Syntax of Sentential Logic

 A syntax SL for sentential logic is a structure <AF_{SL},R_{SL},F_{SL} > such that:

 AF_{SL} (the set of atomic formulas of SL) is some subset of the sentence letters: P₁,..., P_n,....

 R_{SL} (the set of grammatical rules of SL) is set of function {R₋,R_∧,R_∨,R_→,R_↔} defined:

 R₋ constructs ~x from any string x; *i.e.* R₋(x)=~x

 R_∧ constructs (x∧y) from strings x and y; *i.e.* R_√(x,y)=(x∧y)

 R_→ constructs (x→y) from strings x and y; *i.e.* R_→(x,y)=(x→y)

 R_→ constructs (x→y) from strings x and y; *i.e.* R_→(x,y)=(x→y)

 R_→ constructs (x→y) from strings x and y; *i.e.* R_→(x,y)=(x→y)

 R_→ constructs (x→y) from strings x and y; *i.e.* R_→(x,y)=(x→y)

 R_→ constructs (x→y) from strings x and y; *i.e.* R_→(x,y)=(x→y)

 R_→ constructs (x→y) from strings x and y; *i.e.* R_→(x,y)=(x→y)

 F_{SL} (the set of well-formed formulas or wffs of SL) is defined inductively as follows:

 1. Basis Clause. All formulas in AF_{SL} are in F_{SL}.

 2. Inductive Clause. If P and Q are in F_{SL}, then the results of applying the rules R_∼,R_∧,R_∨,R_→, and R_↔ to them, namely ~P, (P∧Q), (P∨Q), (P→Q), (P→Q), are all in F_{SL};

 3. Nothing is in F_{SL} except by clauses 1 and 2.

The Semantics (Model Theory) for Sentential Logic. Let the set $\{f_{-}, f_{+}, f_{+}, f_{+}, f_{+}\}$ of *truth-functions* be defined: $f_{-}=\{\langle T, F \rangle, \langle F, T \rangle\}$ *f*_^={<T,T,T><T,F,F>,<F,T,F>,<F,F,F>} *f*_v={<T,T,T><T,F,T>,<F,T,T>,<F,F,F>} *f*_={<T,T,T><T,F,F>,<F,T,T>,<F,F,T>} $f_{\leftrightarrow} = \{ \langle \mathsf{T}, \mathsf{T}, \mathsf{T} \rangle \langle \mathsf{T}, \mathsf{F} \rangle, \langle \mathsf{F}, \mathsf{T}, \mathsf{F} \rangle, \langle \mathsf{F}, \mathsf{F}, \mathsf{T} \rangle \}$ A formula P is **true in a model** \mathfrak{A} (written briefly, $\mathfrak{A} \models P$) and a **valuation** function \mathfrak{I} from \mathbf{F}_{st} to {T,F} are defined ("recursively") as follows: Basis Clause. For any atomic formula P, either $\mathfrak{A} \models P$ or not($\mathfrak{A} \models P$), and either $\Im(P)$ =T or $\Im(P)$ =F. Inductive Clauses. The cases for molecular formulas are broken down: $\mathfrak{A} \models \sim P$ iff not $\mathfrak{A} \models P$ $\Im(\sim P)=f_{\sim}(\Im(P)), i.e.$ $\Im(\sim P)=T \text{ iff } \Im(P)\neq T$ $\mathfrak{A} \models P \land Q$ iff $(\mathfrak{A} \models P \text{ and } \mathfrak{A} \models Q)$ $\Im(P \land Q) = f_{\land}(\Im(P), \Im(Q)), i.e.$ $\mathfrak{S}(P \land Q) = \mathsf{T}$ iff, $\mathfrak{S}(P) = \mathsf{T}$ and $\mathfrak{S}(Q) = \mathsf{T}$ $\mathfrak{A} \models P \lor Q$ iff $(\mathfrak{A} \models P \text{ or } \mathfrak{A} \models Q)$ $\Im(P \lor Q) = T$ iff, $\Im_s(P) = T$ or $\Im(Q) = T$ $\Im(P \lor Q) = f_{\lor}(\Im(P), \Im(Q)), i.e.$ $\mathfrak{A} \models P \rightarrow Q$ iff (not $\mathfrak{A} \models P$ or $\mathfrak{A} \models Q$) $\mathfrak{I}(P \rightarrow Q) = f_{\rightarrow}(\mathfrak{I}(P), \mathfrak{I}(Q)), i.e.$ $\Im(P \rightarrow Q) = T$ iff, $\Im(P) \neq T$ or $\Im(Q) = T$ $\mathfrak{A} \models P \leftrightarrow Q$ iff $(\mathfrak{A} \models P \text{ iff } \mathfrak{A} \models Q)$ $\Im(P \leftrightarrow Q) = f_{\leftrightarrow} \Im(P), \Im(Q)), i.e.$ $\Im(P \leftrightarrow Q) = T$ iff, $\Im(P) = T$ iff $\Im(Q) = T$

P is an SL *logical truth* (abbreviated ⊧_{SL}*P*) means: for all models 𝔄, 𝔅|≠*P*, or in alternative notation, for all 𝔅, 𝔅(*P*)=T.
The argument from premises *P*₁,...*P_n* to conclusion *Q* is SL *valid* (briefly, *P*₁,...*P_n*|⊧_{SL}*Q*) means: for all models 𝔅, if for all *i* = 1,...,*n* 𝔅|≠*P_i*, then 𝔅|≠*Q*, or in alternative notation, for all 𝔅, if for all *i* = 1,...,*n*, 𝔅(*P_i*)=T, then 𝔅(*Q*)=T,
A set *X* of formulas *P*₁,...*P_n* is SL *satisfiable* (*i.e.* "semantically consistent") means: there is some 𝔅 such that for all *i* = 1,...,*n*, 𝔅(*P_i*)=T.

Metatheorem: Truth-Functionality. For any interpretation \Im , \Im is a homomorphism from the structure < F_{SL} , R_{\neg} , R_{\wedge} , R_{\rightarrow} , R_{\rightarrow} , R_{\rightarrow} , R_{\rightarrow} to the structure <{T,F}, f_{\neg} , f_{\vee} , f_{\rightarrow} , f_{\leftrightarrow} >, *i.e.* \Im maps F_{SL} into {T,F} and For any R_i , $\Im(R_i(P_1,...P_n))=f_i(\Im(R_i(P_1),...,R_i(P_n)))$ **Metatheorem: Substitutivity of Material Equivalents.** Let Q(P) be a formula containing *P*, and let Q(P') be like Q(P) except for containing *P'* at some place that Q(P) contains *P*. If $\Im(P)=\Im(P')$, then $\Im(Q(P))=\Im(Q(P'))$, or equivalently, if $\Im(P\leftrightarrow P')=T$, then $\Im(Q(P)\leftrightarrow Q(P'))=T$.