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Dialectica among the Seven Liberal Arts 
 

Nicolà Pisano, Siena Cathedral, 1266 
 
 

And yet the validity of logical sequences is not a thing devised by men, but is 
observed and noted by them that they may be able to learn and teach it; for 
it exists eternally in the reason of things, and has its origin with God.  For as 
the man who narrates the order of events does not himself create that order; 
and as he who describes the situations of places, or the natures of animals, 
or roots, or minerals, does not describe the arrangements of man; as he who 
points out the stars and their movements does not point out anything that he 
himself or any other man has ordained; in the same way he who says, 
“when the consequence is false, the antecedent must be true,’ says what is 
most true; but he does not himself make it so, he only points out that it is so. 
 

Saint Augustine, On Christian Doctrine, 32. 
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Introduction 

Lecture Topics  

 The purpose of these lectures is to introduce students to the Queen of the 

Liberal Arts, ars atrium (the art of arts), as logic was known in the Middle Ages.  

Logic is the most universal of sciences because it is presupposed by all the 

others.  You cannot do mathematics or physics or biology unless you can trust 

your tools of reasoning, which you must learn from logic.  Logic in this sense has 

a history as long as Western learning itself, and in the course of time has made 

major contributions outside logic proper, above all to philosophy and mathematics.    

The purpose of these lectures is to introduce you to some of these and make you 

interested in learning more about them.    

 The lectures are divided into three parts, corresponding to the traditional  

division of Aristotle’s logic: the properties of terms, the truth-conditions of 

propositions, and the logic of arguments.  Each part begins with a historical 

introduction and move onto the ideas and, as appropriate, the symbolism of 

modern logic.  Sections preceded with an asterisk (∗) contain supplementary 

material and may be skipped without loss of continuity.  

Part 1, The Properties of Terms, covers the semantics of singular and 

general terms, both monadic and relational.  As a whole, it is an extended 

rationale for the introduction in modern logic of entities known as “sets” to serve 

as the objects that words represent.  In this role sets replace the more problematic 

entities called “properties” and “relations” posited for that purpose in ancient and 
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mediaeval logic.   Here students encounter technical notation for the first time.  

You will learn and prove some basic facts about sets. Equipped with this 

knowledge, we will then use set theory throughout the rest of the lectures as a tool 

for explaining logical concepts.  Among the important set theoretic tools we shall 

meet is that of an inductively defined set.  We will see how for every element in 

such a set there is what is called a construction sequence that shows how the 

element was added to the set as the result of a finite, step by step, process.   

Inductive definition will prove very important later in explaining central ideas that 

have resisted more traditional definitions formulated in terms of necessary and 

sufficient conditions. 

Part 2, The Truth-Conditions of Propositions, discusses three “languages,” 

which are progressively more powerful in the propositions they express.  We start 

with the relatively simple subject-predicate language of Aristotle’s categorical 

propositions, proceed to the complex sentences formed by “conjunctions” like and, 

or, then, and not of what is called propositional logic, and finish with the full 

notation of modern logic, called first-order logic, which can express most of the 

propositions of mathematics and science.  Not only does it express simple 

subject-predicate sentences and their compounds, but it also incorporates 

relational predicates and complex quantified formulas.  Here we shall apply the 

method of inductive definition to define the set of grammatical sentences, and 

meet the idea of a phrase-structure grammar, an approach which has proven 

fruitful in both modern logic and linguistics. 
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After defining sentence, we then see how to answer the central issue: what 

is it for sentences to be true or false?   In steps, we shall work through what is 

known as the correspondence theory of truth.  We start by explaining it for the 

simple language of categorical propositions, then extend the account to the 

propositional logic, and finish by stating the full theory for the syntax of first-order 

logic.  Students will be introduced to the standard theory, which was sketched in 

the 1930’s by Alfred Tarski and provides the basic ideas for many of the important 

discoveries of modern logic.  Again by using the technique of inductive definitions, 

we will see how it is possible to provide, for any sentence of the language, simple 

or complex, a formulation of the conditions under which it is true, its truth-

conditions, that mention only the facts that must obtain among those entities 

referred to by the sentence’s nouns and verbs.   

In Part 3, The Logic of Arguments, we explore how logic succeeds in what is 

probably its central scientific goal: to distinguish “good” from “bad” arguments.  This is 

logic proper, the area in which logic’s greatest discoveries are found.  We shall see 

that there are two quite different approaches to the notion of “good” argument that, in 

the end, they yield the same idea: a semantic approach in which a good argument is 

defined as one that leads necessarily from true premises to true conclusions, and a 

proof theoretic or syntactic approach in which good arguments are distinguished by 

the fact that they can be given formally correct proofs.   

The semantic definition in terms of truth explains why valid arguments are 

important tools in science – they provide a technique for extending our knowledge 

from truth to truth.  We shall see how to give a set theoretic proof that an argument is 
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valid or invalid by appealing to the truth-conditions for the argument’s sentences 

explained in Part 2. 

The proof theoretic definition of “good” argument explains why logic differs from 

almost every other science in its extraordinary degree of certainty.  Proofs turn out to 

be nothing more than construction sequences that show that a sentence is a member 

of an inductively defined set.  It is because such a sequence lays open to inspection a 

finite series of physically visible symbols that we can readily “see” whether each step 

is correct and can do so with a high degree of reliability.  We shall see that in special 

cases there are even decision procedures (algorithms, computer programs) to test for 

“good” arguments.   

It is in this part that you will meet some of the famous discoveries of modern 

logic. These are interesting and rather unusual in science because they concern the 

limitations of human knowledge – a topic of immense interest about which very little is 

known with mathematical precision.   

The first major result is called a completeness theorem: the logical arguments 

of all three languages investigated – categorical propositions, propositional and first-

order logic – can be axiomatized by an inductive definition.   

The second major result is called an incompleteness theorem. In the 1930’s 

Kurt Gödel discovered that it is impossible to axiomatized (give an inductive definition 

for) the truths of arithmetic, or of any sciences (like set theory) that entails arithmetic.  

This result is extremely important for our understanding for what mathematics is and 

what methods are appropriate to mathematics as a science.  Since the time of Euclid 

in ancient Greece, the standard “scientific method” of mathematicians has been to 
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“prove” a result in the sense of deducing it as a theorem in an axiom system.  

Moreover, if anything is mathematics, it is arithmetic. Indeed, arithmetic is the central 

core of mathematics. It follows that the standard method of mathematicians is 

incapable of explaining the heart of mathematics. Mathematicians, and philosophers 

of mathematics, have been scratching their heads about this result since it was 

discovered. 

 We shall define decision procedures for the valid arguments of categorical and 

propositional logic.  We will be able to test by a finite calculation whether any 

argument written in their syntax is valid.  However, Jean Herbrand showed in the 

1930’s what is called an undecidability theorem: though the valid arguments of first-

order logic can be axiomatized, there can be no general decision procedure that tests 

whether any argument in first-order syntax is valid.    

Several themes run through the lectures concerning the scientific method 

used in logic.  One is ontology.  It virtually always happens that along with an 

explanation there comes an ontology.  In order to explain something, you need to 

posit entities that figure in the explanation.  One you have the entities, your job as 

the “explainer”  is to state the “laws” that hold among them.  But the entities have 

to be there in the first place.  Where appropriate in the text, it will be pointed out 

when an explanation is positing an ontology, how this ontology is broken down 

into various sets and relations, what the “laws” are that the explanation says holds 

among these entities,  and what “theorems” follow from these laws.    

A second issue of method  particularly important in logic is that of definition.  

A major theme of the lectures is that traditional definitions – the sort favored by 
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Aristotle and traditional philosophers (to this day) – that define a set in terms of 

necessary and sufficient conditions is inadequate for concepts in logic.  As a result 

logicians have developed the novel tool defining a set by “induction”, i.e. by 

constructing it from some basic elements by some rules for adding new elements 

to old.   One feature of such constructions is that a set’s elements are always 

added sequentially.  It is always possible to lay out the order (the sequence) of 

entities that preceded the inclusion of any particular member.   Inductively defined 

sets and of construction sequences have proven sufficient for explaining an 

impressive series of concepts beyond the means of traditional definitions, 

including the notions of sentence, truth-in-an-interpretation, provable sentence 

(theorem), and calculable function.   We can even explain why we can know 

logical results with a high degree of certainty – a feature that distinguishes logic 

from the empirical sciences: because a theorem is added to an axiom system by a 

construction sequence of physically visible steps, we can easily inspect each and 

“see” that it produces an element that belongs in the set.    

Exercises and Symbolism 

 Like all subjects, logic has its technical terms, but logic’s are more arcane than 

most.   Part of what a student is expected to learn in an introductory logic course is 

some familiarity with this symbolism, and how to use in proofs.  These lectures will 

indeed make use of symbols and proofs.  They will however be introduced in the 

service of ideas.  As a result, as you meet them, you will start to use them as tools to 

explain other ideas.   
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 In general to understand a technical idea, it is not enough to simply read 

through the text introducing it.  You must stop and figure it out.  Plan enough time to 

do so.  To help you in the process, the notes provide examples and exercises. Your 

method should be to work through these, step by step.  More difficult exercises are 

preceded with an asterisk (∗).  If there is something you do not understand, note it 

down and ask about it.  Since technical ideas build upon one another, and each takes 

some time to figure out, they cannot all be learned at once.  Cramming will not work.  

Plan to work through the notes on a regular basis. 

 

 

 

Part 1, Page xi  Version1/5/2009 



 

Part 1, Page  1  Version1/5/2009 

 

Part 1.  The Logic of Terms 

 

LECTURE 1.  THE PROBLEM OF UNIVERSALS 

Parmenides: The One and the Many 

 Parmenides, who was writing at the dawn of Greek philosophers (about 485 

B.C.), was remarkable for advancing what we would now call logical arguments for 

some perfectly outrageous propositions.  In his poem On Nature1 he defends what is 

called monism, the view that there is only one entity in the world, and that time and 

change do not exist.  It is not an exaggeration to say that logic as distinct branch of 

study evolved in response to Parmenides’ arguments and the arguments of others 

developed to refute him. 

 Parmenides’ main line of reasoning is very simple.  What is, it must be granted, 

is what is.  It follows that what is is not what is not.  Another way to translate 

Parmenides’ phrase what is is being.  It follows that what is cannot not be, and hence 

cannot come into being or perish.  Hence there is no becoming or passing away (8.3-

21).  There is, in other words, no change.  Since what is is not what is not and what is 

different from something that is not that thing, it follows that what is not is not different 

from anything else.  If something is divided then something is different from something 

else.  It follows that what is is not different from anything (8.22-25).  It follows that what 

is is not in a different place from  anything else.  Hence what is is in one place only 

(8.26-33).  If something changes then it is different in quality, and motion requires a 
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change in place.  It follows that what is does not change or move (8.26-33).  Hence 

change and motion are unreal.   There is nothing moreover that is not what is (8.36-

37).  Being then is well rounded the same in all ways and directions, like a sphere 

(8.43-44).  

This argument is remarkable because it presupposes what Aristotle would later 

call the Law of Non-Contradiction: no proposition and its negation can both be true.  

Let us abbreviave a proposition as P and its negation it is not the case that P as not P.  

Then, the law says that P and not P cannot both be true.  The reason, then, that what 

is is not what is not, is that if what is is both what is and what is not, then two 

contradictory propositions, namely what is is what is and not what is is what is would 

both be true, and the law would be violated.   

Another way to summarize Parmenides’ argument is that it is a reduction to the 

absurd.  Given the law of non-contradiction, it follows that if a proposition P leads 

logically to a contradiction Q and not Q, then P cannot be true.  That is, if P logically 

implies Q and not Q, it follows that not P.  The more formal Latin name for this rule is 

reductio ad absurdum.  Parmenides in effect show that what is is what is because if 

what is were not, a contraction would be true, which is impossible. 

Aristotle tells us (Metaphysics 1010a2-3) that by what is Parmenides means 

the natural world, the world of everyday experience.  Hence contrary to all common 

sense and our current scientific understanding of the world, Parmenides maintains 

that only one unchanging timeless entity exists in all of nature.  Clearly he must be 

wrong, but where is the mistake in his reasoning? 

                                                                                                                                          
1 Parmenides, “On Nature” in Diels, 8. 
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Over time Greek philosophers came to see that  his mistake lies in a 

misunderstanding of what it takes to make a simple subject-predicate sentence of the 

form S is P and its negation S is not P true and false.  Following the practice of 

modern symbolic logic, we shall use lower case italic letters from the beginning of the 

alphabet (a,b,c,d, etc.) to represent proper names.  For now, we may understand 

proper names to be words that stand for individual things.  Similarly, we shall use the 

upper case italics F, G and H to represent predicates that are common nouns, 

intransitive verbs, or adjectives that are true of individual things.  We will also adopt 

the modern logic’s perverse practice from the perspective of English word order of 

placing the predicate before the subject.  Hence the sentence Fa says a is F. Finally, 

we introduce ∼, our first logical symbol to represent negation.  It may be translated as 

it is not the case that or more simply as not.  We place it at the beginning (left hand 

side) of a sentence.  For example, the sentence ∼Gb says it is not the case that b is 

G. 

With this notation we may now reformulate the issue.  To say that two things 

are the same is to say that there are two proper names, call them a and b, that stand 

for different individual things, and that there is some predicate, call it F, such that the 

sentences Fa and Fb are both true.  To say that two things named by a and b are 

different is to say that there is some predicate, call it G, such that the sentences Ga 

and ∼Gb are both true.  The general problem is to discover exactly what the conditions 

must be for propositions of the form Fa and ∼Fa to be true or false.  Once these 

conditions are spelled out in general, it will turn out that Parmenides was wrong to 

think that all subject terms stand for one and the same individual and that all 
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predicates are true of just one thing.  Given this formulation, the problem posed by 

Parmenides is sometimes called that of sameness and difference: What are the 

conditions that must obtain for propositions to be true of a and b such that they are the 

same in some respect but different in another?   

The problem may be formulated in yet another way.  Classification consists of 

putting together in one grouping things that are “the same” in some way, and it consist 

of “dividing” things that are different into these groups.  The problem then may be 

described as one of classification and division: under what conditions are things 

classified as falling together, and under what conditions are they divided into separate 

groups? 

We shall see that philosophers, and sometimes logicians, answer these 

questions by a appeal to a scientific technique called reification.  This method explains 

a phenomenon by attributing it to the workings of some special entity with properties 

designed to produce just that effect.  What caused that lightning flash?  The ancient 

Greeks might blame Zeus venting his angry disposition. What explanation do 

peasants offer for the fact that a fisherman drowned in the local stream?  They might 

say a pretty girl who live under the water enticed him in.   

Scientists too make successful use of the technique.  The orbit of Uranus 

exhibits a deviation in its orbit from that predicted by its mass and that of the inner 

planets.  The cause of the anomaly was hypothesized to be an entity, a planet.  Its 

mass and position were estimated based on Kepler’s laws of motion – the planet 

could not cause the phenomenon unless its had those properties and obeyed those 

laws.  Astronomers looked, and beheld Neptune.  Entities called genes obeying 
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precise laws of dominance and recession were posited by Mendel to explain the 

observed phenotypes of sweet peas, and atoms composed of electrons and protons 

with the various energy levels of the period table were posited by Mendeleyev to 

explain the observed reactions among chemicals in the laboratory. 

Similarly, philosophers and logicians posit entities to explain sameness and 

difference.  The entity in question, which is called a universal, is correlated with the 

predicate of a true subject-predicate sentence.  Philosophers disagree about what 

exactly a universal is and how it correlates to a predicate, but they do agree on two 

points.  First, the relation between the predicate and a universal is semantic; that is, it 

is a relation that holds between a sign and the thing the sign signifies.  Secondly, they 

agree that whatever a universal is, it is selective; it embraces some individuals but not 

others.  It is the selectivity of a universal that allows for the explanation, first, of the 

truth-conditions for a subject predicate sentences and their negation and, 

subsequently, of sameness and difference.  The explanation take the following 

general form: 

Truth-Conditions for Subject-Predicate Sentences and their Negations 

• Fa is true if and only if the universal that F signifies embraces the individual that 

a stands for.   

• ∼Fa is true if and only if the universal that F signifies does not embrace the 

individual that a stands for.   
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Explanation of Sameness and Difference 

• Two individuals are the same with respect to a universal U if and only if they 

may be referred to by two different proper names, say a and b, U may be 

signified by a predicate, say F, in such a way that the sentences Fa and Fb are 

both true.  

• Two individuals are different with respect to a universal U′ if and only if they 

may be referred to by different proper names, say a and b, U′ may be signified 

by a predicate, say G, in such a way that either the sentences Ga and ∼Gb are 

both true, or the sentences ∼Ga and Gb are both true. 

Things that are the same with respect to a universal may be classified together in the 

same group, and things that fall under different universals may be divided into 

separate groups. 

 Parmenides mistake may now be pin-pointed.  A subject-predicate sentence 

consists of a subject that stands for an individual and a predicate that signifies a 

universal.  Parmenides proposition what is is what is then is at best elliptical and at 

worst badly formed.  If the left hand occurrence of what is is supposed to be a proper 

name, then it is a rather unusual proper name. It does not stand for normal sorts of 

individuals but rather for the whole universe.   If the second occurrence of what is is 

supposed to be  a predicate and signify a universal, it is not clear what that universal 

that could be.  Certainly what is in not a normal predicate because it is not a common 

noun, intransitive verb, or adjective.  But whatever that universal is, it should be 

capable of embracing more than one individual.  For example, if we understand this 

predicate to mean the same as exists, then what is is what is means roughly the 
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universe exists.   But if this is its meaning, it is a perfectly harmless truth, and certainly 

does not imply that there is only one thing, or that time and change are unreal. 

 Sameness and difference are thus, in some sense,  “explained” by appeal to 

“universals.”  But what kind of explanation is this, and what are universals?  In the 

course of these lectures we shall have a lot to say about what sorts of explanations 

are appropriate to logic.  Indeed, logic as a “science” and the standards of explanation 

appropriate to it are a central theme of the course.  At this point, let us pause in our 

review of the explanation of sameness and difference to say something about 

explanation in general.  We are about to see a parade of different attempts at an 

explanation, and we need some criteria for evaluating whether any of them succeed 

and if so which is the most plausible.  That is, let us pause to make some general 

observations about the scientific standards that must be met by the sort of science 

that logic aspires to be.   

Explanation in  Logic 

What is a Theory? 

An explanation can always be divided into what it is trying to explain, the 

phenomenon, and the explanation.  Logic, at least in its modern form, is fortunate in 

being a mathematical science.   As such its explanations take a clear and precise form 

called a deductive theory, by which we generally mean a whole consisting of three 

parts: axioms (also called or “laws”), definitions, and theorems that follow from these. 

The “phenomenon to be explained” can then be described in a sentence P.  It is 

successfully explained by the theory if this sentence is occurs as part of the theory.  P 
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could be an axiom or definition of the theory and then its role would be to be to serve 

as an assumption used to prove a larger group of propositions, but the more normally 

case is that P is a theorem deduced from prior axioms and definitions.  The 

explanation, then, is evaluated not by looking at the truth of P alone, but by evaluating 

the entire theory, because it is theories as a whole that are acceptable or 

unacceptable, verified or unverified, plausible or implausible.  There is, however, no 

one test for gauging a theory’s plausibility.  A number of considerations are relevant 

that must be balanced against one another.  Here let us introduce four that are 

especially important in logic. 

Mathematical Rigor 

  In modern logic we require that any acceptable theory must be mathematically 

rigorous.  We shall learn more about what mathematical rigor means later when we 

study set theory, which normally provides the language and background assumptions 

for mathematical theories.  The great virtue of mathematical rigor is that when present 

it allows us to distinguish very clearly between a theory’s laws, definitions, and 

theorems.  It allows us to actually provide logical proofs that the theorems follow from 

the laws and definitions.  One of the great strengths of logic since about 1850 is that it 

is formulated with this sort of rigor. 

Parsimony  

Another criterion marking a good theory is parsimony, which is also sometimes 

called mathematical elegance or simplicity. The theory should be states as simply as 

possible, making minimal use of assumptions and definitions. In practice this goal 
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means we shall posit as few basic sets and relations as necessary, and describe their 

interactions by means of the shortest set of “laws” possible.   

We shall see in some detail shortly how concern over parsimony bedevils one 

of the famous controversies in the history of logic, “the problem of universals.” This 

problem consists of explaining what kind of entity in the world accounts for the fact 

that two things can be “the same”?  The problem can be recast as one about the 

meaning of predicates.  What kind of entity, if any, does a predicate stand for in a true 

subject-predicate sentence?  The scientific function of “universals,” if they exist, is to 

serve as the referent of a predicates in a subject-predicate sentence.  After all, such a 

sentences on the surface seems to assert that there “exists” something named by the 

predicate that subjects man have in common.  But any theory that claims that 

universals exist is adding to the catalogue of things that exist an extra category.  The 

methodological questions then arise.  It is scientifically necessary to postulate this 

category of entity?  Can the phenomenon be explained by a simpler theory that does 

not posit this extra class of things? The most famous formulation of the ideal of 

parsimony is due the medieval logician William of Ockham (1285-1348/49) and is 

called Ockham’s Razor: entia non sunt multiplicanda praeter necessitatem.  Entities 

should not be multiplied beyond necessity.  (The rule is  “razor” because it calls for 

shaving away a theory’s unnecessary entities.)  As we shall see, Ockham used this 

principle to argue against the existence of universals. 

Empirical Confirmation 

  Theories, especially in mathematics, may describe completely non-physical 

entities.  But the natural sciences by definition describe the natural world, which is a 
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world that is accessible to us through the senses.  We may use this fact to evaluate 

the theory.  Let us call a sentence empirical if it is written in sensory vocabulary and 

can be evaluated as true or false by simply checking our sensations.  Let us now 

distinguish between two sorts of empirical propositions.  The first group consists of  

the theory’s theorems written in empirical vocabulary, called the theory’s empirical 

predictions.   The second is the group of sentences that actually record what we 

sense to be the case.  Let us call this second set of sentences the relevant empirical 

data.  In so-called normal science, theorists spin axiom systems and deduce 

predictions, while experimentalists design experiments to collect data.  The important 

point to notice is that there is no guarantee that the two sets are the same.  Only if the 

theorists are very insightful or lucky will the set of predictions coincide with the data.  

The better the fit, the better the theory. 

 In practice the fit is never perfect.  Sometimes rival theories predict different 

data, and the choice between the two over-all theories is not obvious.  It also happens 

that we sometimes come to revise or question “test results” themselves, rejecting 

some data as “questionable” because they conflict with a theory that is very powerful 

in other respects.  

This criterion of evaluation is relevant to logic because there is a sense in 

which logic makes empirical predictions. Logic investigates arguments that people 

actually use specialized contexts like mathematics and science, which in turn derive 

from argumentation found in ordinary life.  It is possible moreover to determine 

empirically which of these arguments people find plausible.  These facts of usage, 

sometimes called logical intuitions, are used to evaluate logical theories.  Historically a 
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major goal of modern symbolic logic has been to codify the actual deductive 

arguments found in use among practicing mathematicians. 

Conceptual Adequacy 

  Theories do invent new words but the vast majority of terms used in a theory 

existed in scientific or every-day language before the theory was conceived.  These 

older terms had meaning and definitions prior to the theory’s formulation.  It is required 

that an acceptable theory by and large respect this earlier usage.   It is, after all, only 

by continuing to use old terms in new theories that the phenomena that interested us 

in the first place gets explained.  Thus though an occasional term may receive a new 

or more precise definition in a new theory, or occur in new and surprising theorems, 

most terms that have had a prior usage in science or ordinary language should 

continue to apply to the things they applied to in earlier usage.   

This criterion is important to logic, because logic is rich in the terms that come 

from ordinary life and the history of philosophy.  Among these are individual, property, 

truth, and “the world”.  Much of logic’s interest to philosophy, and its difficulty, lies in 

formulating plausible logical explanations that continue to use these words in ways 

that fit earlier philosophy.   

Let us now apply these criteria to the “explanation” of sameness and difference 

that we sketched earlier that appeals to universals.  Historically, critics came to 

disagree on issues of clarity and parsimony raised by the positing of universals as 

explanatory entities.  Those who believes that universals exist, who think they are 

real, are called realists.  Those who do not, who think predicates are empty names 

that do not really signify anything, are called nominalists. A good part of the history of 
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logic, and some of the more famous controversies in philosophy generally, are 

concerned with this debate.   For reasons of parsimony nominalists like Ockham hold 

that it better to explain truth-conditions in a way that does not posit universals.   

Modern logic, on the other hand, is distinctly realistic and posits as universals entities 

it calls sets.  The story of how logic arrives at this conclusion takes up Part 1 of these 

lectures.  We start with one of the most celebrated realistic theory, Plato’s theory of 

Ideas, both because it is well know and was historically influential, and because it well 

illustrates the form assumed by explanations in logic.  

Plato’s Theory of Ideas 

 Plato (428 or 427-348 or 347 B.C.) advanced a famous realistic theory that 

attempted to explain not only sameness and difference – classification and division – 

but a number of other problems in natural science and philosophy as well.  The details 

matured over his lifetime and are scattered throughout his many works, which take 

dialogue form.  The main points relevant here however are easily summarized.  In 

summarizing his theory I will make use of the standard format used for presenting 

theories in modern logic, even though doing so will impose some precision on the 

theory that himself Plato did not provide.  This slight historical inaccuracy will make it 

easier later to compare his theory to those of others. 

 Plato posits two main categories of entities and a single fundamental relation 

that holds among them.   The first categories is called Ideas (idea) or Forms (eidos).  

The second category consists of material objects, which are also called bodies.  There 

are two basic “laws:”    

(1) Both Forms and material object possess properties.  
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(2) Forms and bodies differ in that Forms never change.  If a Form ever has a 

property, it will always have it.  A material object, however, is constantly 

changing.  If it ever has a property, it will shortly cease to have it.   

The third entity postulated by the theory’s ontology is the relation of Participation.   

Participation is a two-place relation that links a material object or a Form to another 

Form.  That is, a material object may participate in a Form, and one Form may 

participate in another Form.  The central “law” governing Participation is this:   

(3)  if one entity E (which may be either a material object or a Form) participates in 

a Form F, and if F  has the property P, then E also has the property P.   

Plato summarizes this by saying that the participant copies or imitates the Form.  In 

this sense participation is a synonym for copying or imitation.  However, this law 

interacts with the two previous ones.  If the participating entity E is material, it only 

manages to copy a Form briefly or imperfectly because E will shortly cease to exhibit 

any property possessed by the Form.  If the participating entity E is itself a Form, it will 

copy the Form it participates in perfectly and forever.2   

In his dialogue the Timaeus Plato even goes so far as to describe an kind of 

creation myth.  In this story, once upon a time, a divine craftsman, the Demiurge, put 

preexisting inert matter into perpetual motion so that from then on it is constantly 

changing, first copying (“imitating” or “partaking of”) one perfect unchanging Form and 

then shifting to copy another.  The story is not a genuine creation myth, however, 

because the Demiurge does not at a single instant make the world out of nothing.  

Indeed, the fact that Plato describes the story as a “myth” suggests to most scholars 

that he does not believe the Demiurge is real or that there really was an original 
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launching as a historical event.  On this reading, the “myth” is a literary device Plato 

uses to make vivid the relation of matter to Forms.   

The basic theory of Forms, matter and participation allows for a simple 

statement of the truth-conditions for two sorts of subject-predicate sentences: those in 

which the subject term stands for a material object (or a soul), as in Fa , which the 

reader will recall is the notation of symbolic logic for a is F, and general truths of the 

form All F are G. 3    

Plato’s Truth-Conditions for Subject-Predicate Sentences  

• Fa is true if and only if the material body (or soul) named by a participates in 

the Form named by F.    

• All F are G is true if and only if the Form named by F participates in that named 

by G.   

We may then apply the Theory or Forms to provides the textbook example of “realistic 

explanation” of sameness and difference in which Forms take the role of universals.   

Explanation of Sameness and Difference 

• Two material bodies are the same with respect to a Form U if and only if they 

may be referred to by two different proper names, say a and b, U may be 

signified by a predicate, say F, in such a way that the sentences Fa and Fb are 

then both true.  

• Two material bodies are different with respect to a Form U′ if and only if they 

may be referred to by different proper names, say a and b, U′ may be signified 

                                                                                                                                          
2 The central theory of Forms as outlined here may be abstracted from the Phaedo, Republic IV-Vll. 
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by a predicate, say G, in such a way that then either the sentences Ga and 

∼Gb are both true, or the sentences ∼Ga and Gb are  both true. 

The Correspondence Theory of Truth 

Plato’s is the first of several examples we shall meet of what is known as the 

correspondence theory of truth.  Truth is one of the most important ideas in logic.  

Logical arguments, the main object of study in logic, are defined in terms of truth:   an 

argument follows logically (is valid) if whenever its premises are true, its conclusion is 

also true.  It follows, then, that to understand validity we must understand truth. 

The standard way to explain truth is by a correspondence theory.  The general 

picture is the following.  We formulate propositions in language.  These propositions 

have a “form”, which consists of the sequential order in which the component words 

are put together according to rules of grammar.  Parallel to the “weaving together” 

process in grammar, there is a second sort of “weaving together” that takes place  in 

“the world.”  In the Sophist Plato describes a sentence as consisting of a “weaving 

together” of noun and verb.  He also describes the participation relation among Forms 

as a “weaving together” of Forms.  Accordingly, the proposition All F is G, which is a 

weaving together or the words F and G, is true if it “corresponds” to a weaving 

together of Forms, i.e. to a process in which the Form named by F participates in that 

named by G. 

 Something to watch as we review the history of logic is how opinions about the 

grammatical form of subject-predicate sentence matures at the same time as views 

about  truth as correspondence.  Later theories reject the details of Plato’s theory – for 

                                                                                                                                          
3 The theory of the intermingling of Forms is most explicitly stated in the Sophist. 
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example, that reality consists of unchanging Forms – but they retain the general 

notion that truth is correspondence. 

Definition and Division, Necessity and Contingency 

A second point to make about Plato’s theory of truth is that it makes possible 

scientific classification, or what Plato calls “division” (diairesis).  Plato assumes that 

the reality beyond language consists of timeless Forms that stand in fixed participation 

relations to one another.  In the dialogue the Statesman he makes clear that he thinks 

these participation relations form a tree structure, each more general Form serving as 

a genus that divides into subordinate Forms as subspecies, much as today we divide 

the biological world into a hierarchy of taxonomic classes.  

In the history of logic this theory of division is closely connected to the theory of 

definition.  In modern philosophy it is customary to recognize that there are indeed 

fixed truths, like the laws of mathematics or technical definitions in science, which are 

“always” true.  These immutable truths are said by philosophers to be necessary. A 

standard definition of a necessary truth is one that is always true and could not be 

otherwise.  For example, it is impossible that 2+2 could be other than 4.  Hence truths 

of arithmetic are thought to be necessary.  Likewise, it is a matter of definition that a 

triangle has three sides and that a bachelor is an unmarried male – both favorite 

examples of philosophers.  Plato’s theory of Forms, if true, would provide an 

explanation for such immutable truths because the Forms themselves are supposed 

to be fixed and unchanging. 

However, in modern philosophy we also recognize a second category of truths, 

those that are not always true but rather change their “truth-value” over time or 
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according to circumstance.  Examples include ordinary propositions, both about 

individuals and about groups, like Canada is chilly and Swans are white.  Climate 

changes could make Canada warmer, and there could be a black swan, as explores 

were surprised to find in Australia.  Propositions that are not always true or that could 

be false are said to be contingent.  Most propositions of daily life and many we meet in 

science fall in this class.  A problem with Plato’s theory is that it provides no place for 

contingent general truths.  On his theory any true general proposition of the form All F 

is G is true because it describes immutable facts about Forms and is therefore 

necessary.  Because they are about “ideas”, they appear to be more like what we 

would today call definitions, rather than empirical statements of facts.  Something else 

to watch as the course of lectures develops is how the notions of definition and 

contingent natural truth mature over time. 

Relations 

A final logical topic to mention that is addressed by the Theory of Forms is 

relations.  Relations are indicated in English by a variety of phrases that share the 

general feature that they link more than one proper name.  Let us start by considering 

two-place relations, which are named by phrases that link two proper names.  

Transitive verbs are examples, as in Plato teaches Aristotle and  Socrates loves 

Xanthippe.  Other examples are provided by verbs that conjoin a subject term 

obliquely to the object of a preposition:  Plato is sitting next to Aristotle, Theatetus is 

talking about Socrates. Comparative adjectives provide a third case: Theatetus is 

taller than Plato, Aristotle is stronger than Plato. Verbal forms like teaches, loves, is 

sitting next to, is talking about, is taller than, is stronger than  are called relational 
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predicates and are said to stand for relations, much as common nouns, intransitive 

verbs, and adjectives are said to stand for properties.   

Like a property, a relation can be multiply instantiated.  Just as a property can 

be shared by multiple individuals, a two-place relation is shared by multiple pairs of 

individuals.  Why is it that the “pair” Socrates and Plato, on the one hand, and the 

“pair” Aristotle and Theophrastus, on the other, are both the “same”?  We can give an 

answer in ordinary language.  It is because they both consist of a cases in which the 

first is the teacher and the second is his pupil.  But what is the “reality” that explains 

this similarity?  Plato is constrained by his metaphysics to explain the commonality by 

appeal to material objects and Forms.  He does so by positing Forms for relations.  

His examples include Sameness, Difference, and Equality.4  The relational fact that 

Socrates and Plato are the same in then “explained” by the fact that they both 

participate in the Form of Sameness, and the fact that they are different by the fact 

that they both participate in the Form of Difference.  Another way of putting the view is 

that relational proposition like Socrates is the same a Plato means the same as the 

conjunction of the two subject-predicate propositions Socrates is the same and Plato 

is the same, and the relational proposition Socrates is different from Plato means the 

same as the conjunction of the two subject-predicate propositions Socrates is different 

and Plato is different.  Plato thus initiates a long tradition that was to bedevil logic for 

two millennia, only to be superceded in modern times, in which unsuccessful attempts 

were made to represent relational assertions by simpler subject-predicate 

propositions.  We shall see the difficulties such theories face when we discuss more 

sophisticated versions in next lecture. 
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Epistemology and Ethics 

Much of the attractiveness of Plato’s theory is its use it to explain matters 

beyond logic.5  Indeed it was issues in ethics and epistemology that were Plato’s main 

concern.  For example, he used Forms to explain the central distinction in 

epistemology between knowledge and opinion.  He does so by positing in addition to 

material objects and Forms an additional category of entity called souls.  Souls cycle 

between an existence in which they are tied to a material body and inhabit the world of 

matter, and an immaterial state in which they are disassociated from a body and 

inhabit the world of Forms.   Moreover, souls can perceive and note the properties of 

Forms when in their presence, and remember more or less accurately what these 

properties are when they later are rejoined to a material body.   A soul then knows the 

proposition All F are G if either it is actually perceiving that the Form F-ness is 

participating in G-ness or it recalls having perceived it.    This is Plato’s famous 

doctrine that knowledge is recollection.6 

Forms are also used to explain morality, which was the central concern of 

Socrates, Plato’s teacher.  Plato holds that if we know what is good we will do it.  More 

precisely he holds that moral virtues are Forms and that if we have knowledge of the 

Form, we cannot help but act according to that knowledge.7   This is his celebrated 

thesis that virtue is knowledge.  It follows that the wisest soul is also the most virtuous.  

To be good, he said, you should study philosophy.  

                                                                                                                                          
4 Sameness and Difference are discussed most fully in the Sophist, and Equality in the Phaedo. 
5 For a now classic discussion of the variety of explanatory uses of the Theory of Forms see Harold 
Cherniss, "The Philosophical Economy of the Theory of Ideas", American Journal of Philology 57 
(1936), pp. 445-56. 
6 It is laid out in Meno and Phaedrus. 
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Because our subject here is logic we will not evaluate Plato’s  epistemology or 

ethics, though both knowledge is recollection and virtue is knowledge are highly 

controversial.   We will however criticize the theory on logical grounds.    

The Third Man Argument and Parsimony 

Let us apply to Plato the general criteria of theory evaluation we reviewed 

earlier.   Consider first mathematical precision.  Clearly Plato does not attempt to write 

his theory as we would today using concepts from mathematics and set theory.  It 

would be unfair to expect him to.  On the other hand, his account is precise enough for 

us to draw out some of its implications.  In that sense it does generate a body of 

sentences that we could call a “theory”.  It posits basic sets of entities and lays 

standard properties that are formulated in simple law-like rules.  Their statement is 

clear enough for us to drawn out some of its logical implications and thus to identify at 

least vaguely a set of theorems.  These “laws” and their implications make up the 

theory we can evaluate.  

Is the theory empirically adequate?  In this life we cannot approach the Forms 

empirically because they are not in the sensible world.  The best we could do is 

investigate the way material objects fall in subordination classes.  If these correspond 

to fixed division patterns and correlate to fixed “ideas”, then these would be indirect 

evidence of structure among Forms.   Unfortunately, both the evolution of species 

over time and the difficulty modern biology has encounted in trying to find fixed sets of 

defining features for species tell against Plato’s metaphysics of immutable truths.  

                                                                                                                                          
7 The role of the Forms in virtuous action is explicit in the Euthyphro, Phaedo and Republic among 
other dialogues. 
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Thus, since most of the laws of nature fail to meet the test of immutability required by 

Plato’s theory, the theory fails rather badly as an account of the natural world.   

Conceptually it must also be granted that Plato’s account put sever strain on 

the ordinary meanings of terms.  In the Parmenides Plato himself admits that it is odd 

to think that there are immutably perfect Forms of Hair-ness and Mud-ness that 

account for the properties of material hair and mud.  

The criterion, however, in terms of which the theory has been most severely 

criticized is parsimony.   Here Plato himself is perhaps his best critic.  In his later 

dialogue the Parmenides (123 AB) he advances a famous refutation of his own 

invention, which is called the third man argument.  If an entity is P because it 

participates in a Form that is P, and if the Form of F-ness is P, then there must be a 

form, call it F′-ness  that F-ness participates in such that F′-ness  is also P.  But if F′-

ness is P, there must be a further Form, call it F′′-ness , that F′ -ness participates in 

and is such that it is P.  The process continues ad infinitum.  Thus the existence of a 

single Form entails the existence of an infinite number of Forms in a infinite regress.  

Plato presents this as a reduction of to the absurd of the theory.   

Plato seems to regard the generation of the infinite regress as a serious 

problem.  But the problem may be described in a slightly different way.  Notice that the 

“reason” why a material triangle’s participation in the Form Triangularity “explains” the 

properties of the object is that participation requires that the object resemble the Form.  

But resemblance means that the two share a property in common.  That is, both the 

material object and the Form Triangularity are triangular.  This means that Forms have 

properties.  But if Forms have properties, the problem of why something has a 

Part 1, Page 21  Version1/5/2009 



1. The Problem of Universals 

property arises again on the level of Forms.  To explain that one thing has a property 

because it resembles another, its model, that had the property beforehand pushes the 

explaination of why something has a property onto the model.  That is, instead of 

solving the problem, Plato shifts it to the level of Forms, where it must be solved for 

Forms themselves.  Positing a new level of reality with “models” that themselves 

possess properties in common merely postpones the problem of explaining what it is 

to have a common property. 

Plato himself stops mentioning the theory of Forms in his last dialogues, a fact 

that suggests he may have abandoned it himself.  Aristotle, Plato’s pupil, parted with 

his teacher because he found Forms implausible, and philosophers every since have 

cited Plato as the most egregious example of a realist with a bloated metaphysics.  

The onus, however, falls on the critics of Plato to provide a better theory, one that 

explains as much but with a more parsimonious ontology.  In the next lecture we see 

how Aristotle rose to the challenge.  In the process he invented logic as a distinct 

branch of study and contributed an important body of work launching it on its way. 
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LECTURE 2.  ARISTOTLE AND MEDIAEVAL LOGIC 

Aristotle’s Ontology of Matter and Form 

Aristotle (348-322 B.C.), the student of Plato and teacher of Alexander the 

great, in addition to writing on metaphysics, ethics and natural science, wrote 

extensively on logic and indeed started it as independent branch of study.  His six 

logical works were edited as a unit after his death.  This collection is called the 

Organon, which means “tool” in Greek, because logic was viewed as the preparatory 

study necessary for more advanced work in philosophy or science.  The Organon 

includes the Categories, De Interpretatione, and Prior Analytics, which concern the 

logic respectively of terms, propositions, and arguments, and it is this division that 

provides the format for standard logic texts in the Middle Ages, and for this set of 

lectures. Three additional worlds, the Posterior Analytics, Topics, and Sophistical 

Refutations deal with topics in the theory of definition, scientific method and logical 

fallacies.  It is no exaggeration to say that Aristotle’s work formed the core of logical 

theory until the mid 19th century, when new methods of formal logic were developed to 

deal with issues raised by advances in mathematics and the natural sciences. The 

predominance of Aristotelian logic therefore lasted more than two millennia.  Views 

only sketched by Aristotle himself were worked out by subsequent logicians into a 

remarkably uniform theory, reaching a high point in the Middle Ages.  My remarks 

here will be limited to several themes that have proved important to the development 

of modern logic.  As a result the historical discussion will be somewhat  
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superficial.  I hope however that there will be enough detail to interest students in 

pursuing the topic on their own.   

In this lecture we will investigate Aristotle’s solution to the problem of 

universals.  In particular we are interested in the theory of truth he proposes for 

subject-predicate propositions – for it is this that “explains” how one predicate can be 

true of two subjects or different predicates of the same subject.   But to understand the 

way sentences work, we must first study the words that are used to compose 

sentences.  For Aristotle the words that form subject-predicate sentences fall into two  

types: proper names, which stand for individuals, and “general terms”, which is a 

broad class that includes common nouns, verbs and adjectives.  General terms stand 

in some sense for what individuals have in common.  It is by appeal to the “semantics” 

of these terms that it is possible to formulate truth-conditions for subject-predicate 

propositions, and thus explain what it is for individuals to be the same and different. 

Like Plato, Aristotle and his tradition advocate a version of the correspondence 

theory of truth.  It presupposes a prior explanation of the grammar of sentences.  The 

grammar specifies the “parts of speech” and how they go together to form subject-

predicate combinations.  Grammar is supplemented by a rich ontology that divides 

reality into a series of fundamental entity classes.  It is combinations of these entities 

that form the “facts” that make subject-predicate propositions true and false.   The 

discussion here will be broken down, first into a discussion of the relevant ontology, 

then of the mechanism whereby the world generates language “in the mind,” and 

finally of language itself, of how it is supposed to reside in the mind and represent 

truths outside itself. 
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The theory of terms was developed in the Categories, Topics, and 

Metaphysics.  Details were elaborated by subsequent writers throughout the ancient 

period and were summarized by Porphyry (234-305 A.D.) in an influential handbook, 

the Isagoge, that survived the Dark Ages and formed the nucleus for Aristotelian logic 

in the Middle Ages.  This logic, which formed the core of the undergraduate university 

curriculum in the Middle Ages, was taught widely in standard textbooks, like Peter of 

Spain’s  (d. 1277) Summa Logicales.  In was developed to a high level of 

sophistication by the masters in the Arts faculties at the great universities of 13th and 

14th centuries.  Though the quality of research diminished in subsequent centuries, 

Aristotelian logic continued to be a fixture of university education until superseded by 

symbolic logic in the 19th and 20th centuries. 8   We begin our account with Aristotle’s 

ontology.   

The Categories 

Aristotle divides entities into fundamental groupings called categories in his 

introductory book, which is called accordingly the Categories.  The standard list 

includes ten groups.  First is substance. This is defined as including those individuals 

that can exist in their own right.  There are then nine subordinate groups characterized 

by the fact that they can exist only if they are “in,” or as we now say “inhere in,” a 

substance.  These are quantity, quality, relation, place, time, position, state, action 

and passion.   

                                            
8For an excellent histroy of mediaeval philosophy including Aristotls’ metaphysics as it is relevant to 
logic consult Paul Vincent Spade’s A Survey of Mediaeval Philosophy, Version 2.0 (August 29, 1985) at 
Hhttp://pvspade.com/Logic/docs/Survey%202%20Interim.pdfH.  For a general account of logic’s place 
in the intellectual life of the Middle Ages see Jacques LeGoff, Intellectuals in the Middle Ages (Oxford, 
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These divisions in ontology are reflected by grammar.  Corresponding to the 

category of substance is the part of speech called proper names, which includes any 

expression that we use to name an individual, for example, Socrates, Plato and the 

teacher of Aristotle.  Individual substances are members of genera and species, and 

corresponding to the genera and species of substances are common or collective 

nouns, like man and animal.  Corresponding to the categories of non-substances are 

expressions like verbs, adjectives, and adverbs of quality, quantity, time, place, and 

manner.   

Aristotle groups together genera and species terms, on the one hand, and 

contrasts them with the so-called the subordinate categories, on the other, and 

explains the difference at first in a way that sounds as odd in Greek as it does in 

English. He says that genera and species terms are “said of” a substance, but that the 

subordinate categories terms are “said in” a substance.   

He makes clear what he means by “category” by associating with each 

category a question of the form, What is S?  This question, and its reply S is P, can 

mean ten different things.  Each way corresponds to a different category.   

First of all, by What is S? we might be asking What kind of thing is S?  The 

appropriate answer is S is P where P is a substance term.  That is, by What is S? we 

are asking for the genus or species of the subject. 

Alternatively, by What is S? we might be asking What qualities does S have? In 

English the natural way to say this is not much different from the first question.  The 

appropriate answer would be S is P where P is an adjective or other expression that 

                                                                                                                                          
Blackwell, 1993), and Hasting Rasdall, The Universities of the Middle Ages (Oxford, 1936, ed.  F. M. 
Powicke and A. B. Emden).  
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names a quality. In English, for example, we might ask this sort of question by saying, 

What is S like? or What sort of thing is S?   Greek and Latin actually have special 

interrogative adverbs especially for this purpose. In Latin Quale S? literally means 

What is S’s quality?   

Again, by What is S? we might mean How much is there of S?   This question 

would prompt an answer S is P in which P expresses a quantity, yet a third category.    

An answer S is P in which P falls in the category of relation is appropriate when What 

is S? means In what way is S related to things?   If the question means When is S? 

the appropriate answer uses a predicate from the category of time, and if it means 

Where is S? the right answer would use a predicate from the category of place, and 

so forth for the other subordinate categories.  Each type of category predicate 

corresponds to a fundamentally different way of inquiring about a subject.   The 

difference between the category of substance, on the one hand, and that of the other 

categories is that substance predicates describe the broader group of substance in 

which the subject is included.  In Aristotle’s terminology this group is “said of” the 

subject.  The other categories describe various sorts of predicates that something can 

have only if it is first a substance.  These predicates then are “said in” the subject. 

The Predicables 

The ontology of the ten categories is complemented with a cross-classification 

that divides predicates according to how permanent or characteristic they are of their 

subject.  Aristotle sketches the doctrine in the Topics and it is detailed by Porphyry.  

According to this doctrine terms fall into one of five varieties called predicables: genus, 

species, difference, proprium, and accident. 
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A fundamental feature of any subject is its species and genus.  These are part 

of its very nature.  It could not exist if were not in its species and genus.  Hence a 

predicate that describes something’s genus or species is definitive of it.  It holds by 

definition. It always holds, and it holds of every member of the species and genus.  

Species and genus predicates form the first variety of predicable. 

The second sort consists of predicates that describe those qualities or other 

non-substance terms that are true of the subject by definition.  The function of a term 

of this sort is to distinguish one variety of substance from another.  Aristotle calls it a 

difference (differentia in Latin).  For example, the predicate rational names a quality 

“said in” Socrates that is true of him by definition because the definition of Socrates’ 

species, which is mankind, is rational animal.  Like predicates that stand for genera 

and species differences are true of their subjects necessarily and by definition, but 

they are less fundamental because unlike a substance a non-substance has no 

independent existence.  It can only exist “in” a substance.   

Aristotelians also believed that there were some qualities (and other non-

substance categories) that are “in” a subject necessarily but are not actually part of its 

definition. Such a predicate holds of all members of a species because it is a law of 

nature that anything with the species’ properties would also exhibit this category trait.  

For example, Aristotle says humans are risible, i.e. capable of laughter.  Risibility is 

not part of the definition of mankind, but it law of nature, he thought, that any rational 

animal must also be able to laugh.  Such traits are said in the subject necessarlity but 

are not true by definition.  Necessary non-definitional features are called propria 

(singular proprium). 
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Lastly, there are non-substantial terms that are not necessary.  These are 

either not always true of the subject, or are true of some members of its species but 

not all.  These are called accidents.  A person’s height, color, mood, wealth, location, 

age, position are accidents because they are not permanent.  A subject’s definition 

determines its nature and this in turn restrict the possible accidents the subject might 

possess.  Humans, for example, can sit or stand, both accidental features, but they 

cannot melt or dissolve, which are accidents of substances like ice cream. 

Matter and Form 

In the Metaphysics, a later work, Aristotle explains more fully the relation that 

holds among the categories and the predicables.  The standard interpretation of his 

view was that an individual substance is a composite entity made up of two aspects 

called matter and form.  The form of a species is its definition, i.e. its difference and 

genus. A statement that defines a species in terms of its genus and difference is 

called a real definition because it records what differentiates the species in reality from 

other members of the genus.  A species form is also called its nature and its essence. 

The Standard Form of a Real Definition 

                    Essence, nature, “form” 
          ┌─────────────────────┐ 
           species    =   genus     +  difference (differentia) 
 
   Man =     Animal    +    Rationality 
                            └────────────────┘ 
      definiendum           definiens  
    └─────────────────────────┘ 
             definitio per genus et differentiam 
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As Aristotle describes genera and species they fall into a tree structure, each 

genus dividing into a series of species, often two but sometimes more, each species 

having a difference appropriate to it and to it alone.  Porphyry’s account of “the tree” 

became well know. 

The Tree of Porphyry  

 

 
 
 

The full classification of the individuals Socrates, Plato, and Aristotle into the hierarchy of genera and 
species. The difference in terms of which a species is defined within its genus is indicated above  the 
species name IN SMALL CAPITOLS.  It is possible to read off from the Tree the full essence or form 
of an individual: Socrates is a rational, self-moving,ensouled (“animate”), material substance. 
 
 

Two properties of real definitions must be stressed.  First, according to 

Aristotle’s metaphysics they are necessarily true.  They record the necessary features 

of a species that are required by nature.  Secondly though real definitions are 
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necessarily true, they are not easy to discover.  Scientific classification of the sort 

reflected in the Tree of Porphyry is the result of difficult scientific research.  Moreover, 

even when discovered, our knowledge of it may still be provisional.  Hitting upon a 

definition of this sort, and even being right, does not automatically bring along with it 

the certainty that we can attach to other sorts of knowledge, like the truths of 

mathematics.   

Aristotelians believed that, strictly speaking, it is species not individual 

members of species that are defined.  Individuals, after all, come and go and hence 

cannot possess any property necessarily.  Species, on the other hand, were regarded 

as eternal, having neither a beginning nor end because in Aristotle’s view the world is 

eternal.  It had no beginning and will have no end.  Moreover the species that now 

exist have always existed and always will.  (Accepting this view posed a difficult for 

Christian logicians of the Middle Ages who accepted most of his other views, and for 

later proponents of evolution.)  An individual then possesses a nature or definition only 

derivatively and to the extent that it is a member of a species.   

It should also be remarked that Aristotle did not think that all the defining 

features appropriate to the species appear in the individual of the species at the same 

time.  An oak tree develops acorns as a matter of definition, but only when it is 

mature.  Likewise human babies take a while to become rational.  That is, some 

necessary features are dispositional.  They manifest themselves only if the 

appropriate circumstances obtain.  
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 In Aristotelian terminology a substance that changes is said to be matter for 

the substance at its later state.  This terminology is used to explain what is meant by 

matter and form.  A substance is a composite of matter and form in the sense that it is 

the result of another substance (its matter) changing so as to instantiate the defining 

features of a species (its form).   

Concept Formation: Perception and Abstraction 

 Aristotle and his followers exploited the ontology to explain how it is we obtain 

the language by which we think about the world.  The account is relevant here 

because it explains how words “stand for” things.  It explains the mechanism of 

correspondence at work when propositions are true and false.  It is the Aristotelian 

theory of meaning.   

First of all, we must say something about the human “mind.”  To an Aristotelian, 

humans are just substances like any other.  That is, they are combinations of matter 

and form.  Their knowledge then must be explained using the categories of 

Aristotelian ontology, i.e. as some sort of inherence of non-substantial categories in a 

human substance.  Since most knowledge is accidental these properties must be 

accidents of some sort.  For an Aristotelian, then, there is no special entity called “the 

mind” above and beyond the substance that makes up the human being.  Even 

though Aristotle and his followers talk about the soul, and about the soul having 

properties, strictly speaking, this is a somewhat misleading way of speaking.  Mental 

life is explained as qualities, quantities, etc. being instantiated in the human 

substance.  It became the usual practice to refer to instantiations of this sort as 

“mental acts.”  This terminology too is a bit misleading.  It does not mean that there is 
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a special entity, an “action,” that exists above and beyond the human being 

performing the act.  It means rather that certain qualities or other accidents, which we 

regard as mental or intellectual, are actually instantiated in the human substance.   

 What then happens to us when we “see” that the rose is red?  Aristotle’s story, 

as recounted in the De Anima, goes this way.  Redness, a quality, inheres in the rose, 

a substance.  As a general rule, Greek philosophers, including Aristotle and Plato, 

believe that the way one substance causes another to have a quality Q is that one 

substance must have Q in the first place, and the causal process consists of passing 

Q on from the first substance to the second, like a baton in a relay race.  Now, the 

rose passes on the information that it is red.  It does so by affecting the sensory 

medium between itself and the perceiver.  In this case the medium, i.e. the physical 

entities standing between the perceiver and the thing perceived has three parts: (1) 

particles of air, (2) the sensory organs of the perceiver, which in the case of sight are 

the eyes, and (3) the bodily parts that stand between the sense organs and the organ 

of “understanding,” which Aristotle thinks is the heart.  The rose passes “redness” first 

to the nearest bit of air; it in turn passes it to the next until it reaches the sense organs; 

these pass it on in order to the various bodily parts until it reaches the heart.  

Redness, however, once it leaves the rose is not redness in its ordinary sense.  

Though it is genuinely a quality and inheres in the intervening substances, it does not 

make them red.  Neither the air itself nor the eyes nor the nerves become red.   

Rather, redness exists in a reduced or secondary sense.  In the Middle Ages redness 

in this sense was said to be intentional.  Today we would probably say that what is 

transferred is a physical change that constitutes “information” that the rose is red. 
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 In any case the causal transfer of the intentional-quality-redness transforms the 

perceiver so that the quality of intentional redness inheres in him or her.  Humans 

have as part of their nature the feature that when an intentional quality comes to 

inhere in them they become aware or conscious of it.  This consciousness of the 

redness is likewise an accidental quality of the perceiver.  In a somewhat misleading 

way, Aristotle and mediaeval philosophers regularly referred to these as qualities 

inhering in the perceiver’s intellective soul, but as explained earlier, this way of talking 

is really just a way of saying that certain qualities, which we happen to regard as 

intellective or rational, inhere in the perceiving human being.  

 A special feature of the rose’s redness is that it is particular to that rose.  If I 

perceive the redness of a second rose, it might be slightly different.  Likewise, I can 

smell the particular scents of several roses, and see their particular shapes, all of 

which are slightly different.  When I perceive many roses, a large variety of particular 

sensory qualities will in inhere in me (“in my soul”), and I will be conscious of that fact.  

Aristotle called this stage of the perceptual process intuition.   

Recall that it is a feature of Aristotelian ontology that substance can take on 

only the accidents appropriate to that substance.  Nothing can instantiate the 

accidents appropriate to a member of a species unless it instantiates the formal 

features of that species.  Therefore, I cannot instantiate the accidents of various roses 

unless I also instantiate the defining features of the species rose.  This does not mean 

that I myself have to become a real rose, because the various rose features are only 

in me intentionally.  But it does mean that I have to instantiate the species features of 

a rose intentionally.  The upshot of these facts is that my perception of multiple 

Part 1, Page 35  Version1/5/2009 



 2. Aristotle and Mediaeval Logic 

sensory qualities of numerous roses is possible only if I also instantiate intentionally 

the species form of the rose.   Moreover it is part of human nature that when the 

intentional form of the rose is instantiated in me, I become conscious of the fact.  

Aristotelians give the name abstraction to the process of instantiating consciously an 

intentional species form that happens as a result of intuiting multiple individual 

intentional sensory qualities caused by various different members of the species that 

affect the body’s sensory organs.  I sense many roses.  Their various individual 

sensory qualities travel in an intentional mode to my sense organs and then to my 

heart.  I become aware of them.  But they, as it were, bring along the form of “rose” 

itself, because I could not instantiate these rose accidents if I did not also instantiate, 

at least intentionally, the form of rose itself.  I become conscious of possessing the 

form of rose intentionally, and voilà, I have abstracted a “thought” of a rose.  Notice 

that having an abstract thought or idea, then, is ontologically nothing more than a 

substance, namely the perceiver, instantiating intentionally the formal qualities of the 

species perceived.   Mediaeval logicians use the term concept as a name for an 

intentional form instantiated in the perceiver’s soul.   

Mental Language 

In the latter part of the 13th and beginning of the 14th centuries mediaeval 

logicians like William of Ockham and John Buridan (1295/1300-1358+) developed the 

theory of abstraction into a full blown account of thought and language.9  Language 

and understanding in their view is a mental phenomenon.  By this they mean not that 

it is a special sort of entity, called the mind or soul, that is above and beyond the 
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human substance – even though they did believe that some aspect of human 

personality survived death.  Rather, mental acts in Aristotelian terms consist of the 

instantiating of intentional qualities in a human being considered as an Aristotelian 

substance.  The qualities in question are concepts, which are understood as 

intentional forms abstracted through the perceptual process.   

These conceptual instantiations, they suggests, are the “words of the language 

of thought.”  Abstracting thoughts is a prerequisite to instantiating further mental acts 

that constitute constructing, asserting, and believing propositions.  My thinking of the 

proposition All S is P, then, is simply the instantiating in me as a thinker (the 

instantiating of the quality “in my intellective soul”) of a quality we regard as mental, 

i.e. that of forming a proposition.  It is not unlike my performing a ballet.  My having 

danced in this particular way is a quality of me as a substance.  It is a quality that 

manifests itself in my acting in a certain way.  It is regarded as artistic.  Therefore my 

dancing it is an artistic act.  Moreover, it presupposes that I perform other acts in the 

process, e.g. standing on my toes and jumping in the air.  Ontologically these 

subordinate acts too are simply instantiations of artistic qualities.  My thinking of a 

proposition is a mental act that consists of instantiating mental qualities and that 

presupposes other mental acts, like concept formation, which is also an instantiation 

of a mental quality, just as my dancing is an artistic act that is an instance of an artistic 

quality and  presupposes other artistic acts, like dancing en pointe and jumping, which 

are also instances of artistic qualities.     

                                                                                                                                          
9 Paul Vincent Spade, Thoughts, Words and Things: An Introduction to Late Mediaeval Logic and 
Semantic Theory, Version 1.1a, at http://pvspade.com/Logic/docs/thoughts1_1a.pdf. 
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In this way language is both “explained” in the categories of Aristotelian 

ontology, and – this is the clever part – the relation of thoughts to the world is 

explained.  The medaievals coined the term signification to describe the link between 

a concept and things in the world.  A concept signifies all possible objects that could 

have caused it to exist in the perceiver (“in his intellect”) through the process of 

abstraction.  Because causation figures in this definition of signification, philosophers 

call this a causal theory of reference.   

Notice that according to the definition, a “mental word” signifies more than the 

individual or individuals that actually figured in the causal process that lead to its 

abstraction in a particular thinker.  It signifies all individuals that could have caused it.  

This broad group includes not only the individuals that did cause it, but others that, 

because they are of the same species and have the same form, could have caused it.  

This group includes all objects in that species, both that actually exist and that, though 

they do not exist, could exist.  Possible individuals are included because it is true even 

of possible members that they could have caused it – that they could have is, after all, 

exactly what is meant by saying they are “possible” members of the species.  Thus, a 

concept that intentionally instantiates a species form F signifies all possibilia that fall in 

the species F.   

Truth is explained in terms of signification.  Common nouns are concepts that, 

as just explained, signify all possible individuals that could have caused their 

intentional instantiation in the thinker.  Proper nouns, which signify just a single 

individual, are treated as a special case of common nouns, ones that happen to 
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signify just one possible object, namely the single entity that could have cause the 

name to be abstracted.   

In addition to common and proper nouns, there are further classes of non-

individual terms that are associated with the non-substance categories.  These are the 

terms associated with the non-substance categories of quantity, quality, relation, time, 

place, action, passion, etc.  Their signification is more complex.  They were said to 

signify all possible substances in which they might inhere, and to connote the 

associated quantity, quality, relation, time, place etc. that is instantiated in all the 

individuals signified.    Such non-substance terms are accordingly called connotative. 

With these definitions we can now state the truth-conditions for subject-

predicate sentences.  The brief formula customarily used is that a proposition All F is 

G is true if the subject and predicate “signify for the same.”  This idea is the same as 

that found in modern mathematics when we say, using the notation of set theory, that 

F⊆G if and only if F∩G=F.  Here all F are G is written F⊆G,  and this holds exactly 

when F∩G is the same as F.  (Here ⊆ indicates the subset relation and ∩ the 

intersection operation.) 

Truth-Conditions for Subject-Predicate Sentences 

 
• All F is G is true on an occasion of use if and only if all the actual objects 

signified by F and G on that occasion are the same as the actual objects 

signified by F. 
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• Fa is true on an occasion of use if and only if all the actual objects signified by 

a and G (i.e. all the actual G’s that are a – there will only be one) on that 

occasion are the same as the actual object signified by a. 

It follows then that the same predicate would be true of two different actual subjects – 

that the two subjects would be “the same” – if the predicate was a general enough 

concept to signify both the actual entities signified by the subject terms.  Likewise a 

second predicate could simultaneously be true of one subject term but not the other if 

it included the one but not the other in its signification class.   

A close inspection of the definition of signification, which is used in the truth-

conditions, shows that it seems to assume the existence of universals.  Concepts for 

example are supposed to instantiate intentional qualities, which appear to be 

universals, and connotative terms appear to connote non-substances, like quantities, 

qualities, and relations, which also appear to be universals.  We shall return to this 

ontological issue shortly, but first we must comment on relations and on how mental 

language is linked to speech. 

Relations 

 In Aristotelian ontology relations are one of the non-substance categories of 

entity that are “said in” a substance.  Like qualities and the other non-substance 

categories they are spoken of in language by means of connotative predicates.  The 

relational fact that Philip is the father of Alexander must accordingly be unpacked as 

some fact described in subject-predicate sentences that make use of relational 

predicates as applied to the subject terms Philip and Alexander.  Such sentences 

would be propositions of the form Philip is ____ and Alexander is ____ .  Moreover,  
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as a group they must contain all the information of the proposition Philip is the father 

of Alexander.   

It must be admitted that traditional logic never succeeded in showing how this 

could be done.  Bertrand Russell (1882-1970), a patriarch of formal logic, claims that 

any such theory ends up forcing upon relations some logical features they do not 

generally have.10  Let us abbreviate the assertion a bears the relation R to b by aRb. 

 Suppose that some such translation of aRb into subject-predicate sentences is 

possible.  Suppose, for example,  that any relational proposition aRb is really a 

translation of two subject-predicate sentences with the same predicate F.  Suppose 

that aRb means the same as Fa and Fb.  It then follows that the relation R must be 

symmetric.  Here is the proof: 

Proof: Suppose aRb.  Then by definition Fa and Fb.  It follows then that Fb and 

Fa. Hence by definition bRa. Hence, if R holds in one direction, it holds in the 

other.  That is,  R  is symmetric.   

But many relations, for example love, are not in general symmetric.   

Another proposal is that aRb is really equivalent to two subject-predicate 

sentences with different predicates, for example to Fa and Gb, for some F and G.  It 

then follows that R is transitive.  Here is the proof: 

Proof. Assume aRb and bRc.  Then by definition Fa and Gb, and Fb and Gc.  

Hence, Fa and Gc.  But this means by definition aRc. Hence if aRb and bRc, it 

follows that aRc. That is, R is transitive.   

But many relations are not transitive.  If a loves b and b loves c, it is not unlikely that a 

hates c.    
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 One of the more serious attempts to provide subject-predicate accounts of 

relational propositions was made in the Enlightenment by Leibniz (1646-1716).  His 

account is complex, requiring reformulation of a relational assertion into a long list of 

simpler ones.  It will have to suffice here merely to assure the reader that in the end 

the attempt is not plausible.11  One of the successes of modern logic is that, as we 

shall see, it provides a more successful account of the logic of relational sentences. 

  

Spoken Language; Real and Nominal Definitions 

The mediaevals held that we thought using concepts.  Indeed, we all think 

using the same concepts no matter what language we happen to actually speak 

because the concepts are caused by the perceptual-abstractive mechanism that 

depends on what species there are in the world, and has nothing to do with our culture 

or what the spoken sounds of our language are.  Spoken language, on the other hand, 

was believed to be a matter of convention.  A given culture makes arbitrary 

conventions about what sounds to use to talk about  the concepts it finds provided by 

nature “in the mind.”  We might have decided to use the “word” cheval like the French 

to name the concept horse, or pferd like the Germans, but we in fact decided to use 

horse.  Ontologically, my saying out loud the sound “horse” is the instantiation in me of 

a physical quality, the property of making a certain noise.  It is quite different from my 

instantiation of the intentional form of the species horse.  Nevertheless, I and all 

others who speak English have learned to use the first of these acts to represent the 

                                                                                                                                          
10 Bertrand Russell, Principles of Mathematics [1902] (N.Y.: Norton), section 212. 
11 See Massimo Mugnai, Leibniz' Theory of Relations (1992) 
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second.  The rule that states that we should attach the utterance of a certain sort to a 

given concept is called a nominal definition.   

Nominal definitions then are arbitrary matters of convention.  As such, we can 

be fairly certain that they are right.  It is ourselves, after all, that by an act of the will 

decide what sound to use to stand for what concept.  As a result there is a kind of 

automatic certainty attached to verbal conventions of this sort that is not common to 

most of our knowledge about the world.  The arbitrariness and certainty of nominal 

definitions make them very different from what the mediaevals called real definitions, 

which are the rules that lay out the genus and difference of a species.  Real definitions 

are necessary truths of nature that are hard to discover, and even when we do, we 

may not be certain we are right.   

The Realism Nominalism Debate 

As we have seen, mediaeval logicians made use of Aristotle’s ontology.  Some 

of the best of them had serious questions about universals.  Concepts are instances 

of intentional qualities, and connotative terms connote non-substance universals, like 

quantities, qualities, and relations.   

But many had serious doubts.  These doubts centered on the precise 

formulation of what a universal is.  Boetius (d. 525 or 526 A.D.) clarified the mediaeval 

understanding: a universal, he says, is an entity that enters wholly and completely into 

a composite to form a unit and does so with more than one individual at the same 

time.12  William of Ockham, one of the great champions of nominalism, notes that if 

Socrates were to be annihilated so presumably would all the parts that make him up, 
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including the universal humanity if it is wholly and completely “in” Socrates. God, 

Ockham observes, is omnipotent.  Thus, he could certainly annihilate Socrates and all 

his parts and at the same time spare Plato. But if God annihilates Socrates together 

with his parts, he annihilates the universal humanity, which is wholly and completely 

“in” Socrates. But the universal is in Plato as well. Hence a key “part” of Plato would 

cease to exist, and so too would presumably Plato himself. Hence contrary to the 

supposition of omnipotence, God cannot both annihilate Socrates and not annihilate 

Plato.  Hence the theory of universals entails that God’s power is limited and that he is 

not omnipotent. Ockham regarded this argument as a reduction to the absurd of the 

theory of universals. 

What ultimately turned logicians from Aristotelian logic was not parsimony but 

other issues.  We have already seen that it does not explicate relational assertions 

very well.  In the 19th century logical difficulties in mathematics compelled logically 

minded mathematicians and mathematically minded logicians to jointly attempt to 

develop logical theories that were capable of expressing the complex mathematical 

formulas of the period.  A much more complex grammar was required than that of the 

simple subject-predicate propositions we have been discussing.  Because the new 

logic was to be used in mathematics it also had to meet the requirements of 

mathematical rigor.   

The theory of evolution and advances in chemistry and physics had also made 

clear that Aristotle’s ontology of fixed necessary species divisions was implausible.  

With the rejection of his basic ontology of form and matter, with its distinction between 

                                                                                                                                          
12 On Boethius on universals consult Paul Vincent Spade, "Boethius against Universals: The Arguments 
in the Second Commentary on Porphyry", http://pvspade.com/Logic/docs/boethius.pdf 
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necessary and accidental properties, his theory of perception, abstraction and mental 

language also fell.  Indeed the increasing scientific rigor of the period made clear how 

little we knew of the mind and how we think, or of language and its basic mechanisms.  

The view called psychologism, that logic concerns the forms of thought, was rejected 

in favor of a more objective scientific project: the identification and explication of the 

logically valid arguments.  On this view, there are logical facts about what arguments 

are valid, just as there are truths about what formulas of algebra are true, or what laws 

of physics. It is the logician’s task to find and explain them.  The theory of truth 

remains central because a valid argument necessarily takes one from true premises to 

a true conclusion.  But the focus of study turned from the psychology to the study 

directly of grammatical forms and how they correspond to the world.  In later lectures 

we shall study this new grammar. 

But any theory of correspondence even within a more complex grammar was 

still going to face the task of explaining its simpler sentences, including subject-

predicate sentences.  They were not going to disappear simply because we also 

wanted to write longer formulas too.  Moreover, as long as there are subject-predicate 

sentences there will be a problem of sameness and difference.  The logicians had to 

face the problem afresh but without the help of Aristotle’s ontology. 

By a happy coincidence, set theory was being developed by mathematicians 

like Georg Cantor, who was interested in it as a tool to understanding problems in 

number theory and the theory of the infinite.  It proved to be an ideal tool for the logical 

projects of the day.  One of its key contributions to logic is that it provides an ontology 

suitable for explaining the problem of universals.   
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Let us turn then to the theory of sameness and difference as seen from the 

perspective of set theory.  Working through the basic ideas of set theory will also 

provide some seat-of-the-pants experience for students new to logic, so that they can 

experience what it is to think an issue through logically and construct a simple proof.  

This intuitive experience is really a prerequisite for appreciating the power of the 

symbolic techniques for constructing proofs that we shall meet in later lectures.
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LECTURE 3.  NAÏVE SET THEORY 

The Motivation for Set Theory 

Set theory is regarded as superior to Aristotle’s theory of form and matter in two 

ways.  First of all, it is not committed to Aristotelian essentialism, the view now 

rejected by natural science that species possess necessary defining features.  Set 

theory explains sets, which are not part of the physical world like atoms or volcanoes, 

but are rather abstract mathematical entities.  Accordingly set theory itself makes no 

claim whatever about the natural world explained by the empirical sciences.  Thus, set 

theory is not committed to Aristotle’s account of perception and abstraction, or to the 

mediaeval doctrine of mental language, both of which are accounts of natural 

processes.  As we shall see in later lectures, sets are used in empirical theories, 

including scientific accounts of language, but the naturalistic theories are applications 

of set theory, much as physics makes use of applications of geometry or economics of 

calculus.  Set theory as a theory of abstract entities, as a “mathematical” theory in this 

sense, is prior to and independent of such applications.  It stands on its own as an 

account of what sets are.   

Secondly, set theory is superior to the Aristotelian account in that it can actually 

explain its fundamental ideas in a way the Aristotelians could not.  The mediaeval 

account explains sameness and difference, language and thought, etc. by appeal to 

the catalogue of entities listed in the Aristotelian categories.  But it does not define 

these in any serious way, nor does it state precisely the “laws” that they obey.  
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Though we were able in the last lecture to sketch their relations, the picture has many 

obscurities. 

  What, for example is a difference?  Is it an entity from one of the non-

substance categories, like a quality, so that it is “said in” a substance?  If so, is form 

then reducible to the list of the necessary differences that characterize a substance’s 

genera and species?  If so, how does form differ from genera and species, which are 

“said of,” not “said in,” a substance?   

The matter of a substance is a temporally prior substance that changes so as 

to become the new substance.  More precisely, the matter of a substance consists of 

the substantial parts that come together to form the new substance.  But how deep 

does the part-whole relation go?  It was a standard doctrine that the part-whole 

relation  “bottoms out” at a fundamental level of substantial parts, which was called 

prime matter. This was the basic “stuff” out of which the smallest substances are 

composed.  But prime matter is a mysterious entity because it does not fall in any of 

the categories.  

Obscurities of this sort derive from the fact that the theory is not very well 

worked out.  Set theory, on the other hand, is mathematically rigorous, and states its 

claims with admirable clarity.  The contrast can be made in terms of the basic 

elements of an explanatory theory, which were set out in Lecture 1.  As described 

there, a theory has three parts: a list of its basic ontology, which consists of a 

classification of the entities the theory assumes to exist, a list of relations that hold 

among these entities, and a statement of the “laws” that explain these relations.  

Aristotle provides the lists, but does an imperfect job of providing the laws. 
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Set theory does a better job.  Its ontology is simple.   It presumes only that sets 

and their elements exist.  It also posits a minimal list of two basic relations:  identity 

and set membership.  But it is in the statement of its “laws” that the theory is strikingly 

superior.  They take the form of an axiom system.  

Early forms of axiom systems have been employed in mathematics since 

Euclid’s Elements of the 2nd century B.C.  Their modern format was developed with 

the advent of symbolic logic in the 19th century.  An axiom system has three parts: a 

set of  axioms, a set of inference rules, and a set of theorems that are deduced from 

the axioms by careful proofs.  The system is usually supplemented with a set of 

definitions that allow for the abbreviation of longer expressions by more familiar 

shorter ones.  In this lecture and later we shall state and prove theorems in a simple 

axiom system for naïve set theory, so that the reader may learn something about set 

theory and at the same time gain first-hand experience with an axiom system.  

Abbreviative and Implicit Definitions 

Before we start, however, it is important to draw attention to two rather different 

ways in which an axiom system “explains” basic words or concepts.   

Abbreviative Definitions  

 One way is by a direct definition.  As we shall see, some terms are explained 

by being given an explicit definition in terms of other more basic expressions of the 

theory.  In the context of an axiom system definitions of this sort are abbreviations.  

The axioms are stated first in terms of the basic vocabulary of the theory.  None of 
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these terms receive an explicit definition.  They are said to be primitive, and the 

undefined language of the axioms is called primitive notation.  Given the axioms and 

rules, it is then possible to deduce theorems.  Sometimes these theorems get rather 

long.  It is often possible and informative to abbreviate some of this longer notation by 

shorter expressions.  The declarations describing such abbreviations are called 

abbreviative definitions.  The definition has two parts: the term to be used as the 

abbreviation (the definiendum) and the longer expression it abbreviates (the 

definiens). 

Officially, from the point of view of logical deductions, any abbreviated item can 

be eliminated.  It is simply replaced by the longer expression it stands for.  In this way, 

by the progressive elimination of all abbreviations, any formula can be translated back 

into one written entirely in primitive notation.  In this sense the abbreviated terms are 

not really part of the basic axiom system. 

Abbreviative definitions, nevertheless, play an explanatory role.  Usually the 

term used as an abbreviation has a prior usage in ordinary language or in science.  At 

the same time, the words that are being abbreviated often have a previous usage.  

That is, the term being defined and the terms used to define it are ones we already 

have opinions about, including views about what they mean.   When this is true, it is 

required that the abbreviation conforms to or clarifies this past usage.  It would not do, 

for example, to abbreviate the expression three sided plane figure by the term duck 

because past usage does not use the term duck to mean anything like a triangle.  

Accordingly, the scientific community that is responsible for developing the axiom 

system for a body of science is constrained to build into it only definitions that are 
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plausible.  Often such definitions are also quite illuminating as well because, given the 

definition, it is then possible to prove theorems using an abbreviation that shows how 

the abbreviated idea relates to the other ideas in the theory.  In the axiom system 

below a number of ideas are given abbreviative definitions, for example subset.  You 

should cast a skeptical look at these definitions to see if they do a good job of 

capturing what you think the abbreviated terms mean in ordinary language.  We shall 

then use these abbreviations to prove theorems, and discover how the defined terms 

relate to one another.    

Implicit Definitions 

In addition to explicit definitions, there is another way in which an axiom system 

“explains” its terms.  It is this technique that is used to explain those terms that occur 

in the axioms.  Because they are in the axioms, they are part of the primitive notation 

and do not have explicit definitions.  These terms, rather, provide the basic vocabulary 

that makes abbreviative definitions possible.  But if a term is being used to write a 

basic assumption, how is it that the term itself is to be “explained”?  The usual answer 

is that the axioms themselves in a sense “explain” the terms used to write them.  The 

rationale goes this way.  The axioms and rules together determine all the theorems 

that can be proven from them.  That is, they determine all the truths that can be stated 

using the primitive terms. What more could you want in the way of explaining a term?  

It remains true that the term must be used in a way that fits ordinary usage.  If the 

axiom system uses a familiar term in one of the axioms, then it cannot use it in a way 

that violates the ordinary meaning of the term.  The axiom every duck is divisible by 2 

is an unacceptable axiom because in the ordinary language ducks does not apply to 
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the sort of thing that is divisible by a number.  Axioms that are consistent with ordinary 

language, on the other hand, can be quite informative about the ideas they assume.  

The axioms are therefore said to provide an  implicit definition of the terms they 

contain.  Newton’s theory of mechanics is axiomatized by his four laws of motion, 

which presuppose various terms as part of their undefined vocabulary.  They are said, 

for example, to implicitly define the notions of Newtonian time and space because 

they use variables that range over distances and durations. In the axiom system for 

set theory that we shall sketch in this lecture, the symbols ∈ for set membership and = 

for set identity will be used in the axioms and be implicitly defined by them.  It is in this 

sense then that the theory will explain its fundamental ideas. 

The Axioms of Naïve Set Theory 

 Sets were studied intuitively in the 19th century by Georg Cantor (1845-1918) 

and later axiomatized by Gottlieb Frege (1848-1925).  A simplified account designed 

to highlight the central ideas was provided shortly afterwards by Bertrand Russell.13  

This is the version we shall review here.  It is now called naïve set theory.  It contains 

just three axioms.  The first is an axiom that occurs in every axiom system in 

mathematics and science.  It says simply that every truth of logic may be written down 

as a theorem in this axiom system.  The axiom insures that all the truths discovered in 

the more basic science of logic can be carried over into the new system.  It is the next 

two axioms that lay out the basic properties of sets themselves.  They are written 

using the “primitive notation” of set theory, ∈ and =.  Strictly speaking, it is the axioms 

                                            
13 In Principle of Mathematics, op. cit. 
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themselves that are supposed to explain (”implicitly define”) what these symbols 

mean, but let us start by translating them into English. 

Set Identity and The Principle of Extensionality   

The symbol = is familiar.  It stands for identity between sets.  Axiom 2, called the 

Principle of Extensionality, lays out the identity conditions for sets.  Philosophers 

sometime require “identity conditions” as a necessary requirement for an acceptable 

ontology.  They admonish,  “No entity without identity.”  This axiom satisfies that 

requirement.   More precisely, the axiom sets out the conditions under which two 

names stand for one and the same set.  The stand for the same set if the sets they 

name have the same members.   

♦Axiom 2.  The Principle of Extensionality 

A=B ↔ for any x (x∈A ↔ x∈B) 

Simply put, two sets are the same if and only if they have the same members.  (The ♦ 

is used to indicate axioms, definitions, rules, theorems etc. that are important in the 

sense that they are presupposed in the later lecture material.)   

The axiom may be formulated in terms of a name’s extension.14  The extension 

of a set name is simply the set that it names.  The axiom says that two names form a 

true identity sentence exactly when they have the same extension, i.e. exactly when 

they stand for the same set.  It is this formulation in terms of extension that gives the 

axiom its name.   

                                            
14 The idea goes back to Antoine Arnauld and Pierre Nicole in the Port Royal Logic (1645), Arnauld and 
Nicole thought it was ideas of indiviuals rather than indivials themselves that “fall under” a general term.   
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The axiom is obviously true, but a related principle for Platonic Forms and 

Aristotelian universals is false.  It is not true, for example, that two Forms are identical 

if the same bodies imitate them, or that two Aristotelian qualities are identical if they 

are “said in” the same substance.   The very same things could be both red and 

square but that would not mean that the Ideas or qualities of redness and squareness 

would be the same, because understanding the one would not entail understanding 

the other. Unlike sets, Forms and qualities need not be identical when they have the 

same extensions.   It is not at all clear in fact how to state identity conditions for Forms 

or qualities.  This imprecision is a major weakness in the theories of Plato and 

Aristotle because it prevents them from achieving the ideal of clear mathematical 

formulation. 

 

 

Set Membership and the Principle of Abstraction 

The Greek letter ∈ (epsilon) is used to indicate set membership:  

x∈A   is read   x is a member (or element of) A.   

We use ∈ to classify, to assign entities to sets.  In English we accomplish this by using 

the verb to be in one of its various senses.    Thus, the following sentences all say the 

same thing: 

 Socrates is a human   

Socrates is a member of the set of humans  

Socrates ∈ the set of humans  
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(The Greek letter epsilon is used for membership because in Greek verb to be (einai) 

begins with ∈.)   

Axiom 3 uses ∈ to declare the conditions under which a set exists: a set exists 

if its conditions for membership can be stated in language.  Another way to say the 

same thing is that a set exists if it can be defined.  Russell used the term abstraction 

to name the process of defining a set by its membership conditions, and calls this 

axiom the Principle of Abstraction.    

But let us be clearer.  What is it to state the “membership conditions” of a set?  

Briefly, it is to formulate a sentence that must be true of all and only the set’s 

members.  Let the variable x represent an arbitrary individual.  Then, to formulate a 

condition is simply to write some sentence that must be true of x.  For example, x is 

red is a sentence that describes a property of x.  The axiom then says that the set of 

all x such that x is red exists.  Again,  2 ≤ x describes a property of x,  The axiom says 

the set of all x such that 2≤x exists.   

To say this in an axiom we must introduce some notation to represent a 

sentence that talks about x.   

First we must explain what a variable is.  The letters we shall use as variables 

are x,y or z.   They function as a pronoun that  stands for sets or for the element 

contained in a set.   In ordinary grammar, in order to know what a pronoun stands for, 

its antecedent must be fixed by the sentence in which it occurs.  Similarly, if a variable 

is used in a formula in which it does not have a fixed antecedent, we cannot know 

what set or element it is supposed to stand for.  A variable without a fixed antecedent  

is said to be free.   For example, in the sentence it is red and the formula x is red, it is 
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not possible to determine an antecedent for the subject term.  Thus, in x is red we say 

that the variable x is “free.”   

Let v be a variable.  We use P(v) to represent a formula P in which v occurs as 

a  free-variable v.  Later we shall also talk about formulas that contain two or more 

free variables.  For example,  x loves y is a formula with two free variables, and x 

loves y but hates z is one containing three.  In general we shall represent a formula P 

with n free variables v1,…,vn  by the notation  P(v1,…,vn).   

We may now state the Principle of Abstraction.   

For any formula P(x) the following is an axiom: 

there exists an A such that for all x, x∈A if and only if P(x). 

It is useful later when constructing proofs to state the axiom more succinctly.  To do so 

we introduce some abbreviating notation.  First is the standard notation for the 

quantifier expressions all and some: 

 for all x  is abbreviated by  ∀x 

 

for some x is abbreviated by  ∃x   

We will also use symbols for not, and, or, if…then, and if and only if, which are called 

the sentential connectives.  We have already met ∼ for negation.  I this lecture we 

shall also use the ampersand & for conjunction (and), the symbol ∨ for disjunction (or), 

→  for the conditional (if…then), and ↔ for the so-called biconditional (if and only if): 

P or Q    is abbreviated as  P∨Q.  

if P then Q    is abbreviated as  P→Q 

P if and only if  Q  is abbreviated as  P iff Q, or as  P↔Q  
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The axiom may then be stated:15 

♦Axiom 3. Principle of Abstraction 

∃A ∀x ( x∈A ↔ P(x)) 

Having now set down the theory’s axioms, the next step is to lay down its rules of 

inference, and then to start deducing theorems.  We will postpone this task, however, 

until the next lecture, and jump ahead to the abbreviative definitions of the theory.  In 

this way we will be able to discuss in the same lecture both the primitive and defined 

ideas of set theory.  When we do move on to proving theorems, we will then use the 

defined terms to abbreviate longer formulas that occur in the derivations. 

Abbreviative Definitions 

We shall now introduce the abbreviations used in the theory.  There are two 

important things to recall about abbreviative definitions.  First, each such defined term 

is in principle eliminable from a formula by replacing it with the longer formula that it 

abbreviates.  Second, the definition is suppose to conform to our “pre-analytic” usage.  

That is, according to ordinary language or earlier scientific usage the term doing the 

abbreviating should mean the same as the paraphrase that abbreviates.   

Set Abstracts 

We begin with some notation that allows for a more useful formulation of the 

Principle of Abstraction.  The principle assures us that if there is a sentence P(x), we 

can make up a set A that contains all and only the entities x such that P(x) is true.  It   

                                            
15 Strictly speaking this is what logicians call an axiom schema, because there are as many axioms of 
this form as there are different open sentences of the form P(y). 
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is useful to name this set by the notation {x | P(x)}, which is read the set of all x such 

that P(x).  

  

Definition.  {x | P(x)}    abbreviates  the one and only A such that ∀x ( x∈A ↔ P(x)). 

 

It is now possible to say more directly that any element y is in a set defined by a 

property if and only if y possess that property: 

♦Theorem 1.   ∀y(  y∈{x | P(x)}  ↔ P(y)  ). 

The proof of theorem 1 is not difficult, but since it requires steps of logic that have not 

yet been introduced, the theorem will have to be accepted for now on faith.  A set 

name of the form {x | P(x)}  is called a set abstract.   

Defined Relations on Sets 

 The next set of definitions introduce several usefully defined relations on sets: 

≠, ∉, ⊆, and ⊂.  These are genuine relations on sets, but they are relations that stand 

in a systematic relation to the primitive relations = and ∈, and may be introduced by  

definition.   

 
Abbreviation Phrase Abbreviated How to read the notation The Abbreviation’s Name  
      out loud in English 
 
♦x≠y ∼(x=y)          x is not identical to y  non-identity or inequality 
♦x∉A ∼(x∈A) x is not an element of set A  non-membership 
♦A⊆B ∀x(x∈A→x∈B) A is a subset of B   subset  
  A⊂B A⊆B&∼(A=B) A is a proper subset of B proper subset  
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Defined Sets and Operations on Sets 

 The next set of definitions introduce notation for ways to name sets.   First 

there are the names ∅ for the empty set (the set with nothing in it) and V for the 

universal set (the set of everything).  Then there is the notation for the set operations: 

∩ (intersection), ∪ (union), − (complementation), and P (the power set operation).   

Intuitively, the intersection of two sets is their overlap, the union of two sets is their 

combination, and the complement of a set includes everything outside the set, either 

without restriction (complement) or within a restricted range (relative complement).   

Lastly there is the abbreviation {x1, …,xn}  that names a set by just listing its members 

x1, …,xn .   

 
Abbreviation Phrase Abbreviated How to read the notation The Abbreviation’s Name  
      out loud in English 
 
∅ or Λ {x| x≠x} the empty set   empty set 
V {x| x=x} the universal set   universal set 
A∩B {x| x∈A&x∈B} the intersection of A and B intersection  
A∪B {x| x∈A∨x∈B} the union of A and B   union 
A−B   {x| x∈A&x∉B} the relative complement  relative complement 
        of B in A   
−A  V−A  the complement of A  complement  
P(A) {B| B⊆A} the set of subsets of A  power set 
{x1, …,xn}   {y| y = x1 ∨ …∨ y = xn} the set containing x1, …,xn 
 
In the above abbreviations the particular variable used is not important.  Others may 

be substituted (like y for x in the definitions above) so long as the variable is new and 

it replaces every occurrence of the variable being replaced.   

 Notice that x≠y, x∉A, A⊆B, and A⊂B are all sentences.  Hence they are true or 

false.  On the other hand, ∅, Λ, V, A∩B, A∪B, A−B, −A, P(A), and { x1, …,xn } are not 

sentences (they are not either true or false).  They are names of sets.  In ordinary 

grammar there is a huge difference between a name and a sentence.  Names stand 
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for entities, sentences combine names with verbs and make assertions about entities 

that are either true or false.   It hard not to spot the difference between names and 

sentences in English, but it is easy to lose track of which is which in the new notation 

of set theory.  Keep your eyes open. 

  
 

The Problem of Universals 

 Let us conclude this introduction to sets by returning to the problem of 

sameness and difference that motivated the theories of Plato and Aristotle.  Given set 

theory we can explain when two things are the same: two things are of the “same 

kind” when they are elements of the same set.   

 

Truth-Conditions for Subject-Predicate Sentences and their Negations 

• Fa is true if and only if the set that F names has as an element the individual 

that a stands for.   

• ∼Fa is true if and only if the set that F names does not have as an element the 

individual that a stands for.   

Explanation of Sameness and Difference 

• Two individuals are the same with respect to a set U if and only if they may be 

referred to by two different proper names, say a and b, U may be named by a 

predicate, say F, and the sentences Fa and Fb are both true.  

• Two individuals are different with respect to a set U′ if and only if they may be 

referred to by different proper names, say a and b, U′ may be named by a 
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predicate, say G, and either the sentences Ga and ∼Gb are both true, or the 

sentences ∼Ga and Gb are both true. 

That is, sets function as universals.  The events in the world that underlie our 

attributions of sameness and difference are grounded in facts that are part of the 

ontology of sets.  Parmenides’ puzzles of how the world could be coherently described 

so as to allow for sameness and difference are solved.
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LECTURE 4.  SET THEORY AS AN AXIOM SYSTEM 

Proofs 

 This lecture is an introduction to two notion: a proof and an axiom system.  It is 

fair to say that proofs are what logic studies, and it is axiom systems that display 

proofs in action in the clearest manner.  But it is hard to study something you are not 

familiar with to some extent already.  Accordingly a standard way to prepare for more 

serious study of logic is to have some hands-on experience at doing proofs.  Here we 

shall use proofs to develop an elementary axiom system, naïve set theory, as based 

on the axioms of abstraction and extensionality discussed in the previous lecture. 

 How does one learn to do proofs?  Historically, mathematicians have been 

employing proofs since ancient Greece.  In the nineteenth century, however, it is fair 

to say that mathematicians became more careful in the way they did proofs.  This care 

was partly motivated by the difficulty of the problems they were addressing and partly 

because they were learning how to formulate proofs more carefully.  It was at this 

period that symbolic logic in its modern form was born.  One of its main motivations 

was to represent even more precisely the proof methods that were part of 

mathematical practice.    

 Mathematicians did not then, and do not now, learn to construct proofs by 

taking logic courses, sad to say.  Rather, they learn how to do so in math courses,  by 

imitating what they see in math texts and by copying their professors.  This process is 

highly imperfect.  Neither textbooks nor math professors do a very good job of 

explaining what a proof is or how to go about constructing one.  To an amazing extent, 
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proof learning by mathematicians is actually non-verbal, a matter of aping professorial 

behavioral.    

 The existence of this proof behavior is important to logic as a “science.”  It is 

the proofs found in mathematics that logicians try to understand.  These proofs are 

“the data to be explained,” much as the movement of the planets or experimental 

results  in the chemistry laboratory provide the data to be explained by the laws of 

physics or chemistry.  

 For these reasons it is a good idea for logic students to begin by trying to do 

proofs even before they understand very well what they are doing.  We shall engage 

in this sort of baptism by fire in this lecture.  We shall do so by proving theorems in 

naïve set theory.  We start by explaining the rules of the game.  A proof is a series of 

sentences, each of which is an axiom, a previously proven theorem, or a sentence 

that follows from earlier lines by a “rule of inference.”  A rule of inference tells you 

when you are permitted to write down a new line.  Any line that you can prove as the 

last line of a proof is called a theorem.  (We shall give more technically accurate 

definitions later.) 

 Inference rules all follow a certain pattern.  They tell you the shape of the line 

you are permitted to write down, and they do so by describing the shape that must be 

met by earlier lines in the proof.  By the “shape” of a sentence – often called its form – 

is meant its grammatical structure.    If there are earlier lines of a certain form, the rule  

says, then you can write down a new line of another form.  The new line is then 

“justified” by citing both these earlier lines and the rule used to derive it.  Writing down 

the justification next to each line is called annotating the proof.  In the previous lecture 
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we have already laid down the axioms and abbreviative definitions will be using.  It 

remains for us to explain the rules of inference.  Here, to make proof construction 

easy, we will employ a generous set of rules, and rules that are fairly obvious and 

easy to use.  They are also chosen because they are the ones that logicians most 

often use themselves when they have to construct proofs. 

Inference Rules 

The following rules explain when it is permitted to write a new line of a proof by 

citing as reasons previously proven lines.   Read these rules carefully.  First make 

sure you understand each symbol.  Next make sure you understand what the rule 

says, i.e. what sort of sentence is said to follow logically from what other sort of 

sentence.  Finally, make sure the rule “clicks.”  That is, try to convince yourself that 

the rule is right, that the inference it says follows logically really does.   These rules 

are supposed to be obvious.  If one is not, then you simply have not understood what 

it says.  Keep trying to figure out what is says.  If all else fails, ask somebody.  There 

is really no point trying to use the rules until you understand them.   

Below the rules are explained first in English and then by means of a display 

that is suppose to help you focus on the forms of the formulas involved.  The display 

has the form: 

 P        
 Q         
∴R    

The pyramid of three dots ∴ below the bar means therefore.   The display means that 

a formula of the form R may be written down as a new line of the proof if there are 

earlier lines of the proof, one of form P and another of the form Q.  Note that though P 
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is written above Q in the display, it does not matter which was proven first so long as 

both occurs as lines earlier in the proof.  In the examples below the various formulas 

will be complex sentences.  Pay attention to their grammatical form.  A rule only works 

when applied to formulas of the right shape.   Rules marked with ♦ are used 

frequently and those with ♦♦ very frequently.   

Logical Truths 

 
♦♦The Axiom of Logical Truth.  The first axiom of set theory, and indeed the first 
axiom of any science other than logic, asserts that any truth of logic is a truth of the 
science in question.  The axiom captures the idea that logic is the most general of 
sciences and is presupposed in any other scientific endeavor.  The axiom is true 
because, as we shall see in Part 2, the truths of logic are necessary in the sense that 
they are true “in any possible world”.  They are true, in other words, no matter what 
the facts of the particular science in question.  Whatever the “special axioms” of the 
subject in question,  these axioms must be compatible with the truths of logic.  In the 
Middle Ages philosophers recognized the fundamental nature of logic in their 
recognition that even God is bound by its laws.  As a practical matter it is difficult to 
use this axiom unless one already knows what the truths of logic are.  In the proofs we 
shall be doing this prior knowledge is not a problem because we shall only be using 
three or four truths of logic which are themselves extremely obvious, like P or not P, 
Everything is self-identical, and  Every A is A.   

In Part 3 of the course we shall see how to replace this one rather question 
begging axiom by a short group of logical formulas that are obviously logical truths 
and that in turn serve as the axioms for all the other truths of logic.  But for simplicity 
here we adopt the expedient of simply declaring that if we know something is a truth of 
logic, we can write it down as a line in a proof.16  In practice, logicians and 
mathematicians also permit you to introduce as a line in a proof any other very simple 
truth of mathematics like simple facts of arithmetic (e.g. 2+2=4 or Every positive 
integer is odd or even), but we shall not be doing so here.      

In this lecture we shall make use of just three truths of logic: 
P∨∼P 
∀x(x=x), and  
∀x(P(x) ↔ P(x))   

                                            
16 W.V.O. Quine adopts exactly the same expedient for the truths of propositional logic in his 
axiomatization of set theory.  See the very first axiom (*100) in his Mathematical Logic (Cambridge: 
Harvard University Press, Revised Edition 1951). 
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Sentential Logic Rules 

The next set of rules explains legitimate inferences that turn on the form of what are 
called the sentential connectives ∼, &, ∨, →, and ↔. 
 
♦♦Modus (podendo) ponens17 (called by mathematicians detachment).  Satisfying 
the antecedent of a conditional proves that the consequent is true. 
 
P→Q Note that because  P↔Q    P↔Q    
     P entails P→Q we shall also call        P     
∴Q the rule to the right modus ponens:  ∴Q  
 
♦Modus (tollendo) tollens18.  Refuting the consequent of a conditional proves that 
the antecedent is false. 
 
P→Q  Note that because  P↔Q    P↔Q  
∼Q   entails P→Q we shall also call       ∼Q  
∴∼P  the rule to the right modus tollens:  ∴∼P  
 
Disjunctive Syllogism (Modus tollendo ponens19).  If one horn of a dilemma is 
refuted (or one case of those cases that are possible), then one of the remaining 
alternatives must be true. 
 
P∨Q   P∨Q 
∼P      ∼Q 
∴Q   ∴P 
        
♦Hypothetical Syllogism.  Conditionals are transitive. 
 
P→Q 
Q→R 
∴P→R 
 
♦♦Conjunction.  A conjunction may be broken down and either half written as a new 
line, or two previous lines may be put together on a single line if joined by &. 
 
Conjunction Elimination P&Q P&Q Conjunction Introduction P 

 ∴P ∴Q  Q 
    ∴P&Q  

We shall call both rules simply Conjunction. 

                                            
17 [Given a conditional,] the way of positing [the consequent] by positing [the antecedent]. 
18 [Given a conditional,] the way of taking away [the antecdent] by taking away [the cosequent]. 
19 [Given a disjunction,] the way of positing [one disjunct] by taking away [the other disjunct]. 
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Addition or Disjunction Introduction.  To prove a disjunction P∨Q (to “introduce” a 
line containing P∨Q into a proof) it suffices to prove either the disjunct P  or the 
disjunct Q individually.  
 
    P            Q__      
∴P∨Q    ∴P∨Q 
 
 

Quantifier Rules 

The next set of rules explain the legitimate inferences that turn on the so-called 
quantifiers all and some, i.e. that depend of the symbols ∀ and ∃. 
 
♦♦Universal Generalization.  If you know some fact P(x) about an individual x, and 
you know that this x “typical of everything” or is a so-called “arbitrary individual”, then 
you can generalize from this one case to the entire universe and write down ∀xP(x).  
To do so, you cannot have assumed anything about x that you do not know is true of 
everything in the universe.  Normally the only way a free variable for arbitrary 
individuals enters a proof is by the rule universal instantiation below. 
 
               P(x)      P(y)  here x and y must be arbitrary  

∴∀x P(x)   ∴ ∀xP(x)   
 
♦♦Universal Instantiation.  If you know a universal proposition ∀xP(x), you can 
always deduce an “instance” P(x) or P(y), for any free variable you wish.  When you 
do this, the instantiated free variable, in this case x or y, counts as an “arbitrary 
individual” and can be used later in an application of universal generalization above.  
Here are two forms, both valid: 
 
          ∀xP(x)   ∀xP(x)    

∴ P(x)   ∴ P(y)  (here x and y count as arbitrary) 
 
 
♦♦Proof of an Existential Proposition by Construction.  To prove a proposition of 
existential form ∃xP(x), you must find an example of some c such that P(c) is true.  
Normally “finding” here consists of defining the individual if, for example, it is a set, or 
otherwise appealing to facts of mathematics that assure you the right entity exists.  
(Another way to prove ∃xP(x) is by the rule reductio, i.e. assume ∼∃xP(x) and then 
deduce a contradiction.  See the reductio rule below for the proper form.) 
 
      P(c)        (here you may know P(c) because of the definition of c or from math)   
∴ ∃xP(x) 
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♦♦Existential Instantiation.  If you know an existential proposition ∃xP(x), you can 
“give a “name” to this x, which may be any free variable that has not occurred in any 
previous line of the proof, for example P(x) or P(y) if x or  y does not occur earlier as a 
free variable. 
  
∃xP(x)   ∃xP(x)    
∴ P(x)   ∴ P(y)  (here x and y must be new to the proof and  

 are not to be considered arbitrary.) 
 

Substitution Rule 

  
♦♦Substitution.  If a=b  is a logical truth or a previous line and a and b are proper 
names or variables, then one may be substituted for the other in one line of the proof 
to deduce a new line.  Likewise, if a formula of the form P↔Q is a logical truth or a 
previous line in a proof, and if P and Q contain the same variables (in this case P and 
Q are said to be logically equivalent), then if the formula P occurs in an earlier line, a 
new line may be introduced that consists of replacing one or more occurrences of P in 
the earlier line with a expression of the form Q.  Likewise,  any occurrence of a 
formula of the form Q in an earlier line may be replaced in a new line by one of the 
form P.     

To state the rule more precisely, we need a bit of notation.  We say that E1 is in 
R by writing R(E1), and then that E2 replaces E1 one or more times in R by writing  
R(E1).  That is, let R(E1) refer to a formula R that contains one or more occurrences of 
E1, and let R(E2) be like R except that it contains one of more occurrences of E2 were 
R contains E1.  Now we can state the rule, first for the substitutivity of identities and 
then for the substitution of sentences that are logically equivalent: 

 
   R(t)    R(s) if t=s  is a logical truth or a previous line 
∴ R(s)  ∴R(t) with the same free variables20. 
   
   R(P)    R(Q) if P↔Q is a logical truth or a previous line 
∴ R(Q)  ∴R(P) and  P and Q have the same free variables 

 
For this rule we list several logical truths that are particularly useful: 
                                            
20  Here s and t are proper names (which are called constants in formal logic), or free variables, or 
abstracts.  If they are abstracts {x |…x…}.  , they contain a sentence …x…  that may itself contain  
variables other than x and some of these might be “free.” For example,   in . {x | x loves y} the variable y 
is free because it has no antecedent that fixes its referent.  In ∀x(…x…), ∃x(…x…),, and {x |…x…},  the 
occurrence of x in …x… is said to be bound to the earlier x in ∀x, ∃x, or the abstract notation {x |    } 
which fixes the referent of the second x.  The technical definition is that variable x is free if and only if it 
does not occur as part of some expression ∀x(…x…), ∃x(…x…),, and {x |…x…}.  Free variables, thus,  
function as pronouns that lack a reference because they lack an antecedent.  Binding a variable by a 
quantifier or an abstract of the same variable provides that antecedent.  Since free variables are 
functioning as pronouns, in substitution the free variables must remain the same to make sure the same 
objects are being named in both the original expression and the one that replaces it. 
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Association:   ((P&Q)&R)  ↔  (P&(Q&R)) 
    ((P∨Q)∨R)  ↔  (P∨(Q∨R)) 
 
Commutation:   (P&Q)  ↔  (Q&P) 
    (P∨Q)  ↔  (Q∨P) 
    (P↔Q)  ↔  (Q↔P) 
 
DeMorgan's Laws:  ∼(P&Q)  ↔  (∼P∨∼Q) 
 
 
DeMorgan's Laws:  ∼(P&Q)  ↔  (∼P∨∼Q) 

∼(P∨Q)  ↔ ( ∼P&∼Q) 
 
♦Double Negation :  ∼∼P  ↔  P 
     
Implication :   (P→Q )  ↔  (∼P∨Q) 
    ∼(P→Q )  ↔ (P & ∼Q) 
 
Contraposition :  (P→Q ) ↔ (∼Q→∼P) 
 
Tautology :   (P&P ) ↔ ( P∨P ) ↔  P   
 
♦The Biconditional : (P↔Q)  ↔ ((P→Q)& (Q→P) ) 

(P↔Q)  ↔  ((P&Q) ∨ (∼P&∼Q)) 
 

Quantifier Negations : ∼∀xP(x) ↔ ∃x∼P(x) 
   ∼∃xP(x) ↔ ∀x∼P(x) 
   ∼∀x(P(x) →Q(x)) ↔ ∃x(P(x)&∼Q(x)) 
   ∼∃x(P(x)&Q(x)) ↔ ∀x(P(x) → ∼Q(x)) 

Subproof Rules 

The next rules says that if a proposition of a certain form can be proven from 

other propositions of a certain form, then you can write down a new line of a certain 

form.  They are explained in displays of the form: 

 
If       P  then  R      
      ∴Q 
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These means that if somewhere earlier in the proof you have actually written down 

another mini-proof, called a subproof, that starts with P as an assumption and finishes 

with Q, then you can write down a new line of the form R.   

There are two rules of this form, one says that if you can prove a contradiction 

from a formula, its opposite is true.  The second says that if on the assumption of P 

you can prove Q, then the conditional P→Q must be true.  But showing that a formula 

leads to a contradiction, or that P leads to Q, means that you need to produce a 

subproof showing the steps.  You add this subproof to your overall proof, and then 

apply the subproof rule to deduce the new line.  In what follows those lines that 

constitute a subproof will be offset to the right several spaces to distinguish the 

subproof from the proof proper.   

Note that when proving a line within a subproof, it is permitted to cite lines 

proven earlier in the proof, including those that occur prior to the subproof itself.  

These can be cited because they have already been proven.   On the other hand, 

once the subproof is concluded, its content must be “sealed off.”  You cannot later cite 

lines that occur within an earlier subproof because its lines were only conditionally 

true, depending on the special ad hoc assumption that started the subproof.  The 

examples below will show how these restrictions work in practice. 
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♦Reductio ad absurdum 
If you can prove from an assumption P a contradiction Q&∼Q, or indeed any other 
proposition that you know to be false, you may conclude that P is false, i.e. you can 
conclude ∼P.  The rule has two forms, depending on whether the proposition you are 
showing is absurd is itself negated or not: 
 
If          P  then  ∼P      
      ∴Q&∼Q    
 
If          ∼P  then  P  
      ∴Q&∼Q    
 
Ex Falso Quodlibet (from a falsity anything follows).  If you show a contradiction, you 
can write down anything you want as a following line. 
 
          P&∼P    

∴Q 
 
♦♦Conditional Proof  If on the assumption of P you can prove Q, then you may 
conclude P→Q. 
 
If        P  then  P→Q      
      ∴Q    
 
Conditional Proof for Biconditionals.   If on the assumption of P you can prove Q, 
and on the assumption of Q you can prove P,  then you may conclude P↔Q. 
 
If        P       and    Q , then  P↔Q      
      ∴Q  ∴P  
 
Proof by Cases (Disjunction Elimination).  If R is provable from each of the horns 
of a dilemma P∨Q (i.e. if R is provable from case 1, namely P, and R is also provable 
from case 2, namely Q), then R is provable from the disjunction P∨Q, which lays out 
the possible cases.   
 
If        P       and   Q , then  P∨Q      
      ∴R  ∴R  ∴R 
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Statement of the Axiom System  

  Having stated the axioms, inference rules, and definitions, we are now in a 

position to prove theorems.  We begin by summarizing the axioms, rules and 

definitions, and the list of theorems we shall prove. 

Summary of the System 

Axioms 

Logical Truth Every truth of logic is a theorem. 
Extensionality.   A=B ↔ ∀x (x∈A ↔ x∈B) 
Abstraction.   ∃A ∀x ( x∈A ↔ P(x)) 
 

Rules of Inference 

Modus ponens  
Modus tollens 
Disjunctive Syllogism  
Hypothetical Syllogism   
Conjunction  
Addition   
Universal Generalization   
Universal Instantiation   
Construction   
Existential Instantiation   
Substitution of Logical Equivalents 
Reductio ad absurdum 
Ex Falso Quodlibet  
Conditional Proof   
Conditional Proof for Biconditionals 
Proof by Cases    

Abbreviative Definitions 

Abbreviation Phrase Abbreviated  Abbreviation’s Name  
   
{x | P(x)}     the one and only A such that ∀x ( x∈A ↔ P(x)) set abstract21 
x≠y  ∼(x=y)           non-identity  
x∉A  ∼(x∈A)  non-membership 
A⊆B  ∀x(x∈A→x∈B)    subset  
A⊂B  A⊆B&∼A=B    proper subset  

                                            
21 See the later note on Theorem 1 for a more precise statement of this definition. 
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∅ or Λ  {x| x≠x}    empty set 
V  {x| x=x}    universal set 
A∩B  {x| x∈A&x∈B}    intersection  
A∪B  {x| x∈A∨x∈B}   union 
A−B    {x| x∈A&x∉B}   relative complement 
−A   V−A    complement  
P(A)  {B| B⊆A}    power set 
{x1, …,xn}   {y| y = x1 ∨ …∨ y = xn}  

 

Definition of Proof 

 We can now also formally define a proof.  Since a proof can contain subproofs, 

to avoid a circular definition, we must first define the notion of a simple proof that does 

not make use of a subproof.   

 
A simple proof is any finite sequence of lines each of which is an instance of an 
axiom or follows from earlier lines of the sequence by one of the non-subproof 
rules.   
 
A simple theorem is any formula that occurs as the final line of some simple 
proof.  
 

Given these two definitions, it follows that – and we shall demonstrate this in a later 

lecture –any simple theorem is (1) either a logical truth or an instance of an axiom of 

naïve set theory or (2) follows from a another simple theorem by one of the non-

subproof rules.   

 
A proof is a finite sequence of lines such that each is an axiom instance or a 
simple proof or follows from earlier lines or sequences of lines by one of the proof 
rules.   
 
A theorem is any formula that occurs as the final line of some proof.  

 
As before, given these two definitions, it follows that any theorem is (1) either a logical 

truth or an instance of an axiom of naïve set theory or (2) follows from a another 

simple theorem by one of the inference rules, including the subproof rules.   
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 To make proofs shorter, when we want to prove a theorem that follows in part 

from a theorem we have already proven, rather than repeating that theorem’s proof in 

the proof under construction, we shall adopt the convention of merely writing down the 

theorem as a line or of citing it if it states an equivalence that would justify a useful 

substitution.   We now list for reference the theorems that we shall prove in the next 

section. 

Theorems 

1.  ∀y(  y∈{x | P(x)}  ↔ P(y)) 
2.  ∀x (x∈∅ ↔ x≠x) 
3.  ∀x (x∈V ↔ x=x) 
4.  ∀x (x∈A∩B ↔ (x∈A&x∈B) ) 
5.  ∀x (x∈A∪B ↔ (x∈A∨x∈B) ) 
6.  ∀x (x∈A−B ↔ (x∈A&x∉B) ) 
7.  ∀x (x∈−A ↔ x∉A) 
8.  ∀B (B∈ P(A) ↔ B⊆A) 
9.  ∀y (y∈{ x1, …,xn } ↔ (y = x1 ∨ …∨ y = xn) ) 
10.  −−A=A  
11.  A⊆A 
12.  ∀x((x∈A & A⊆B)→x∈B) 
13.  A∩A=A=A∪A 
14.  A=B ↔ (A⊆B & B⊆A) 
15.  A∩B⊆A⊆A∪B 
16.  ∅⊆A⊆V 
17.  −(A∪B)=−A∩−B 
18.  −(A∩B)=−A∪−B 
19.  A⊆B ↔ −B⊆−A 
20.  A⊆B ↔ ∼(−A∩B ≠∅) 
21.  ∃x(x∈A∩B) ↔ ∼(A∩B≠∅) 
22.  A∈P(A) 
23.  ∅∈P(A)
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LECTURE 5.  PROOFS OF THE THEOREMS 

 Below we prove theorems of naïve set theory and do so by producing examples of 

proofs.  Some proofs have completed annotations.  You should work through these 

annotated examples to see why each line follows.  Look at the lines it depends on and see 

how the rule applied yields the new line.   

 To follow proofs, it helps tremendously to print out the axioms, and definitions, and 

then have them before your eyes.  Print the full versions of the rules that display the shapes 

of the required forms.  This way you can check that the lines have the relevant shapes. 

 Some proofs are only partly annotated.  The relevant earlier lines are cited but not 

the rule used.  You are supposed to find the rule yourself.  A few theorems are left for you 

to prove entirely on your own, with annotations.  A couple of these are not easy. 

 Note that the rules reductio and conditional proof require “subproofs,” i.e. mini proofs 

within longer proofs.  Below the line of such subproofs are offset several spaces to the right 

so that it is easy to see that they are subproofs.   In a few cases there are subproofs within 

subproofs, and these are set off even further to the right, etc.    

 

Theorem 1 (Principle of Abstraction, useful form).   ∀y(  y∈{x | P(x)}  ↔ P(y) ). 

 



 5.  Proofs of the Theorems  
  

The proof is not difficult, but even with our rich set of rules it is relatively complicated, too 

much so to make it worthwhile reproducing here.   The reader will have to take it on faith 

that is follows using the inference rules alone from axioms 1 and 2. 22 

                                            
22 For the technically minded, the complete proof is given below.  Students new to logic should be able to 
follow the proof after working through the later parts of Part 1 in these lectures.  Before stating the proof, 
however, the definition of {x| P(x)}  must be stated more accurately.  To define {x| P(x)} by eliminative 
definition, it must be possible to eliminate the notation wherever it occurs.  It occurs only in four possible 
positions, either to the left or right of the predicates ∈ and =.  That is, we must define 1-4 below: 

1. y∈{x| P(x)} 
2. {x| P(x)}∈y 
3. {x| P(x)}=y 
4. y={x| P(x)} 

Consider the first.  In this case y∈{x| P(x)} says that there is a set, call it A, that meet three conditions:  
(i) something z is in A iff P(z)}.  In symbols:  

∀z(z∈A ↔ P(z)) 
(ii) A is the only such set or, in other words, if any B is such, it must be A.  In symbols: 

∀B(∀z(z∈B ↔ P(z))→B=A) 
(iii) y has the defining property of A.  In symbols: 

P(y) 
Hence, the formal definition of 1 draws together all three conditions:  
 y∈{x| P(x)} ∃A(∀z(z∈A ↔ P(z)) & ∀B(∀z(z∈B ↔ P(z))→B=A) & P(y)) 
The case is similar for 2.  Here {x| P(x)}∈y says there is a set A  that (i) ∀z(z∈A ↔ P(z)), (ii) A is the only such 
set, and (iii) A∈y.  In symbols the definition reads: 

{x| P(x)}∈y ∃A(∀z(z∈A ↔ P(z)) & ∀B(∀z(z∈B ↔ P(z))→B=A) & A∈y) 
The definitions of 3 and 4 are similar: 

y={x| P(x)} ∃A(∀z(z∈A ↔ P(z)) & ∀B(∀z(z∈B ↔ P(z))→B=A) & y=A) 
{x| P(x)}=y ∃A(∀z(z∈A ↔ P(z)) & ∀B(∀z(z∈B ↔ P(z))→B=A) & A=y) 

Given these definitions it is possible to state and prove Theorem 1. 
Theorem 1.   ∀y(  y∈{x | P(x)}  ↔ P(y) ). 
Proof. 
Start of Subproof 1. 
 1.  ∃A(∀z(z∈A ↔ P(z)) & ∀B(∀z(z∈B ↔ P(z))→B=A) & P(y))     Assumption for CP, for arbitrary y 
 2.  ∀z(z∈A ↔ P(z)) & ∀B(∀z(z∈B ↔ P(z))→B=A) & P(y))          1,  Existential Instantiation 

3.  P(y)                           2,  Conjunction 
End of Subproof 1.  
Start of Subproof 2. 

4.  P(y)                           Assumption for CP, for arbitrary y 
5.  ∃A∀z(z∈A ↔ P(z))                Axiom 3, Abstraction 
6.  ∀z(z∈A ↔ P(z))                5, Existential Instantiation 
Start of Subproof 2a. 
 7.  ∀z(z∈B ↔ P(z))              Assumption for CP, arbitrary B 
 8.  y∈A ↔ P(y)               6, Universal Instantiation 
 9.  y∈B ↔ P(y)               7, Universal Instantiation 

10. y∈B↔y∈A               8 and 9, Hypothetical Syllogism 
11. ∀y(y∈B↔y∈A)             10, Universal Generalization 
12.B=A                           11, Axiom 1, Extensionality 

 End of Subproof 2a. 
 13. ∀z(z∈B ↔ P(z))→ B=A              7-12, Conditional Proof 
 14. ∀B(∀z(z∈B ↔ P(z))→ B=A)              13, Universal Generalization 
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 Theorem 1, however, is the useful version of the Principle of Abstraction.   It may be 

applied directly to each of the defined set names and operations to yield for each an 

elementary theorem that makes it relatively easy to prove more complex facts about these 

sets. 

 In the early proofs, the justification of each step is followed by a commentary in a 

box that explains more fully what rule is being used and why.  These explanations are 

designed to introduce you to the late proofs in which these sorts of explanations are 

“understood” without being stated.  Read them closely to so that you do see what rule is 

being used.  Keep a print out of the rules in front of you so that you can confirm that the 

right shapes are being applied. 

Theorem 2.  ∀x (x∈∅ ↔ x≠x) 
 
Proof.   

1. ∀y(y∈{x| x≠x} ↔ y≠y)  Theorem 1 (Principle of Abstraction), substituting 
y for x. 

Theorem 1 is ∀y( y∈{x | P(x)}  ↔ P(y)). 
Let P(x) be  x≠x. 
Let P(y) be y≠y. 
Hence, an instance of Theorem 1 is ∀y(y∈{x| x≠x} ↔ y≠y) 

 
2. ∀y(y∈∅ ↔ y≠y) definition of ∅ 

The def of ∅ is {x| x≠x}. 
Substitute {x| x≠x} for ∅ in line 1. 

 
3. ∀x (x∈∅ ↔ x≠x) 2, substituting x for y. 

                                                                                                                                                  
 15. ∀z(z∈A ↔ P(z)) & ∀B(∀z(z∈B ↔ P(z))→ B=A) & P(y)  3, 6, and 13, Conjunction 
 End of Subproof 2. 
16.  (∀z(z∈A ↔ P(z)) & ∀B(∀z(z∈B ↔ P(z))→ B=A) & P(y)) ↔ P(y)  Subproof 1 and 2, CP 
17.  ∀y(∀z(z∈A ↔ P(z)) & ∀B(∀z(z∈B ↔ P(z))→ B=A) & P(y)) ↔ P(y))             16, Universal Generalization 
18.  ∀y(y∈{x | P(x)}  ↔ P(y))                   17, Definition of y∈{x | P(x)} 
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Line 3 is like line 2 except that y is replaced by x.  You can 
always uniformly replace an old variable by one not already in a 
formula. 

 
The proofs of theorems 3-9 are virtually the same, using the definitions of the appropriate 

set names. 

Theorem 3.  ∀x (x∈V ↔ x=x) 
Proof.  Exercise.  Annotate the proof. 

1. ∀y(y∈{x| x=x} ↔ y=y)   
2. ∀y(y∈V ↔ y=y)  
3. ∀x (x∈V ↔ x=x)  

 
Theorem 4.  ∀x (x∈A∩B ↔ (x∈A&x∈B) ) 
Proof.   

1. ∀y(y∈{x| x∈A&x∈B } ↔ (y∈A&y∈B))  Principle of Abstraction, with y for x. 
 

Theorem 1 is ∀y( y∈{x | P(x)}  ↔ P(y)). 
Let P(x) be  x∈A&x∈B. 
Let P(y) be y∈A&y∈B. 
Hence, an instance of Theorem 1 is 
               ∀y(y∈{x| x∈A&x∈B } ↔ (y∈A&y∈B)) 

 
2. ∀y(y∈ A∩B ↔ (y∈A&y∈B))  definition of A∩B 

The def of A∩B is {x| x∈A&x∈B}. 
Substitute {x| x∈A&x∈B}. for A∩B in line 1. 

 
3. ∀x (x∈ A∩B ↔ (x∈A&x∈B))  2, substituting y for x. 

Line 3 is like line 2 except that y is replaced by x.  You can 
always uniformly replace an old variable by one not already in a 
formula. 

 
Theorem 5.  ∀x (x∈A∪B ↔ (x∈A∨x∈B) ) 
Proof.  Exercise.  Annotate the proof. 

1. ∀y(y∈{x| x∈A∨x∈B } ↔ (y∈A∨y∈B))   
2. ∀y(y∈ A∪B ↔ (y∈A∨y∈B))   
3. ∀x (x∈ A∪B ↔ (x∈A∨x∈B))   

 
Theorem 6.  ∀x (x∈A−B ↔ (x∈A&x∉B) )   This proof is like that of Theorem 4  
Proof.   

1. ∀y(y∈{x| x∈A&x∉B } ↔ (y∈A&y∉B))  Principle of Abstraction, with y for x. 
2. ∀y(y∈ A−B ↔ (y∈A&y∉B))  definition of A−B 
3. ∀x (x∈ A−B ↔ (x∈A&x∉B))  2, substituting y for x. 
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Theorem 7.  ∀x (x∈−A ↔ x∉A) 
Proof.  Exercise.  Annotate line 2-4 of the proof. 

1. ∀y((y∈V&∼y∈A) ↔ ∼y∈A) Truth of Logic (Axiom 1, Theorem 3) 
2. ∀y((y∈V&y∉A) ↔ y∉A)   
3. ∀y(y∈V−A ↔ y∉A)  
4. ∀x (x∈−A ↔ x∉A)  

 
Theorem 8.  ∀B (B∈ P(A) ↔ B⊆A)  This proof is like that of Theorem 4 
Proof.   

1. ∀B(B∈{x| x⊆A } ↔ B⊆A)   Principle of Abstraction, with B for x. 
2. ∀B(B∈ P(A) ↔ B⊆A)  definition of A−B 

 
Theorem 9.  ∀y (y∈{ x1, …,xn } ↔ (y = x1 ∨ …∨ y = xn) ) 
Proof.  Exercise. Construct the proof. 
 
Theorem 10.  −−A=A 
Proof.    
1.  ∀x(x∈A↔ x∈A) logical truth 

One of the logical truths listed earlier is: 
∀x(P(x) ↔ P(x))   
Let P(x) be x∈A. 
Hence a particular instance of this logical truth is: 
∀x(x∈A↔ x∈A) 
You are always permitted to write down a logical truth as a line of 
a proof. 

 
2.  ∀x(∼∼(x∈A)↔ x∈A) 1, double negation 

One of the logical equivalences listed under the Substitutions 
Rule is Double Negation: 
   ∼∼P  ↔  P 
Let P be x∈A. 
Hence, an instance of Double Negation is: 
   ∼∼(x∈A)↔ x∈A 
The substitution rule says you can always replace a formula by a 
logical equivalent.   So, in this step we replace the first 
occurrence of   x∈A  in line 1 with its equivalent ∼∼(x∈A) and 
thus obtain line 2. 

 
3.  ∀x(∼(x∉A)↔ x∈A) 2, definition of ∉ 

The definition of x∉A is ∼(x∈A).  That is, x∉A is an abbreviation 
for ∼(x∈A).  Note that the second of these occurs in line 2.  You 
can always replace an expression by its abbreviation or replace 
an abbreviation by the expression it abbreviates.  Here we 
replace ∼(x∈A) in line 2 by its abbreviation x∉A to obtain line 3.    

 
4.  ∀x(∼(x∈−A)↔ x∈A) 3, theorem 7 
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Theorem 7 tells you how to replace the occurrence of the 
complement sign − by an equivalent in terms of negation, and 
vice versa.  The theorem is: 
∀x (x∈−A ↔ x∉A). 
Hence we replace x∉A in line 3 by its equivalent x∈−A to obtain 
line 4.  

 
5.  ∀x(x∉−A↔ x∈A) 4, definition of ∉ 

Like line 3.   
 
6.  ∀x(x∈−−A↔ x∈A) 5, theorem 7 

Like line 4.  
 
7.  −−A=A  6, Principle of Extensionality 

The Principle of Extensionality tells you when two sets are 
identical: 
  A=B ↔ ∀x (x∈A ↔ x∈B) 
Here A and B can be any sets.    
Let A be −−A and let B be A.  Then an instance of the principle 
is: 
  −−A=A ↔ ∀x (x∈−−A ↔ x∈A) 
But line 6 is one half of this equivalence.  Hence, by the 
Substitution of Equivalents rule, we replace line 6 by its 
equivalent to obtain line 7.   

 
 
Theorem 11.  A⊆A  
Proof.  Exercise. Construct the proof. 
 
Theorem 12.   ∀x((x∈A & A⊆B)→x∈B) 

General Proof Strategy.  Notice that this theorem is a universally quantified conditional.  Such theorems are 
often proven by a regular strategy: assume the antecedent (the “if” part) of the conditional is true for an 
arbitrary object, and then deduce that the conditional’s consequent (the “then” part).  The rule Conditional 
Proof sets out how to do this.  Start a subproof (indent right) and assume the antecedent.  Deduce lines until 
you reach the consequent.  At that point end the subproof (move left) and write down a new line stating the 
conditional, justified by the subproof lines and the words “Conditional Proof.”  If you have treated the object 
as genuinely arbitrary  -- you have not assumed anything about it that is not true of everything – then you 
may follow this line with one that encloses the conditional in a universal quantifier, justified by  citing the 
Universal Generalization rule. 
 

Proof. 
Start of Subproof 1.    (a conditional proof) 

Here you declare that you are starting a subproof, this case in 
order to prove a conditional.  The next line will be the antecedent 
of the conditional to be proved, and the last line of the subproof 
will be its consequent. 
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1.  x∈A & A⊆B assumption for conditional proof, with x arbitrary 

This is the antecedent of the conditional to be proved.  You say 
“x is arbitrary” because, if from this point on you do  not assume 
anything about x except facts that are true of everything, then 
you will later be able to apply the rule Universal Generalization to 
this x, converting a fact about it into a generalization that talks 
about “everything”. 

 
2.  x∈A  1, conjunction 

The Conjunction inference rule is: 
P&Q P&Q      P 
∴P ∴Q      Q 

   ∴P&Q  
Let P  be x∈A  and let Q be A⊆B 
Then an instance of the rule is  
  x∈A & A⊆B  x∈A & A⊆B 
         x∈A     A⊆B 
We apply the first of these rule to line 1 to get line 2. 

 
3.  A⊆B  1, conjunction 

As in line 2 above an instance of Conjunction rule is  
  x∈A & A⊆B  x∈A & A⊆B 
         x∈A     A⊆B 
We apply the second of these to line 1 to get line 3. 

 
4.  ∀x(x∈A → x∈B)  3, definition of ⊆ 

The definition of A⊆B is ∀x(x∈A→x∈B).  That is, A⊆B is an 
abbreviation for ∀x(x∈A→x∈B).  Note that the first of these 
occurs in line 3.  You can always replace an expression by its 
abbreviation or replace an abbreviation by the expression it 
abbreviates.  Here we replace A⊆B in line 3 by the expression it 
abbreviates ∀x(x∈A→x∈B) to obtain line 4.    

 
5.  x∈A → x∈B 4, universal instantiation, x arbitrary 

The Universal Instantiation inference rule is: 
∀xP(x) ∀xP(x) 

∴ P(x) ∴ P(y)      for arbitrary x  and y.   
Let ∀xP(x)  be ∀x(x∈A → x∈B)  
Then an instance of the rule is  
  ∀x(x∈A → x∈B)   
     ∴x∈A → x∈B      
We apply this rule to line 4 to get line 5. 

 
6.  x∈B  2 and 5, modus ponens 

The Modus Ponens inferece rule is: 

Part 1, Page 81  Version1/5/2009 



 5.  Proofs of the Theorems  
  

 P→Q  
   P 
 ∴Q  
Let P  be x∈A,  Q  be x∈B, and P→Q  be x∈A → x∈B 
Then an instance of the rule is  
  x∈A → x∈A 
  x∈A 
  ∴x∈B   
We apply the first of the rule to lines 2 and 5,  to get line 6. 

 
 

End of subproof 
Here you declare that you are ending a subproof, this case in 
order to prove a conditional formed by taking as its antecedent 
the assumption of the subproof (line 1) and as its consequent the 
last line of the subproof (line 6).  The next line will be the 
conditional itself.   

 
7.   (x∈A & A⊆B)→x∈B 1-6, conditional proof 

Here you move to the left, and declare that you have proven the 
conditional determined by the first and last line of the subproof 
that immediately precedes this line.  You cite all the line of the 
subproof as part of the justification.  From this point on you 
cannot draw on any line from the subproof to prove further lines 
(the subproof is “sealed off”) because its lines depend on the 
extra assumption that starts the subproof (line 1) which you are 
no longer entitled to assume.  This assumption is said to have 
been “discharged” by moving it to the antecedent of this 
conditional. 

 
8.  ∀x((x∈A & A⊆B)→x∈B) 7, universal generalization, x arbitrary 

The Universal Generalization is: 
∀xP(x) P(y) 

∴ ∀xP(x) ∴∀xP(x)      for arbitrary x  and y.   
Let P(x)  be (x∈A & A⊆B)→x∈B  
Then an instance of the rule is  
         (x∈A & A⊆B)→x∈B   
     ∴∀x((x∈A & A⊆B)→x∈B)      
We know that x ix in fact arbitrary because we have not assumed 
anything about it that is not true of everything. Hence, we apply 
this rule to line 7 to get line 8. 

 
 

Theorem 13.  A∩A=A=A∪A 
This really two propositions, A∩A=A and A=A∪A, which we shall call theorems 13a and 
13b respectively.  Each requires its own proof. 
Theorem 13a.  A∩A=A  
Proof. 
1.  ∀x(x∈A ↔ x∈A)  logical truth 
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2.  ∀x((x∈A&x∈A) ↔ x∈ A) 1, tautology 
3.  ∀x(x∈A∩A ↔ x∈ A) 2, theorem 4 
4.  A∩A=A   3, theorem 1 
Theorem 13b.  A=A∪A.  
Proof.   Exercise.  Annotate the proof. 
1.  ∀x(x∈A ↔ x∈A)   
2.  ∀x(x∈A ↔ (x∈ A∨x∈A))  
3.  ∀x(x∈A ↔ x∈ A∪A)  
4.  A=A∪A   
 
Theorem 14.  A=B ↔ (A⊆B & B⊆A) 
Proof.   
Start of Subproof 1.   (a conditional proof) 

1.  A=B  assumption for conditional proof 
2.  ∀x(x∈A ↔ x∈B) 1, Principle of Extensionality 
3.  x∈A ↔ x∈B 2, an instance  
4.  (x∈A → x∈B) & (x∈B → x∈A) 3, biconditional 
5.  x∈A → x∈B 4 , conjunction 
6.  ∀x(x∈A → x∈B) 5, generalization since  x is arbitrary 
7.  A⊆B  6, definition of ⊆ 
8.  x∈B → x∈A 4, conjunction 
9.  ∀x(x∈B → x∈A) 7, generalization since x is arbitrary 
10.  B⊆A  9, definition of ⊆ 
11.  A⊆B & B⊆A 7 and 10 

End of Subproof 1 
12.  A=B → (A⊆B & B⊆A) 1-11, conditional proof 
Start of Subproof 2.   (a conditional proof) 

13.  A⊆B & B⊆A assumption for a conditional proof 
14.  A⊆B   13, conjunction 
15.  ∀x(x∈A → x∈B)  14, definition of ⊆ 
16.  x∈A → x∈B instance of 15 
17.  B⊆A   13, conjunction 
18.  ∀x(x∈B → x∈A) 17, definition of ⊆ 
19.  x∈B → x∈A instance of 18 
20.  (x∈A → x∈B) & (x∈B → x∈A) 16 and 19 
21.  x∈A ↔ x∈B 20, biconditional 
22.  ∀x (x∈A ↔ x∈B) 21, universal generalization, x arbitrary 
23.  A=B  22, Principle of Extensionality 

End of Subproof 2. 
24.  (A⊆B & B⊆A) → A=B 13-23, conditional proof 
25.  A=B ↔ (A⊆B & B⊆A) 12 and 24, biconditional 
 
Theorem 15.  A∩B⊆A⊆A∪B 
This is really two theorems. 
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Theorem 15a. A∩B⊆A 
Proof. 
Start of Subproof 1  (a conditional proof) 

1.  x∈A∩B assumption for conditional proof 
2.  x∈A & x∈B 1, theorem 4 
3.  x∈A  2, conjunction 

End of Subproof 1 
4.  x∈A∩B → x∈A 1-3, conditional proof 
5.  ∀x(x∈A∩B → x∈A) 4, universal generalization, x arbitrary 
6.  A∩B⊆A  5, definition of ⊆ 
Theorem 15b, A⊆A∪B 
Proof. 
Start of Subproof 1.  (a conditional proof) 

1.  x∈A  assumption for conditional proof 
2.  x∈A ∨ x∈B 1, addition 
3.  x∈A∪B 2, theorem 5 

End of Subproof 1. 
4.  x∈A→ x∈A∪B 1-4, conditional proof 
5.  ∀x(x∈A→ x∈A∪B) 4, universal generalization, x arbitrary 
6.  A⊆A∪B  5, definition of ⊆ 
 
Theorem 16.  ∅⊆A⊆V 
This is two theorems. 
16a.  ∅⊆A   
Proof.  Exercise.  Annotate the proof. 
1.  ∀x(x=x) 
2.  x=x 
3.  ∼∼(x=x) 
4.  ∼∼(x=x)∨ x∈A 
5.  ∼(x=x) → x∈A 
6.  x≠x → x∈A 
7.  ∀x(x≠x→ x∈A) 
8.  ∀x(x∈∅→ x∈A) 
9.  ∅⊆A 
16b.  A⊆V 
Proof.  Exercise. Construct the proof. 
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Theorem 17.  −(A∪B)=−A∩−B 
Proof. 
1.  ∀x( ∼(x∈A ∨ x∈B) ↔ ∼(x∈A ∨ x∈B) ) logical truth 
2.  ∀x(∼(x∈A ∨ x∈B) ↔(∼(x∈A) & ∼(x∈B))) 1, DeMorgan’s Laws 
3.  ∀x(∼(x∈A ∨ x∈B) ↔ (x∉A & x∉B)) 2, definition of ∉ 
4.  ∀x(∼(x∈A ∨ x∈B) ↔ (x∈−A & x∈−B)) 3, theorem 7 
5.  ∀x(∼(x∈(A∪B))↔ (x∈−A & x∈−B)) 4, theorem 5 
6.  ∀x(∼(x∈(A∪B))↔ x∈−A∩−B)  5, theorem 4 
7.  ∀x(x∉(A∪B)↔ x∈−A∩−B)  6, definition of ∉ 
8.  ∀x(x∈−(A∪B)↔ x∈−A∩−B)  7, theorem 7 
9.  −(A∪B)=−A∩−B  8, Principle of Extensionality 
 
Theorem 18.  −(A∩B)=−A∪−B  
Proof.  Exercise. Construct the proof. 
 
 
Theorem 19.  A⊆B ↔ −B⊆−A 
Proof. Part 1. 
Start of Subproof 1.  (a conditional proof) 

1.  A⊆B  assumption for conditional proof 
2.  ∀x(x∈A → x∈B) 1, definition of ⊆ 
3.  ∀x(∼(x∈B) → ∼(x∈A)) 2, contraposition 
4.  ∀x(x∉B → x∉A) 3, definition of ∉ 
5.  ∀x(x∈−B → x∈−A) 4, theorem 7 
6.  −B⊆−A  5, definition of ⊆ 

End of Subproof 1. 
7.  A⊆B → −B⊆−A 1-6, conditional proof 
Start of Subproof  2.  (a conditional proof) 

8.  −B⊆−A  assumption for conditional proof 
9.  ∀x(x∈−B → x∈−A) 8, definition of ⊆ 
10.  ∀x(x∉B → x∉A) 9, theorem 7 
11.  ∀x(∼(x∈B) → ∼(x∈A)) 10, definition of ∉ 
12.  ∀x(x∈A → x∈B) 11, contraposition 
13.  A⊆B   12, definition of ⊆ 

End of Subproof 2. 
14.  −B⊆−A → A⊆B 9-13, conditional proof 
15.  A⊆B ↔ −B⊆−A 7 and 14, biconditional 
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Theorem 20. A⊆B↔∼(A∩−B≠∅)   (All A are B iff it is not that case that some are A are not B.) 
Proof.  ∗Exercise.  Annotate the missing annotations. 
Start of Subproof 1.  (a conditional proof) 

1.  A⊆B   assumption for conditional proof 
 Start of Subproof 1a.  (a reductio) 

2.  A∩−B≠∅  assumption for reductio 

General Strategy.  The goal in this part of the proof is to show ∼(A∩−B≠∅).  The strategy is to 
assume its opposite A∩−B=∅ and deduce a contradiction.  It does not matter what this 
contradiction is so long as it is of the general form P&∼P.  If in a subproof you can deduce a 
contradiction from a formula, then you may terminate the subproof and write down a new line 
affirming its negation (opposite), and justifying the line by the subproof and the rule Reductio ad 
Absurdum.  In this case the subproof is quite long.  We do not reach a contradiction until line 28 
and then the contradiction is quite long: ((x∈A& ∼(x∈B))↔∼(x=x))&∼ ((x∈A& ∼(x∈B))↔∼(x=x)) 
You can confirm that this a genuine contradiction of the form P&∼P by letting  
P    be      (x∈A& ∼(x∈B))↔∼(x=x)) and  
∼P  be  ∼ ((x∈A& ∼(x∈B))↔∼(x=x)).   

 
3.  ∀x(x∈A → x∈B) 
4.  x∈A → x∈B 
5.  ∼( A∩−B=∅) 
6.  ∼∀x(x∈A∩−B ↔ x∈∅)  
7.  ∼∀x((x∈A& x∈−B) ↔ x∈∅)  
8.  ∼∀x((x∈A& x∉B) ↔ x∈∅)  
9.  ∼∀x((x∈A& ∼(x∈B)) ↔ x∈∅)  
10.  ∼∀x((x∈A& ∼(x∈B)) ↔ x≠x) 
11.  ∼∀x((x∈A& ∼(x∈B)) ↔ ∼(x=x)) 
12.  ∀x(x=x) 
13.  x=x 
14.  ∃x∼((x∈A& ∼(x∈B)) ↔ ∼(x=x))  11, what rule? 
15.  ∼((x∈A& ∼(x∈B)) ↔ ∼(x=x))  12, existential instantiation,  
               x is not arbitrary 
Start of Subproof 1ai.  (a conditional proof) 

16.  x∈A& ∼(x∈B)   assumption for conditional proof 
17.  x∈A   What line?  What rule? 
18.  x∈B 
19.  ∼(x∈B) 
20.  x∈B & ∼(x∈B) 
21.  ∼(x=x) 

End of Subproof 1ai. 
22.  (x∈A& ∼(x∈B))→∼(x=x)   1-22, conditional proof 
Start of Subproof 1b. (a conditional proof) 

23.  ∼(x=x)   assumption for conditional proof 
24.  x=x &∼(x=x) 
25.  x∈A& ∼(x∈B) 

End of Subproof 1b. 
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26.  ∼(x=x)→( x∈A& ∼(x∈B))   23-25, conditional proof 
27.  (x∈A& ∼(x∈B))↔∼(x=x) 
28.  ((x∈A& ∼(x∈B))↔∼(x=x))&∼ ((x∈A& ∼(x∈B))↔∼(x=x)) 

 End Subproof 1a. 
29.  ∼(A∩−B≠∅)   2-28, reductio  
     (note 28 is a contradiction) 
End of Subproof 1. 

30.  A⊆B→∼(A∩−B≠∅)    
Start of Subproof 2. (a conditional proof) 

31.  ∼(A∩−B≠∅) 
Start of Subproof 2a. (a conditional proof) 

32.  x∈A  assumption for conditional proof 
33.  ∼∼(A∩−B=∅) 
34.  A∩−B=∅ 
35.  ∀x(x∈A∩−B ↔ x∈∅) 
36.  ∀x((x∈A& x∈−B) ↔ x∈∅)  
37.  ∀x((x∈A& x∉B) ↔ x∈∅)  
38.  ∀x((x∈A& ∼(x∈B)) ↔ x∈∅)  
39.  ∀x((x∈A& ∼(x∈B)) ↔ x≠x) 
40.  ∀x((x∈A& ∼(x∈B)) ↔ ∼(x=x)) 
41.  (x∈A& ∼(x∈B)) ↔ ∼(x=x)) 
42.  (x∈A& ∼(x∈B)) → ∼(x=x)) 
Start of Subproof 2ai.  (a reductio) 

43.  ∼(x∈B)  assumption for reductio 
44.  x∈A& ∼(x∈B) 
45.  ∼(x=x) 
46.  ∀x(x=x) 
47.  x=x 
48.  x=x &∼(x=x) 

End of Subproof 2ai. 
49.  x∈B   43-58, reductio 

End of Subproof 2a. 
50.  x∈A → x∈B 
51.  ∀x(x∈A → x∈B) 
52.  A⊆B 

End of Subproof 2. 
53.  ∼(A∩−B≠∅)↔A⊆B 
 
Theorem 21. ∃x(x∈A∩B) ↔ (A∩B≠∅)   (Some A are B iff it is not that case that no A are B.) 
Proof  ∗Exercise. Construct the proof. 
 
 
Theorem 22.  A∈P(A) 
Proof. 
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1.  A⊆A  theorem 11 
2.  A∈P(A)  1, theorem 8 
 
Theorem 23.  ∅∈P(A) 
Proof  ∗Exercise.  Annotate the proof 
1.  ∅⊆A   
2.  ∅∈P(A)  

 

Russell’s Paradox 

It is now time for us to critically evaluate set theory on logical grounds.  Clearly it is 

mathematically precise. Moreover, it does a fair job of remaining true to the earlier usage of 

terms, and its empirical strength is testified to by its successful use in the formulations of 

numerous theories in the natural sciences.  It must be admitted, however, that set theory’s 

ontology is bloated.  There are lots of sets.  Nominalists, accordingly, are skeptical of set 

theory. 

 They have good reason.  Despite all we have said, the naïve version is 

demonstrably incoherent.   At the turn of the 20th century Bertrand Russell discovered that 

the axioms entail the contradiction that bears his name.23  Russell’s contradiction is called 

a paradox  because it is seems unavoidable because it is entailed by the axioms that 

appear to be simple and true.  The proof is one line long. 

Russell’s Paradox 
 
Theorem 24.  The Principle of Abstraction is false. 
Proof.    
1.  ∀x (x∈A ↔ x∉x)  Principle of Abstraction 
2.  A∈A ↔ A∉A.  1, universal instantiation 
 

                                            
23 See his account in the Principles of Mathematics, op. cit.   
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Line 2 here is contradictory in the sense that it is a logical impossibility.  It is not possible for 

a proposition P to be such that it is true if and only if it is false.   (It is a straightforward 

matter to complete the proof so that it concludes with an explicit contradiction of the form 

P&∼P.)24  The proof establishes beyond any doubt that the Principle of Abstraction, a 

seemingly self-evident axiom, is false.  

                                            
24 The proof continues: 

3.   A∈A → A∉A   3, biconditional 
Start subproof 1 

4.  A∈A    assumption for reductio 
5.  A∉A    2 and 4, modus ponens 
6.  A∈A & A∉A   4 and 5 conjunction 

End subproof 1 
7.  A∉A    4-6, reductio 
9.   A∉A → A∈A   3, biconditional 
Start subproof 2 

10.  A∉A    assumption for reductio 
11.  A∈A    9 and 10, modus ponens 
12.  A∈A & A∉A   10 and 11, conjunction 

End subproof 2 
13.  A∈A    10-12, reductio 
14.  A∈A & A∉A   7 and 13, conjunction 
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(© Roger Viollet)   

Bertrand Russell, aged 77 years 
 

“Cantor had a proof that there is no greatest cardinal; in applying this proof to the universal class, 
I was led to the contradiction about classes that are not members of themselves.  It soon became 
clear that this is only one of an infinite class of contradictions.  I wrote to Frege, who replied with 
the utmost gravity that ‘die Arithmetik is ins Schwanken geraten.’  At first I hoped that the matter 
was trivial and could easily be cleared up; but early hopes were succeeded by something very near 
to despair.  Throughout 1903 and 1904, I pursued will-o’-the wisps and made no progress.  At last, 
in the spring of 1905, a different problem, which proved soluble, gave the first glimmer of hope.  
The problem was that of descriptions, and its solution suggested a new technique.”  
 Bertrand Russell, My Philosophical Development, 1943 
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Axiomatized Set Theory 

Russell’s paradox and similar contradictions entailed by the axiom presents a 

serious problem.  Indeed there is no greater flaw in a mathematical theory than a 

contradiction.  As Russell recounts,  Frege, who used essentially this axiom system to 

deduce the laws of arithmetic, wrote to him that the discovery raised doubts in his mind 

about the truth of arithmetic itself.   

A number of diagnoses were proposed  for the root of the problem.  Russell’s own 

account is that the principle errs in allowing sets that are ungrounded in the sense that they 

may form ∈-loops.  These are sets that may be a ∈-descendent of themselves, for example 

a set x such that there is some chain x∈y∈….∈z∈x.  Here x is a member of something that 

is a member of something in a ∈-hierarchy that eventually leads to a member of x itself.   In 

1910-13, together with Alfred North Whitehead (1861-1947), Russell published  Principia 

Mathematica, an important work that revises the axioms so as to proscribe sets that form 

∈-loops.  It does so by proposing the so-called theory of types in which sets form ranks 

such that only elements of one rank can enter into sets of the next.  With this restriction an 

element x of rank n cannot be an element of itself at rank n+1.  As far as is known, this new 

system is consistent.  It does, however, require additional axioms, including a so-called 

axiom of reducibility, which requires, without much intuitive plausibility, that the set theoretic 

relations at higher levels be replicated in the structure of elements at the lowest level.  

Though the theory is technically successful in entailing the theorems necessary for 
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applications of set theory to mathematics, a more intuitively plausible account is now 

preferred.25 

This second explanation of the paradoxes is due to Ernst Zermelo (1871-1953).26  

According to his analysis the problem with the Principle of Abstraction is that it is over-

generous in the size of the sets it asserts exist.  According to the principle, a set of any size 

may exist so long as it is definable.  Indeed, it directly implies that the universal set V exists 

and that there can be no set bigger than the set of everything. Russell’s set {x | x∉x} too is 

“very large.”    It includes as a subset another very large set, the set of all cardinal numbers, 

which was shown independently to entail a contradiction (the Burali-Forti paradox).  

Zermelo proposes a new axiom system that specifies we start with a limited variety of sets, 

which are “small” enough that we can be fairly sure that they do not entail contradictions.  

These “starter sets” are limited to the empty set (the empty set axiom) and a set of 

countably many entities like the positive integers  (the axiom of infinity).   The system then 

specifies a restricted number of ways in which new sets may be constructed from those we 

previously know exist.  One method is definability, but definability is restricted.  Definable 

sets exist only if there is another set that we know already exists and either the old set 

contains the new set as one of its subsets (axiom of separation) or the elements of the old 

set can be mapped onto the elements of the new set (axiom of replacement).   In addition 

to definability there are several other construction methods:  forming a “pair” out of two 

previously existing sets (the pairing axiom), taking their union (the union axiom), forming a 

power set (the power set axiom), forming a set by taking a representative from each set in 

                                            
25 For an account of the theory of types, which is accessible with even the limited logic of these lectures, see 
Irving M. Copi, The Theory of Types (London: Routledge & Kegan Paul,  1971). 
26 There are many introductions to set theory, but a good account that stresses philosophical issues is 
Shaughan Levine, Understanding the Infinite (Cambridge: Harvard, 1994). 
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a family of already existing sets (axiom of choice).27  A far as is known, the system is 

consistent, and it has be developed within the branch of mathematics known as 

axiomatized set theory to demonstrate a large number of results, interesting to both 

mathematicians and philosophers.   

For these lectures we shall follow the practices of most users of set theory.  We shall 

continue to use the naïve version even though we know that strictly speaking it is 

contradictory.  We will do so, however, with the understanding that we will allow ourselves 

to talk only about sets that are not “too big” and that we know in principle could be shown to 

exist in the more precise versions of axiomatized set theory.  The upshot for the purposes 

of this lecture is that set theory can in fact be developed into a plausible, mathematically 

precise theory, which we may apply, as we have earlier in this lecture, to give a convincing 

explanation of sameness and difference.

                                            
27 The axioms of Zermelo-Frankle Set Theory, usually called ZF, are more precisely stated as follows: 

1. Axiom of Separation. Let P(x) be an open sentence.  ∀A∃B ∀x(x∈B ↔(x∈A ∧P(x))) 
2. Union Axiom. ∀A∀B, A∪B exists. 
3. Pair Axiom. ∀x∀y,  <x,y> exists. 
4. Power Set Axiom.  ∀A, P(A) exists. 
5. Axiom of Infinity. An infinite set exists. (Below the set N={0,1,2,3,…} of natural numbers is defined.  This 

axiom may be phrased: N exists.) 
6. Axiom of Replacement. ∀A ∀f (f “A exists), where f “A={y| ∃x  y=f(x)} 
7. Axiom of Choice. For any family of sets F, a choice set of F exists, where C is a choice set of F iff for any 

A∈F, there is one and only one element x of A such that x∈C. 
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LECTURE 6.  RELATIONS, STRUCTURES AND CONSTRUCTIONS 

Reduction of Relations to Sets 

From the early days of logic in ancient Greece, relations have been puzzling.  

Plato, in addition to the ordinary Forms that make subject-predicate sentences true, 

posits the Forms called Sameness, Difference, and Identity.  Similarly, Aristotle posits 

a special category for relations.  Both doctrines seem to presuppose that relational 

truths linking two proper names can be explained as some conjunction of simple 

subject-predicate truths.  But in an earlier lecture we saw the problems this analysis 

faces.   

Set theory rises to the challenge.  Relational assertions can be represented in 

set theory without supplementing its ontology or assumptions. Relations in this sense 

are “reduced to” sets. 

To see how this is done, let us review what relations are.  Just as in Aristotle’s 

ontology qualities like whiteness or rationality constitute a commonality shared by two 

substances, relations are what pairs may have in common. The pairs Cain and Abel, 

Castor and Polux, Romulus and Remus all share the fact that they are brothers.  Each 

instance of brotherhood requires that there be two people, or in other words, a pair.   

This pair is said to stand in the brotherhood relation.  Realists go further and claim that 

relations are actual entities.  They do so to “explain” what the pair Cain and Able has 

in common with the pair Castor and Polux by positing the existence of a relation as a 

special sort of “universal” that can be instantiated in multiple pairs.  Set theory offers a 
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similar account.  Instead of positing a new category of entity, however, set theory 

stipulates that relations are a special sort of set. 

To sketch the account we must first explain what a pair is in set theory.  

Consider the less than relation.  It holds of many different pairs <x,y> such that x is 

less than y, including, for example, the pairs <1,2>,  <5,7>, and <36,215>.  These all 

share the feature that the first is less than the second.  Notice however that if the pairs 

are reverse, the relation fails.  In the pairs <2,1>,  <7,5>, and <215,36> the first is not 

less than the second.   In technical jargon, the less-than relation is asymmetric:  if x is 

less than y, it is not the case that y is less than x.  

Accordingly, logicians say that the order of the pair “makes a difference.”  We 

must define a pair so that <x,y> is not the same as <y,x> except in the unusual case 

in which x and y are the same thing.    Pairs that obey this rule are said to be ordered.  

A two-place relation, which is what we call a relation that holds between the elements 

of a pair will then be defined as a set of ordered pair.    

There are also, however, relations that hold among triples.  For example, it 

takes three things for there to be a case of between-ness.  Utah is between Nevada 

and Colorado, Cincinnati is between Dayton and Lexington.  These are three-place 

relations.  In principle there are also four-place relations, which hold among groups of 

four things, and likewise for any number you choose.  Logicians generalize this fact 

and allow for relations among ordered groups of any size.  An ordered series of n 

elements is called an n-tuple and is represented by the notation <x1,…,xn>.  As in the 

case of two-place relations, the order continues to matter.  If x is between y and z, 
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then y cannot be between x and z.  An n-place relation is then defined as a set of 

ordered n-tuples.    

In languages like English relations are tied to characteristic grammatical forms.  

For example, two place relations are  typically expressed in English by subject-verb-

object sentences, like x loves y, and x teaches y.  They are also expressed by 

sentences that link a subject to an “oblique object” by an intransitive verb and a 

preposition, as in x talks to y, and x sits under y.  Comparative adjectives also link two 

relata, for example x is taller than y, x is less than y, and x is sillier than y.  Possessive 

expressions also link two objects, as in x is the brother of y, and x is the creator of y.  

All these syntactic forms share the feature that they link two proper noun phrases.  

Three place relations link three proper noun phrases, as in x is between y and z, x 

talked to y about z, and x saw y sitting on z.  In general, an open sentence P with n 

free  variables x1,…,xn,, which is represented by  P(x1,…,xn), can be used to describe 

what is shared by a group of ordered n-tuples <x1,…,xn>. 

To define an n-tuple <x1,…,xn> within set theory, we have to find some 

definition that makes <x1,…,xn> different from <y1,…,yn> except in the unusual case in 

which each xi is identical to yi.  Be forewarned that the definition usually given is not 

very intuitive because it does not provide a very natural paraphrase of what we mean 

by pair in English.  In the context of the theory, however, it works very well.  It allows 

that an n-tuple’s order matters; it allows us to define relations as sets of n-tuples; and 

it allows us to prove a body of desired theorems about relations.  To state the 

definition efficiently, let us abbreviate the string of quantifiers ∀x1∀x2…∀xn, (which 

says for all x1,…,xn) by the shorter form ∀x1,…,xn .   We first define ordered-pair, and 
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then using it define ordered n+1-tuple on the assumption that we have defined an 

ordered n-tuple. 

Definitions  

<x,y>  means {x,{x,y}} 

<x1,…,xn+1>  means  <<x1,…,xn> xn+1> 

We now state without proof the theorem that says that the order makes a difference. 

(Though not difficult, we do not state the proof for this and several later theorems 

because the details are irrelevant to the topics in these lectures.)   

  

Theorem 25. ∀x1,…,xn, y1,…,yn 

<x1,…,xn>=<y1,…,yn> ↔ (x1 =y1 & … & xn =yn) 

 

Let us now group all n-tuples into a set and call this set Vn. 28  Any set of n-

tuples then is a subset of Vn.  We use this fact to define n-place relation. 

 

Definitions                                   

 Vn means {{<x1,…,xn>| x1∈V&…&xn∈V }  

 R is a n-place relation means R⊆Vn 

 

 
Since relations are sets, the principles of extensionality and abstraction apply to 

them.  Two n-place relations are identical if and only if they are made up of the same 

n-tuples.  Similarly, if P(x1,…,xn) is a formula with free variables x1,…,xn, then there is 

a set R (an n-place relation) such that any n-tuple <x1,…,xn> is in R  if and only if 

P(x1,…,xn) is true.   
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Theorem 26. (Extensionality for Relations).    

 (R⊆Vn & S⊆Vn ) →  

 (R=S ↔ ∀x1,…,xn(<x1,…,xn>∈R ↔ <x1,…,xn>∈S)) 

Theorem 27. (Abstraction for Relations).    

 ∃R ∀ x1,…,xn (<x1,…,xn>∈R ↔ P(x1,…,xn)) 
 

As with sets in general, it is possible to refer to relations by set abstracts:  {<x1,…,xn>| 

P(x1,…,xn)} is  the set of all n-tuples <x1,…,xn> such that P(x1,…,xn).  Abstracts allow 

us to express the Principle of Abstraction for relations is a simple form:  

 

Theorem 28.  ∀ y1,…,yn (<y1,…,yn>∈ {<x1,…,xn>| P(x1,…,xn)}    ↔    P(y1,…,yn)) 

 With these definitions we achieved a major goal.  We have shown how 

relations are reducible to sets.  Explaining sameness and difference for relational pairs 

is then a straightforward application of the same account given for sameness and 

difference for individuals.  

Truth-Conditions for Relational Sentences and their Negations 

• Rab is true if and only if the set of pairs that R names has as an element the 

ordered pair <x,y> formed by the individual that a stands for and the individual 

that b stands for.   

• ∼Rab is true if and only if the set of pairs that R names does not have as an 

element the ordered pair <x,y> formed by the individual that a stands for and 

the individual that b stands for.   

                                                                                                                                          
28 The notation derives from the fact that the number of n-tuples formed from elements of a set A is 
precisely the number of entities in A raised to the power n. 
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Explanation of Sameness and Difference of Relational Pairs 

• Two pairs of individuals <x,y> and <z,w> are the same with respect to a set U if 

and only if they may be referred to by two pairs of different proper names, say a 

for x and b for y, and c for z and d for w, U may be named by a predicate, say 

R, and the sentences Rab and Rcd are both true.  

• Two pairs of individuals <x,y> and <z,w> are different with respect to a set U′  if 

and only if they may be referred to by two pairs of different proper names, say a 

for x and b for y, and c for z and d for w, U′  may be named by a predicate, say 

R, and either the sentences Rab and ∼Rcd are both true, or the sentences 

∼Rab and Rcd are both true. 

 

Properties of Relations and Order 

 In the last section we accomplished the our main theoretical goal, namely of 

explaining what relations are within set theory.  Here we shall list some of the basic 

properties of relations that logicians frequently use.  Some you will recognize them 

because they have already been introduced informally.   In order to make the notation 

more natural, we shall sometimes rewrite the relational assertion <x,y>∈R in the 

subject-verb-object order xRy  (so-called infix) familiar to English speakers.  We shall 

also say that a two place relation is a relation on a set A if all its relata are in A, 

i.e.∀x,y ( xRy → (x∈A & y∈A). 

 
Definitions.    Properties of Relations.  A two-place relation R is said to be: 

  reflexive iff ∀x, xRx 
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  transitive iff ∀x,y,z, ((xRy & yRz)→ xRz) 

  symmetric iff ∀x,y, (xRy →yRx) 

  asymmetric iff ∀x,y, (xRy → ∼yRx) 

  antisymmetric iff ∀x,y, ((xRy &yRx)→ x=y) 

  connected iff ∀x,y, (xRy ∨ yRx) 

 
In the last lecture we reviewed Russell’s criticism of definitions of relations in terms of  

conjunctions of one-place predicates, namely that they end up attributing to relations 

properties they do not generally possess.  The arguments sketched there may now be 

formulated as theorems in set theory.   

Theorem 29.  If R={<x,y>| Fx &Fy} then R is symmetric 
Proof. 
Start of subproof. 
 1. xRy assumption for conditional proof, x arbitrary 
 2.  <x,y>∈R 1, infix notation 

3.  <x,y>∈{<z,w>| Fz &Fw} 2, definition of R, with change of variables 
4. Fx & Fy 3, abstraction 
5. Fy & Fx 4, commutation 
6. <x,y>∈{<z,w>| Fz &Fw} 5, abstraction 
7. <x,y>∈R 6, definition of R 
8. xRy 7, infix notation 

End of Subproof. 
7.  xRy→ yRx 1-8, conditional proof 
8.  ∀x (xRy→ yRx) 7,  universal generalization, x arbitrary  
 
Theorem 30.  If R={<x,y>| Fx &Gy} then R is transitive. 
Proof.  
      
∗Exercise.  Construct the proof. 
 
By imposing a relation with these properties on a set its elements may be “ordered”.   
 
Definitions.    Orderings.  A two-place relation R on U is said to be: 

  partial ordering on U iff R  is reflexive, transitive and antisymmetric 

total ordering on U  iff R  is reflexive, transitive and antisymmetric, and 
connected 

 
A partial order is imposes a minimum amount of structure. 
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Examples of Partial Orderings 

 
 

But adding to a partial order the property of connectedness forces the elements 

to form a line. 

Functions 

 
A special sort of relation is one that allows us to identity an entity indirectly by first 

finding something that it is related to and then using the relation to pinpoint the entity 

itself.   We can find Philip of Macedon, for example, by first finding his son Alexander 

the Great and then pin-pointing the entity that fathered him.  Let us be set-theoretic.  

Let R be {<x,y>| x is fathered by y} .  Then <Alexander, Philip>∈R.   Alexander is the 

one and only entity paired to Philip in the relation R.  This is true because R uniquely 

pairs a relatum on the left side with one on the right side.  More formally, R obeys this 

law: 

∀x,y  (<x,y >∈R & <x,z >∈R) → y=z. 

In this case R is said to be a function, and we rewrite  <x,y>∈R as R(x)=y.   Hence in 

this case  R(x) is read the father of,  and R(Alexander)=Philip is read the father of 

Alexander is Philip.  Though R is a two-place relation, it is called a one-place function, 

because the notation R(x) has only one variable place.   
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There are n-place functions as well.  These are n+1-place relations such that if the 

first n members of entities that stand in the relation uniquely pinpoint the n+1th 

member. 

 
Definitions  

1.  An  n+1 place relation f is called a n-place function iff   

     ∀ x1,…,xn,y,z,   (<x1,…,xn,y >∈f &  <x1,…,xn,z >∈f) → y=z.  

 

2.  if  f is an n-place function, we write <x1,…,xn,y >∈f as f (x1,…,xn)=y  

Though functions are extremely important in applications of logic to mathematics and 

we shall see some examples in these lectures, we include them here mainly because 

they are important to the next topic, the analysis of the notion of a “structure.” 

∗Abstract Structures 

We all have a good intuitive idea of a "structure." Examples include buildings, 

governmental institutions, ecologies, and polyhedral.  We have used the term 

structure to describe what scientific explanations “explain.  They describe an ontology 

of sets and relations and by laws that state how they are put together.  Plato claimed 

the cosmos was a structure of Forms, matter, souls organized by participation and 

recollection.  Aristotle claimed it was a structure formed by the categories put together 

by the “said in” and “said of” relations.  Set theory posits a universe of sets organized 

by the identity and set membership relations. 

 The general properties of structures are studied in the branch of mathematics 

known as abstract or universal algebra, a field that was started by Alfred North 

Whitehead in the fourth volume of Principia Mathematica.   
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 The raw intuition behind the mathematical definition of a structure is that of an 

architect's blueprint.  The blueprint succeeds in describing a building by first listing its 

various materials and then using a diagram to describe the relations that must obtain 

among the "building blocks" in the finished structure.  In algebra a structure is defined 

in a similar way.   First a list of sets  A1,...,Ak is given.  This may be viewed as listing 

the building blocks and dividing them into various kinds or classes.   Next are listed 

the relations  R1,...,Ri  and functions  f1,...,fm that hold among these materials.  (Recall 

that functions are just a sub-variety of relations.)  In mathematics it is also customary 

to list some specific individual building blocks O1,...,Om that have special importance in 

the structure.  The entire structure is they summarized as an ordered n-tuple:  

< A1,...,Ak,R1,...,Ri,f1,...,fm,O1,...,Om >.   

Definition.  An abstract structure is any <A1,...,Ak,R1,...,Rl,f1,...,fm,O1,...,On> such that: 

for each  i=1…k, Ai is a set, 

for each  i=1…l, Ri is a relation of elements in A1,∪..∪Ak, 

for each i=1…m, fi is a function of elements in A1,∪..∪Ak, and 

for each i=1…n, Oi ∈ A1,∪..∪Ak.    
  
It is also common to investigate families of structures with similar properties, and to 

assign a name to families obeying certain ”laws”.   Families are defined as those 

whose structural relations and functions obey these laws.  Sometimes these 

restrictions are referred to as the "axioms" of the structure-type.  As an example, let us 

define the notion of a “tree.”  We encountered informal versions of trees in the 

ontologies of Plato and Aristotle, but one of the weakness of their theories is that they 

lack the sort of precision that explains exactly what structure was being presupposed.  

Using set theory we can now make the idea clear.    
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Definition.  A tree is any structure <U,≤,e> meeting these conditions: 

1. <U,≤> is a partial ordering, 

2. 1 is the unique maximal element e in U, i.e.  

a. 1∈U 

b. ∀x (x∈U→ x≤ e) 

c. ∀y (∀x (x∈U → x≤y)→y= e) 

3. Every element of U is the last member of a branch that starts with 1, i.e. 

∀x(x∈U → ∃ yn,…,y1 ({yn,…,y1}⊆U & yn=x & y1= e & ∀i (i∈{ e,…,n}→ ( yi+1≤yi & 

∀z(yi+1≤z & z≤yi)→(z= yi+1 ∨ z= yi+1 )))) 

As an example, consider the structure <(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,},≤,a > in which 

the relation ≤ is defined as follows: x≤y iff x is connected by a descending line to y in 

the diagram below:   

 

It is easy to check that the structure meet the conditions (1)-(3) qualifying it as a tree.  

It root node e is a, and <a,b,c,d,> is one of its maximal branches, the one which starts 

with a and ends with d.   
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Construction and Inductive Definitions 

Definitions by Necessary and Sufficient Conditions  

We return in this section to the topic of definition.  Let us review its history.  We 

saw in the Platonic dialogues that Socrates seeks definitions as answers to What is? 

questions.  For example in the Charmides, he seeks the definition of temperance, and 

in the Republic the definition of justice.  In the Euthyphro when trying to define piety  

Socrates tells Euthyphro that a list of examples will not do.  He wants the “general 

idea,” 

Remember that I did not ask you to give me two or three examples of piety, but to explain the 

general idea which makes all pious things to be pious. Do you not recollect that there was one 

idea which made the impious impious, and the pious pious? (6d) 

 
He is alluding to the Platonic Form of Piety.  In Plato’s theory any true subject-

predicate proposition All F are G is like a definition because, if true, it describes an 

immutable fact about the participation of one Platonic Idea in another.   

 Aristotle and his followers propose a more plausible account.  They make a 

distinction between definitions and other sorts of truths.  They contrast conventional 

agreements to use words to stand for particular concepts, which they call nominal 

definitions, with the necessary natural laws of generic classifications, which they call 

real definitions, and both sorts of definition are contrasted with contingent matters of 

fact.  Real definitions are supposed to observe a fixed form: a species is defined by its 

genus and its difference.  But Aristotelian essentialism is not accepted by modern 

science. 
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 Definition today is understood, rather, as a part of a scientific theory.  Although 

modern definitions are not understood to stand for Aristotelian forms, they do 

sometimes look structurally similar to traditional Aristotelian definitions.   This is 

especially true of some abbreviated definitions for set names in sciences that make 

use of set theory.  Consider some examples we have already met: 

 ∅ = {x|x≠x} 

 A∪B={x|x∈A ∨ x∈B} 

These definition fit a general form: 

 A = {x| P(x)} 

In virtue of the Principle of Abstraction, this kind of definition can be recast in an 

equivalent form as a biconditional:  

 ∀x (x∈A ↔  P(x)) 

Moreover, it is not unusual for the defining condition to be spelled out even further as 

a conjunction P1(x) &…& Pn(x) of conditions.   That is, frequently a definition takes this 

form: 

 A = {x| P1(x) &…& Pn(x) } 

When it does so, it entails the theorem: 

 ∀x (x∈A ↔  (P1(x) &…& Pn(x))) 

Each Pi (x), considered as an individual conjunct, is said to be a necessary condition 

for membership in A, and all the conditions together, i.e. the complete conjunction 

P1(x) &…& Pn(x), is called the sufficient condition for membership in A.  One example 

is the definition of  A∩B: 

 A∩B={x| x∈A &…& x∈B } 
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which entails 

 ∀x (x∈A ↔  x∈A &…& x∈B). 

 Aristotelian real definitions have a similar structure: 

 ∀x (x is a man ↔  (x is rational & x is an animal)) 

The pattern of analysis in terms of necessary and sufficient conditions still has a firm 

grip on philosophers.  Some of the most central claims of epistemology, ethics, and 

metaphysics are formulated in theses with this structure:   

Knowledge is justified true belief 

Truth is correspondence with the world. 

The good is what maximizes total social utility. 

God is the most perfect being. 

 However, as scientific principles, definitions in terms of necessary and 

sufficient conditions are problematic.   

 First of all, in logical theory, which is formulated in set theory, they must be 

careful to avoid contradictions.  As we have seen, the unrestricted axiom of 

abstraction leads to paradoxes, and it is the application of this very principle that  

makes definitions by necessary and sufficient conditions possible.  Any choice of 

necessary and sufficient conditions must be crafted to avoid these technical problems.  

 Secondly, a term can be introduced into a theory by an eliminative definition 

only if the terms used to formulate the definition (i.e. the terms in the definiens) are 

themselves already part of the theory.  It is hard for a philosophical theory or for a 

logical theories that employs philosophical ideas to meet this goal.   For example, to 

define knowledge as justified true belief, the notion of truth must already be part of the 

theory, either explained by the axioms or by an earlier definition.  Likewise a theory 
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that explains truth as corresponds with the world would need a definition or axioms 

that explains world.  No serious mathematical theory comes close to explaining these 

difficult ideas.   

 Even purely logical theories have difficulty with definitions of this sort.  

Conceptually, for example, one might like to define a logical truth as a sentence that 

we can “know” is true from its shape alone.   But any such definition would use the 

word know, and we have no satisfactory background theory of knowledge in which to 

embed it.    

 Technical difficulties, and difficulty in defining background ideas thus prompt 

logicians to seek alternatives to the use of necessary and sufficient conditions.   It is 

one such technique that is our topic here.  It is definition by construction. 

Inductive Definitions and Sets 

 Instead of defining a set by membership conditions, the technique simply 

constructs the set.  We do so in stages.  First we specify some initial elements.  Next, 

we lay down some rules for making new elements from old.  We then expand the set 

of initial elements by applying the rules to them.  This set is then expanded yet again 

by applying the rules to its members.  The process is repeated, ad infinitum if 

necessary, until no further elements can be added.  A set that is constructed in this 

way is said to be defined by induction.  (Here the term induction has a specialized 

sense, and has nothing in common with concepts of the same name in statistics or 

physics.)   We summarize the process in  the following definition: 

Definition.  An inductive system is any <E,R,C> such that 

1. E is a set of basic elements; 
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2. R is a set of relations; 

3. C is the set such that29 

a. E is a subset of C; 

b. if the elements x1,…,xn  are in C and bear the relation R to xn+1, then xn+1 

is in C; 

c. nothing else is in C. 

If the set C is defined inductively in this way based on a set of basic elements E and a 

set of rules R, we say that C is defined by closing E under R.   

 It is possible to add more restrictions that would insure that C will not generate 

paradoxes.30  Were we to do so, the set would be genuinely constructive in a strict 

sense.   

 In these lectures we have already encountered one important example of an 

inductively defined set.  We used it without remarking on its unusual definition.  This is 

the set of theorems in naïve set theory.  Indeed we defined two sets inductively.  First 

we defined the set of simple theorems.  This was the set that consists of the closure of 

all instances of logical truths and the axioms of set theory under the non-subproof 

rules.  We then defined the set of theorems.  This is the closure of the set of simple 

theorems under the set of all inference rules including the subproof rules.  At this point 

however, it will more instructive to look in detail at two simpler examples of inductive 

systems. 

                                            
29 The definition of C can be stated entirely in the notation of set theory.  First we define the intersection 
of a family {F1,…,Fn,…} of sets as F1∩…∩Fn,…: 

∩{F1,…,Fn,…} = F1∩…∩Fn,… 
The we define Cas follows: 

C=∩{B| E⊆B & (<x1,…,xn,xn+1>∈R & {x1,…,xn,}⊆B)→ xn+1∈B} 
30 For example, that the basic set or the set of rules the be countable. 
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 Let us consider first an inductive description of “score keeping” as done in a 

game like cribbage.  Let us start “keeping score” by drawing a single vertical line: |.  

Let us have a rule called adding one  that consists of  drawing a new line | to the right 

of whatever we apply the rule to.  next to it on the right.  That is, if we apply the rule to 

|, we get ||.  If we apply it to ||, we get |||.  If we apply it to |||, we get  ||||, etc.  We now 

define by induction the set of scores: 

An scoring system is any <{ | },adding one, scores> such that 

a. { | } is a subset of scores; 

b. if the elements x  is in scores, then the entity we get by adding one to x is in 

scores; 

c. nothing else is in scores. 

It follows that scores = { |,||,|||,||||,|||||,||||||,|||||||,||||||||,|||||||||,.... }. 

 Induction is thus a simple method for defining quite large sets – scores for 

example is infinite – yet we do so by construction without having to list necessary and 

sufficient conditions for elements of the set. 

The Natural Numbers 

 Another standard example of a set defined by induction is the set Error! 

Bookmark not defined.N of natural numbers, which consists of all the positive 

integers 1,2,3,… plus 0.  Let us work through it in some detail because though easy to 

state, it illustrates the power of inductive definitions. The set is constructed.  We start 

with 0 as the only initial element.  We then define the so-called successor  relation.  

The natural numbers then are inductively defined as the set of all entities that can be 

constructed from 0 by the successor relation. 

Part 1, Page 110  Version1/5/2009 



 6.  Relations, Structures, and Constructions 
  

 The entire construction can be done in set theory if 0 and the successor 

relation are defined in terms of sets.  Let’s do so here, not because we will be doing 

any arithmetic, but to illustrate how a real construction of this sort is done in 

mathematics.  Be forewarned.  Because we are constraining ourselves to use notions 

only from set theory, the definitions of 0 and successor will not be very intuitive.  But 

once stated we will be able to show that they work very well.  That is, give the 

definitions and the background theorems of set theory, we can then prove all the 

theorems of elementary arithmetic.  The definitions “work,” in other words, by yielding 

as theorems the right theoretical results. 

 The basic idea is that the number n is defined as a set that has exactly n 

things in it.  This means that 0 should have nothing in it, i.e. that 0 should be ∅.  It 

also means that the successor relation should take the number n, which is a set that 

has n things in it, and make up its successor n+1 (which we shall indicate with the 

notation  S(x)) by adding a new element to the set n that was not already in n.  What 

entity should be added to n?  The standard trick is just to add the set n itself.  This 

works as a definition of successor, not because it is very intuitive, but because the 

new entity n is a a genuine entity  (it exists because it is a set) and because the set n 

itself is not an element of n, but it is perfectly possible to make up a new set that all all 

the original elements from n plus a new element, namely the set n itself.  In the 

notation of set theory, “adding a new entity” is accomplished by taking the union of the 

original set with a set that has the new entity: i.e. S(x)= x∪{x}. 
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  Thus the construction starts by defining 0 as ∅.  Then we define the successor 

of x, indicated by the notation S(x), as x∪{x}.  The set of natural numbers N is then 

defined by induction in terms of 0 and S.    

Definition.  The inductive system of natural numbers is  <{0},S,N> such that 

4. 0=∅; 

5. S(x)= x∪{x}; 

6. N is the set such that 

d. {0} is a subset of N; 

e. if x∈N  and S(x)= y, then x∈N ; 

f. nothing else is in N. 

These definitions, which at first may seem odd, are justified because they entail just 

the right theorems – they generate the right “theory.”   Below some of these standard 

definitions and theorems are listed, not because we will be using them – you already 

know elementary arithmetic – but to illustrate how the definition generates the right 

theory:  

• each natural number exists – because it is a set – and is definable, for 

example, 

 0       = ∅  

 1 = 0+1 = ∅+1 = ∅∪{∅} = {∅} 

 2 = 1+1 = {∅}+1 = {∅}∪{{∅}} = {∅,{∅}} 

 3 = 2+1 = {∅,{∅}}+1 = {∅,{∅}}∪{{∅,{∅}}} = {∅,{∅},{∅,{∅}}} 

• there are in infinite number of natural numbers, 

• each natural number has exactly as many members as the number suggests: 

0, aka ∅, has no members,  

1, aka {∅} has one member, namely ∅,  

2 , aka {∅,{∅}}, has two members, namely ∅ and {∅} 
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3, aka {∅,{∅},{∅,{∅}}}, has three members, namely ∅, {∅}, and {∅,{∅}} 

etc. 

• n≤m is definable because it turns out that n≤m ↔ n⊆m ↔n∈m 

• the addition function + is definable: 

a.   x + 0 = x 

b.   x + S(y) = S(x + y) 

• the multiplication function × is definable: 

a.   x × 0 = 0 

b.   x × S(y) = (x × y) + x 

Indeed, these are the definitions that generate the structure <N,≤,+,×,0,1> which most 

of you spent hours working out the details of in high school  algebra.31  

Here in a philosophy class, we are not going to do algebra, but make points 

about the general nature of scientific explanation.  We have here an example in which 

one “science,” the algebra of the natural numbers, is reduced to or subsumed within 

another “science,” set theory.  The sentences that were true in algebra then become  

theorems of set theory because if all the abbreviative definitions in theorems 

mentioning numbers, + or × were translated out into their defining notation,  the 

resulting formulas would be theorems of set theory.  Thus we see the explanatory 

power of axioms systems like set theory and of techniques like inductive definitions:  

“counting numbers” are entities that can be explained in a well developed theory (set 

theory) , the set of “counting numbers” can be given a special sort of definition that 

was not available to Aristotle or traditional philosophy (an inductive definition), and the 

                                            
31 You may for example have learned to work out the equations that are true in an “ordered field” 
<N,≤,+,×,0,1> or “distributive ring,” which are structures that obey “laws” that are exemplified and 
abstracted from the natural numbers. 
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“counting numbers”  literally form a structure with well defined relations and operations 

(≤, +, ×) and two special entities (0 and 1). 

Proof by Induction 

 
 The special form of an inductive definition also introduces a special way to 

prove things about sets.  To show all members of an inductive set have a property, all 

we have to show is two things: 

1. that the initial elements have a property, 

2. that if we apply a construction rule to something with that property, the result 

also has that property. 

Every element of the set would then have to have the property because every element 

is either an initial element or results from applying one of the rules to earlier elements 

of the set.   

Theorem.   Let <E,R,C> be an inductive system. 

If  1.  E⊆A, and 

 2.  for any r in R,   if (<x1,…,xn > bears r to xn+1 & { x1,…,xn }⊆B) →  xn+1∈A 

then C⊆A 

A proof of this sort is called a proof by induction. 

Construction Sequences 

 One of the reasons that inductive sets are theoretically attractive is that unlike 

definitions by abstraction they insure that for every element of the set there is a finite 

construction process that places that element in the set.  This construction moreover 

can be set out in what is called a construction sequence. 
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Definition.   If <E,R,C> is an inductive system, then the construction sequence for x 

relative to <E,R,C> is a finite series <y1,...,yn>  such that yn=x and each yi is either in E 

or bears some relation in R to earlier members of the series.   

 

Theorem.   If <E,R,C> is an inductive system, then  

(x∈C iff there is a construction sequence for x relative to <E,R,C>).   

The existence of a sequence terminating in x is therefore evidence that x is in the set.  

We do not have to show that x meets a list of necessary and sufficient conditions.  

Rather we construct the right sequence.  The technique is different.  For example 

<|,||,|||,||||,|||||,||||||,|||||||> is a construction sequence of ||||||| and is evidence that it is a 

member of the set of scores.  Likewise the fact that <0,1,2,3,4,5,6,> is a construction 

sequence of 6 show that 6 is a natural number.   

 

 In later lecture we shall meet important examples of this device in logic.  What 

for example is a sentence?  In high school you learned it was something that 

expresses a “complete thought,” but what is a “thought”?  Try finding a mathematically 

precise theory of thought!  In a later lecture we shall define the set of sentences 

inductively, and show that something is a sentence, not by appeal to thoughts, but by 

constructing it in a construction sequence from simpler sentences.  Similarly, instead 
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of defining a logical truth in terms of knowledge as sketched earlier, we shall show 

define the set of logical theorems inductively and then show that something is a 

theorem if it is the last line in the sort of construction sequence known as a proof. 

We have in fact been using this technique in “characterizing” the “truths” of set 

thoery.  Instead of trying to define this set in terms of necessary and sufficient 

conditions, we defined by reference to “proofs” the set of theorems of naïve set theory.  

But the notion of proof we used, and indeed the proofs we have been construction to 

show the theorems of naïve set theory are just constructing sequences.   

Let us review the sequence of earlier ideas.   First we defined the notion of a 

simple proof, and then the notion of proof.  A simple proof is any sequence of formulas 

that are either (1) truths of logic or instances of the axioms, or (2) follow from earlier 

lines of the sequence by a non-subproof rule. A simple theorem was then defined as 

any formula that is the last line of some simple proof.  Thus, a simple proof is  nothing 

other than a construction sequence for the set of simple theorems. Moreover, a 

formula is a simple theorem if and only if it is the last line element of a constructions 

sequence for simple theorems, i.e. the last line of a simple proof.  Likewise, a proof 

was defined as any sequence of formulas or simple proofs such that each element of 

the sequence is either (1) a law of logic, an axiom instance or a simple proof, or (2) 

follows from earlier elements of the sequence by one of the inference rules.  That is, a 

proof is nothing other than a construction sequence for the set of theorems.  

Accordingly, a formula is a theorem if and only if it is the last line of a construction 

sequence for a theorem, i.e. of a proof.   
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 In the course of these lectures we shall see numerous examples of sets that 

cannot easily be defined by traditional necessary and sufficient conditions, but which 

are definable inductively and thus allow membership to be fixed by construction 

sequences.  Indeed the applicability of these methods is one of the distinctive features 

of logic as science. 
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APPENDIX I.  INFERENCE RULES
 
♦♦Logical Truth.  Any logical truth is a theorem.   
 P∨∼P 
 ∀x(x=x), and  
 ∀x(P(x) ↔ P(x))   

Sentential Logic Rules 
♦♦Modus ponens 
  P→Q      
      P       
 ∴Q    
♦Modus tollens  
 P→Q  
 ∼Q   
 ∴∼P 
Disjunctive Syllogism 
  P∨Q   P∨Q 
 ∼P      ∼Q 
 ∴Q    ∴P 
♦Hypothetical Syllogism 
  P→Q 
 Q→R 
 ∴P→R 
♦♦Conjunction.   
 P&Q    P&Q     P 
 ∴P   Q          Q 

            ∴P&Q  
Addition 
     P             Q          
∴P∨Q     ∴P∨Q 

Quantifier Rules 
♦♦Universal Generalization 
   P(x)          P(y)       x, y arbitrary  
 ∴∀x P(x  ∴ ∀xP(x)   
♦♦Universal Instantiation  
  ∀xP(x)      ∀xP(x)    
 ∴ P(x)     ∴ P(y)      x, y arbitrary 
♦♦Existential Construction   
       P(c)        
 ∴ ∃xP(x) 
♦♦Existential Instantiation   
 ∃xP(x) ∃xP(x)   
 ∴ P(x) ∴ P(y)   x,y new and 

not arbitrary 
 
 
 

Substitution Rule 
If P↔Q or s=t is proven (with the same free variables), P 
may be substituted for Q, or s for t, or vice versa, in any 
subsequent line.  Examples: 
 
Association 
 ((P&Q)&R)  ↔  (P&(Q&R)) 
 ((P∨Q)∨R)  ↔  (P∨(Q∨R)) 
Commutation 
 (P&Q)  ↔  (Q&P) 
 (P∨Q)  ↔  (Q∨P) 
 (P↔Q)  ↔  (Q↔P) 
DeMorgan's Laws  
 ∼(P&Q)  ↔  (∼P∨∼Q) 
 ∼(P∨Q)  ↔ ( ∼P&∼Q) 
♦Double Negation  
 ∼∼P  ↔  P 
♦Implication 
 (P→Q )  ↔  (∼P∨Q) 
 ∼(P→Q )  ↔ (P & ∼Q) 
Contraposition 
 (P→Q ) ↔ (∼Q→∼P) 
Tautology  
 (P&P ) ↔ ( P∨P ) ↔  P 
The Biconditional 
 (P↔Q)  ↔ ((P→Q)& (Q→P) ) 
 (P↔Q)  ↔  ((P&Q) ∨ (∼P&∼Q)) 
Quantifier Negations   
 ∼∀xP(x) ↔  ∃x∼P(x) 
 ∼∃xP(x)   ↔  ∀x∼P(x) 
 ∼∀x(P(x) →Q(x))  ↔  ∃x(P(x)&∼Q(x)) 
 ∼∃x(P(x)&Q(x))  ↔  ∀x(P(x) → ∼Q(x)) 

Subproof Rules 
♦Reductio ad absurdum 
 If          P      then ∼P  
            ∴Q&∼Q 
 If          ∼P    then   P 
            ∴Q&∼Q 
Ex Falso Quodlibet       Proof by Cases     
 P&∼P  If P and Q then P∨Q 
 ∴Q ∴R ∴R ∴R 
♦♦Conditional Proof   
 If        P  then   P→Q 
              ∴Q 
Conditional Proof for Biconditionals.    

If        P       and   Q ,  then   P↔Q  
              ∴Q              ∴P 



    

APPENDIX II.  NAÏVE SET THEORY 

Axioms 
♦Logical Truth. Every truth of logic is a theorem. 
♦Extensionality.   A=B ↔ ∀x (x∈A ↔ x∈B) 
♦Abstraction.   ∃A ∀x ( x∈A ↔ P(x))  

Abbreviations     

x≠y  ∼(x=y)          
♦x∉A  ∼(x∈A)  
♦A⊆B  ∀x(x∈A→x∈B)   

A⊂B  A⊆B&∼A=B   
∅ or Λ  {x| x≠x}  
V  {x| x=x}   
A∩B  {x| x∈A&x∈B}    
A∪B  {x| x∈A∨x∈B}   
A−B    {x| x∈A&x∉B}   
−A   V−A      
P(A)  {B| B⊆A}     
{x1, …,xn}    {y| y = x1 ∨ …∨ y = xn} 

Logical Symbols 

 
a,b,c constants (proper names) 
x,y,z variables (pronouns) 
F,G,H predicates (commn nouns,  
      intrans.verbs, adjectives) 
∼, ¬ negation (not) 
&, ∧ conjunction (and) 
∨  disjunction (or) 
→  the conditional (if…then) 
↔  the biconditional (if & only if) 
∀  univ. quant. (for all) 
∃  exist. quant. (for some) 
∈  membership (is a member of) 
=  identity 
 
 
 
 
 
 
 

Theorems 
♦1.  ∀y(  y∈{x | P(x)}  ↔ P(y)) 
♦2.  ∀x (x∈∅ ↔ x≠x) 

3.  ∀x (x∈V ↔ x=x) 
♦4.  ∀x (x∈A∩B ↔ (x∈A&x∈B) ) 
♦5.  ∀x (x∈A∪B ↔ (x∈A∨x∈B) ) 
♦6.  ∀x (x∈A−B ↔ (x∈A&x∉B) ) 
♦7.  ∀x (x∈−A ↔ x∉A) 

8.  ∀B (B∈ P(A) ↔ B⊆A) 
9.  ∀y (y∈{ x1, …,xn } ↔ (y = x1 ∨ …∨ y = xn) ) 
10.  −−A=A  
11.  A⊆A 
12.  ∀x((x∈A & A⊆B)→x∈B) 
13.  A∩A=A=A∪A 
14.  A=B ↔ (A⊆B & B⊆A) 
15.  A∩B⊆A⊆A∪B 
16.  ∅⊆A⊆V 
17.  −(A∪B)=−A∩−B 
18.  −(A∩B)=−A∪−B 
19.  A⊆B ↔ −B⊆−A 
20.  A⊆B ↔ ∼(A∩−B ≠∅) 
21.  ∃x(x∈A∩B) ↔ ∼(A∩B≠∅) 
22.  A∈P(A) 
23. ∅∈P(A) 
24. ∼∃A ∀x ( x∈A ↔ P(x)) 
25. ∀x1,…,xn, (<x1,…,xn>=<y1,…,yn> ↔ ∀ x1,…,xn∀ y1,…,yn (xi =yi)) 
26. (R⊆Vn & S⊆Vn ) →(R=S ↔ ∀x1,…,xn(<x1,…,xn>∈A ↔ <x1,…,xn>∈B)) 
27. ∃A ∀ x1,…,xn (<x1,…,xn>∈A ↔ P(x1,…,xn)) 
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SUMMARY OF EXERCISES 

Lecture 5 

Consult the theorem immediately prior to each of these in the notes for examples of a 
similar proof.  The strategies are very similar, and use similar, if not the same rules. 
 
If the exercise asks you to annotate a proof you should write to its right of each line of 
the proof the axiom or theorem of which it is an instance (e.g.”Axiom of Abstraction” or 
“Theroem 5”) or the numbers of previous line from which this line is deduced along 
with rule of logic used (e.g “1,2 modus ponens”).  See the examples in the text. 
 
Print out this summary and write your answers on the print out. 
 
Annotate the proofs:  
 
Theorem 3.  ∀x (x∈V ↔ x=x) 
Proof.   

1. ∀y(y∈{x| x=x} ↔ y=y)   
2. ∀y(y∈V ↔ y=y)  
3. ∀x (x∈V ↔ x=x)  

 
 
Theorem 5.  ∀x (x∈A∪B ↔ (x∈A∨x∈B) ) 
Proof.   

1. ∀y(y∈{x| x∈A∨x∈B } ↔ (y∈A∨y∈B))   
2. ∀y(y∈ A∪B ↔ (y∈A∨y∈B)) 
3.  ∀x (x∈ A∪B ↔ (x∈A∨x∈B))  

 
Theorem 7.  ∀x (x∈−A ↔ x∉A) 
Proof.  Exercise.  Annotate line 2-4 of the proof. 

1. ∀y(y∈V&∼y∈A ) ↔ ∼y∈A) Truth of Logic (Axiom 1 and Theorem 3) 
2. ∀y(y∈V&y∉A ) ↔ y∉A)   
3. ∀y(y∈V−A ↔ y∉A)  
4. ∀x (x∈−A ↔ x∉A)  

 
Construct the proofs: 
 
Theorem 9.  ∀y (y∈{ x1, …,xn } ↔ (y = x1 ∨ …∨ y = xn) ) 
Proof.    
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Theorem 11.  A⊆A  
Proof.   
 
 
 
 
 
 
 
 
Annotate the proofs: 
 
Theorem 13b.  A=A∪A.  
Proof.    
1.  ∀x(x∈A ↔ x∈A)   
2.  ∀x(x∈A) ↔ (x∈ A∨x∈A))  
3.  ∀x(x∈A ↔ x∈ A∪A)  
4.  A=A∪A   
 
Theorem 16a.  ∅⊆A⊆V 
Proof.   
1.  ∀x(x=x) 
2.  x=x 
3.  ∼∼(x=x) 
4.  ∼∼(x=x)∨ x∈A 
5.  ∼(x=x) → x∈A 
6.  x≠x → x∈A 
7.  ∀x(x≠x→ x∈A) 
8.  ∀x(x∈∅→ x∈A) 
9.  ∅⊆A 
 
Construct the proofs: 
 
Theorem 16b.  A⊆V 
Proof.   
 
 
 
 
 

Part 1, Page 121  Version1/5/2009 



  
  
 
 
 
 
 
Theorem 18.  −(A∩B)=−A∪−B  
Proof.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
More Challenging Exercises 
 
∗∗Complete the annotation: 
Theorem 20. A⊆B↔∼(A∩−B≠∅)   (All A are B iff it is not that case that some are A are not B.) 
Proof.    
Start of Subproof 1.  (a conditional proof) 

1.  A⊆B   assumption for conditional proof 
 Start of Subproof 1a.  (a reductio) 

2.  A∩−B≠∅  assumption for reductio 

3.  ∀x(x∈A → x∈B) 
4.  x∈A → x∈B 
5.  ∼( A∩−B=∅) 
6.  ∼∀x(x∈A∩−B ↔ x∈∅)  
7.  ∼∀x((x∈A& x∈−B) ↔ x∈∅)  
8.  ∼∀x((x∈A& x∉B) ↔ x∈∅)  
9.  ∼∀x((x∈A& ∼(x∈B)) ↔ x∈∅)  
10.  ∼∀x((x∈A& ∼(x∈B)) ↔ x≠x) 
11.  ∼∀x((x∈A& ∼(x∈B)) ↔ ∼(x=x)) 
12.  ∀x(x=x) 
13.  x=x 
14.  ∃x∼((x∈A& ∼(x∈B)) ↔ ∼(x=x))  11, what rule? 
15.  ∼((x∈A& ∼(x∈B)) ↔ ∼(x=x))  14, existential instantiation,  

Part 1, Page 122  Version1/5/2009 



  
  

               x is not arbitrary 
Start of Subproof 1ai.  (a conditional proof) 

16.  x∈A& ∼(x∈B)   assumption for conditional proof 
17.  x∈A   What line?  What rule? 
18.  x∈B 
19.  ∼(x∈B) 
20.  x∈B & ∼(x∈B) 
21.  ∼(x=x) 

End of Subproof 1ai. 
22.  (x∈A& ∼(x∈B))→∼(x=x)   1-22, conditional proof 
Start of Subproof 1b. (a conditional proof) 

23.  ∼(x=x)   assumption for conditional proof 
24.  x=x &∼(x=x) 
25.  x∈A& ∼(x∈B) 

End of Subproof 1b. 
26.  ∼(x=x)→( x∈A& ∼(x∈B))   23-25, conditional proof 
27.  (x∈A& ∼(x∈B))↔∼(x=x) 
28.  ((x∈A& ∼(x∈B))↔∼(x=x))&∼ ((x∈A& ∼(x∈B))↔∼(x=x)) 

 End Subproof 1a. 
29.  ∼(A∩−B≠∅)   2-28, reductio  
     (note 28 is a contradiction) 
End of Subproof 1. 

30.  A⊆B→∼(A∩−B≠∅)    
Start of Subproof 2. (a conditional proof) 

31.  ∼(A∩−B≠∅) 
Start of Subproof 2a. (a conditional proof) 

32.  x∈A  assumption for conditional proof 
33.  ∼∼(A∩−B=∅) 
34.  A∩−B=∅ 
35.  ∀x(x∈A∩−B ↔ x∈∅) 
36.  ∀x((x∈A& x∈−B) ↔ x∈∅)  
37.  ∀x((x∈A& x∉B) ↔ x∈∅)  
38.  ∀x((x∈A& ∼(x∈B)) ↔ x∈∅)  
39.  ∀x((x∈A& ∼(x∈B)) ↔ x≠x) 
40.  ∀x((x∈A& ∼(x∈B)) ↔ ∼(x=x)) 
41.  (x∈A& ∼(x∈B)) ↔ ∼(x=x)) 
42.  (x∈A& ∼(x∈B)) → ∼(x=x)) 
Start of Subproof 2ai.  (a reductio) 

43.  ∼(x∈B)  assumption for reductio 
44.  x∈A& ∼(x∈B) 
45.  ∼(x=x) 
46.  ∀x(x=x) 
47.  x=x 
48.  x=x &∼(x=x) 

End of Subproof 2ai. 
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49.  x∈B   43-58, reductio 
End of Subproof 2a. 
50.  x∈A → x∈B 
51.  ∀x(x∈A → x∈B) 
52.  A⊆B 

End of Subproof 2. 
53.  ∼(A∩−B≠∅)↔A⊆B 
 

Lecture 6 

∗Construct the proof: 
Theorem 21. ∃x(x∈A∩B) ↔ (A∩B≠∅)   (Some A are B iff it is not that case that no A are B.) 
Proof   
 
 
 
 
 
 
 
 
 
 
 
∗Annotate the proof: 
Theorem 23.  ∅∈P(A) 
Proof   
1.  ∅⊆A   
2.  ∅∈P(A)  
 
∗Construct the proof: 
Theorem 30.  If R={<x,y>| Fx &Gy} then R is transitive. 
Proof.       
  
. 
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REVIEW QUESTIONS 

 
1. State the problem of sameness and difference, first in general terms and then 

by formulating it in terms of the truth-conditions for subject-predicate 
propositions. 

 
2. Explain how the problem is purportedly solved by: 

 
a. Plato’s Theory of Forms, 

 
b. Aristotle’s theory of the categories and predicables,  

 
c. Set Theory. 

 
3. Critically evaluate the three explanations (a-c) as follows.  Explain in what ways 

set theory is better than the accounts of Plato and Aristotle.  But even set 
theory has problems.  Sketch why its naïve version is contradictory, and explain 
in general terms how we deal with this fact. 
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