram below we set it equal to {1}.   Now let us give some more detail about ℑ 

so that we make Felapton’s second premise Ever M is S also true.   Let us make 

ℑ(S)={2} and ℑ(P)={1,2}.  Since ∅⊆{1}, it follows that ℑ(M)⊆ℑ(S), and hence by 

the truth-conditions for Every M is S, as amended to allow for M to be empty, we 

know ℑ(AMS)=T.  Now, {2}−{1}=∅.  Hence, ℑ(S)−ℑ(P)=∅.  Thus, by the truth-

conditions for Some S is not P,  the conclusion turns out to be false:  ℑ(OSP)=F.  

Thus in the interpretation ℑ, the premises of Felapton are true but its conclusion 

is false.  Thus, if we allow the subject of a true universal affirmative to be non-

empty, one of Aristotle’s traditionally valid syllogisms turns out invalid. 

 

 
 
 
Felapton however is genuinely valid given Aristotle’s assumptions. 

Theorem.  The syllogism EAO in the first figure (Felapton), i.e. 

<EMP,AMS,OSP>, is valid. 

Proof. 
Start of Subproof. 

1. ℑ(EMP)=T & ℑ( ASM)=T Assump. for conditional proof. ℑ arbitrary 
2. ℑ(EMP)=T 1, conjunction 
3. ℑ(EMP)=T iff ℑ(M)∩ℑ(P)=∅ TC2 
4. ℑ(M)∩ℑ(P)=∅ 2,4 modus ponens 
5. ℑ( AMS)=T 1, conjunction 
6. ℑ( AMS)=T iff  ℑ(M)⊆ ℑ(S) TC1 
7. ℑ(M)⊆ ℑ(S) 3,5 modus ponens 
8. ℑ(M)≠∅ definition of ℑ 
9. ℑ(S)−ℑ(P) ≠∅ 6, 7 and 8, set theory 
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10. ℑ( OSP)=T iff  ℑ(S)−ℑ(P) ≠∅ TC4 
11. ℑ( OSP)=T 9,10 modus ponens 

End of Subproof. 
12. (ℑ(EMP)=T & ℑ(AMS)=T) → ℑ(OSP)=T  1-11, conditional proof 
13. ∀ℑ(ℑ(EMP)=T &ℑ(AMS)=T)→ ℑ(OSP)=T)   12, universal generalization, ℑ arbitrary 
14. EMP,AMS ╞ SL OSP    3, definition of ╞ SL 

 

∗Exercise: Prove that he syllogism AAI in the fourth figure (Bramantip), i.e. 

<APM,AMS,ISP>, is valid. 
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Summary 

 In this lecture we have studied the syllogism.  Logically syllogisms are as 

dated as their mediaeval background, but as an exercise in the introduction to 

logic they provide an excellent example of a little logical system at work.   

First they show how logical arguments are a matter of form.  To explain 

what a syllogism is, and which are logical and which are not – which is the goal 

of logic – we had to do grammar.  To philosophers or mathematicians, grammar 

is of little interest in itself.   But before we could identity the valid moods, we had 

to first distinguish the four syllogistic propositions, major, minor and middle terms, 

the figures and moods, which are all concepts in grammar.  

For a large part of the lecture we rubbed out noses in what it is to “prove” 

that an argument is valid or invalid.  A proof of validity almost always  consists of 

conditional proof in which it is assumed that an arbitrary possible interpretation 

makes the premises of an argument true, and then it is shown that the conclusion 

is true by a appeal to (T) schemata, which are entailed by the definition of ℑ, and 

to facts of set theory.  A proof of invalidity is almost always a construction in 

which an interpretation is defined for the terms that occur in the argument.  You 

state what sets the terms stand for, and then show by appeal to (T) schemata 

and set theory that the premises of the argument are true but the conclusion is 

false.    

In later lectures we shall meet more complicated languages.  The 

exposition used for the syllogistic will serve as the model: (1) it starts with the 

definitions of the syntax including that of sentence, (2) it then defines the notion 
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of an interpretation  ℑ appropriate to the syntax that explains how ℑ is a function 

that maps expressions to their “meanings”,  and (3) it finishes with the definition 

of validity, and proofs that various arguments are valid or invalid, using proof 

strategies very similar to those used above.   
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LECTURE 15.   PROPOSITIONAL AND FIRST-ORDER LOGIC: VALIDITY 

 

Propositional Logic 

The Truth-Table Test for Validity 

We now begin our investigation of valid arguments in modern symbolic logic.   

In this lecture we start with propositional logic.   Recall that the basic concepts of logic 

are validity, invalidity, consistency, logical equivalence, and logical truth.  It is helpful 

to repeat here their definitions, relative to a language L: 

Definitions 

{P1,…,Pn }╞ LQ    iff     ∀ℑ ( (ℑ(P1)=T&…&ℑ(Pn)=T ) →  ℑ(Q)=T) 

{P1,…,Pn }╞  ⁄   LQ    iff     ∃ℑ ( ℑ(P1)=T&…&ℑ(Pn)=T&  ℑ(Q)=F) ) 

P is a logical truth in L (in symbols  ╞ LP )   iff   ∀ℑ ( ℑ(P)=T) 

{ P1,…,Pn}  is consistent in L   iff   ∃ℑ ( ℑ(P1)=T&…&ℑ(Pn)=T) 

(We abbreviate {P1,…,Pn}╞ LQ   as  P1,…,Pn╞ LQ .)  In the propositional logic a logical 

truth is called a tautology.   

Identifying logical properties in propositional logic is greatly simplified by the 

use of truth-tables.  Consider validity.   First we need a tool.  Let us call 

(P1∧…∧Pn)→Q  the conditional corresponding to the argument from P1,…,Pn  to Q.  

Thus we make up the conditional corresponding to the argument  P1,…,Pn  to Q by 

conjoining all its premises as conjunctions in the conditional’s antecedent and using its 

conclusion as the conditional’s consequent.  All we need to do to check whether the 

argument from P1,…,Pn  to Q is valid is do a truth-table for (P1∧…∧Pn)→Q .  If 

(P1∧…∧Pn)→Q  is a tautology, the argument is valid; if it is not a tautology, the 
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argument is invalid.  The test works because the circumstances that make an 

argument valid (the is no case in which P1,…,Pn are all T and Q is F) are the very 

circumstances that make (P1∧…∧Pn )→ Q   a tautology. 

Theorem.  {P1,…,Pn }╞ PLQ    iff   (P1∧…∧Pn )→ Q   is a tautology. 

Proof.  The following are all equivalent by definitions: 

{P1,…,Pn }╞ PLQ   iff   ∀ℑ ( if ℑ(P1)=T&…&ℑ(Pn)=T&…) then  ℑ(Q)=T) 

iff   ∀ℑ ( if ℑ( P1∧…∧Pn)=T) then  ℑ(Q)=T) 

iff   ∀ℑ ( if ℑ( P1∧…∧Pn)→Q)=T) 

iff    (P1∧…∧Pn )→ Q   is a tautology 

Below we give two examples.  The truth-values for the premises and 

conclusion of the argument are colored blue, and those for the corresponding 

conditional formed from the argument are colored yellow.  In these cases, the yellow 

values are all T, and therefore the argument is valid. 

Examples 

Theorem.  Disjunctive Syllogism in valid in propositional logic: {p1∨p2, ∼p1}╞ p2. 

Proof.  Let us construct a truth-table for the corresponding conditional: 

 p1 p2 ((p1          ∨         p2)      ∧         ∼        p1   )         →       p2)   
ℑ1 T T T T T F F T T T 
ℑ2 T F T T F F F T T F 
ℑ3 F T F T T T T F T T 
ℑ4 F F F F F F T F T F 

  

From the truth-table we can summarize the sentence’s truth-conditions:  for any ℑ, 

ℑ(((p1∨p2) ∧ ∼p1)→ p2)=T    iff  (( ℑ(p1)=T  and  ℑ(p2)=T ) or 

  ( ℑ(p1)=T  and  ℑ(p2)=F ) or 

( ℑ(p1)=F  and  ℑ(p2)=T ) or 

( ℑ(p1)=F  and  ℑ(p2)=F ) ) 
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That is, ℑ(((p1∨p2) ∧ ∼p1)→ p2)=T   holds in any ℑ.  Hence, by the previous 

metatheorem,  {p1∨p2, ∼p1}╞ p2. 

Theorem.  Contraposition is valid in propositional logic: {p1→p2}╞  ∼p2 → ∼p1. 

Proof 

 p1 p2 ((p1          →     p2)     →     (∼       p2         →      ∼      p1) 
ℑ1 T T T T T T F T T F T 
ℑ2 T F T F F T T F F F T 
ℑ3 F T F T T T F T T T F 
ℑ4 F F F T F T T F T T F 

 

We may summarize these facts as follows:  for any ℑ, 

 ℑ(((p1→p2)→(∼p2  →∼p1))=T iff  (( ℑ(p1)=T  and  ℑ(p2)=T ) or 

  ( ℑ(p1)=T  and  ℑ(p2)=F ) or 

( ℑ(p1)=F  and  ℑ(p2)=T ) or 

( ℑ(p1)=F  and  ℑ(p2)=F ) ) 

That is, ℑ(((p1→p2)→(∼p2  →∼p1))=T for any ℑ.  Hence, by the earlier metatheorem, 

{p1→p2}╞  ∼p2 → ∼p1. 

Exercise 
 
Show modus tollens is valid in propositional logic: {p1→p2, ∼p2}╞  ∼p1. 

 p1 p2 ((p1       →     p2)      ∧       ∼     p2  )         →       ∼      p1) 
ℑ1 T T          
ℑ2 T F          
ℑ3 F T          
ℑ4 F F          

 
Determine when ℑ(((p1 → p2) ∧ ∼p2)→ ∼p1)=T. 
 

Proving Invalidity by Truth-Tables 

Essentially the same technique may be used to show an argument is invalid.  If the 

conditional corresponding to an argument is not a tautology, then there is some case 
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in which it is false, i.e. there is an interpretation in which all the premise are true and 

the conclusion false.  If there is one, it is invalid.   

Theorem.  {P1,…,Pn } ╞  ⁄  LQ    iff   (P1∧…∧Pn )→ LQ   is not a tautology. 

In the example below we show how to use this equivalence. 

Theorem. Denying the antecedent is invalid: {p1→p2, ∼p1}╞  ⁄    ∼p1. 

Proof 

 p1 p2 ((p1       →     p2)      ∧       ∼     p1  )         →       ∼      p2) 
ℑ1 T T T T T F F T T F T 
ℑ2 T F T F F F F T T T F 
ℑ3 F T F T T T T F F F T 
ℑ4 F F F F F F T F T T F 

 
. We may summarize these facts as follows:  for any ℑ, 

 ℑ(((p1→p2)∧∼p1  )→∼p2))=T iff  (( ℑ(p1)=T  and  ℑ(p2)=T ) or 

  ( ℑ(p1)=T  and  ℑ(p2)=F ) or 

( ℑ(p1)=F  and  ℑ(p2)=F ) ) 

Also, for any ℑ, 
 
 ℑ(((p1→p2)∧∼p1  )→∼p2))=F iff  ( ℑ(p1)=F  and  ℑ(p2)=T ) 

Hence define ℑ(p1)=F  and  ℑ(p2)=T.  Clearly such an ℑ exists (by construction) 

because we can define it.  Then ℑ((p1→p2)∧∼p1  )→∼p2))=F.  Hence ℑ((p1→p2)=T and 

ℑ(∼p1  )=T and ℑ(∼p2)=F.  Hence, ∃ℑ, ℑ((p1→p2)=T and ℑ(∼p1  )=T and ℑ(∼p2)=F.    

Hence {p1→p2, ∼p1}╞  ⁄    ∼p2. 

Exercise 
 
Show Affirming the Consequent is invalid in propositional logic: {p1→p2, p2}╞  ⁄  p2. 

 p1 p2    (((p1                  →              p2 )           ∧              p2   )         →            p1)    
ℑ1 T T        
ℑ2 T F        
ℑ3 F T        
ℑ4 F F        
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Show the corresponding conditional is invalid and use the truth-table to define an 

interpretation that makes the premises true but the conclusion false. 

Showing Consistency and Inconsistency 

Like validity it is easy to test whether a finite sets of sentences {P1,…,Pn } in 

propositional logic is consistent.  If the truth-table for the conjunction P1∧…∧Pn  of the 

sentences in the set is T in some interpretation, it is consistent.  If it is F in every 

interpretation, it is inconsistent.  In the example below the truth-values of the 

sentences at issue are highlighted in blue, and the truth-value of their conjunction is in 

yellow.  If the yellow values are all F in all interpretations, then the set of sentences is 

inconsistent. 

 

Theorem.  The set {p1∨p2, ∼p1∧∼p2} is inconsistent in propositional logic. 

Proof 

 p1 p2 ((p1           ∨      p2)      ∧     (∼       p1         ∧      ∼      p2)) 
ℑ1 T T T T T F F T F F T 
ℑ2 T F T T F F T F F F T 
ℑ3 F T F T T F F T F T F 
ℑ4 F F F F F F T F T T F 

 
There is no ℑ such that ℑ( p1∨p2)=T and ℑ( p1∨p2)=T.  Hence {p1∨p2, p1∨p2} is 

inconsistent. 

 
Exercise 
 
Show {p1→p2, ∼(∼p1∨p2)} is inconsistent in propositional logic: 

 p1 p2 ((p1       →     p2)      ∧       ∼    (  ∼       p1         ∨      p2)) 
ℑ1 T T          
ℑ2 T F          
ℑ3 F T          
ℑ4 F F          
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 First-Order Logic 

Validity and Logical Entailment 

Arguments in first-order logic are shown to be valid by proving metatheorems that 

show that in any interpretation in which the premises are true, the conclusion is true.  

These proofs consist of marshalling three ingredients that we are already familiar with: 

(1) the definition of validity, (2) the schema for a proof showing that an argument is 

valid, and (3) the truth-conditions for the premises and conclusion as fixed by the 

definition of an interpretation.  Let’s review each briefly. 

 Definition of Validity.  The definition of the logical ideas including validity are the 

same for first-order logic as they were for the categorical and propositional logic: 

Definitions 

P1,…,Pn ╞ LQ    iff     ∀ℑ ( (ℑ(P1)=T&…&ℑ(Pn)=T ) →  ℑ(Q)=T) 

P1,…,Pn ╞  ⁄   LQ    iff     ∃ℑ ( ℑ(P1)=T&…&ℑ(Pn)=T&  ℑ(Q)=F) ) 

P is a logical truth in L (in symbols  ╞ LP )   iff   ∀ℑ ( ℑ(P)=T) 

{ P1,…,Pn}  is consistent in L   iff   ∃ℑ ( ℑ(P1)=T&…&ℑ(Pn)=T) 

 Proofs of Validity.  In first-order logic we cannot make use of truth-tables to 

show arguments are valid, but must return to the general proof schema that we used 

earlier to justify arguments in categorical logic.  The schema is repeated below.  

Recall that the overall strategy of the proof is to show that a conditional is true: if the 

argument’s premises are true, then its conclusion is.  The technique used to prove the 

conditional is conditional proof, a rule which requires a subproof.  The if-part is 

assumed at the assumption of the subproof, and the then-part is deduced as its last 

line .  The subproof then “proves” the conditional.  To indicate the structure of the 
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subproof, the if-part assumed as the subproofs first line is underlined, and the then-

part deduced as its last line double underlined.   

Within the subproof, there are various applications of modus ponens.  The (T) 

formula for a proposition P, which is a biconditional of the form ℑ(P)=T iff TC(P),  is 

written as a line of the proof.  Then using modus ponens one side of the biconditional 

is then shown to be true by showing  that the other side is true.  To indicate the 

structure, the side being deduced is colored yellow, and the side previously proven is 

colored green.    
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Schema for a Validity Proof 
 

Metatheorem Proof Schema.  {P1,…,Pn }╞ LQ     

Proof   

Start of subproof 

 1. ℑ(P  1)=T &…& ℑ(Pn)=T Assumption for conditional proof, ℑ arbitrary 

 2. ℑ(P1)=T   line 1, conjunction 

 3. ℑ(P1)=T iff TCℑ(P1)   (T) schema entailed by the definition of  ℑ 

 4. TCℑ(P1)   modus ponens on the previous two lines 

 … …    …    

 3n+1. ℑ(Pn)=T   line 1, conjunction 

 3n+2.  ℑ(Pn)=T iff TCℑ(Pn)  (T) schema entailed by the definition of  ℑ 

 3n+3. TCℑ(Pn) 

 3n+4. TCℑ(P1) &…&TCℑ(Pn), conjunction of previous TC lines 

 3n+5. TCℑ(Q)   by set theory and logic from the previous line 

 3n+6. ℑ(Q)=T iff TCℑ(Q)   (T) schema entailed by the definition of  ℑ 

 2n+7. ℑ(Q)=T   modus ponens on the previous two lines 

End of subproof 

3n+8. If (ℑ(P  1)=T &…& ℑ(Pn)=T) then ℑ(Q)=T  1 to n+5, conditional proof 

3n+9. ∀ℑ( if (ℑ(P1)=T &…& ℑ(Pn)=T) then ℑ(Q)=T) n+6, universal generalization, ℑ arbitrary 

3n+10. {P1,…,Pn }╞ LQ         n+7, definition of ╞ 

 
 Truth-Conditions.  The proof schema requires that we be able to plug in the 

truth-conditions TCℑ(P1) &…&TCℑ(Pn) of the premises and those TCℑ(Q) of the 

conclusion.  When we studied the semantics of first-order logic in Part 2, we learned 

what truth-conditions were. Relative to an interpretation ℑ, the truth-conditions of a 

formula state what facts must obtain among the objects and sets referred to by the 

formula’s constants and predicates for the formula to be true in ℑ.  We also learned 

how to calculate the truth-conditions for any formula in first-order logic.  We will make 

use of this knowledge to show that arguments are valid.  However, rather that actually 

recalculating the truth-conditions of formulas we have already studied, we will just 
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summarize the truth-conditions already worked out in Lecture 11.  We shall refer back 

to the list below in later proofs. The list begins by stating the general form of Tarski’s 

T-schema and then lists beneath it various formulas and their truth-conditions that we 

have previously calculated.  Below let F and G range over one-place predicates and R 

over two-place predicates :  

 
(T) ℑ(P)=T     iff                                  TCℑ(P)  
 
         Truth-Conditions for P 

    
 
TC0.  ℑ(Fc)=T iff ℑD(c)∈ ℑD(F)  
 
TC1.  ℑ(Fc ∧ Gb)=T iff ℑD(c)∈ ℑD(F) and   ℑD(b)∈ ℑD(G) 
 
TC2.  ℑ(Rac → Gx)=T iff <ℑD(a),ℑD(c)>∉ℑD(R) or  ℑD(x)∈ ℑD(G 
 
TC3.  ℑ(∀xFx)=T iff for all d∈D,  d∈ℑD(F) 
 
TC4.  ℑ(∃xFx)=T iff for some d∈D,  d∈ℑD(F) 
 
TC5.  ℑ(∀x∃yRxy)=T iff for all d∈D, for some d′∈D, <d,d′ >∈ℑD(R)) 
 
TC6.  ℑ(∃x∀yRxy)=T iff for some d∈D, for all d′∈D, <d,d′ >∈ℑD(R)) 
 
TC7.  ℑ(∀xRxx)=T iff for all d∈D, <d,d>∈ℑD(R))  
 
TC8.  ℑ(∀x(Fx→Gx))=T iff for all d∈D,  either d∉ℑD(F) or d∈ℑD(G) 
 
TC9.  ℑ(∃x(Fx∧Gx))=T iff for some d∈D,  d∈ℑD(F) and d∈ℑD(G) 
 
TC10.  ℑ(∀x(Fx∧Gx))=T iff for all d∈D,  d∈ℑD(F) and d∈ℑD(G) 
 
TC11.  ℑ(∃x(Fx→Gx))=T iff  for some d∈D,  either d∈ℑD(F) or d∉ℑD(G) 

 
TC12.  ℑ(∀x(Fx →∃yRxy))=T iff for all d∈D, either (d∉ℑD(F) or for some 
    d′∈D <d,d′ >∈ℑD(R)) 
 
TC13.  ℑ(∀x∃y(Rxy→Ryx))=T iff  for all d∈D, for some d′∈D,   
     either <d,d′ >∉ℑD(R)) or <d′,d>∈ℑD(R)) 
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TC14.  ℑ(∀x∀y(Rxy↔Ryx))=T iff  for all d∈D, for all d′∈D,   
    <d,d′ >∈ℑD(R)) iff <d′,d>∈ℑD(R)) 
 
TC15.  ℑ(∃xFx∧∃yGy))=T iff for some d∈D,  d∈ℑD(F) and 
   for some d′∈D,  d′∈ℑD(G) 
 
TC16.  ℑ(∀x(Fx→∀yGy))=T iff either for some d′∈D,  d′∉ℑD(F) or  
    for all d∈D,  d∈ℑD(G), 
 
 

Examples of First-Order Validity Metatheorems 

 Let us now show that various arguments are valid in first-order logic.  We begin 

with first-order forms of the syllogisms Barbara and Celarent, just to show that they 

are first-order valid. 

Every G is H ∀x(Gx→Hx) No G is H   ∼∃x(Gx∧Hx) 
Every F is G ∀x(Fx→Gx) Every F is G   ∀x(Gx→Hx) 
Every F is H ∀x(Fx→Hx) No F is H   ∼∃x(Gx∧Hx) 
 
These and the other valid syllogistic moods remain valid in first-order logic, though 

some, like the subaltern mood Barbari below, require explicit existence assumptions 

that are built into the truth-conditions of categorical propositions:   

Every G is H  ∀x(Gx→Hx)  
Every F is G  ∀x(Fx→Gx) 
There exists an F ∃xFx  
Some F is H  ∀x(Fx→Hx)  
  

 More important, however, are arguments that cannot be shown valid in simpler 

languages, like the syllogistic or propositional logic, but that are valid when formulated 

with the increased expressive power of first-order syntax.   Examples of this sort are 

listed below,  written both in English and in their symbolic form.   
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Socrates is human Fa Everything is red ∀xFx 
Something is human ∃xFx Something is red ∃xFx 
 
Everything is red and everything is round ∀xFx ∧ ∀yGy 
Everything is red and round ∀x(Fx ∧ Gx) 
 
Something is red and round    ∃x(Fx ∧ Gx) 
Something is red and something is round  ∃xFx ∧ ∃yGy 
 
The relation R is complete ∀x∀y(Rxy ∨ Ryx) 
The relation R is reflexive        ∀xRxx 
 

Somebody loves everybody ∃x∀yLxy 
Love is reciprocal ∀x∀y(Lxy↔Lyx) 
Everybody loves somebody ∀x∃yLxy 
 

Notice that these arguments make use of expressive features of first-order syntax that 

are not available in the simpler languages of the syllogistic or propositional logic: 

multiple quantifiers, quantifiers nested inside one another, and relational predicates. 

Proofs of the Metatheorems 

Theorem (Barbara).  ∀x(Gx→Hx), ∀x(Fx→Gx)╞ ∀x(Fx→Hx) 
Proof   
Start of subproof 
 1. ℑ(∀x(Gx→Hx))=T & ℑ(∀x(Fx→Gx))=T Assump for CP, ℑ arbitrary 
 2. ℑ(∀x(Gx→Hx))=T    1, conjunction 
 3. ℑ(∀x(Gx→Hx))=T iff for all d∈D, either d∈ℑD(G) or d∉ℑD(H) TC 8 
 4. for all d∈D, either d∈ℑD(G) or d∉ℑD(H) 2,3, modus ponens 
 5. ℑ(∀x(Fx→Gx))=T    1, conjunction 
 6. ℑ(∀x(Fx→Gx))=T iff for all d∈D, either d∈ℑD(F) or d∉ℑD(G)  TC 8 
 7. for all d∈D, either d∈ℑD(F) or d∉ℑD(G)  5,6, modus ponens 
 8. for all d∈D, either d∈ℑD(G) or d∉ℑD(H), and for all d∈D, either d∈ℑD(F) or d∉ℑD(G) 
   4,7, conjunction 
 9. for all d∈D, either d∈ℑD(F) or d∉ℑD(H) 8, by set theory  
 10. ℑ(∀x(Fx→Hx))=T iff for all d∈D, either d∈ℑD(F) or d∉ℑD(H) TC 8 
 11. ℑ(∀x(Fx→Hx))=T 9, 10 modus ponens  
End of subproof 
12. If (ℑ(∀x(Gx→Hx))=T &…& ℑ(∀x(Fx→Gx))=T) then ℑ(∀x(Fx→Hx))=T  1-11, CP 
13. ∀ℑ( If (ℑ(∀x(Gx→Hx))=T &…& ℑ(∀x(Fx→Gx))=T) then ℑ(∀x(Fx→Hx))=T)  
        12, universal generalization, ℑ arbitrary 
14. ∀x(Gx→Hx), ∀x(Fx→Gx)╞ ∀x(Fx→Hx)     13, definition of ╞ 
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Theorem (Celarent).  ∼∃x(Gx∧Hx), ∀x(Fx→Gx)╞ ∼∃x(Fx∧Hx) 
 
∗Exercise.  Prove Celarent is valid in first-order logic. 
 
Theorem.  Fa╞∃xFx 
Proof   
Start of subproof 
 1. ℑ( Fa)=T & ℑ(∃xF)=T Assump for CP, ℑ arbitrary 
 2. ℑ(Fa)=T    1, conjunction 
 3. ℑ(Fa)=T iff ℑ(a)∈ℑD(F)  TC 0 
 4. ℑ(a)∈ℑD(F)   2,3, modus ponens 
 5. for some d∈D, d∈ℑD(F) 4, logic (existential generalization) 
 6.  ℑ(∃xFx)=T iff for some d∈D, d∈ℑD(F) TC 4 
 7. ℑ(∃xFx)=T 5,6 modus ponens  
End of subproof 
8. If ℑ(Fa)=T then ℑ(∃xFx)=T  1-7, CP 
9. ∀ℑ(if ℑ(Fa)=T then ℑ(∃xFx)=T)  8, universal generalization, ℑ arbitrary 
10. Fa╞∃xFx   9, definition of ╞ 
  
Theorem.  ∀xFx╞∃xFx 
 
∗Exercise.  Prove the metatheorem ∀xFx╞∃xFx. 
 
Theorem.  ∀xFx∧∀yGy╞∀x(Fx∧Gy) 
Proof   
Start of subproof 
 1. ℑ(∀xFx∧∀yGy)=T  Assump for CP, ℑ arbitrary 
 2. ℑ(∀xFx∧∀yGy)=T     1, conjunction 

3.       ℑ(∀xFx∧∀yGy)=T iff for all d∈D, d∈ℑD(F) and for all d′,  d′ ∈ℑD(G)   TC 10 
 4. for all d∈D, d∈ℑD(F) and for all d′,  d′ ∈ℑD(G)    2,3, modus ponens 
 5. for all d∈D, d∈ℑD(F) and d∈ℑD(G)     4, set theory 
 6.  ℑ(∀x(Fx∧Gy))=T iff for all d∈D, d∈ℑD(F) and d∈ℑD(G)    TC 10 
 7. ℑ(∀x(Fx∧Gy))=T  5,6 modus ponens  
End of subproof 
8. If ℑ(∀xFx∧∀yGy)=T then ℑ(∀x(Fx∧Gy))=T  1-7, CP 
9. ∀ℑ(if ℑ(∀xFx∧∀yGy)=T then ℑ(∀x(Fx∧Gy))=T) 8, universal generalization, ℑ arbitrary 
10. ∀xFx∧∀yGy ╞∀x(Fx∧Gy)  9, definition of ╞ 
 
Theorem.  ∃x(Fx∧Gx)╞∃xFx∧∃yGy 
 
Theorem.  ∀x∀y(Rxy↔Ryx)╞∀xRxx 
Proof   
Start of subproof 
 1. ℑ(∀x∀y(Rxy↔Ryx))=T  Assump for CP, ℑ arbitrary 
 2. ℑ(∀x∀y(Rxy↔Ryx))=T    1, conjunction 

4.       ℑ(∀x∀y(Rxy↔Ryx))=T iff for all d∈D, for all d′, <d, d′>ℑD(R) iff <d′,d>ℑD(R)   
     TC 13 

 4. for all d∈D, for all d′, <d, d′>ℑD(R) iff <d′,d>ℑD(R)   2,3, modus ponens 
 5. for all d∈D, <d,d> ∈ℑD(R)     7, set theory and logic 
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 6.  ℑ(∀xRxx)=T iff for all d∈D, <d,d> ∈ℑD(R)     TC 7 
 7. ℑ(∀xRxx)=T  5,6 modus ponens  
End of subproof 
8. If ℑ(∀x∀y(Rxy↔Ryx))=T then ℑ(∀xRxx)=T  1-7, CP 
9. ∀ℑ(if ℑ(∀x∀y(Rxy↔Ryx))=T then ℑ(∀xRxx)=T) 8, universal generalization, ℑ arbitrary 
10. ∀x∀y(Rxy↔Ryx) ╞∀xRxx  9, definition of ╞ 
 
∃x∀yLxy,∀x∀y(Lxy↔Lyx)╞∀x∃yLxy 
Proof   
Start of subproof 
 1. ℑ(∃x∀yLxy)=T & ℑ(∀x∀y(Lxy↔Lyx))=T  Assump for CP, ℑ arbitrary 
 2. ℑ(∃x∀yLxy)=T     1, conjunction 

5.       ℑ(∃x∀yLxy)=T iff for some d∈D, for all d′, <d, d′>ℑD(L)  TC 6 
 4. for some d∈D, for all d′, <d, d′>ℑD(L)     2,3, modus ponens 
 5. ℑ(∀x∀y(Lxy↔Lyx))=T    1, conjunction 

7.       ℑ(∀x∀y(Lxy↔Lyx))=T iff for all d∈D, for all d′, <d, d′>ℑD(L) iff <d′,d>ℑD(L)  
     TC 14 

 8. for all d∈D, for all d′, <d, d′>ℑD(L) iff <d′,d>ℑD(L)  5,7, modus ponens 
 9. for all d′∈D, for some d, <d′,d> ∈ℑD(L)     8, set theory and logic 
 10.  ℑ(∀x∃yLxy)=T iff for all d′∈D, for some d, <d′,d> ∈ℑD(L)    TC 5 
 11. ℑ(∀x∃yLxy)=T  9,10 modus ponens  
End of subproof 
12. If ℑ(∃x∀yLxy)=T and ℑ(∀x∀y(Lxy↔Lyx))=T, then ℑ(∀x∃yLxy)=T     1-11, CP 
13. ∀ℑ(if ℑ(∃x∀yLxy)=T and ℑ(∀x∀y(Lxy↔Lyx))=T)=T, then ℑ(∀xRxx)=T)  
       12, universal generalization, ℑ arbitrary 
14. ∃x∀yLxy,∀x∀y(Lxy↔Lyx)╞∀x∃yLxy 13, definition of ╞ 
 

We show by construction that Barbari without an explicit existence assumption is 

invalid in first-order logic. 

Theorem (Barbari without its existence assumption). ∀x(Gx→Hx), ∀x(Fx→Gx)╞  ⁄   
∃x(Fx∧Hx) 
Proof 
1. ℑ(F)=∅ & ℑ(G)=∅ &ℑ(H)=∅   Def of ℑ (principle of abstraction) 
2. ℑ(G)=∅ &ℑ(H)=∅   1, conjunction 
3. ℑ(G)⊆ℑ(H)   2, set theory 
4. for all d∈D, if d∈ℑD(G) then d∈ℑD(H) 3, def of ⊆ 
5. for all d∈D, either d∈ℑD(G) or d∉ℑD(H) 4, logic 
6. ℑ(∀x(Gx→Hx))=T iff for all d∈D, either d∈ℑD(G) or d∉ℑD(H) TC 8 
7. ℑ(∀x(Gx→Hx))=T   5,6 modus ponens 
8. ℑ(F)=∅ &ℑ(G)=∅   1, conjunction 
9. ℑ(F)⊆ℑ(G)   8, set theory 
10. for all d∈D, if d∈ℑD(F) then d∈ℑD(G) 9, def of ⊆ 
11. for all d∈D, either d∈ℑD(F) or d∉ℑD(G) 10, logic 
12. ℑ(∀x(Fx→Gx))=T iff for all d∈D, either d∈ℑD(F) or d∉ℑD(G) TC 8 
13. ℑ(∀x(Fx→Gx))=T  11,12 modus ponens 
14. ℑ(F)=∅ & ℑ(H)=∅  1, conjunction 
15. for all d∈D,  d∉ℑD(F) or d∉ℑD(H)  14, set theory and logic 
16. ℑ(∃x(Fx∧Hx))=T iff for some d∈D,  d∈ℑD(F) and d∈ℑD(H) TC 8 
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17. ℑ(∃x(Fx∧Hx))≠T iff for all d∈D,  d∉ℑD(F) or d∉ℑD(H) 16, logic 
18. ℑ(∃x(Fx∧Hx))≠T   15, 17 modus ponens 
19. ℑ(∀x(Gx→Hx))=T & ℑ(∀x(Fx→Gx))=T& ℑ(∃xFx)=T and ℑ(∃x(Fx∧Hx))=F)   7,13,18 conjunction 
20. ∃ℑ(ℑ(∀x(Gx→Hx))=T & ℑ(∀x(Fx→Gx))=T& ℑ(∃xFx)=T and ℑ(∃x(Fx∧Hx))=F) 19, construction 
21. ∀x(Gx→Hx), ∀x(Fx→Gx), ∃xFx╞  ⁄   ∃x(Fx∧Hx)    19, definition of ╞ 

 
With the explicit assumption, however, Barbari is valid, as are the other traditional 

subaltern moods (Celaront, Camestrop, Cesaro, Camelop) and as well as Darapti, 

Felapton, Fesapo, and Bramantip. 

 
Theorem (Barbari in First-Order Logic). ∀x(Gx→Hx), ∀x(Fx→Gx), ∃xFx╞ ∃x(Fx∧Hx) 
Proof   
Start of subproof 
 1. ℑ(∀x(Gx→Hx))=T & ℑ(∀x(Fx→Gx))=T & ℑ(∃xFx)=T Assump for CP, ℑ arbitrary 
 2. ℑ(∀x(Gx→Hx))=T    1, conjunction 
 3. ℑ(∀x(Gx→Hx))=T iff for all d∈D, either d∈ℑD(G) or d∉ℑD(H) TC 8 
 4. for all d∈D, either d∈ℑD(G) or d∉ℑD(H) 2,3, modus ponens 
 5. ℑ(∀x(Fx→Gx))=T    1, conjunction 
 6. ℑ(∀x(Fx→Gx))=T iff for all d∈D, either d∈ℑD(F) or d∉ℑD(G)  TC 8 
 7. for all d∈D, either d∈ℑD(F) or d∉ℑD(G)  5,6, modus ponens 
 8. ℑ(∃x(Fx)=T    1, conjunction 
 9. ℑ(∃x(Fx)=T iff for some d∈D, d∈ℑD(F) TC 4 
 10. for some d∈D, d∈ℑD(F)  8,9, modus ponens 

11.       for all d∈D, either d∈ℑD(G) or d∉ℑD(H), and for all d∈D, either d∈ℑD(F) or d∉ℑD(G) and  
 for some d∈D, d∈ℑD(F) 4,7,10 conjunction 

 12. for some d∈D,  d∈ℑD(F) and d∈ℑD(H) 11, by set theory and logic 
 13. ℑ(∃x(Fx∧Hx))=T iff for some d∈D,  d∈ℑD(F) and d∈ℑD(H) TC 9 
 14. ℑ(∃x(Fx∧Hx))=T 12, 13 modus ponens  
End of subproof 
15. If (ℑ(∀x(Gx→Hx))=T & ℑ(∀x(Fx→Gx))=T& ℑ(∃xFx)=T) then ℑ(∃x(Fx∧Hx))=T  1-14, CP 
16. ∀ℑ( If (ℑ(∀x(Gx→Hx))=T & ℑ(∀x(Fx→Gx))=T& ℑ(∃xFx)=T) then ℑ(∃x(Fx∧Hx))=T)  
        15, universal generalization, ℑ arbitrary 
17. ∀x(Gx→Hx), ∀x(Fx→Gx), ∃xFx╞ ∃x(Fx∧Hx)     16, definition of ╞ 

 

∗Exercise.  Prove the metatheorems in the semantics for first-order logic:  
 

1. ∀xFx╞∃xFx. 

2. ∀x(Bx→∃y(Gx∧Lxy)), ∼∃x(Gx ∧ Lcx)  ╞ ∼Bc 

3. ∀x∀y∀z((Lxy ∧ Lyz))→Lxz), ∀x∼Lxx ╞  ∼∃x∃y(Lxy ∧ Lyx) 

4. ∃x(Gx ∧ Hx), ∃x(Fx ∧∼Gx)╞  ⁄   ∀x(Fx→Hx) 
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Part 3, Page 75  

LECTURE 16.  PROOF THEORY 

The Axiomatic Method 

Validity, it has now been said many times over, is defined semantically, in 

terms of truth – an argument is valid if and only if in any interpretation in which the 

premises are true, the conclusion is true also.  But this is not the only “definition” of 

valid arguments.  Notice that the semantic definition has the form of a traditional “if 

and only if” definition in philosophy: it lays out the necessary and sufficient conditions 

for an argument to be valid.   There is however another way to “characterize” the valid 

arguments, and sometimes it is put forward as a definition:  the argument from   

P1,…,Pn  to Q  is “logical” if a  a formally correct proof can be constructed that has 

P1,…,Pn  as premises and Q  as its conclusion.    This idea of logical argument is so 

basic that logic is sometimes even defined as the study of proofs.  In this and 

subsequent lectures we will be exploring what proofs are and how they are related to 

what we have been calling valid arguments.  We begin with the history of the idea. 

The notion of proof has be know in various forms since ancient Greece, and it 

has had profound influence on the history of philosophy generally because it has been 

used as a model for the ideal form of knowledge.  Proofs impress philosophers.  They 

do so because of their connection to knowledge, perhaps the most basic philosophical 

idea.   The very word philosophy means lover of wisdom, and wisdom is a synonym of  

knowledge.    Knowledge, in turn, has a standard definition in philosophy.   Since Plato 

first formulated the definition in the Theatetus, knowledge has been defined as 

justified true belief.  Let S be a person.  Then, the standard definition is: 
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S knows that P if and only if 

1. P is true; 

2. S believes that P; 

3. S is well justified in believing that P. 

The important part of this definition for logic is the phrase “well justified”.   

What is “good justification” in the case of knowledge?  That is philosopher’s 

question par excellence.  There is one example, however, that thinkers have always 

seen as a paradigm:  logical proof.  If logical proofs do not justify our claims to 

knowledge, nothing does.  More precisely, if a proof of P is adequate justification for 

knowledge of P, then two things are required: (1) the proof must have premises that 

are known to be true, and (2) the steps of the proof must transparently take us from 

something true to something true.  If the premises are known not only to be true, but 

are certainty, necessary, or self-evident, so much the better. 

 The paradigm of justification by proof became dominant in Western philosophy 

and in natural science as it emerged from philosophy because the first truly successful 

“science” was mathematics, especially geometry.  The propositions of these 

disciplines are particularly suitable for justification by proofs.  Some basic 

mathematical propositions do seem to be self-evident, and others can be proven from 

them in simple logical steps in elegant proofs.  Euclid’s Elements  (4th century B.C.) 

formulates the truths of plane geometry in just this way, deducing an extensive set of 

“theorems” from five “postulates:”   

Euclid’s Postulates for Plane Geometry  

(Elements, 300 B.C.) 

1.   Any two points are contained in some line. 
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2.   Any finite line is contained in some line not contained in any other line. 

3.   Any point and any line segment beginning with that point determine a 

 circle with the point as its center and the line as its radius.  

4.   All right angles are equal. 

5.   (Euclid’s original version.)  If a straight line falling on two straight lines makes the 

interior angles on the same side less than two right angles, then the two straight 

lines, if produced indefinitely, meet on that side on which the angles are less than 

the two right angles. 

 

Much of this geometric lore was known to Plato and Aristotle, and its format 

affected their views on knowledge generally.   Plato thought of geometry as a model of 

human knowledge.  As portrayed in his dialogue the Meno, he believed that the 

process of uncovering truths by geometrical reasoning “reminded” a person of a prior 

direct experience of mathematical Forms encountered in a life before birth.  Aristotle, 

who is much more important for the history of logic, explained the process of proof 

systematically, and indeed launched logic on its way as a separate science.  In the 

Topics he used this logic to formulate his notion of the scientific method.  Science 

should consist of deductions using syllogistic logic from premises that consist of 

necessary definitions, which classify natural objects into genera and species.   

Throughout the mediaeval period philosophers continued to advocate methods 

similar to Aristotle’s, to the degree that they often formulated their work as a series of 

syllogistic arguments.  Likewise, mathematicians and physicist subsequent to Euclid – 

like Archimedes, Ptolemy, Copernicus, Galileo, and Newton – followed Euclid in 
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formulating their work as “axiom systems.” Newton mechanics for, example, begins 

with three formulas familiar from high school physics:10 

Newton's Three Laws of Motion  

(Mathematical Principles of Natural Philosophy, 1686) 

1.   Every body continues in its state of rest, or of uniform motion in a right line, unless 

it is compelled to change that state by forces impressed upon it. 

2.   The change of motion is proportional to the motive force impressed; and is made in 

the direction of the right line in which that force is impressed. 

3.   To every action there is always an equal reaction: or, the mutual actions of two 

bodies upon each other are always equal, and directed to contrary parts. 

 

Occasionally even philosophers formulated their theories in axiomatic form.  In the fifth 

century Proclus’ does so in the Elements of Theology, which is set forth as a series of 

axioms and remarks on them.  In the 17th century Descartes declares in Discourse on 

Method, a manifesto setting forth the “rationalist” scientific method, that all science 

must be deduced from self-evident first-principles.  He tried to do so in various works 

of philosophy and natural science, for example, his well knows Meditations that tries to 

establish the basis for our knowledge of ourselves and the world.  Other philosophers 

adopted his program.  Spinoza, for example, lays out his philosophical system as a 

series of theorems deduced, he claims, from seven axioms, which – it must be said – 

are famous for their obscurity: 

                                            
10 These laws are in Newton’s original formulations.  You may recall them as (1) a body at rest tends to 
remain at rest, and a body in motion tends to remain in motion, until acted upon by an external force, 
(2) f = ma, and (3) for every action, there is an equal and opposite reaction. 
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Spinoza’s Philosophical Axioms 

(Ethics, 1670) 

1.   Everything which is, is either in itself or in another. 

2. That which cannot be conceived through another must be conceived through itself. 

3.  From a given determinate cause an effect necessarily follows; and, on the other 

hand, if no determinate cause is given, it is impossible that an effect can follow. 

4.  The knowledge of an effect depends upon and involves the knowledge of the 

cause. 

5. Those things which have nothing mutually in common with one another cannot 

through one another be mutually understood, that is to say, the conception of the 

one does not involve the conception of the other. 

6.   A true idea must agree with that which is the idea. 

7.  The essence of that thing which can be conceived as not existing does not involve 

existence. 

 

Leibniz advocated formulating all science is a special universal language and 

deducing all the truths of science from self-evident propositions asserting conceptual 

identities, like Every S is S, using his adaptations of syllogistic reasoning.    

In the 18th century practicing scientists and philosophers under the lead of the 

British Empiricists – most prominently, Locke, Berkeley and Hume – rejected the 

rationalist project because, as it became increasingly clear, scientific discoveries were 

best justified not by proofs from self-evident axioms but by highly fallible 

generalizations from observations and experiments.   Logical proofs, however, were 

still scientifically important because they remained, as they still do, the primary means 

of justification in mathematics. 

 In 1790, Kant advanced a systematic philosophy that attempted to explain the 

special role of logic.  Its laws, he claimed, express the very forms of thought.  The 
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underlying nature of reality dictates that when we perceive something, we organize 

the world in accordance with the rules of logic and mathematics.  By logic he means 

syllogisms and by math he means Euclid.   

 Among philosophers and mathematicians Kant’s views were extremely 

influential.  They came into conflict, however, with a niggling doubt that had been 

troubling specialists in geometry since ancient times.  Since ancient Greece Euclid’s 

axioms have been regarded as self-evident.  Indeed, Kant claimed we know them a 

priori, i.e. without an appeal to sense experience.   The fifth postulate, however, was 

not as obvious as the other five.  If you actually count its worlds and parse its 

grammar, you will see that it is significantly longer and more complicated than the 

other four.   For this reason alone it is less likely to express an instantly obvious truth.  

Indeed, even in ancient times it was viewed as different.  In the fifth century, for 

example, Proclus claimed he was able to prove it from the other four.  Though not 

apparent until much later, his proof contains an error by assuming in a subtle way the  

very postulate he is trying to prove.11  But the postulate remained troubling and 

attempts to put in on sounder footing continued without much success until the early 

19th century. 

Non-Euclidean Geometry 

 In the 19th century it is was shown that in fact the fifth postulate does not follow 

from the other four. 12  An important step in doing so was the reformulation of the fifth 

                                            
11 See Glenn R. Morrow, trans., Proclus, A Commentary on the First Book of Euclid’s Elements 
(Princeton: Princeton University Press, 1970), ll. 371.10-373.2, pp. liv-lv, 290-291. 
12 There are introductions at all levels to non-Euclidean geometry.  One that is non-technical is Philip J. 
Davis and Reuben Hersh, The Mathematical Experience (Boston: Houghton Mifflin, 1981).  On the 
relation of non-Euclidean geometry to logic, see Howard DeLong, A Profile of Mathematical Logic 
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postulate in a shorter but equivalent manner. John Playfair (1748-1819) proposed a 

revised version (also know in antiquity) stated in terms of parallel lines. 

Playfair’s Version of Euclid’s Fifth Postulate  

 Given a line and a point not on that line, there is exactly one line through  that 

point parallel to the given line. 

 

Karl Friedrich Gauss (1777-1855), Johann Bolyai (1802-1860), and Nikilai 

Lobachevski (1793-1856) independently discovered that a consistent geometry would 

result by retaining Euclid’s first four axioms but replacing Payfair’s fifth postulate by 

one inconsistent with it. The replacement specifies that through a point not on a line l  

there is more than one line parallel to l. 

 

 Postulate 5 in  Lobachevskian Geometry 

Given a line and a point not on that line, there are at least two distinct lines through 

that point parallel to the given line. 

 

This system, not surprisingly, has some novel theorems.  For example, the sum of the 

angles formed by a line bisecting two parallels is in general less than that of two right 

angles.  This geometry, unlike Euclid’s, also has the property that the measure of the 

least angle formed by the intersection of a parallel to the perpendicular of a line varies 

directly with the distance of the intersection from the line. 

                                                                                                                                          
(Reading, MA: Addison-Wesley, 1970).  On non-Euclidean geometry as a logistic system see Raymond 
L. Wilder, Introduction to Foundations of Mathematics, 2nd ed. (N.Y.: Wiley, 1967). 
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 Soon after this discovery a third variety of geometry was discovered by 

Bernhard Rienmann (1826-1866), who observed that the angles of a triangle may be 

greater than that of two right angles and that a line and a point might well determine 

no parallel. 

 

Postulate 5 in Riemanninan Geometry 

 Given a line and a point not on that line, there is no line through that point 

 parallel to the given line. 

 

It is easy to show that Rienmann’s geometry is consistent.  According to the 

earlier definition a set  {P1,…,Pn } is consistent if and only if there is an interpretation ℑ 

such that ℑ(P1)=T &…& ℑ(Pn)=T.  To use alternative terminology, we show {P1,…,Pn } 

is consistent by constructing a “model” in which P1,…,Pn are simultaneously true.  In 

the case of geometry we construct a model – defined an interpretation ℑ –  for the 

terms point  and line that occur in the language of geometry in such a way that the five 

axioms are jointly true in ℑ.  For the domain of the model let us employ the points that 

make up the surface of a sphere.  By point in ℑ let us mean any object in the domain, 

i.e. any point on the sphere’s surface.   By a line let us mean any great circles on the 

sphere’s surface, that is, any set of points that satisfies the equation for a circle and 

which as its center the center of the sphere itself.   

It is easy to see that in this interpretation the first four postulates are true.  Any 

two points on the sphere’s surface fall on some great circle, confirming postulate 1.  

Any finite arch of a great circle is contained in some great circle, which is itself not a 
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portion of another circle, satisfying postulate 2.  Any arch of a great circle from a point 

on the surface determines a circle on the sphere with that arch as its radius, verifying 

postulate 3.  Finally, all right angles are equal, as required by postulate 4.    

 It is also true that Rienmann’s postulate 5 is true.  For consider any great circle 

on the sphere and a point on the surface that is not on the circle.  Now imagine a 

second a great circle passing through that point.  This circle will interact the original 

circle, and hence is not parallel to it.   Hence a “line” and a point determine no parallel. 

 It is also easy to see that the sum of the angles in a triangle are in general 

greater than that of two right angles.  For example, consider the equator of the sphere 

given in the figure below.  Consider in addition the sphere’s “north pole” point c.  

Clearly c is not on the equator. Hence any great circle that passes through c will also 

intersect the equator.  Indeed, any such circle will be a line of longitude of the sphere, 

forming a right angle with the equator.  Now consider two points a and b on the 

equator, and the lines of longitude passing through them. Notice also that ∠cab and 

∠cba are right angles to the equator.  Hence the sum of the angles of the triangle cab 

will be greater than that of two right angles. 
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Theorem. Rienmannian Geometry is consistent. 

 

This discussion shows that Proclus and others were wrong in thinking that the first 

four postulates are sufficient for determining a Euclidean world.  The fifth postulate is 

required as well. 

 It is hard to overstate the shock that resulted from the discovery of non-

Euclidean geometry. No longer was geometry a paradigm of a priori knowledge.  

Indeed, which geometry was the right one, i.e. which was true in the actual world, 

became an open question, and evidently a matter to be resolved by empirical 

observation.  Gauss and others started actually measuring the sum of the angles of 

large terrestrial triangles to see it they equaled 90 degrees. He found that within the 

margin of error of his measuring devices Euclid’s geometry seemed to be confirmed. 

In the 20th century, however, it was a version of Rienmann’s geometry that was 

incorporated into Einstein’s  theory of relativity. Geometry, in short, lost its status as a 

priori, knowledge, and doubt was sown about the rest of mathematics.  If geometry 

was not known a prior, then perhaps other branches of mathematics were also 

empirical. 

Axiom Systems and Proofs  

 Throughout the debate, however, the security of the logical used to deduce the 

various steps in mathematical proof remained constant.  It was the status of the 

premises that changed, not that of the logic used to deduce new steps from old.  In 

those parts of the natural sciences open to mathematical description in which proofs 
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were applicable, there was never any doubt about the proof steps themselves.  If the 

premise of an argument were true and the steps of the proof fit the “rules of logic”, 

then the conclusion was true too.  Thus, though the status of the premises, and hence 

of the conclusion, of logical arguments in science came to be downgraded from a 

priori or self-evident to merely true, the certainty of the logical inferences themselves 

was not questioned.  If a step follows logically, we can be sure it does.   

The proof rules, however, did come under increased scrutiny.  Through the 18th 

century proofs were often informal and sometimes quite obscure.  In the 19th century, 

in part because of the need for the greater precision to distinguish the different forms 

of geometry, proofs became more rigorous and explicit.   By the mid 19th century the 

standards of mathematical proof were essentially what they are today.  Some 

mathematicians, however, took their interest further. They proposed precise symbolic 

languages for the formulation of mathematical propositions and codified restricted sets 

of inference rules that were generally accepted by the mathematical community.  In 

the 19th and early 20th centuries logical systems of this sort were designed by Frege, 

and by Russell and Whitehead to deduce the truths of arithmetic from axioms of set 

theory and logic.  We studied a simplified version of Frege’s system in Part 1 under 

the name naïve set theory.    

The framework the used is called an axiom or logistic system.  It has three 

parts: (1) axioms, (2) inference rules and (3) theorems deduced from the axioms by 

the inference rules.  Let us say something about each, and about how they are 

related. 
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First of all, the axioms and rules are used to define the set of theorems in an 

inductive definition.  The axioms constitute the “stater elements” of the set of 

theorems, and new elements are added by the iterative application of the inference 

rules.  The set of theorems is defined as the closure of the axioms under the inference 

rules.  Since the set  of theorems is inductively defined, each theorem P has a 

constructions sequence.  This is a series Q1,…,Qn  such that P=Qn, and each Qi is 

either a starter element (i.e. an axiom), or is constructed (i.e. derive) from earlier 

elements of the series.  In an axiom system, another name for a construction 

sequence is a proof.   

The second important feature of an axiom system is that axioms and inference 

rules are “syntactic” or “formal”.  Lets see how logicians explain what syntax means.  

Syntax begins by stipulating a set Σ of signs.  A sign is understood to be a physical 

object of a sort that can be easily perceived to be distinct from other signs and that 

can be used to represent another entity.  In general, a concept is syntactic if it is 

defined in terms of the easily perceptible physical characteristics of signs (marks or 

sounds).  Signs are usually understood to be written (marks) or spoken (sounds). 

 An important example of a syntactic idea is the operation called concatenation.  

This is the process of “writing” one mark to the left of another, or of “saying” one word 

right after another.  “Writing” and “saying” of this kind are supposed to be physical 

operations that are easy to perceive.  The series of marks or sounds, moreover, is 

supposed to form a perceptual whole easily distinguished from its parts, yet one that 

displays in its physical shape the very parts from which it was formed.  Normally, 

when you see a series of marks or hear a “stream” of words, you can pick out the 
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individual signs used to compose the whole.  Logicians use the symbol ∩ to represent 

the concatenation operation:  x∩y  is the name of the result of concatenating the sign 

y after the sign x.    When x, y, and z are written marks, we can delete the ∩ symbol 

because,  x∩y  is just another name for xy,  x∩y∩z  is  xyz , etc.     

Any rule that applies to signs and is defined by means of concatenation is 

automatically syntactic because it forms an easily perceptible physical whole that 

exhibits its parts.  The formation rules of grammar that we have met in Part 2 are 

concatenation rules.  For example, in categorical logic to form the proposition ASP 

proposition, we concatenate the marks A, S and P, and in propositional logic to form 

the sentence (p3∧∼p5), we first concatenate ∼ with p5 to get ∼p5.  We then concatenate 

(,p3,∧, ∼p5, and ) to get  (p3∧∼p5) .    

The axioms and inference rules of an axiom system are required to be 

definable syntactically.  Normally they are defined by concatenation.  For example, 

later in defining an axiom system for propositional logic, we shall say:  

Any sentence of the form (P→(Q→P)) is an axiom. 

This is a shorthand way of saying something that when more fully stated, makes use 

of the idea of concatenation: 

the set of all formula that result from concatenating ( with P  with → with ( with 
Q with → with P with ) is a subset of the set of axioms 
 

This statement can be said both more precisely and briefly in the notation of set 

theory.  Let Sen be the set of sentences and Ax the set of axioms.  The reformulation 

is then: 

{ (∩P∩→∩ (∩Q∩→∩P) ∩) : P∈Sen & Q∈Sen} ⊆ Ax 
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Because this set is defined in terms of concatenation it is syntactic.  We can easily 

“see” whether a sentence has the form (P→(Q→P)), and if it does, we can tell that it is 

made up of the parts P, Q, and (Q→P).    

As an example of a syntactic inference rule defined in terms of concatenation 

consider modus ponens.  We shall use this rule shortly to axiomatize propositional 

logic.  For illustration let us formulate the rule in two different but equivalent ways, 

both of which use concatenation.  The first formulation stresses that modus ponens is, 

a construction rule used in the inductive definition of theorem, and second 

emphasizes that it is an “inference rule” used in justifying the steps of a proof.   

From  (∩P∩→∩Q∩) and P construct Q. 
From  (∩P∩→∩Q∩) and P deduce Q. 

Because a proof is simply another name for a construction sequence for a theorem, 

the two formulations really describe the same operation in different words.  The 

important point, however, is that because modus ponens is defined in terms of 

concatenation, it is syntactic.   

We are ready to state the definition of an axiom system.  Let Sen be the set of 

formulas of a formal language.  

Axiom System 

Definition    

An axiom system AS for Sen is a structure <Ax, PR, Th> such that  

1. Ax (the axioms of AS) is a syntactically defined subset of Sen,  

2. PR  is a syntactically defined set of relations on Sen (the inference rules of AS), 

and 

3. Th (the set of theorems of AS) is the inductively defined set such that 

a.  Ax⊆Th;  
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b. for any x1,…,xn,xn+1  in Sen,  x1,…,xn, and any n-place relation R in PR,  if 

x1,…,xn, are  in Th and < x1,…,xn,xn+1 >∈R, then xn+1 is in Th; 

c. nothing else is in Th. 

 

It is customary to use the symbol ├  to indicate that a sentence is a theorem. 

Definitions    

1. A proof for a theorem P of AS is any construction sequence for P showing it is 

an element of Ax.  

2. ├P  is an abbreviation for P is a theorem or P∈Th 

Derivation   

 An axiom system can also be used to construct formally correct arguments.  

Intuitively an argument is formally correct if its conclusion “follows from” its premises 

by appeal to the axioms, theorems and inference rules of the system.  We are said to 

“derive” a conclusion Q from a set of premises P1,…,Pn  in an axiom system if we can 

“prove” Q  by adding P1,…, Pn to the axioms of the system and then deducing Q from 

the combined set of axioms and premises.   

Definition 

Relative to an axiom system AS, we say {P1,…,Pn } is derivable from Q (abbreviated   

{P1,…,Pn }├  Q)  iff there is a finite sequence (called a derivation) such that  

a.  Q is its last element; and  

b.  each element in the sequence is either in {P1,…,Pn } or Ax or follows from 

earlier elements in the sequence by some rule in PR. 

 

Another way to say that {P1,…,Pn } is derivable from Q would be to say that Q would 

be a theorem if we added {P1,…,Pn } to the axioms, as the following theorem confirms: 
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Theorem 

1. {P1,…,Pn }├ Q  iff AS′ = <Ax∪{P1,…,Pn }, PR, Th′ > is an axiom system and Q∈Th′. 

2. A derivation of Q from P1,…,Pn  is a proof of Q in AS′. 

Again, if the axioms and inference rules of the system are well chosen it will turn out 

that all and only valid arguments of the language are derivable in the axiom system. 

Certainty 

 At this point we should pause to explain why syntactic concepts are especially 

important to the scientific method of logic.  (Note that formal is a synonym for syntactic 

because syntax is a matter of form.)  As we have seen, built into the definition of a 

syntactic property is the fact that it is a crudely perceivable physical property of marks 

or sounds.  The important of such properties lies in the fact that they are epistemically 

transparent.   It is easy to perceive with a high degree if certainty whether something 

has them or not. It is easy, for example, to perceive by looking at the physical shapes 

of three consecutive lines of a proof P→Q , P, and Q that they fit the form of modus 

ponens . 

 A feature of logical arguments that cries out for explanation is that if the 

premises are true then we call tell with an extremely high degree of certainty that the 

conclusion is also true.  What accounts for this epistemological sureness?  It is due to 

the epistemic transparency of syntactic ideas.  In the case of modus ponens  we are 

certain because the sentences in question fit a readily perceivable syntactic pattern,   

something that is easy to judge by the simple perception of the physical properties of 

the signs being used. 
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 On the other hand, though syntactic ideas of grammar and proof theory can be 

spotted with a high degree of certainly, they might be totally uninteresting.  For 

example, let us call a written word of English odd if its normal spelling contains an odd 

number of letters.  We can tell then with a high degree of certainty that cow is odd but 

goat is not odd.  But this concept is utterly uninteresting.  Who cares whether a word 

is odd or not in this sense?  Likewise, it may be easy to perceive whether a sequence 

of lines in an axiom system is a proof, and hence to know with a high degree of 

certainty whether a formula is a theorem of an axiom system, but that fact may be 

utterly uninteresting.  Let us now explain what makes axiom systems interesting. 

Soundness and Completeness 

 What makes axiom systems interesting is that their theorems happen to be 

logical truths and their inference rules happen to be valid arguments.  Notice that  

axioms of a system are simple human creations.  Some logician decides that these 

sentences are to be axioms and those operations are to be inference rules.  There is 

no guarantee that the axioms are logical truths or the rules valid.  For example, 

consider the system with p1∧∼ p1 as its only axiom, together with one rule: from P 

deduce ∼P.  That system’s axioms and theorems are inconsistent, and its rule is 

invalid.  A logician who proposed it would be fired.  What makes a good axiom system 

interesting is that the axioms and rules have been chose with special care.  The 

axioms, which are defined syntactically, are chosen because they are logical truths, 

and the rules, also defined syntactically, are chose because they are valid.  Moreover, 

in the ideal case, there are enough axioms and rules so that no logical truth is left out 

of the set of theorems and every valid argument is derivable.  In that happy 
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coincidence, the axiom system is very interesting indeed.  In that case the set of 

theorems, defined syntactically, coincides with the set of logical truths, defined 

semantically; and  the set of derivable arguments, defined syntactically, coincides with 

the set of valid arguments, defined semantically.  Because every logical truth and 

every valid argument is captured by the axiom system,  the system is said to be 

complete.  Conversely, because every theorem and derivable argument is logically 

true or valid,  it is said do be sound.  Let P1,…,Pn , Q be formulas of a formal 

language. 

Definitions  
 

An axioms system is statement sound iff every theorem is a logical truth, and is 

argument sound iff 

for any P1,…,Pn , Q,       if  {P1,…,Pn }├  Q   then    {P1,…,Pn }╞ Q.     

An axioms system is statement complete iff every logical truth is a theorem, and is 

argument complete iff 

for any P1,…,Pn , Q,        if  {P1,…,Pn }╞ Q   then    {P1,…,Pn }├ Q.     

Sound and complete theories are extremely interesting scientifically because they 

characterize the same thing in two ways.  First, in the semantic theory they define the 

set of logical truths and valid arguments.  These are scientifically interesting because 

they identity an important set of truths common to all the sciences and the set of 

logical arguments that can be used to advance knowledge from things already known 

to things yet to be discovered.   Secondly, in the proof theory (the axiom system) they 

impart to the logical truths and valid arguments a degree of certainty unrivaled in other 

branches of science.   Soundness and completeness theorems show that the key 
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ideas of logic – logical  truth and valid argument – are simultaneously scientifically 

interesting and epistemically accessible. 

 In the following lectures we shall review a series of sound and complete 

systems for the languages we studied in Part 2:  categorical, the propositional, and 

first-order logic.  We will begin with categorical logic both because it it provides a good 

example due to its simplicity and because it was very important in history of pre-20th 

century philosophy.  We then investigate the two languages of modern logic –  

propositional logic, which is simpler, and first-order logic, which is expressively 

powerful.  
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Summary 

In this lecture we have meet the notion of an axiom system.  In such a 

system a set of theorems is has a definition that is both inductive and syntactic.  

It is defined inductively as the closure of a set of axioms under a set of inference 

rules.  Because it is inductive, every theorem has a construction sequence, also 

know in the case of an axiom system as a proof.  Because the set of axioms and 

inference rules are defined syntactically they are epistemically transparent.  If a 

formula has a proof, we can know with a high degree of certainty that it is in the 

set of theorems. 

 We also learned that there is no guarantee that the set of theorems 

or derivable arguments captured in an axiom system is interesting.  Whether they 

are depends on whether the set of theorems happens to correspond to the set of 

logical truths of the language and whether the arguments derivable in the axiom 

system happen to coincide with the set of valid arguments of the language.  If 

every theorem is logically true and every derivable argument is valid, the system 

is sound.   If every logical truth is a theorem and every valid argument is 

derivable, it is complete.  If a system is sound and complete, it simultaneously 

explains why the set of logical truths and valid arguments are interesting and 

knowable with certainty.  The semantic theory, which defines truth in an 

interpretation, logical truth, and valid argument, provides the analyses showing 

that the these sets are scientifically interesting because they say something 
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about the world and provide reasoning patterns for the advancement of 

knowledge.  The proof theory shows why the logical truths and derivable 

argument are knowable with certainty because it defines them in finite 

epistemically transparent syntactic ideas.  
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LECTURE 17.   REDUCTIONS TO THE PERFECT SYLLOGISMS  

 

Syllogistic Reduction 

 In this lecture we shall have some fun.  We will meet our first example of an 

axiom system – that part is serious – but at the same time we will expose some occult 

lore from the Middle Ages.   In the Prior Analytics Aristotle not only described the valid 

syllogisms.  He also sketched what was really an early version of an axiom system.  

All the valid syllogisms, he suggested, were is some fundamental way “reducible” by 

logical rules to the “perfect syllogisms” of the first figure, Barbara and Celarent: 

Barbara Every M is P  Celarent No M is P 
  Every S is M    Every S is M 
  ∴Every S is P   ∴No S is P 

Barbara is perfect (i.e. complete) in the sense that it is logically transparent.  What 

could be more logically evident than the transitivity of ⊆?  Celarent in turn may be 

seen to be almost as perfect as Barbara because in a sense it is a version of Barbara. 

If we reformulate No X is Y contrapositively as Every Y is non-X, Celarent becomes a 

case of Barbara: 

 Every M is non-P  
Every S is M 
∴Every S is non-P 

In this lecture we shall see how to “reduce” all the valid syllogisms to  Barbara 

and Celarent.  Viewed in reverse a syllogism’s reduction is what we would call today a 

proof.  So we will also be seeing an early form of axiom system in which all the valid 

syllogisms are proven from Barbara and Celarent by proof rules.  
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Aristotle’s insight was to define in a rudimentary way what we call today an 

inductive set.  This is RSyl,  the set of “ reducible syllogisms”.   As in any inductive 

definition, we begin by stipulating the set of “starter” elements.  This is the set PSyl of 

perfect syllogisms, defined as all syllgisms that have the  form of Barbara and 

Celarent.  These are the axioms of the system.  Construction is accomplished by 

means of a set of rules, which we shall call RR, the set of reduction rules  The rules in 

RR  are early versions of what we now call inference rules because by strictly formal 

(i.e. syntactic) manipulations of “marks on a page”, they generate valid syllogisms 

from other valid syllogism. There are four rules. We shall discuss each informally and 

then state its precise syntactic definition.   

 

Transposition 

  The first rule, called transposition of the premises (transpositio praemissarum), 

says that the order of the premises in a syllogism may be reversed. 

 The Greek word for transposition is metathesis, so the rule is referred to by the 

abbreviated code letter m.   This rule is easy to define precisely.  Single and double 

underlinings highlight which premise is switched where: 

Transposition (m).     From <P,Q,R> form <Q,P,R>  

Simple Conversion 

   The second rule says that the order of subject and predicate in E or I-

statements is irrelevant.  Whether two sets are empty or not – the fact that is at issue 

in E and I statements – does not depend on the order in which the two sets are 

named.  The irrelevance of term order is immediately obvious from the Venn 
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Diagrams for E and I statements.   In general, changing the order of the a 

proposition’s subject and predicate is called conversion. The particular sort of order 

inversion E and I statements is called simple conversion (conversio simplex in Latin), 

and the code letter for this rule is s.  It is called simple because, unlike the next rule 

which is more complex, this rule changes only the order of the terms.  In the definition 

below colors indicate which term is switched where 

Simple Conversion (s) 

From < EXY,Q,R> form < EYX,Q,R>  

From < P,EXY,R> form  < P,EYX,R>  

From < P,Q,EXY> form < P,Q,EYX>  

From < IXY,Q,R> form < IYX,Q,R>  

From < P,IXY,R> form < P,IYX,R>  

From < P,Q,IXY> form < P,Q,IYX>  

 

Accidental Conversion   

 When the argument from P to Q is valid, i.e. when P╞Q, let us say that P is 

stronger than Q. (It is stronger because, in general, it entails more.) The third rule 

exploits the fact that a stronger proposition may replace a weaker one as the premise 

of a valid argument, and as the conclusion a weaker may replace a stronger. Consider 

in particular the two stronger-weaker pairs:    

1. AXYP╞ IYX   and 
2. EXY╞ OYX,  

 
In these examples, the conclusion (weaker) can be seen to follow from the premise 

(stronger) as the result of two logical steps: a conversion of terms in the I and O 

propositions, and the subalternation entailment of an I from an A, and an O from an E 
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proposition.   Let us now form a rule by applying the earlier fact about stronger-weaker 

replacement to these pairs in particular:   

You may replace a premise of a syllogism by a proposition that is stronger, or a 

conclusion by one that is weaker, according to the entailments 1 or 2. 

The rule, which we will restate more precisely below, is called accidental conversion 

(conversio per accidens); it is abbreviated by the letter p.  As in simple conversion 

colors indicate which term is switched where 

Accidental Conversion (p) 

From < IXY,Q,R> form < AYX,Q,R>  

From < P,IXY,R> form < P,AYX,R>  

From < P,Q,AXY> form < P,Q,IYX>  

From < OXY,Q,R> form < EYX,Q,R>   

From < P,OXY,R> form  < P,EYX,R>  

From < P,Q,EXY> form < P,Q,OYX>  

 

Reduction to the Impossible 

 Recall that in categorical logic negations are limited to:   

 ∼AXY  is  OXY  
∼EXY  is  IXY 
∼IXY is  EXY 
∼OXY is  AXY 

 

Recall also that in propositional logic the following biconditionals are tautologies and 

that the sentences that flank the ↔ are logical equivalent.   

[(P∧Q)→R] ↔ [(P∧∼R)→∼Q]   
[(P∧Q)→R] ↔ [(∼R∧Q)→∼P]   
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The last rule says that you may apply these equivalences to the limited set of 

negations present in categorical logic.  The rule, stated below, is called reduction to 

the impossible (reductio per impossibilem or reductio per contradictionem).  Its 

abbreviation letter is c.  As in transposition single and double underlinings highlight 

which premise is switched where: 

Reduction to the Impossible (c) 

From <P,Q,R> form <P,∼R,∼Q>  

From <P,Q,R> form <∼R,Q,∼P>  

 

The Reduction System 

We are now ready to state the inductive definition of the set PSyl of provable 

syllogisms.   Let <P,Q,R>,  range over syllogisms. 

 
Definition.  The Aristotelian reduction system  ASyl for the categorical logic is the proof 

system  < RSyl, RR, PSyl > such that  

1.  PSyl (the perfect syllogisms) is the set of all syllogisms of the form <AYZ, AXY, AXZ> or <EYZ, 

AXY, EXZ>     

1. RR is the set of rules: 

Transposition (m) 
 From <P,Q,R> form <Q,P,R>  

Simple Conversion (s) 
From < EXY,Q,R> form < EYX,Q,R>  
From < P,EXY,R> form  < P,EYX,R>  
From < P,Q,EXY> form < P,Q,EYX>  
From < IXY,Q,R> form < IYX,Q,R>  
From < P,IXY,R> form < P,IYX,R>  
From < P,Q,IXY> form < P,Q,IYX>  

Accidental Conversion (p) 
From < IXY,Q,R> form < AYX,Q,R>  
From < P,IXY,R> form < P,AYX,R>  
From < P,Q,AXY> form < P,Q,IYX>  
From < OXY,Q,R> form < EYX,Q,R>   
From < P,OXY,R> form  < P,EYX,R>  
From < P,Q,EXY> form < P,Q,OYX>  
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Reduction to the Impossible (c) 
From <P,Q,R> form <P,∼R,∼Q>  
From <P,Q,R> form <∼R,Q,∼P>  

2. RSyl is defined inductively as follows:  
i.  PSyl ⊆RSyl 
ii.  if <P,Q,R>∈RSyl, and is formed <P′,Q′,R′ > from <P,Q,R> by the rule m, s, p, or c, then 

<P′,Q′,R′ >∈ RSyl; 
iii.  nothing else is in RSyl. 

 

The set RSyl of reducible syllogisms is an excellent example of an inductive 

system in proof theory.  First of all, the definitions of the basic syllogisms, any Barbara 

or Celarent, are syntactic because they are defined by their form.  Moreover, whether 

a syllogism meets the right syntactic form to count as Barbara or Celarent, i.e. 

whether it is a member of the “starter set” used in the inductive definition,  is readily 

perceptible – it is “epistemically transparent.”   Likewise the four rules are formal.  

They consist of manipulations of symbol strings in prescribed ways, all of which are 

also “epistemically transparent.”   We apply these rules to the starter set to construct 

the inductive set RSyl.  Membership in this set will in turn be transparent since, being 

inductive, every element of the set will have a construction sequence.  This sequence 

will consist of a finite series of syllogisms.  The syllogism at any stage will either be a 

member of the starter set, a fact which is transparent, or it will be constructed, 

transparently, from an earlier syllogism in the series by one of the rules. These 

construction sequences viewed in one direction are proofs that the last syllogism 

“follows from” Barbara or Celarent.  Viewed in the other direction they are reductions 

to Barbara or Celarent.   

Let us now see some examples.  In the examples below rather that reducing 

every syllogism all the way back to Barbara or Celarent,   we will reduce them only to 
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other syllogisms that we have already shown can in turn be reduced to Barbara or 

Celarent.   

 
 
 

Examples of Reductions: Proofs 

 Let us begin by showing that the other syllogisms of the first figure may be 

proven from (reduced to) Barbara and Celarent.  The following are construction 

sequences showing that the syllogism on the last line is in the set PSyl.   

 
1. <EYZ,AXZ,EXY> Celarent 
2. <EYZ,IXY,OXZ>  1, c (Ferio) 

 
1. <AZX,AYZ,EXY> (Barbara) 
2. <IXY,AYZ,IZX>  1, c  
3. <IXY,AYZ,IXZ>  2, s  
4. <AYZ,IXY,IXZ>  1, m (Darii) 

 
The two remain first figure syllogisms, Celaront and Barbari, are subaltern moods and 

follow from Barbara and Celarent respectively.   

 
1. <AYZ,AXY,AXZ> (Barbara) 
2. <AYZ,AXY,IZX>  1, p 
3. <AYZ,AXY,IXZ>  2, s (Babari) 

 
1. <EYZ,AXY,EXZ> Celarent   
2. <EYZ,AXY,EZX> 1, s  
3. <EYZ,AXY,OXZ> 2, p (Celaront) 

 
 
 The fun starts as we turn to the valid moods of figures two, three, and four 

because hidden in the names of the syllogisms, which were first devised in the Middle 

Ages for use in mnemonic poems, there are codes that tell how they can be reduced 
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to the valid moods of the first figures.   Recall the poem cited earlier, which divides the 

valid moods into the four figures and their residual subaltern moods: 

Barbara, Celarent, Darii, Ferioque are of the First: 
Cesare, Camestres, Festino, Baroco are of the Second: 
The Third has Darapti, Disamis, Datisi, Felapton, 
Bocardo, Ferison; The Fourth adds in addition 
Bramantip, Camenes, Dimaris, Fesapo, Fresison. 
Fifth are the Subalterns, which all come from the Universals, 
They do not have a name, nor, if well connected, a use. 

In the 13th century Peter of Spain, a master in the Arts faculty at the University of 

Paris, explained the codes in his Summa logicales, a textbook that became a standard 

for many centuries. 13   As Peter explains, the vowels in a syllogism’s name record its 

mood:   

It is important to know that the vowels A, E, I and O stand for the four types of 
propositions.  The vowel A stands for a universal affirmative; E for a universal 
negative; I for a particular affirmative; and O for a particular negative. 

 
In addition, built into the other letters are instructions on how to prove the 

syllogism.  The syllogisms all have as their initial letters B, C, D, or F.   The first four 

syllogisms of the first figure are special because it is from these that the valid 

syllogisms in later figures are all deduced, each from a syllogism in the first figure 

having the same initial letter.  For example, Disamis in the third figure is proven from 

Darii in the first figure, indicated by the fact that they both begin with D.   

The four consonants m, s, p, and c when they follow a vowel also have special 

meaning.  Each names one of the four inference rules. Working backward from the 

syllogism to be proved, you can arrive at the right first figure syllogism by applying 

                                            
13 The quotations here and below are from Peter of Spain (later Pope John XXI), Summa logicales, also 
know as the Tractatus, Normal Kretzman and Eleonore Stump, eds., Cambridge Translations of 
Medieval Philosophy Texts (Cambridge: Cambridge University Press, 1988).  The names and their 
order in Peter’s 13th century poem are slightly different.   Peter, like Aristotle and most logicians in the 
middle ages, views the fourth as part of the first figure, defining the first figure as all the valid syllogisms 
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these rules.  The rule letter indicates that the syllogism was derived from an earlier 

one in which the rule is applied to the line (premise or conclusion) represented by the 

vowel that immediately precedes the rule letter.  The other consonants in the names, 

like b, l, t, n, and  r no special significance and may be ignored.  Peter’s own 

explanation is: 

 Again, there are three syllables in each word (if there is any more, it is 
superfluous, except for M, as will be clear later).  The first three syllables stand 
for the major proposition of the syllogism; the second stands for the minor; and 
the third for the conclusion.  For example, the first word – Barbara – has three 
syllables, in each of which A is used; the three occurrences of A signify that the 
first mood of the first figure consists of two universal affirmative premises 
resulting in a universal affirmative conclusion.  The vowels used in the other 
worlds should also be understood in this way.) 
 Again, it is important to know that the first four words [i.e. names] of the 
first verse [refer to the first figure] and all the other subsequent words [i.e. 
names] begin with these consonants: B, C, D, and F.  In this way we are given 
to understand that all the moods that a word beginning with B stand for should 
be reduced to the first mood of the first figure; all the moods signified by a word 
beginning with C, to the second mood of the first figure; D, to the third mood; F, 
to the fourth. 
 Again, where S is used in these words, it signifies that the proposition 
that the immediately preceding vowel stands for requires simple conversion.  
And P signifies that the proposition requires conversion per accidens.  And 
where M is used, it signifies that the premise requires transposition.  
(Transposition is making the major premise the minor, and vice versa.)  And 
where C is used [after a vowel] it signifies that the mood that word stands for 
should be proved by reduction per impossibile. 

 
Here are some examples: 
 

1. <AYX,IXY,IXZ> Darii 
2. <AYX,IXY,IZX> 1, s 
3. <AYX,IYX,IZX> 2, s 
4. <IYZ,AYX,IXZ> 3, m  (Disamis) 

 
 

1. <EYZ,IXY,OXZ> Ferio 
2. <EYZ,AYX,OXZ> 1, p (Felapton) 

 

                                                                                                                                          
in which the middle term is the subject of one premise but the predicate of the other).  The poem cited 
in the text follows the more modern tradition, which distinguishes the fourth from the first figure.        
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Only two syllogisms, Bocardo and Baroco, contain c in their names.  They form a trio 

of syllogisms with Barbara, all of which are interdeducible in one line by Reduction to 

the Impossible. Consider the derivation of  Baroco from Barbara: 

 
1. <AZY,AXZ,AXY> Barbara 
2. <AZY,OXY,OXZ> 1, c (Baroco) 

 
 

 By somewhat tedious work we could in fact prove all 24 valid syllogisms.  By 

doing so would show that our rule set is complete in the sense explained in the last 

lecture:  every valid syllogism has a proof.  It is also easy to prove (by the techniques 

of Lecture 13) the converse, that the system is sound: every syllogism that has a proof 

is valid.   

 
Theorem: Soundness and Completeness.   The set of valid syllogisms is the same as 

the set of reducible syllogisms. 

 
 Technically, the soundness and completeness theorem for this system is not 

very interesting because the inductive set itself is finite, and indeed quite small.  There 

are only 24 valid moods.  Rather than define the set inductively we could just list its 

members.   I have presented the theory as one of inductive sets, however, because it 

then provides a simple and clear example of a “proof system” that was historically 

important.  From the viewpoint of technical logic it may be noted that there are 

generalizations of Aristotle’s system that are not mathematically trivial.  If we allow 

arguments in categorical syntax to have any number of premises, the set of valid 

arguments is infinite.  This infinite set can be inductively defined using Aristotle’s rules 

together with some simple rules that capture immediate inferences, and the resulting 
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system shown to be sound and complete.14   It is true that the bare A, E, I and O 

syntax of categorical logic is expressively limited from the perspective of first-order 

logic, which can express most of mathematics.  But by stringing syllogisms together, it 

practicing logicians and philosophers were able to compose syllogistic arguments of 

numerous premises. Traditional logic also investigated hypothetical propositions 

(conjunctions, disjunctions and conditionals) and other syntactic forms that we have 

not had time to discuss in these lectures, like complex noun and verb phrases, relative 

clauses, tenses and modal verb modifiers.  Generally speaking, the language of pre-

19th century logic was complex and subtle, an impressive tool for the science and 

philosophy of its day, and an interesting subject for a student of philosophy or the 

history of ideas.15 

Exercises 

Prove form (reduce to) a first figure syllogism with the same initial letter the following: 

1. Datisi 

2. Camestrop 

3. Bocardo 

4. Fesapo 

 

                                            
14 See John N. Martin, “Aristotle’s Natural Deduction Reconsidered,” op. cit.,  and references therein.  
For a more complete citation of the relevant literature see note 4 of Part 2. 
15 See I. M. Bocheński, A History of Formal Logic, Second ed. (Notre Dame Indiana: University of Notre 
Dame Press, 1961) (Reprinted by Chelsea Publishing Co.); Alexander Broadie, Introduction to Medieval 
Logic (Oxford:Clarendon Press, 1987). 
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LECTURE 18.  PROPOSITIONAL AND FIRST-ORDER LOGIC: PROOF THEORY16 

 

Introduction 

 In this lecture we shall provide an inductive definition for the set of theorems of  

propositional and first-order logic.  This will be a “textbook example” of a fully rigorous 

modern axiom system.  First a warning.  Proof theory is not everybody’s cup of tea.  It 

takes a particularly obsessive mind to like doing the minutely careful and often quite 

complicated symbolic manipulation necessary to work out a proof system work.  Our 

interest here is wholly theoretically.  Our goal is to see what an axiom system looks 

like and to gain an appreciation for why they are important.  We will not be mastering 

the actual derivation of theorems in these systems.  Logicians themselves hardly 

actually use these systems in their daily work.  What is interesting is that they exist in  

principle. 

 We will first sketch basic proof theory the propositional logic.  We do so in two 

stages.  We begin by axiomatizing its logical truths – i.e. the tautologies. These will be 

defined inductively as the set of theorems that follow from a set of four kinds of axioms 

by the single inference rule modus ponens.  This is the way proof theory was done in 

the early decades of the 20th century.  The system we will define is utterly impractical 

but extremely elegant theoretically.  Given the axiom system, we can then define the 

”logically acceptable” arguments as derivation relative to the system, in the manner 

sketched in a previous lecture:  Q is derivable from P1,…,Pn if Q would be a theorem if 
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P1,…,Pn were added to the axioms. The resulting system is both statement and 

argument sound and complete.    

 We will then go on to a more interesting proof theory for the propositional logic.  

In this second approach the set of “acceptable arguments” is given a direct definition 

that is both inductive and syntactic.  This second method is important for two reasons, 

one practical and one theoretical.  Because the rule set is comprehensive, it is actually 

quite easy to use.  It is the system logicians most often employ if they have to state a 

formal proof – and for this reason it is the system drilled into student in advance logic 

courses.  But since our purpose here is not learning how to do proofs – that is for 

another course – we are interested in the system for the second, theoretical reason.  

Unlike an axiom system, which defines a set of sentences (the theorems), this second 

system defines a relation, a set of ordered pairs.  This is the relation that holds 

between the premises and conclusion of a formally correct argument.  This second 

system is argument sound and complete.   

 After having sketched the proof theory for propositional logic in two ways, we 

extended it to first-order logic.  Again, our interest is mainly theoretical.  What you 

should be noticing is how the key ideas– logical truth and “acceptable argument” – are 

being explained by definitions that are at once inductive and syntactic. 

                                                                                                                                          
16 For a review of the technical history in this and subsequent lectures see John Martin and John 
Franco, “A History of Satisfiability”, in Armin Biere, Hans van Maaren, and Toby Walsh, eds., Handbook 
of Satisfiability, IOS Press, to appear, 2008. 
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 Proof Theory for Propositional Logic 

Substitution 

 Before defining the axioms we must say something about substitution.  Below 

we will specify four sets of axioms.  Each axiom set is defined by reference to a 

specific sentence form called a sentence schema.  One of the forms we shall use is 

P→(Q→P).  An axiom will be any sentence that “has the same form” as this sentence 

schema.   But what do we mean by “has the same form”?  This idea is explained by 

substitution.  Any way of substituting sentences for p1 and p2 in p1→(p2→p1) is an 

axiom.   This happens if we can alter the construction sequence of by putting in place 

of the individual sentences p1 and p2 the either construction sequences of the 

formulas replacing them. The resulting construction sequence is longer than the 

original but it produces a formula that has the same form as p1→(p2→p1) but with p1 

and p2 replaced by longer formulas. Consider the example below.  It consists of four 

construction sequences.  The first is for p1→(p2→p1),  the second is for p25∧p6, the 

third is for ∼∼p6, and the fourth the construction tree for (p25∧p6)→(( ∼∼p6→(p25∧p6)), 

which results from replacing every occurrence of p1 by the construction tree for p25∧p6, 

and every occurrence of p2 by the construction tree for ∼∼p6 in the construction tree for 

p1→(p2→p1).   It follows that (p25∧p6)→(( ∼∼p6→(p25∧p6)) is a substitution instance of 

p1→(p2→p1).        
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      p6 
      p25 
      p25∧p6   
      p6 
p1      ∼p6 

p2  p6  p6  ∼∼p6 

(p2→p1)   p25  ∼p6  ∼∼p6→(p25∧p6) 
 p1→(p2→p1)   p25∧p6   ∼∼p6  (p25∧p6)→(( ∼∼p6→(p25∧p6))  
 

 We make this idea precise in the next definition.   Let CS(P) be a construction 

sequence for P. 

 

Definition 

A sentence Q is a substitution instance of P if and only if there is some construction 

sequence CS(Q) of Q formed from some construction sequence CS(P) of P by 

replacing some atomic sentences R1,…,Rn of P in CS(P) by (possibly molecular) 

sentences S1,…,Sn, and inserting some construction sequences CS(S1),…, CS(Sn ) 

into the new sequence prior to occurrences of S1,…,Sn.    

  

Łukasiewicz’s Axiom System 

The Łukasiewicz’s axiom system for propositional logic is <AxPL, PR, ThPL> such 
that 
1.   AxPL the set that contains all and only sentences that are substitution instances of 

one of the following: 17
 

Axiom Schema 1. p1→( p2→ p1)   
Axiom Schema 2. (p1→( p2→p3))→(( p1→ p2)→( p1→ p3))   
Axiom Schema 3. (∼p1→∼ p2)→( p2→ p1)    

2.  PR contains only the rule modus ponens:  from two sentences of the form P and 
P→Q  the sentence of the form Q follows. 

3.  AxPL is defined by induction as follows 
a. AxPL⊆ ThPL. 

                                            
17 Frege axiomatized the propositional logic using five axioms in 1879.  This reduced set is due to Jan 
Łukasiewicz.  See Jan Łukasiewicz and Alfred Tarski, “Untersuchungen über den Aussagenkalkül,” in 
Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie, 23:III (Warsaw 
1930), pp. 30-50.  For fuller presentation see Alonzo Church, Introduction to Logic Chapter II, §27 
(Princeton: Princeton University Press, 1956). 
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b. If P and Q are in ThPL and R is constructed (“derived”) from P and Q by modus 
ponens, then R  is in ThPL. 

c. Nothing else is in ThPL. 
 

It is customary to abbreviate the fact that P is a theorem, i.e that P∈ThPL, by the 

turnstyle notation ├P.   Colors are added to aid the eye in seeing multiple occurrences 

in a single line of the same sentence.  As in used of modus ponens in earlier lectures, 

underlinings are added here to aid the eye in spotting the relevant antecedent and 

consequent of the conditional used in the rule. 

 

Examples of Proofs 

To make it easier to read proofs, we shall abbreviate the names of atomic 

sentences, which employ subscripts, by single letters.  Let p, q, and r abbreviate 

respectively p1, p2, and  p3.  In the following proofs colors will be used to indicate that 

a sentence is a instance of the formula of the same color in an axiom, and underlining 

will be used to indicate the antecedent and consequents of conditionals used in an 

application of modus pones. 

 

Theorem. ├ p→p 

1. p→((p→q)→p) (Axiom Schema 1) 
2. (p→((p→p)→p)→((p→(p→p))→(p→p))    (Axiom Schema 2) 
3. (p→(p→p))→(p→p)     1 & 2, modus ponens 
4. p→(p→p)     (Axiom Schema 1) 
5. p→p    3 & 4, modus ponens 

Theorem.  ├ ∼p→(p→q)      

1. (∼q→∼p)→(p→q)    (Axiom Schema 3) 
2. ((∼q→∼p)→(p→q))→(∼p→((∼q→∼p)→(p→q)))    (Axiom Schema 1) 
3. ∼p→((∼q→∼p)→(p→q))    1 & 2, modus ponens 
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4. (∼p→((∼q→∼p)→(p→q)))→((∼p→(∼q→∼p))→(∼p→(p→q)))    (Axiom Schema 2) 
5. (∼p→(∼q→∼p))→(∼p→(p→q)))       3 & 4, modus ponens 
6. ∼p→(∼q→∼p)     (Axiom Schema 1) 
7. ∼p→(p→q)     5& 6, modus ponens 

Defining “Derivability” in the Axiom System 

As explained in the previous lecture, it is possible to define by reference to the 

axiom system  the notion of a formally correct proof, called a derivation, of the 

conclusion Q  from the premise set {P1,…,Pn }.  The conclusion follows from the 

premises if by adding the premises to the axiom set we could then prove the 

conclusion as a theorem in the augmented axiom system.  Let <AxPL∪{P1,…,Pn }, 

PR, ThPL′> be this axiom system. 

Definition.  Q is (syntactically) derivable from {P1,…,Pn } (abbreviated P1,…,Pn├ Q)   iff 

Q∈ ThPL′  <AxPL∪{P1,…,Pn }, PR, ThPL′> is an axiom system and Q∈ ThPL′  .    

 

Since the syntax contains the material conditional → and the system has the rule 

modus ponens, there is a way to relate the theorems of the system to the derivable 

arguments.   We do so by showing that the conditional (P1→(P2→(…→Pn)))→Q is a 

theorem whenever there is a derivation of Q form {P1,…,Pn }.     

Theorem (The Deduction Theorem).  There is a derivation of Q from {P1,…,Pn } iff 

(P1→( P2→(…→Pn)))→Q is a theorem. 

Proof Sketch.  If (P1→(P2→(…→Pn)))→Q is a theorem, then we can construct a proof exhibiting the 

derivation of Q form {P1,…,Pn } as follows:    

…  

m.       (P1→( P2→(…→Pn)))→Q  (previously prove this as a theorem) 

m+1.     P1     assumption 

m+2.     P2     assumption 

…      … 
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m+n.     Pn     assumption 

m+n+1.     P2→(…→Pn)))→Q  m+1 & m+n, modus ponens 

…      … 

m+n+(n-1).    (…→Pn)))→Q   m+(n-1) & m+n+(n-2), modus ponens 

m+n+n.     Q    m+n & m+n+(n-1), modus ponens 

Conversely, if there is a derivation of Q form {P1,…,Pn } it is possible to convert it to a proof of (P1→( 

P2→(…→Pn)))→Q, though we shall not do so here. 

  

Hence, any axiomatization of tautologies suffices for a “syntactic explanation” of 

derivability as well.  

Soundness and Completeness 

The similarity in design of the symbol├ to that of ╞ is intentional.  Though the two 

have different definitions – {P1,…,Pn }╞ Q is defined semantically (“for any ℑ, if 

P1,…,Pn are T in ℑ, then Q is T in ℑ”) and P1,…,Pn ├Q is defined syntactically (“(P1→( 

P2→(…→Pn)))→Q is a theorem of the axiom system”) – the two relations are intended 

to be the same. If the axiom system is well designed – if it is sound and complete – 

then the two relations are in fact identical.  Indeed, the whole point of the axiom 

system is to define ├ so that it will turn out to be the same as ╞.   In the case of 

Łukaisiewicz’s axiom system this goal is achieved, as the following metatheorem 

states:   

Theorem.  Statement Soundness and Completeness of Łukaisiewicz’s Axioms.   

1. Statement Soundness and Completeness.  P is a theorem iff P is a tautology. 

2. Finite Argument Soundness and Completeness.  P1,…,Pn╞Q  iff P1,…,Pn ├ Q. 

3. Argument Soundness and Completeness   

X ╞ Q  iff, for some subset {P1,…,Pn} of X,  P1,…,Pn├Q 
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Though the theorem is not difficult to prove, that is a task for a more technical 

discussion.   Notice that part 3 says that the result remains true even if the premise 

set is allowed to be infinitely large.   

The theorem is important because it shows that the two relations├  (syntactic 

derivability) and╞  (logical entailment) are the same.  Recall what it means according 

to naïve set theory as set forth in Part 1 for two relations to be the same.  First of all, in 

set theory the fact that ╞ and ├ are two-place relations means that they are sets of 

pairs <X,P>.  In this case X is a set of premises and P is a sentence.  Hence, the fact 

that P1,…,Pn logically entails Q, which we write  P1,…,Pn╞Q,  could equally well be 

written in set theoretic notation as <X,P>∈╞.  Similarly the fact that Q is derivable from 

P1,…,Pn, which we write as  P1,…,Pn├Q, could be written as <{P1,…,Pn},Q > ∈├ .    

The previous theorem therefore could equally well be stated in ordered-pair notation: 

For any <{P1,…,Pn},Q >,   <{P1,…,Pn},Q > ∈├  iff   <{ P1,…,Pn },Q> ∈╞. 

But this statement is exactly what is required by the Principle of Extensionality for the 

identity of the two sets of pairs ╞ and ├.   

 Theoretically the completeness theorem is a major result.  It shows that two 

rather different approaches to validity – the semantic and a proof theoretic– 

characterize the same concept.   

 

Exercise.  Add the annotation to the following proof indicating for each line (1) the 

axiom schema it instantiates or (2) the prior lines it follows from by modus ponens. 

 

Theorem.  ├ (q→r)→((p→q)→(p→r)) 
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1. ((p→(q→r))→((p→q)→(p→r)))→((q→r)→((p→(q→r))→((p→q)→(p→r))))    
2. (p→(q→r))→((p→q)→(p→r))     
3. (q→r)→((p→(q→r))→((p→q)→(p→r)))      
4. ((q→r)→((p→(q→r))→((p→q)→(p→r))))→(((q→r)→(p→(q→r)))→((q→r)→((p→

q)→(p→r))))   
5. ((q→r)→(p→(q→r)))→((q→r)→((p→q)→(p→r)))     
6.  (q→r)→(p→(q→r))     
7. (q→r)→((p→q)→(p→r))     

 

∗Natural Deduction Proof Theory for Propositional Logic 

Gentzen and Natural Deduction  

 
 Once you’ve seen one inductive set, you’ve seen them all.  They differ in detail 

but have the same form.  Below we offer a second way to capture the semantic 

entailment relation by a coextensive, i.e. identical, relation defined by induction in 

purely syntactic, i.e. proof theoretic, terms.  In this approach it is not the tautologies 

that is axiomatized, but the set of valid arguments itself.    

In this definition what is defined inductively is not a set of sentences, but a set 

of ordered pairs <X,P>.  We have already seen a similar inductive definition when we 

defined the set of syllogisms reducible to Barbara and Celarent. Recall that a 

syllogism is a triple <P,Q,R> of three categorical propositions.  It follows the set of 

syllogisms reducible to Barbara and Celarent is a set of triples.  It was this set that 

defined inductively.    

  There is a theoretical reason in favor of directly defining the set of “logically 

acceptable” arguments directly rather than doing so by the indirect method of first 

defining “theorem” in an axiom system and then defining the notion of “derivation” in 

terms of it.  The reason is that  the main subject matter of logic is validity, not logical 
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truth.  Indeed, logical truth is really just a special case of validity.  It is easy to show, 

for example, that P is a logical truth if and only if ∅╞P.  That is, a logical truth is the 

“degenerate case” of a proposition that is true – that “follows” – “no matter what”.    

The system we shall use to define derivability directly is due to Gerhard 

Gentzen (1909-1945)18, called natural deduction.  It gets its name in part due to the 

fact that it is relatively easy to construct proofs using its rules.   

Motivation: Intuitionistic Logic 

The rule set we are about to explore also has a special theoretical interest for 

philosophers of logic because in a sense it provides a “theory of meaning” for the 

logical connectives.  As you will see, for each connective there will be two rules, a so-

called “introduction rule” that tells you how to add the connective to a new step of a 

proof, and a so-called “elimination rule” that tells you how to deduce a new line of the 

proof without that deletes from the proof the connective from proven line.  Advocates 

of the system say that the rule set therefore explains “how the connectives are used” 

in logic.  After all, they say, there is nothing more to logic than proofs, and therefore 

knowing how to use connectives in logic means nothing more than knowing how to 

add and subtract them from proofs.  Moreover, some philosophers, like Ludwig 

Wittgenstein (1889-1951) in his Philosophical Investigations, have argued that the 

proper way to explain a word’s meaning is to explain its use.   Meaning, in short, is 

use.   It would follow then that if the rules explain the use of the connectives, they 

explain its meaning.   

                                            
18 See Gerhard Gentzen, “Untersuchungen  über der logische Schliessen”, Mathematische Zeitschrift 
39 (1934-35), 176-210, 405-431, and D. Prawitz, “Natural Deduction” (Stickholm: Almqvist and Wiksell, 
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This line of argument is especially attractive to logicians who would like to 

explain meaning, but who have serious doubts about set theory and therefore have 

serious doubts about the semantic theory we have been setting out in these lectures 

which makes extensive use of sets.  Naïve set theory, after all, harbors contradictions 

and even modern axiomatic set theory cannot be proven consistent.  They reason that 

semantic theory that makes use of sets is then equally dubious.  Logicians who 

question set theory in this way are called intuitionists or constructivists.  They also 

usually question several other features of traditional logic, especially the law excluded 

middle (P∧∼P) and indirect proof (i.e. proving P by showing ∼P is absurd).   Suffice it 

to say that this is an important and interesting minority opinion, which we will not be 

able to investigate further here.19  We shall continue to make use of sets in semantics 

and shall continue to use all the traditional logical rules. 

The Inductive Strategy 

 What we are going to inductively define a set of arguments.  Arguments have 

two parts: a set X of premises and a conclusion P.  The argument from X to P is 

represented by the ordered pair <X,P>.  In natural deduction theory the argument 

<X,P> is called a deduction.   The set to be defined is call the set of “acceptable 

deduction,”  and it will be a set of ordered pairs.  It will be defined using only syntactic 

ideas, but as before our intention is that when finished, this set will turn out to be the 

same as the set of valid arguments defined semantically.    

                                                                                                                                          
1965). An excellent introduction to first-order logic using natural deduction is Neil Tennant, Natural 
Logic (Edinburgh: Edinburgh University Press, 1978).  
19 Students interested in pursuing the subject further may consult Grigori Mints, A Short Introduction to 
Intuitionistic Logic (New York: Kluwer, 2000). 
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Since the definition of an acceptable deduction is inductive, it begins with a set 

of starter elements.  These will be a group of completely trivial arguments, which are 

called basic deductions  (in the set BD).  These are arguments in which the conclusion 

simply repeats one of the premises.  They are trivial because, in a sense, they wear 

their validity on their sleeves.   For example, the argument from the premise set {P,Q} 

to the conclusion P is basic because the conclusion P is in the premise set {P,Q}.  

Such arguments are obviously valid, because if all the sentences in the premise set 

are true, so is the sentence repeated as the conclusion.   

The construction rules make up new arguments from old.  There are two rules 

for each connective.  There are also two rules for a new “connective” represented by 

the symbol ⊥, and a rule called thinning that adds extra premises to an argument.  

The new symbol ⊥ is called the contradiction sign.   It is intended to represent a 

contradiction.  It does not matter what this contradiction is so long as is a sentence 

that is false in every interpretation.  We could, for example, simply define ⊥ as p1∧∼p1.   

Most of the rules all have the same form: 

From argument <X,P> construct the argument <Y,Q>. 

An intuitive way to reformulate this rule would be: 

If by assuming the premises in X we can prove P, then by assuming the 

premises in Y we can prove Q. 

Consider the a version of double negation:  

If by assuming the premises in X we can prove ∼∼P, then from the same 

premises, namely those in X, we can prove P. 

The rule is written more simply: 

 From <X,∼∼P> construct <X,P>. 
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Several of the rules, however, need two input deductions to make up a new deduction, 

and one rule needs three.  Consider a version of modus ponens.  It builds on two 

deductions: 

If by assuming the premises in X we can prove P and by assuming the 

premises in Y we can prove P→Q,  then by assuming the combined set of 

premises  X∪Y we can prove Q. 

The rule is written more simply: 

 From <X,P> and <Y,P→Q> construct <X∪Y,Q>. 

Or consider the following rules written first informally and then more precisely: 

 Reduction to the Absurd  

If by assuming (as background assumptions) the premises in X and assuming 

for the sake of argument P, we can prove the contradiction sign ⊥, then on the 

basis of the background assumptions in X alone, we know ∼P.  

 From <X,⊥> construct <X−{P},∼P>. 

Conditional Proof 

If by assuming (as background assumptions) the premises in X and assuming 

for the sake of argument P, we can prove Q, then on the basis of the 

background assumptions in X alone, we know  P→Q.  

 From <X,P> and <Y,P→Q>  construct < X−{Q},Q→P>. 

 

Genzen’s Natural Deduction System 

The Gentzen’ natural deduction system for propositional logic is <BD, PR, DPL> such 
that 
1.   The set BD of basic deductions for propositional logic is set of all pairs <X,P> such 
that X⊆Sen and P∈X. 
2.  The set PR of natural deduction rules for propositional logic is the set containing 
the rules: 
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⊥ Rules: 
Introduction.  From <X,P> and <Y,∼P> construct <X∪Y, ⊥>. (This “explains” the meaning of ⊥.) 
Elimination.  From <X,⊥> construct <X−{∼P},P>.    (A version of Ex Falso Quodlibet) 

∼ Rules: 
Introduction.  From <X,⊥> construct <X−{P},∼P>.    (Reduction to the Absurd) 
Elimination.  From <X,∼∼P> construct <X,P>.  (Double Negation) 

∧ Rules: 
Introduction.  From <X,P> and <Y,Q>,  construct <X∪Y,P∧Q>.   
Elimination.   From <X,P∧Q>. construct <X,P>. 
Elimination.   From <X,P∧Q>. construct <X,Q>.   

∨ Rules: 
Introduction.  From <X,P> construct <X,P∨Q>.  (Addition, to the right side) 
Introduction.  From <X,Q> construct <X,P∨Q>.  (Addition, to the left side) 
Elimination.  From <X,P∨Q>, <Y,R> and <Z,R>, construct <X∪(Y−{P})∪(Z−{Q}), R>.  

(Argument from cases) 
→ Rules: 

Introduction.  From <X,P> construct <X−{Q},Q→P>.   (Conditional Proof) 
Elimination.  From <X,P> and <Y,P→Q> construct <X∪Y,Q>. (Modus Ponens) 

Thinning.  From <X,P> construct <X∪Y,P>.    (You can always add more premises.) 
 
3.  The set DPL of natural deductions for propositional logic set of all pairs such that  

a.   BD⊆DPL 
b. If <X,P> is constructed by one of the rules a-k in PR from elements of DPL, 

then <X,P> is in DPL. 
c. Nothing else is in DPL. 

  
It is customary to write the fact that the deduction <{P1…,Pn},Q> is “acceptable”, i.e. 

that <{P1…,Pn},Q>∈DPL, in turnstule notation as P1…,Pn├Q.  Likewise, it turns out 

that when P is a tautology it can be proven from the empty set, i.e. P is a tautology iff 

<∅,P>∈DPL.  This too is customarily written in turnstyle notation, as ├P. 

Examples of Theorems 

Theorem.  P├ ∼∼P 
Proof 

1. < {P} , P > bd 
2. < {∼P} , ∼P > bd 
3. < {P, ∼P} , ⊥ >  1,2 ⊥+ 
4. < {P} , ∼∼P > 3 ∼+ 

 
Theorem. P,∼Q├ ∼(P→Q) 
Proof 

1. < {P, P→Q } , P > bd 
2. < {P, P→Q } , P→Q >  bd 
3. < {P, P→Q} ,Q > 1,2 →− 
4. < {∼Q} , ∼Q >   bd 
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5. < {P, P→Q, ∼ Q} ,  ⊥ > 3,4 ⊥+ 
6. < {P,∼Q} , ∼(P→Q) > 5 ∼+ 

 
Theorem. ∼Q├∼(P∧Q) 
Proof 

1. < {∼Q, P∧Q } , P∧Q >  bd 
2. < {∼Q, P∧Q } , Q > 1 ∧- 
3. < {∼Q, P∧Q } , ∼Q >   bd 
4. < {∼Q, P∧Q} , ⊥> 2,3 ⊥+ 
5. < {∼Q} , ∼(P∧Q) > 4 ∼+ 

 
∗Exercise. Annotate the following proof. 
 
Theorem.  ├ P∨∼P 
Proof 

1. < {P,∼(P∨∼P)} , ∼(P∨∼P) >  
2. < {P,∼(P∨∼P)} , P >    
3. < {P,∼(P∨∼P)} , P∨∼P >   
4. < {P,∼(P∨∼P)} , ⊥>    
5. < {∼(P∨∼P)}, ∼P>   
6. < {∼(P∨∼P)}, P∨∼P>   
7. < {∼(P∨∼P)}, ∼(P∨∼P)>   
8. < {∼(P∨∼P)} , ⊥>   
9. < ∅, ∼∼(P∨∼P)>   
10. < ∅, P∨∼P)>   

 

∗Exercise.  Construct natural deduction proofs of the following 

1. P→Q,∼Q├ ∼P 

2. R→∼P,Q→∼R,P∨Q├ ∼R 

 

As promised, the set of deductions can be shown to be coextensional with the valid 

arguments of propositional logic: 

Theorem.  Soundness and Completeness.   

1. Statement Soundness and Completeness.  P is a tautology iff ├P 

2. Finite Argument Soundness and Completeness.  P1,…,Pn╞Q  iff P1,…,Pn ├ Q. 

3. Argument Soundness and Completeness   

X ╞ Q  iff, for some subset {P1,…,Pn} of X,  P1,…,Pn├Q. 
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According we have seen two somewhat different ways to “capture” the valid 

arguments of propositional logic.  Both are inductive definitions that make use only of 

epistemically transparent syntactic ideas.  As a result, we are able to explain why 

philosophers have always thought that the arguments of logic carry with them a 

variety of certainty unique to the subject matter.  The same proof theoretic techniques 

used thus far in this lecture to characterize the validity relation in propositional logic 

can be extended to capture validity in first-order logic. 

 

Proof Theory for First-Order Logic 

The Axiom System of Russell and Whitehead for FOL 

 We first extend Łukasiewicz’ Axiom System to first-order logic by adding 

axioms due to Russell and Whitehead for the quantifiers.  The trick is to capture the 

logic of universal instantiation and generalization.  Quite cleverly they do so in three 

axioms.   First we must extend the notion of substitution to first-order syntax. 

  

Definition 

A formula Q is a substitution instance of P if and only (1) all variables free in P are free 

in Q and (2) if there is some construction sequence CS(Q) of Q formed from some 

construction sequence CS(P) of P by replacing some atomic formulas R1,…,Rn of P in 

CS(P) by (possibly molecular) formulas S1,…,Sn, and inserting some construction 

sequences CS(S1),…, CS(Sn) in the new sequence prior to occurrences of S1,…,Sn . 

 

The axioms are really axiom schemata – the represent any formula that fits their form.  

Moreover, as stipulated the formulas may contain free variables. If P is a formula of 
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first-order syntax that contains the free variables x1,…, xn let us call ∀ x1,…, xnP a 

universal closure of P.  In the new axiom system not only are instances of a schema 

to count as axioms but so are their universal closures.   We now define the new set of 

axioms, that incorporates Russell and Whitehead’s quantifier axioms and two axioms 

for identity (the laws of self-identity and substitution.) 

The Russell and Whitehead axiom system for first-order logic is <AxFOL,PR, ThFOL> 
such that 
1.  AxFOL is the set that contains all and only the instances and closures of formulas 

that are substitution instances of one of the following:20  
Axiom Schema 1. p1→( p2→ p1)   
Axiom Schema 2. (p1→( p2→p3))→(( p1→ p2)→( p1→ p3))   
Axiom Schema 3. (∼p1→∼p2)→( p2→ p1)    
Axiom Schema 4. ∀x(p1→ p2)→∀xp1→∀ p2    
Axiom Schema 5. ∀xp1→ p1    
Axiom Schema 6.  p1→∀xp1   if the formula replacing p1 contains no free x    
Axiom Schema 7.  x=x    
Axiom Schema 8.  x=y→( p1[x]→ p2[y])    if the formula replacing p2[y] contains 

some free y where that replacing p1[x] contains free x.    
2.  PR contains just the rule modus ponens. 
3. The set ThFOL is defined inductively as follows: 

a. AxFOL⊆ ThFOL. 
b. If P and Q are in ThFOL and R follows from P and Q by modus ponens, then R  

is in ThFOL. 
c. Nothing else is in ThFOL. 

 

As before, it is customary to abbreviate the fact that P is a theorem, i.e that P∈ThFOL, 

by the turnstyle notation ├ P.  We also define the notion of derivation as before.  Let 

<AxFOL∪{P1,…,Pn }, PR, ThFOL′> be the axiom system formed by adding P1,…,Pn to 

the axiom set AxFOL. 

 

                                            
20 The first-order axioms are due to Russell and Whitehead, *9 of Principia Mathematica, vol 1.  
(Cambridge: Cambridge University Press, First edition 1910, Second Edition 1927).  They employ a 
longer set of axioms for the propositional logic.  Here we substitute Łukaisiewicz’s shorter set 
developed later.  Proofs of completeness of first-order logic under suitable axiom systems 
date back at least to G¨odel in 1929. 
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Definition.  Q is (syntactically) derivable from {P1,…,Pn } (abbreviated P1,…,Pn├ Q)   iff 

Q∈ ThPL′  <AxPL∪{P1,…,Pn }, PR, ThPL′> is an axiom system and Q∈ ThPL′  .    

Soundness and Completeness 

The system is sound and complete. 

Theorem.  Soundness and Completeness.   
 

4. Statement Soundness and Completeness.  P is a tautology iff ├ P 

5. Finite Argument Soundness and Completeness.  P1,…,Pn╞Q  iff P1,…,Pn ├ Q. 

6. Argument Soundness and Completeness   

X ╞ Q  iff, for some subset {P1,…,Pn} of X,  P1,…,Pn├ Q. 

An Example of a Theorem 

Proofs in first-order logic are generally more complex than those for 

propositional logic, but as an example we give a simple proof that identity is 

symmetric.  Given that the axioms hold for the closures of a formula, it follows that if P 

is a theorem, then any universal quantification of P is a theorem:    

Theorem. 21  If P is a theorem, then ∀xP is a theorem. 

We will make use of this fact in proofs of the example.    

Theorem.  ├ ∀x∀y(x=y→y=x)     

1. x=x→(x=y→x=x)          Axiom Schema 1 
2. x=x            Axiom Schema 7 
3. x=y→x=x      1 & 2, modus ponens 
4. x=y→(x=x→y=x)     Axiom Schema 8 
5. (x=y→(x=x→y=x))→((x=y→x=x)→(x=y→y=x))   Axiom Schema 2 
6. (x=y→x=x)→(x=y→y=x)       4 & 5, modus ponens 
7. x=y→y=x          3 & 6, modus ponens 
8. ∀y(x=y→y=x)          7, previous metatheorem 

                                            
21 Strictly speaking this theorem requires a proof, which we will forgo here.  See W. V. Quine 
Mathematical Logic, op. cit., theorem *115. 
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9. ∀x∀y(x=y→y=x)          8, previous metatheorem 

 

∗A Gentzen Natural Deduction System for FOL 

We now extend the natural deduction system defined earlier for the 

propositional logic by adding introduction and elimination rules for the universal and 

existential quantifiers, and for the identity predicate.  The rules for the quantifiers – 

once their notation is deciphered – are quite natural. They spell out the ideas behind 

the quantifier instantiation and generalization rules that we first met in Part 1 doing 

proofs in naïve set theory.  The rules for identity are again a version of the law of self-

identity and of the substitution of identity. 

 
Definitions 
 
The Gentzen’ natural deduction system for first-order logic is <BD, PR, DFOL> such 
that 
1.   The set BD of basic deductions for propositional logic is set of all pairs <X,P> such 
that X⊆For and P∈X. 
2.  The set PR of natural deduction rules for propositional logic is the set containing 
the rules: 
⊥ Rules: 

Introduction.  From <X,P> and <Y,∼P> construct <X∪Y, ⊥>. (This “explains” the meaning of ⊥) 
Elimination.  From <X,⊥> construct <X−{∼P},P>.    (A version of Ex Falso Quodlibet) 

∼ Rules: 
Introduction.  From <X,⊥> construct <X−{P},∼P>.    (Reduction to the Absurd) 
Elimination.  From <X,∼∼P> construct <X,P>.  (Double Negation) 

∧ Rules: 
Introduction.  From <X,P> and <Y,Q>,  construct <X∪Y,P∧Q>.   
Elimination.   From <X,P∧Q>. construct <X,P>. 
Elimination.   From <X,P∧Q>. construct <X,Q>.   

∨ Rules: 
Introduction.  From <X,P> construct <X,P∨Q>.  (Addition, to the right side) 
Introduction.  From <X,Q> construct <X,P∨Q>.  (Addition, to the left side) 
Elimination.  From <X,P∨Q>, <Y,R> and <Z,R>, construct <X∪(Y−{P})∪(Z−{Q}), R>.  

(Argument from cases) 
→ Rules: 

Introduction.  From <X,P> construct <X−{Q},Q→P>.    (Conditional Proof) 
Elimination.  From <X,P> and <Y,P→Q> construct <X∪Y,Q>.  (Modus Ponens) 

∀ Rules: 
Introduction.  From X,P[t/v]> construct <X,∀vP>.  (Universal Generalization) 
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Elimination.  From <X,∀vP> construct <X,P[t/v]> where v is not free in any P∈X   
(Universal Instantiation) 

∃ Rules: 
Introduction.  From <X,P[t//v]> construct <X,∃v ′P>.  (Proof by Construction) 
Elimination.  From  <X,∃v ′P> &  <Y∪{P[t/v]},Q>∈DFOL  construct <X∪Y,Q>.  (if t is not free in X,Y, 
∃v ′P or Q)      (Existential Instantiation) 

= Rules: 
Introduction.  From <X,P> construct <X, t=t >.         (Law of Self-Identity) 
Elimination.  From <X,P> & <Y, t=t′> construct <X∪Y,P[t′//t]> .  (Substitution of Identity.) 

Thinning.  From <X,P> construct <X∪Y,P>.   (You can always add more premises.) 
3.  The set DFOL the set of all pairs defined inductively as follows:  

a. BDFOL⊆DFOL 
b. If is <X,P> follows from some rule in PR from some deductions in DFOL, then 

<X,P>∈DFOL 
c. Nothing else is in DFOL. 

 

∗Exercise.  Construct a  proof of the following In Gentzen’s natural deduction system: 

∀x(Fx→Gx),∃xFx├ ∃xGx 

 

Soundness and Completeness 

The set of deductions is co-extensional with the valid arguments of first-order logic:  

Theorem.  Soundness and Completeness.   

7. Statement Soundness and Completeness.  P is a tautology iff ├P 

8. Finite Argument Soundness and Completeness.  P1,…,Pn╞Q  iff P1,…,Pn ├ Q. 

9. Argument Soundness and Completeness   

X ╞ Q  iff, for some subset {P1,…,Pn} of X,  P1,…,Pn├Q. 

 

LECTURE 19.  TRUTH-TABLES, ALGORITHMS AND DECIDABILITY 

Decidability 

Knowing that something has a proof is not the same has actually having one.  

In the case of categorical and propositional logic it is possible to design procedures 

that will let you know that an argument is valid without actually having a proof.  Such a 
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device is called a decision procedure.  One of the more interesting facts we know 

about first-order logic is that there is in principle no decision procedure for its valid 

arguments.  The only way to know that an argument is valid it is necessary to actually 

find a proof.   

Let us define more carefully what a decision procedure is.  For any set A we 

can define what is called its “characteristic function.”  This is the function f that assigns 

to an entity x the value 1 if it is in A and 0 if it is not in A.  

Definition.  The characteristic function for a set A is the function f defined as follows: 

∀x (x ∈A iff f(x)=1, and x∉A iff f(x)=0) 

It is a trivial fact of set theory that every set has its characteristic function, because we 

have just defined it.  Some characteristic functions, however, are very special 

epistemologically.   The are functions the values of which can be calculated by what is 

called an effective processes.  We can compute in a finite amount of time, and can 

know the result in an epistemically transparent way.  Long division is a classic 

example.  There is a process g defined on pairs of natural numbers such that given a 

devisor n (grater than 0) and a dividend m it will in a finite number of epistemically 

transparent steps produce a quotient-remainder pair <q,r> such that  

m=(qn+r). 

As a result we can define a calculable characteristic function fPr for the set Pr of prime 

numbers: 

fPr(m)=1 iff  1≤m and the greatest n such that ∃q (m=(qn+0) is m); 

fPr(m)=0 otherwise. 

A calculable characteristic function is called a decision procedure, and a set that has a 

decision procedure is called decidable.    
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 A number of the most asic idea of logic are decidable, and it was their 

importance that led logicians to investigate the notion of decidable set and effective 

process in a general way.   For just ideas we have met in these lectures, there are 

decision tests for well-formed formula, and for the validity of syllogisms, strings of 

syllogisms, and arguments in propositional logic.  There are also decision procedures 

for testing whether a sentence is a tautology.  Equally interesting was the discovery 

that there is in principle no decision procedure for testing the validity of arguments in 

first-order logic.  Before sketching these results, however, let us investigate a bit more 

thoroughly exactly what a decision procedure is.   

The notion of decision procedure is closely related to calculation, one of the 

most basic ideas in mathematics.   One of the most interesting stories in the history of 

is how logicians in the first half of the 20th century marshaled their efforts to explain 

calculation.  As a by product they gave birth to computer science, which is founded on 

calculation, and the dubious machines it studies. 

 

Effective Process 

In some sense we all know what arithmetical calculation is.  As children we all 

spend years learning the techniques of adding, subtracting, multiplying and dividing.  

These and other calculation procedures have some common features.   They apply to 

any number whatever, no matter how large. The process also proceeds in steps that 

are themselves simple and relatively foolproof.  When multiplying, for example, we 

begin with the multiplicandum and multiplicans, and by a short series of prescribed 
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steps we arrive at their product.   Such a calculation procedure is called an effective 

process or an algorithm.   

 If a philosopher was asked to define the set of a  mathematical calculations in 

terms of their necessary and sufficient conditions in the sort of iff definition 

philosophers favor, the definition would make appeal to the concept of knowledge.  An 

calculation is a finite number of processes of a special sort.  It is one that permits you 

to know at each stage what your are starting with, when you are done, what the result 

is, and what you should do next.  You also know when the entire process stops and 

what the final result is.  In mathematics calculations, moreover, the knowledge you 

possess at each stage carries with it a special kind of certainty.    But as a “definition” 

the account we have just sketched has a serious defect.  It explains the obscure, 

namely mathematical calculation, by the equally obscure, certain knowledge.  This is 

so because of the sad truth that epistemology, the branch of philosophy that studies 

knowledge, is far from a settled and uncontroversial field.   Mathematical calculation is 

in fact a good example of a difficult idea that resists a frontal definition of the 

traditional sort in terms of its necessary and sufficient conditions.    

Skolem and Gödel on Recursive Functions 

Thoralf Skolem (1887-1963) essentially invented the modern idea of an 

inductive definition to solve this problem.   He defined the set of calculable arithmetic 

operations by construction introducing the general method that we now know as a 

definition by induction.   Subsequently Gödel build upon Skolem’s proposal. He 

formulated it more precisely, and expanded it somewhat to include some calculations 

that Skolem’s original definition omitted.  The set Gödel defined is called today the 
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recursive functions.22   These were meant to include all and only the functions on the 

natural numbers that a mathematician would recognize as a “calculation” or, in other 

words,  the result of applying an “effective process.”23   

Gödel’s definition fits the form of the inductive definition we have met before.  It 

starts with some basic “starter” elements.  For this purpose Skolem and Gödel single 

out three varieties of operations that they recognized were intuitively obvious 

calculations:  

• the successor operation  s, i.e. s(x)=x+1   

• the constant functions kc for each natural number c. Here  kc is defined as that 

function that assigns to every value x the value c, i.e. kc(x)=c  

• the index functions in, for each natural number n.  Here in  is defined as that 

function that assigns to any series x1,...,xn,...,xm  its n-th element.  That is, 

in(x1,...,xn,...,xm)=xn.    

 

The successor function is included because it is obvious that adding one is a 

calculable operation.  Likewise, any constant function is calculable because, for a 

fixed value c,  anybody can set x to equal c.  Lastly any index function is calculable 

                                            
22 Skolem’s paper was written in 1919.  Thoralf Skolem, “Begründung der elementaren Arithmetik durch 
die rekurrienrende Denkweise ohne Anwendung scheinbarer Veränderlichen mit undendlichen 
Ausdehnungsbereich,” Skrifter utgit av Videnskapsselskapet i Kristiania, I. 
Mathematicknaturvidenskabelig klass, (1923) No. 6, pp 1-38.  Skolem’s definition omits the  
minimization rule and the smaller set of functions he defined is call the set of primitive recursive 
functions.  Kurt, Gödel, “On Formally Undecidable Propositions of Principia Mathmatica and Related 
Systems I.”[1931].  Reprinted in Jean van Heijenoort, From Frege to Gödel  (Cambridge: Harvard 
University Press, 1967).  See Martin Davis (ed.), The Undecidable (Raven: New York, 1965). 
23 In his Princeton lectures of 1934, G¨odel, attributing the idea of general recursive 
functions to a suggestion of Herbrand, did not commit himself to whether all 
effective functions are characterized by his definition. In 1936, Church [57] 
and Turing [268] independently proposed a definition of the effectively computable 
functions. It’s equivalence with G¨odel’s definition was proved in 1943 
by Kleene [166]. Emil Post (1897-1954), Andrei Markov (1903-1979), and others. 
confirmed G¨odel’s work by providing alternative analyses of computable 
function that are also provably coextensive with his. 
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because it is easy to calculate that the n-th element of a series.  Just start counting 

from x1 and stop at the n-th item.   

Next three “construction” rules are identified for making new recursive functions 

from old.  These rules are chosen because they have the property that it is 

transparently clear that if the rules operate on calculable functions, it produces a new 

calculable function: 

• Composition 

• Recursion 

• Minimization 

f(x1,...,xn) = h(g1(x1,...,xn),...,gm(x1,...,xn))The fist rule, called composition, makes up a 

new calculation f from old by first applying some of the old functions g1,...,gm to a set 

of inputs x1,...,xn to calculate some tentative outputs g1(x1,...,xn),...,gm(x1,...,xn).  Next  

these tentative outputs g1(x1,...,xn),...,gm(x1,...,xn) are taken as inputs of yet another old 

function h.  That is we calculate h(g1(x1,...,xn),...,gm(x1,...,xn)).  This final output is then 

declared the value of the new function f for he original inputs.  That is, f(x1,...,xn) = 

h(g1(x1,...,xn),...,gm(x1,...,xn)).   The new calculation f is clearly the result of applying 

already defined calculable functions.  Its results from a “heaping up” of old ones.  

The second rule is called recursion.  These methods too requires that we start 

with a previously defined “old” calculable function g and then defines a new one f.  f is 

define in stages.  It first f(0) defined.  Then f applied to 0+1 is defined by appeal to g 

and f(0):  f(0+1)=g(f(0))    Then using the fact that f is defined for 0+1 and g, f is 

defined for 0+1+1, etc.  That is, f(n+1)=g(f(n))    At any stage clearly the new 

calculation is again a heaping up of old ones.   
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The last rule simply requires that we be able to calculate which of a finite list of 

natural numbers is the minimum.  It defines a new calculable function from an old by 

simplifying the old function by eliminating all arguments mapped onto 0 except the 

least. 

There is no special reason for choosing exactly these three sets of initial 

elements and rule other than the fact that they work.  That is, (1) the initial elements 

are clearly effective processes and the rules clearly generate effective processes 

when applied to effective processes, and (2) the functions definable from them by 

induction are also effective processes.   Just to see what the inductive definition looks 

like – we will not be actually working with these technical ideas – let us state the 

formal definitions.  (Note that in the “general form” of the definitions below introduce 

additional input places – variables – that are not there in the inductive “simple” 

version.   These extra “parameters” do not make the calculation any less calculable 

and allow the form capture even more calculations.) 

The Basic Recursive Functions 

The Successor Function s For any natural number x:        s(x) = x+1 

Constant Functions kc    For a constant c:   kc(x) = c 

Index Functions in   For the n-th position: in(x1,...,xn,...,xm)=xn 

The Composition Rule 

Simple Version.  If h and g are 1-place recursive functions, then the following 

defines a 1-place recursive function f: 

    f(x) = h(g(x)) 

General Version. If h is an m-place recursive function and g1,...,gm are all n-place 

recursive functions, then the following defines an n-place recursive function f: 

    f(x1,...,xn) = h(g1(x1,...,xn),...,gm(x1,...,xn)) 

The Recursion Rule 
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Simple Version.  If c is a constant and g is a 2-place recursive function, then the 

following defines a 1-place recursive function f: 

    f(0) = c 

    f(x+1) = g(x,f(x)) 

General Version.  If g is an n-place recursive function and h is an n+2 place  

recursive function, then the following defines an n+1 place recursive function f: 

    f(0,y1,...,yn) = g(y1,...,yn); 

    f(x+1,y1,...,yn) = h(x,f(x,y1,...,yn),y1,...,yn) 

Minimization Rule 

Simple Version.  Suppose g is a 2-place recursive function defined on natural 

numbers such that for any y there is a least one x such that g(y,x)=0.  Then, we 

define f(y) to be the least such x: 

f(x) = the least y  such that g(y,x)=0 

General Version.  Suppose g is an n+1-place recursive function defined on natural 

numbers such that for any x there are y1,…,yn such that g(y1,…,yn,x)=0.  Then, we 

define f(y1,…,yn) to be the least such x: 

f(y1,…,yn) = the least x such that g(y1,…,yn,x)=0 

 

Definition of Recursive Function 

 The set  RF of  recursive functions is the set defined by induction from the set of 

basic elements {s,kc,in} (for all constants c and positive integers n)  and the rule set 

{Composition, Recursion, Minimization}: 

1. (Basis Clause.)  {s,kc,in}⊆ RF 

2. (Inductive Clause.)  if R is in {Recursion, Composition, Minimization} and 

f1,...,fm are all in  RF and g is definable from f1,...,fm by R, then g is in  RF. 

3. (Closure Clause.)  Nothing else is in  RF. 
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 Notice that by this definition a function is recursive simply by virtue of being a 

member of the set RF.  A function may be in that set and we not know it.  It may be in 

the set while we only possess a poor definition of it, one that is not calculable and 

which is not sufficient for showing it meets the defining conditions for being in RF.  

The way  to show it is in RF is to show it is either a basic function or is one definable 

from basic functions by means of recursion or composition.   

Examples of RF’s 

Calculation Operations Defined by the Recursion Rule. The two-pace addition 

operation + is defined by recursion in terms of the one-place successor operation s:   

 x+0=x 

 x+s(y)=s(x+y) 

The 2-place multiplication operation x is defined by recursion in terms of the two-place 

addition operation +: 

 xx0=0 

 xxs(y)=(xxy)+x 
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(© Roger Viollet) 

 
 
 
 

Leibniz’ Calculating Machine 

 
“Thomas Hobbes, everywhere a profound examiner of principles, rightly stated that everything 
done by our mind is a computation, by which is to be understood the addition of a sum or the 
subtraction of a difference.”  

 
 Leibniz, De arte combinatoria 63, 1666 
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Calculation Operations Defined by the Composition Rule.  Given the constants a and 

b, we construct the linear function h with slope a and y-intersect b, namely y=ax+b as 

follows.  (Note that we can calculate y from a, b, and x.) 

 Let n be the number named by the constant c.  Then kc is the constant function 

pairing any x with n.  Further, let i1 be the index function that assigns any x to itself.  

Note that both kc and i1 are basic recursive functions. Let a and b be constants (i.e. 

numerals). We define three functions f, g, and h by composition. 

 f(x)=ka(x)xi1(x) (In traditional notation: f(x)=axx) 

 g(x)=kb(x)+i1(x) (In traditional notation: g(x)=x+b) 

 h(x)=g(f(x))  (In traditional notation: h(x)=ax+b. 

Thus, by composition we have defined h, the equation for a line with slope a and y-

intersect b. 

  

Implications of Gödel’s Definition for the Methodology of Logic  

Historically, the inductive characterization of the recursive functions was an 

important contribution to the methodology of logic.   It was one of the first uses of 

inductive definitions that was clearly seen to be a new way to approach the task of 

“defining” an important idea.  In this case the idea is that of an effectively calculable 

function.  The fruitfulness of the inductive method was shown by the fact that shortly 

after Gödel definition in the 1930’s the logicians Alan Turing (1912-1954) and Alonzo 

Church (1903-1995) using different techniques proposed their own inductive 

definitions of the effectively calculable function.  These were quickly were shown 
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define exactly the same set of functions as Gödel’s.24   It was possible to prove 

mathematically that Gödel’s set of recursive functions were the same as the sets 

defined by Church and Turing because all three have precise mathematically clear 

inductive definitions.  Emil Post (1897-1954) later found yet a fourth coextensive 

characterization.  Church explicitly claimed that these new inductive methods provided 

“definitions” of effectively calculable function. 

Post, however, pointed out that Church’s claim that the new method provided a 

new “definition” was something that could not itself be proven in mathematics itslef.25   

It cannot be proven because effectively calculable function as traditionally defined 

does not have a precise mathematical definition.  Rather, if the traditional idea can be 

said to have a definition at all, it would be a definition of the traditional sort, formulated 

in terms of necessary and sufficient conditions.  Since it is this definition that is at 

issue, let us make an attempt to state it, though it has to be understood that any such 

attempt is only an approximation of rather imprecise mathematical usage:  

The Traditional Definition of Effectively Calculable Function 

A function is effectively calculable if and only if its value can be calculated in a 

finite number of steps each of which produces an outcome known with a high 

degree of certainty (i.e. that is “epistemically transparent”), and which terminate 

in a final result known with a high degree of certainty. 

 

                                            
24 Alonzo Church “An Unsolvable Problem of Elementary Arithmetic”, American Journal of Mathematics, 
2nd ser. 58 (1936), 345-363; and A.M. Turing, “On Computable Numbers, with an Application to the 
Entscheidungsproblem,” Proceedings of the London Mathematical Society, ser. 2, 42 (1936-37), 230-
265. 
25 Emil L. Post, “Finite Combinatory Processes – Formulation 1”, Journal of Symbolic Logic 1 (1936), 
103-105. 
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We cannot use this definition in a mathematical proof because it makes use of the 

mathematically unexplained idea of “epistemic transparency”.   

Logicians agreed that Gödel’s basic recursive functions were genuine 

examples of effectively calculable functions, and that his three method of generating 

new calculable functions from old would only generate calculable functions from 

calculable functions.  The generally opinion that every recursive function as defined by 

Gödel is in fact an effectively calculable function as traditionally understood may be 

summarized in a simple universal law: 

Every recursive function is an effectively calculable function. 

This was half of Church’s claim.  Post pointed out however that the converse is not 

obvious.  Moreover since effectively calculable function lacks a clear mathematical 

definition, it cannot be proven.  As a result, the converse proposition is now viewed as 

a substantive claim about the analysis of concepts, and it bears Church’s name: 

Church’s Thesis   

Every effectively calculable function is recursive. 

It is now generally accepted that the thesis is true.   

Equally important for logic are the methodological implications of the technique.  

The success of the inductive analysis of effectively decidable function demonstrated 

the power of the inductive method for analysis.  Since being recognized as an 

alternative approach to definition, it has become a standard tool for defining sets and 

proving facts about them.   As traditional axioms systems show, inductive sets have 

been used since the beginning of mathematics without being clearly recognized as 

different.  In these lectures, we have used them to define the natural numbers, the set 
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of well-formed sentences and formulas in formal grammars, various interpretation of 

propositional and first-order logic, the sets of theorems and acceptable deductions of 

propositional and first-order logic, and just now  the set of calculable functions.   

 
 

Decidable Sets in Logic 

 Decidability is a concept we can apply to logic.  As we shall now see, it is 

possible to define decision procedures to test whether arguments written in the syntax 

of categorical or propositional logic are valid.  It turns out, however, to be impossible 

to do so for first-order logic more generally.      

Before taking up these interesting issues in logic, we must pause to make a 

general remark about the concept of a decidable set.  It must not be confused with an 

inductively definable set.  In general, being decidability is not the same as having an 

inductive definition.  Consider the case of the prime numbers.  As we saw earlier, 

there is a decision procedure for the prime numbers.  On the other hand, 

mathematicians do not know a method for listing all the prime numbers, and do not 

know how to define the set of primes inductively.  Thus, some decidable sets are not 

inductive.  The converse is also true.  There are some sets that are inductively 

definable but are not decidable.  An important example is the set of valid arguments in 

first-order logic.  We have already seen two ways to define this set inductively: in an 

axiom system and in a natural deduction system.  But though there are decision 

procedures for the set of valid arguments in categorical and propositional logic, there 

is no such procedure for the set of valid arguments of first-order logic.  It is an 

inductive set that is not decidable. 
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Syntactic Tests for Valid Syllogisms 

If the issue is deciding whether any of the 256 syllogistic moods is valid, there 

is a trivial test: just look to see whether the syllogism fits any of the listed 24 valid 

mood paradigms.  If it does it is valid, if not it is invalid.  This test is syntactic and 

epistemically transparent because it is possible to determine easily by inspection of its 

physical shape whether a syllogism fits one of the 24 valid forms.  The test moreover 

can be generalize to an evaluation of any finitely valid categorical argument 

P1,…,Pn╞SLQ.  Since there are only a finite number of premises, there are only a finite 

(though possibly very large) number of finite sequences of syllogisms that would lead 

from P1,…,Pn  to  Q,  i.e. there are only a finite number of finite syllogism sequences 

such that in each sequence the conclusion of the last syllogism is Q, and every 

premise of every syllogism in the sequence is either in {P1,…,Pn} or is the conclusion 

of a previous syllogism in the sequence.  We can test each syllogism in each series.  

If there is a series such that all its syllogisms are valid, then the argument being tested 

is valid.  If there is no such series, it is invalid.  

A more interesting and useful test makes use of the traditional term rules.  As 

we saw earlier, a syllogism or, more generally, a minimal categorical argument of any 

number of premises, is valid iff it does not violate a term rule.  A syllogism is valid iff it 

does not violate a term true.  Moreover, whether an argument violates a rule is an 

epistemically transparent syntactic matter.  Hence, we can test in a finite amount of 

time by epistemically transparent methods whether a syllogism violates any term rule. 
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The traditional term rule test is, accordingly, a decision procedure for the validity of 

categorical arguments.26   

More generally, we also saw that a minimal categorical argument of any finite 

number of premises is valid iff it does not violate a term rule.  It follows that the 

categorical argument from  P1,…,Pn  to  Q is valid iff, there is some finite sequence of 

syllogisms such that (1) no syllogism in the sequence violates a term rule, (2) Q is the 

conclusion of the last syllogism in the sequence, and (3) every premise of every 

syllogism in the sequence is either in {P1,…,Pn} or is the conclusion of a previous 

syllogism in the sequence.  Accordingly, there is a finite test of whether there exists a 

finite series of syllogisms leading from P1,…,Pn  to  Q  none of which violates any term 

rule.  

The Truth-Table Test for Tautologies and Validities 

As an example of a decision procedure the truth-table method for propositional 

logic is more interesting.  Indeed, the truth-table test for validity is a textbook example 

of a decision procedure.   It is easy to sketch the test informally. 

We define a function f as follows: 

Let <{P1,…,Pn },Q> be an “argument “  in propositional logic (i.e. a set of premises 

and a conclusion). Construct the truth-table for (P1,…,Pn )→ Q . 

                                            
26 Wolfgang Lensen makes the claim (in “On Leibniz’s Essay Mathesis rationis,” Topoi 9 (1990), 29-59)  
that the set of term rules as formulated by Leibniz constitutes a sound and complete axiom set for the 
valid arguments of a categorical syntax that he attributes to Leibniz.  As should be clear from the 
presentation here, the term rules do not function as inference rules, or more generally as construction 
rules for an inductively defined set of acceptable syllogisms, whether these be understood as theorems 
in a traditional axiom system or as deductions as in a natural deduction system, or as any other sort of 
entity in an inductively defined set.  Though in the Port Royal Logic Arnauld and Nicole refer to the rules 
as axioms, and Leibniz follows this usage, they are not axioms in the modern sense.  They do not play 
a role in an inductive definition.  From the perspective of modern logic, the function of the rules is 
different.  They formulate necessary and sufficient syntactic criteria for an argument’s acceptability.  It is 
therefore more accurate to say that they define a decision procedure rather than an axiom system. 
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• If in the truth-table (P1,…,Pn )→ Q is assigned  T in every case, then make f  

assign to the argument  from P1,…,Pn ) to Q the value 1 , i.e.  

f(<{P1,…,Pn },Q>=1 ; 

• If in the truth-table (P1,…,Pn )→ Q is sometimes assigned F, then make f  

assign to the argument  from P1,…,Pn ) to Q the value 0 , i.e. 

        f(<{P1,…,Pn },Q>=0 . 
 

Though we shall not do so here, it is a relatively simple process to represent the 

sentences and arguments of propositional logic by natural numbers so that each 

sentence or argument is represented by a number.  It is then possible to define a 

recursive function on these representatives that produces 1 if the argument is valid 

according to the truth-table test and 0 if it is not.  That is, it is not hard to show that the 

truth-table test determines a recursive function on the natural numbers in Gödel’s 

sense. 

The Undecidability of First-Order Logic 

Thus, both categorical and propositional logic is decidable.  However, this is not 

so for every logical system.   One of the more interesting logical discoveries in the 

early 20th century 27, is the following metatheorem: 

 

                                            
27 Using techniques devised by Skolem, Jaques Herbrand (1908-1932)showed that the quantified 
formula P is satisfiable if and only if a specific set of its truth-functional instantiations, 
each essentially a formula in sentential logic, is satisfiable. Thus, 
satisfiability of P reduces to an issue of testing by truth-tables the satisfiability 
of a potentially infinite set S of sentential formulas. Herbrand showed that, for 
any first-order formula P, there is a decision function f such that f(P) = 1 if P 
is unsatisfiable because, eventually, one of the truth-functions in S will come 
out false in a truth-table test, but f(P) may be undefined when P is satisfiable 
because the truth-table testing of the infinite set S may never terminate. 
The foundational paper which leads to this result is Jacques Herbrand, “Sur la Théorie de la 
Démonstration,” Comptes Rendus des Séances de la Sociéte des Sciences et des Lettres de Varsovie, 
Classe III 24 (1931): 12-56. 
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Theorem.  There is in principle no decision procedure for the valid arguments of first-

order logic.  

 

Like Gödel’s theorem, which proves the incompleteness of any axiom system of 

arithmetic, this theorem demonstrates a limitation on human knowledge.  

Epistemology is a difficult subject about which there is very little known with certainty.  

It is therefore remarkable that we can show with mathematical rigor that a certain kind 

of knowledge is impossible.  One thing we can now about knowledge with certainty is 

that there is no finite effectively calculable epistemically transparent method for testing 

in general whether an argument is valid in first-order logic.
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SUMMARY 

In Part 3 we have discussed three sorts of syntax of increasing complexity: 

categorical, propositional and first-order logic.  For these we have discussed two sets 

important to logic: their logical truths and their valid arguments.  For each of these 

sets we have investigated whether it was inductively definable, whether the resulting 

axiom or natural deduction system was complete, and whether the set was decidable.   

The conclusions may be summarized in tabular form:  

 

 Set of: Inductive 
Definition 

Complete Decidable 

Categorical Logic Syllogisms Yes:  
Reduction System 

Yes: A syllogism is 
valid iff it is reducible. 

Yes: Leibniz’ Term 
Rule Test 

 
Finite Arguments 

Yes: Generalized 
Reduction System 

Yes: A generalized 
argument is valid iff it 
is reducible. 

Yes: Generalized 
Term Rule Test 

Propositional Logic Tautologies Yes: Łukaisiewicz’ 
Axiom System 

Yes: P is a tautology iff 
P  is a theorem. 

Yes: Truth-Table Test 

 
Valid Arguments 

Yes: Gentzen’s 
Natural Deduction 
System 

Yes: P1,…,Pn ╞Q iff 
P1,…,Pn ├Q 
 

Yes: Truth-Table Test 

First-Order Logic 

Logical Truths 

Yes: Russell and 
Whitehead’s Axiom 
System 

Yes: P  is a logical 
truth  iff P  is a 
theorem. 
 

No: There is no 
effectively calculable 
characteristic function. 

 
Valid Arguments 

Yes: Gentzen’s 
Natural Deduction 
System 

Yes: P1,…,Pn ╞Q iff 
P1,…,Pn ├Q 
 

No: There is no 
effectively calculable 
characteristic function. 

Arithmetic 

Truths of Arithmetic 

Yes:  Axiom 
systems of Russell, 
Whitehead and 
others 

No: In any axiom 
system there is at least 
one truth of arithmetic 
that is not a theorem.  

No: There is no 
effectively calculable 
characteristic function. 

 

 

The first general conclusion we can draw concerns conceptual identity.  The 

notions of inductive, complete and decidable sets of logical truths and arguments are 

not the same.  Some inductive sets are decidable and others not, and conversely.   
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An axiom or natural deduction system is a “proof theory.”  It is so because it 

provides an inductive definition in syntactic terms, and each element of an inductive 

set has a construction sequence.  When defined syntactically, these construction 

sequences are proofs.  It is possible to see with a high degree of certainty that any 

step in the sequence is either an initial element (axiom or basic deduction) or is 

constructed (“follow from”) earlier elements of the sequence by a construction rule.  In 

this way the theory explains the peculiar kind of certainty we have about the 

application of logical rules.  They are obvious because they are questions about the fit 

of simple syntactic rules.  

But not every axiom or natural deduction system is successful simply because 

it is well defined syntactically.  To be successful in its scientific purpose the system  

must also be interesting in the sense of saying something about the world.  In 

technical terms, it must be sound and complete.  That is, the system is successful only 

if its theorem set contains all and only logical truths and its acceptable derivations 

correspond exactly to the set of valid arguments.  If it is sound and complete, then we 

can be sure that its laws and proofs are not only correct applications of clear 

syntactical rules but that they also way something about the world that is necessarily 

true and allow us to reason in ways that are totally dependable. 

We also know by the criterion of completeness that axiomatic method does not 

always work.  The truths of arithmetic cannot be completely axiomatized in an 

inductively defined set. 

In some cases as in the syllogistic and propositional logic we can also define 

decision procedures for testing whether a sentence is a tautology or an argument is 
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valid, though we cannot do so for first-order logic generally.  As a rough 

generalization, it seems that whether a subject matter is complete or decidable is a 

function of the expressive complexity of its language and the richness of its 

assumptions.  The very simplest logical theories represented by categorical and 

propositional are not only sound and complete but are also decidable.  But their 

syntax is uncomplicated and they make only the most minimal assumptions about the 

nature of reality, as reflected in the short list of their extremely formal axioms and 

rules.   First-order logic is much richer in its expressive capacity, adequate for the 

formulation of most mathematics and science.  Its axiom and rule set is also more 

detailed imposing more demands on the structure of “the world.”  Though it is sound 

and complete, it is not decidable.    Arithmetic, set theory, and natural sciences that 

assume the truths of arithmetic or set theory, though they are written in a first-order 

syntax, imposes much more specific assumptions about the world.  As a result they 

are neither decidable nor complete.  Unfortunately, to discover the truths of math and 

science it is not enough to do logic.
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APPENDICES 

Truth-Conditions of Selected Formulas 

Categorical Propositions 

TC1. ℑ(AXY)=T   ↔   ℑ(X)⊆ℑ(Y) 

TC2. ℑ(EXY)=T   ↔   ℑ(X)∩ℑ(Y)=∅ 

TC3. ℑ(IXY)=T   ↔   ℑ(X)∩ℑ(Y) ≠∅ 

TC4. ℑ(OXY)=T   ↔   ℑ(X)−ℑ(Y) ≠∅ 

First-Order Formulas 

TC0.  ℑ(Fc)=T iff ℑD(c)∈ ℑD(F)  
 
TC1.  ℑ(Fc ∧ Gb)=T iff ℑD(c)∈ ℑD(F) and   ℑD(b)∈ ℑD(G) 
 
TC2.  ℑ(Rac → Gx)=T iff <ℑD(a),ℑD(c)>∉ℑD(R) or  ℑD(x)∈ ℑD(G 
 
TC3.  ℑ(∀xFx)=T iff for all d∈D,  d∈ℑD(F) 
 
TC4.  ℑ(∃xFx)=T iff for some d∈D,  d∈ℑD(F) 
 
TC5.  ℑ(∀x∃yRxy)=T iff for all d∈D, for some d′∈D, <d,d′ >∈ℑD(R)) 
 
TC6.  ℑ(∃x∀yRxy)=T iff for some d∈D, for all d′∈D, <d,d′ >∈ℑD(R)) 
 
TC7.  ℑ(∀xRxx)=T iff for all d∈D, <d,d>∈ℑD(R))  
 
TC8.  ℑ(∀x(Fx→Gx))=T iff for all d∈D,  either d∉∈ℑD(F) or d∈ℑD(G) 
 
TC9.  ℑ(∃x(Fx∧Gx))=T iff for some d∈D,  d∈ℑD(F) and d∈ℑD(G) 
 
TC10.  ℑ(∀x(Fx∧Gx))=T iff for all d∈D,  d∈ℑD(F) and d∈ℑD(G) 
 
TC11.  ℑ(∃x(Fx→Gx))=T iff  for some d∈D,  either d∉ℑD(F) or d∈ℑD(G) 

 
TC12.  ℑ(∀x(Fx →∃yRxy))=T iff for all d∈D, either (d∉ℑD(F) or for some 
    d′∈D <d,d′ >∈ℑD(R)) 
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TC13.  ℑ(∀x∃y(Rxy→Ryx))=T iff  for all d∈D, for some d′∈D,   
     either <d,d′ >∉ℑD(R)) or <d′,d>∈ℑD(R)) 
 
TC14.  ℑ(∀x∀y(Rxy↔Ryx))=T iff  for all d∈D, for all d′∈D,   
    <d,d′ >∈ℑD(R)) iff <d′,d>∈ℑD(R)) 
 
TC15.  ℑ(∃xFx∧∃yGy))=T iff for some d∈D,  d∈ℑD(F) and 
   for some d′∈D,  d′∈ℑD(G) 
 
TC16.  ℑ(∀x(Fx→∀yGy))=T iff either for all d∈D,  d∉ℑD(F), or  
   for some d′∈D,  d′∈ℑD(G) 
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The Names for the Valid Syllogistic Moods 

First Figure:  Third Figure: 
 
 AAA Barbara   AAI Darapti 
M,P EAE Celarent M,P EAO Felapton 
S,M AII Darii  M,S IAI Disamis 
S,P EIO Ferio  S,P AII Datisi 
 EAO *Celaront  OAO Bocardo 
 AAI *Barbari  EIO Ferison 
 
Second Figure:   Fourth Figure: 
 
 EAE Cesare   EIO Fresison 
P,M AEE Camestres P,M EAO Fesapo 
S,M EIO Festino  M,S IAI Dimaris 
S,P AOO Baroco  S,P AAI Bramantip 
 AEO *Camestrop  AEE Camenes 
 EAO *Cesaro  AEO *Camelop 
 
Red type indicates that their validity depends on the assumption that universal propositions must stand 

for a non-empty subject to be true.   
An asterisk indicates a subaltern mood.  

Mnemonic Poem for the Valid Moods and Reduction 

Henry Aldrich (1647–1710), Artis Logicae Rudimenta 

Barbara, Celarent, Darii, Ferioque prioris: 
Cesare, Camestres, Festino, Baroco secundae: 
Tertia, Darapti, Disamis, Datisi, Felapton, 
Bocardo, Ferison, habet; Quarta insuper addit 
Bramantip, Camenes, Dimaris, Fesapo, Fresison. 
Quinque Subalterni, todidem Generalibus orti, 
Nomen habent nullum, nec, si bene colligatur, usum. 

[Barbara, Celarent, Darii, Ferioque are of the First: 
Cesare, Camestres, Festino, Baroco are of the Second: 
The Third has Darapti, Disamis, Datisi, Felapton, 
Bocardo, Ferison; The Fourth adds in addition 
Bramantip, Camenes, Dimaris, Fesapo, Fresison. 
Fifth are the Subalterns, which all come from the Universals, 
They do not have a name, nor, if well connected, a use.] 
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Square of Opposition 

 
The Square of Opposition 
(Diagram of Immediate Inferences) 

 

A:  Every S is P  (ASP)                                   E:  No S is P (ESP) 
    ℑ(S) ≠∅ & ℑ(S)⊆ ℑ(P)               ℑ(S) ≠∅ & ℑ(P) ≠∅ & ℑ(S)∩ℑ(P)=∅ 
      ∃xSx & ∀x(Sx→Px)         ∃xSx  & ∼∃x(Sx&Px)  

 
    I:  Some S is P  (ISP)           O:  Some S is not P (OSP) 

ℑ(S)∩ℑ(P)≠∅                                 ℑ(S)−ℑ(P)≠∅ 
∃x(Sx&Px)                                            ∃x(Sx&∼Px)  
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Square of Opposition for Predicate Negations 

Every S is P  (ASP)                                   Every S is P −  (ASP −) 

 
∼Every S is  P −   (∼ASP −)                        ∼Every S is P  (∼ASP) 

 

Term Rules for Testing Whether a Mood is Valid 

Rule 1. Undistributed Middle.  No valid syllogism has an undistributed middle term. 
 
Rule 2.  Distributed Term in the Conclusion.  No syllogism is valid that has a term that 
is distributed in the conclusion but not in the premises. 
 
Rule 3.  Affirmative premise.  No syllogism is valid that has two negative premises.   
 
Rule 4.  Negative Conclusion.  No syllogism is valid that has negative conclusion 
without a negative premise.   
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Rule 5.  Particular Premise.  No syllogism is valid that has particular premise and a 
universal conclusion.   
 
Rule 6.  Negative Premise.  No syllogism is valid that has a negative premise and  an 
affirmative conclusion.   
 
Rule 7.  Universal Premise.  No syllogism is valid that does not have at least one 
universal premise.  
 
 

General Metatheorems on Logical Relations 

Theorem   

{P1,…,Pn }╞ Q  iff  {P1,…,Pn ,∼Q} is inconsistent 

 iff (P1∧…∧Pn )→Q  is a logical truth 

{P1,…,Pn}  is consistent  iff   for no Q, {P1,…,Pn }╞ Q∧∼Q  

  iff   for some Q, {P1,…,Pn }╞  ⁄  Q 

  iff   ∼(P1∧…∧Pn ) is not a logical truth   

P is a logical truth  iff  for every Q,  Q╞ P 

 iff ∼P is inconsistent 

Metatheorems on Categorical Logic 

Theorem.  The following instances of the (T) schema are true: 

TC1. ℑ(AXY)=T   ↔   ℑ(X)⊆ℑ(Y) 

TC2. ℑ(EXY)=T   ↔   ℑ(X)∩ℑ(Y)=∅ 

TC3. ℑ(IXY)=T   ↔   ℑ(X)∩ℑ(Y) ≠∅ 

TC4. ℑ(OXY)=T   ↔   ℑ(X)−ℑ(Y) ≠∅ 

Theorem.  For any term X  and any interpretation ℑ, 

ℑ(X)≠∅ & ℑ(X)⊆U  

Theorem.  AXY╞ SLIXY    
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Theorem.  EXY╞SL OXY 

Theorem.  AXY and  OXY are contradictories 

Theorem.  EXY and  IXY are contradictories 

Theorem.  AXY and  EXY are contraries 

Theorem (Simple Conversion) 

1. EXY╞ SLEYX 

2. OXY╞ SLOYX 

Theorem (Conversion per Accidens) 

1. AXY╞ SLIYX 

2. EXY╞ SLOYX 
 
Theorems 
 

A FG ╡╞ SL E F G 
−
  

A F G 
−
  ╡╞ SL EFG 

I FG ╡╞ SL OF G 
−
 

 IF G 
−
 ╡╞ SL OFG 

Theorems 

1. AXY╞ SL+∅ ∼AXY 
−
 

2. AXY 
−
╞ SL+∅ ∼AXY 

3. AXY and  ∼AXY are contradictories (with respect to ╞ SL+∅) 

4. AXY 
−

 and  ∼AXY 
−
 are contradictories (with respect to ╞ SL+∅) 

5. AXY and  AXY 
−

 are contraries (with respect to ╞ SL+∅) 

6. ∼AXY 
−
 and  ∼AXY are subcontraries (with respect to ╞ SL+∅) 

 
Theorem.  The syllogism AAA in the first figure (called Barbara), i.e. 

<AMP,ASM,ASP>, is valid. 
 
Theorem.  If P1,…,Pn ╞ SLQ, then there is some finite sequence of valid syllogisms 

such that (1) the conclusion of the last syllogism is Q, and (2) each premise of any 
syllogism in the sequence is either in {P1,…,Pn} or is the conclusion of a previous 
syllogism in the sequence. 
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Theorem.  The syllogism AIO in the fourth figure, i.e. <APM,IMS,OSP>, is invalid. 
   
Theorem.  The syllogism EOA in the fourth figure, i.e. <EMP,OSM,ASP>, is invalid.   
 
Theorem.  The syllogism EOI in the fourth figure, i.e. <EMP,OSM,ISP>, is invalid.   
 
Theorem.  The syllogism AIO in the fourth figure, i.e. <AMP,ISM,OSP>, is invalid.   
 
Theorem.  The syllogism IEA in the fourth figure, i.e. <IMP,ESM,ASP>, is invalid.   
 
Theorem.  The syllogism AEI in the fourth figure, i.e. <AMP,ESM,ISP>, is invalid.   
 
Theorem.  The syllogism IOI in the fourth figure, i.e. <IMP,OSM,ISP>, is invalid.   
 
Theorem.  The syllogism EAO in the first figure, i.e. <EMP,AMS,OSP>, which is called 

Felapton, is valid. 
 
 

Metatheorems on Propositional Logic 

Theorem.  {P1,…,Pn }╞ PLQ    iff   (P1∧…∧Pn )→ Q   is a tautology. 

Theorem.  Disjunctive Syllogism in valid in propositional logic: {p1∨p2, ∼p1}╞ p2. 

Theorem.  Contraposition is valid in propositional logic: {p1→p2}╞  ∼p2 → ∼p1. 

Theorem.  {P1,…,Pn } ╞  ⁄  LQ    iff   (P1∧…∧Pn )→ LQ   is not a tautology. 

Theorem. Denying the antecedent is invalid: {p1→p2, ∼p1}╞  ⁄    ∼p2. 

Theorem.  The set {p1∨p2, p1∨p2} is inconsistent in propositional logic. 

Theorem.  The set {p1∨p2, ∼p1∧∼p2} is inconsistent in propositional logic. 

Metatheorems on First-Order Logic 

Theorem (Barbara).  ∀x(Gx→Hx), ∀x(Fx→Gx)╞ ∀x(Fx→Hx) 

Theorem (Celarent). ∼∃x(Gx∧Hx), ∀x(Gx→Hx)╞ ∼∃x(Gx∧Hx) 

Theorem.  Fa╞∃xFx 

Theorem.  ∀xFx╞∃xFx 
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Theorem.  ∀xFx∧∀yGy╞∀x(Fx∧Gy) 

Theorem.  ∃x(Fx∧Gx)╞∃xFx∧∃yGy 

Theorem.  ∀x∀y(Rxy↔Ryx)╞∀xRxx 

Theorem.  ∃x∀yLxy,∀x∀y(Lxy↔Lyx)╞∀x∃yLxy 

Theorem (Barbari). ∀x(Gx→Hx), ∀x(Fx→Gx)╞  ⁄   ∃x(Fx∧Hx) 

Theorem. ∀x(Gx→Hx), ∀x(Fx→Gx), ∃xFx╞ ∃x(Fx∧Hx) 



 

Part 3, Page 156  

SUMMARY OF EXERCISES 

Lecture 13 

∗Exercise:   In the standard semantics for the syllogistic prove:  EXY╞SL OXY 
 
∗Exercise.   Prove:  EXY and  IXY are contradictories 

∗Exercise.  Prove:  IXY and  OXY are subcontraries 

∗Exercise.  Prove that the syllogism EAE in the first figure (called Celarent), i.e. 

<EMP,ASM,ESP>, is valid. 

Lecture 14 

Exercise.  The two following syllogisms are invalid.  For each,  

• name which of the seven syllogistic rules it violates,  

• draw a Venn diagram illustrating that its premises are true but its conclusion 

false in that universe, and  

• ∗give a proof like those in the previous examples that the syllogism is invalid: 

1. AIE in the fourth figure 

2. IOA in the second figure 

 
∗Exercise: Prove that he syllogism AAI in the fourth figure (Bramantip), i.e. 

<APM,AMS,ISP>, is valid. 

Lecture 15 

Exercise 
 
Show modus tollens is valid in propositional logic: {p1→p2, ∼p2}╞  ∼p1. 

 p1 p2 ((p1       →     p2)      ∧       ∼     p2  )         →       ∼      p1) 
ℑ1 T T          
ℑ2 T F          
ℑ3 F T          
ℑ4 F F          
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Determine when ℑ(((p1 → p2) ∧ ∼p2)→ ∼p1)=T. 
 

Exercise 
 
Show Affirming the Consequent is invalid in propositional logic: {p1→p2, p2}╞  ⁄  p1. 

 p1 p2    (((p1                  →              p2 )        ∧              p2   )        →            p1)    
ℑ1 T T        
ℑ2 T F        
ℑ3 F T        
ℑ4 F F        

 
Exercise 
Show {p1→p2, ∼(∼p1∨p2)} is inconsistent in propositional logic: 

 p1 p2 ((p1       →     p2)      ∧       ∼    (  ∼       p1         ∨      p2)) 
ℑ1 T T          
ℑ2 T F          
ℑ3 F T          
ℑ4 F F          

 
 
∗Exercise.  Prove Celarent is valid in first-order logic:  
  ∼∃x(Gx∧Hx), ∀x(Fx→Gx)╞ ∼∃x(Fx∧Hx) 
 
∗Exercise.  Prove the metatheorems in the semantics for first-order logic:  
 

1. ∀xFx╞∃xFx. 

2. ∀x(Bx→∃y(Gx∧Lxy)), ∼∃x(Gx ∧ Lcx)  ╞ ∼Bc 

3. ∀x∀y∀z((Lxy ∧ Lyz))→Lxz), ∀x∼Lxx ╞  ∼∃x∃y(Lxy ∧ Lyx) 

4. ∃x(Gx ∧ Hx), ∃x(Fx ∧∼Gx)╞  ⁄   ∀x(Fx→Hx) 

 

Lecture 17 

Exercises 

Using the traditional reduction rules, prove form (i.e. reduce to) a first figure syllogism 

with the same initial letter the following syllogisms: 

1. Datisi 
2. Camestrop 
3. Bocardo 
4. Fesapo 
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Lecture 18 

Exercise.  Add the annotation to the following proof indicating for each line (1) the 

axiom schema it instantiates or (2) the prior lines it follows from by modus ponens. 

Theorem.  ├ (q→r)→((p→q)→(p→r)) 

1. ((p→(q→r))→((p→q)→(p→r)))→((q→r)→((p→(q→r))→((p→q)→(p→r))))    
2. (p→(q→r))→((p→q)→(p→r))     
3. (q→r)→((p→(q→r))→((p→q)→(p→r)))      
4. ((q→r)→((p→(q→r))→((p→q)→(p→r))))→(((q→r)→(p→(q→r)))→((q→r)→((p→

q)→(p→r))))   
5. ((q→r)→(p→(q→r)))→((q→r)→((p→q)→(p→r)))     
6.  (q→r)→(p→(q→r))     
7. (q→r)→((p→q)→(p→r))     

∗Exercise. Annotate the following proof. 
 
Theorem.  ├ P∨∼P 
 
Proof 

11. < {P,∼(P∨∼P)} , ∼(P∨P) > 
12. < {P,∼(P∨∼P)} , P >  
13. < {P,∼(P∨∼P)} , P∨∼P >  
14. < {P,∼(P∨∼P)} , ⊥>   
15. < {∼(P∨∼P)}, ∼P>   
16. < {∼(P∨∼P)}, P∨∼P>   
17. < {∼(P∨∼P)}, ∼(P∨∼P)>   
18. < {∼(P∨∼P)} , ⊥>   
19. < ∅, ∼∼(P∨∼P)>   
20. < ∅, P∨∼P)>   

 

∗Exercise.  Construct natural deduction proofs of the following 

3. P→Q,∼Q├ ∼P 

4. R→∼P,Q→∼R,P∨Q├ ∼R 

5. ∀x(Fx→Gx),∃xFx├ ∃xGx 
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REVIEW QUESTIONS 

1.  Explain how the special certainty characteristic of the knowledge we have of logical 
relations can be explained by two factors: 

a.  the fact that the set of theorems in proof theory has an inductive definition, 
and thus each element (theorem) the has a construction sequence (proof), 
and 

b.  the basic elements (the axioms) and construction rules (the rules of 
inference) are defined in terms of the syntactic properties of signs, and 
therefore they are “epistemically transparent.” 

 
 
2.  Give an example of showing that it is possible to prove from the axioms of set 

theory and the definition of ℑ for a given formal language, a metatheorem stating 
that a given sentence of (say) the propositional logic is a logical truth.  (You could 
also do this for a metatheorem stating that a syllogism is valid in categorical logic 
or that a formula is a logical truth in first-order logic).    

 
3. Give an example of showing that it is possible to produce a construction sequence 

(proof) for a given sentence of (say) propositional logic showing it is a member of 
the inductively set defined set of theorems of propositional logic.  (You could also 
do this: produce a construction sequence (reduction) showing a syllogism is a 
member of the inductively defined set of acceptable syllogisms, or a construction 
sequence (proof) that a formula of first-order logic is a member of the inductive 
defined set of theorems of first-order logic.) 

 
4.  The set of logical truths of propositional logic defined in terms of truth in all 

interpretations ℑ has a different definition from the set of theorems of propositional 
logic defined as the closure of the axioms of propositional logic under the rule 
modus ponens.  Nevertheless the two sets are the same.  Explain why this fact is 
interesting.  

 


