MT. $\mathfrak{M} \models P(c)$ iff, for all $g, \mathfrak{M}(c) \in P^{\mathfrak{M}}$ **MT.** $\mathfrak{M} \models \forall x P(x)$ iff, for all $q, \mathfrak{M}(c) \in P^{\mathfrak{M}}$ Proof: Proof: m ⊧P(c) for all $g, \mathfrak{M} \models P(c)[g]$ for all $g, \mathfrak{M} \models \forall x P(x)[g]$ iff $\mathfrak{M} \models \forall x P(x)$ iff for all g, $[c]_{\alpha}^{\mathfrak{M}} \in P^{\mathfrak{M}}$ iff for all g, for all d in $D^{\mathfrak{M}}, \mathfrak{M} \models P(x)[g(x/d)]$ lff for all g, for all d in $\mathsf{D}^{\mathfrak{M}}$, $[x]_{g(x/d)}^{\mathfrak{M}} \in P^{\mathfrak{M}}$ for all $g, \mathfrak{M}(c) \in P^{\mathfrak{M}}$ iff iff for all q, for all d in $D^{\mathfrak{M}}$, $d \in P^{\mathfrak{M}}$ iff **MT.** $\mathfrak{M} \models P(c)$ iff, for all $g, \mathfrak{M}(c) \notin P^{\mathfrak{M}}$ Proof: **MT.** $\mathfrak{M} \models \forall x \neg P(x)$ iff, for all q, for all d in $D^{\mathfrak{M}}$, $d \notin P^{\mathfrak{M}}$ $\mathfrak{M} \models \neg P(c)$ for all $g, \mathfrak{M} \models P(c)[g]$ iff Proof: for all g, $[c]_{\alpha}^{\mathfrak{M}} \notin P^{\mathfrak{M}}$ iff $\mathfrak{M} \models \forall \mathbf{x} \neg \mathsf{P}(\mathbf{x})$ for all $g, \mathfrak{M} \models \forall x \neg P(x)[g]$ for all $g, \mathfrak{M}(c) \notin P^{\mathfrak{M}}$ iff iff for all g, for all d in $D^{\mathfrak{M}}$, $\mathfrak{M} \models \neg P(x)[g(x/d)]$ lff **MT.** $\mathfrak{M} \models P(x)$ iff, for all $g, d \in P^{\mathfrak{M}}$ for all g, for all d in $D^{\mathfrak{M}}$, $[x]_{q(x/d)}^{\mathfrak{M}} \notin P^{\mathfrak{M}}$ iff Proof: for all g, for all d in $D^{\mathfrak{M}}$, $d \notin P^{\mathfrak{M}}$ iff $\mathfrak{M} \models P(x)$ for all $g, \mathfrak{M} \models P(x)[g]$ iff for all g, $[x]_{g(x/d)}^{\mathfrak{M}} \in P^{\mathfrak{M}}$ iff **MT.** $\mathfrak{M} \models \forall x P(x)$ iff, for all g, for some d in $D^{\mathfrak{M}}$, $d \notin P^{\mathfrak{M}}$ for all $q, d \in P^{\mathfrak{M}}$ iff Proof: $\mathfrak{M} \models \forall \mathsf{xP}(\mathsf{x})$ iff for all $g, \mathfrak{M} \models \forall x P(x)[g]$ **MT.** $\mathfrak{M} \models \neg P(x)$ iff, for all $g, d \notin P^{\mathfrak{M}}$ for all g, not $(\mathfrak{M} \models \forall x P(x)[g])$ iff Proof: for all g, not(for all d in $D^{\mathfrak{M}}$, $\mathfrak{M} \models P(x)[g(x/d)])$ lff $\mathfrak{M} \models \neg P(x)$ for all $g, \mathfrak{M} \models P(x)[g]$ for all g, for some d in $D^{\mathfrak{M}}$, not $(\mathfrak{M} \models$ iff iff for all g, $[x]_{g(x/d)}^{\mathfrak{M}} \notin P^{\mathfrak{M}}$ iff P(x)[g(x/d)])for all g, for some d in $D^{\mathfrak{M}}$, $[x]_{g(x/d)}^{\mathfrak{M}} \notin P^{\mathfrak{M}}$ for all $g, d \notin P^{\mathfrak{m}}$ iff iff for all g, for some d in $D^{\mathfrak{M}}$, $d \notin P^{\mathfrak{M}}$ iff

MT. $\mathfrak{M} \models \forall x(P(x) \rightarrow Q(x))$ iff, for all g, for all d in $D^{\mathfrak{M}}$, $d \in P^{\mathfrak{M}}$ or $d \notin Q^{\mathfrak{M}}$ Proof:

$$\mathfrak{M} \models \forall \mathbf{x} (\mathsf{P}(x) \to Q(x)) \quad \text{iff} \quad \text{for all } g, \mathfrak{M} \models \forall \mathbf{x} (\mathsf{P}(x) \to Q(x)) [g]$$

$$\mathfrak{iff} \quad \text{for all } g, \text{ for all } d \text{ in } \mathsf{D}^{\mathfrak{M}},$$

$$\mathfrak{M} \models \mathsf{P}(x) \to Q(x) [g(x/d)]$$

$$\mathfrak{iff} \quad \text{for all } g, \text{ for all } d \text{ in } \mathsf{D}^{\mathfrak{M}}, \text{ either } \mathfrak{M} \models$$

$$P(x) [g(x/d)] \text{ or not } \mathfrak{M} \models Q(x) [g(x/d)]$$

$$\mathfrak{iff} \quad \text{for all } g, \text{ for all } d \text{ in } \mathsf{D}^{\mathfrak{M}}, \ [x]_{g(x/d)}^{\mathfrak{M}} \notin \mathsf{P}^{\mathfrak{M}} \text{ or }$$

$$[x]_{g(x/d)}^{\mathfrak{M}} \in \mathsf{Q}^{\mathfrak{M}}$$

$$\mathfrak{iff} \quad \text{for all } g, \text{ for all } d \text{ in } \mathsf{D}^{\mathfrak{M}}, \ d \notin \mathsf{P}^{\mathfrak{M}} \text{ or } d \in \mathsf{Q}^{\mathfrak{M}}$$

MT. $\mathfrak{M} \models \forall x(\mathbb{P}(x) \lor Q(x))$ iff, for all g, for all d in $\mathbb{D}^{\mathfrak{M}}$, $d \in \mathcal{P}^{\mathfrak{M}}$ or $d \in Q^{\mathfrak{M}}$ Proof:

$$\mathfrak{M} \models \forall \mathbf{x} (\mathsf{P}(x) \lor Q(x)) \quad \text{iff} \quad \text{for all } g, \ \mathfrak{M} \models \forall \mathbf{x} (\mathsf{P}(x) \lor Q(x)) \ [g]$$
$$\text{iff} \quad \text{for all } g, \text{ for all } d \text{ in } \mathsf{D}^{\mathfrak{M}},$$
$$\mathfrak{M} \models P(x) \lor Q(x) [g(x/d)]$$

- iff for all g, for all d in $D^{\mathfrak{M}}$, either $\mathfrak{M} \models P(x)[g(x/d)]$ or $\mathfrak{M} \models Q(x)[g(x/d)]$
- iff for all g, for all d in $D^{\mathfrak{M}}$, $\llbracket x \rrbracket_{g(x/d)}^{\mathfrak{M}} \in P^{\mathfrak{M}}$ or $\llbracket x \rrbracket_{g(x/d)}^{\mathfrak{M}} \in Q^{\mathfrak{M}}$
- iff for all g, for all d in $D^{\mathfrak{M}}$, $d \in P^{\mathfrak{M}}$ or $d \in Q^{\mathfrak{M}}$

MT. $\mathfrak{M} \models \exists x P(x)$ iff, for all g, for some d in $D^{\mathfrak{M}}$, $d \in P^{\mathfrak{M}}$ Proof:

m ⊧∃ <i>xP</i> (x)	iff	for all $g, \mathfrak{M} \models \exists x P(x)[g]$
	lff	for all g, for some d in $D^{\mathfrak{M}}, \mathfrak{M} \models P(x)[g(x/d)]$
	iff	for all g , for some d in $D^{\mathfrak{M}}$, $\llbracket x \rrbracket_{g \ (x/d)}^{\mathfrak{M}} \in \mathcal{P}^{\mathfrak{M}}$
	iff	for all g, for some d in $D^{\mathfrak{M}}$, $d \in P^{\mathfrak{M}}$

MT. $\mathfrak{M} \models \exists x \neg P(x)$ iff, for all g, for some d in $D^{\mathfrak{M}}$, $d \notin P$ Proof:

 $\mathfrak{M} \models \exists x \neg \mathsf{P}(x) \quad \text{iff} \quad \text{for all } g, \mathfrak{M} \models \exists x \neg \mathsf{P}(x)[g] \\ \text{Iff} \quad \text{for all } g, \text{ for some } d \text{ in } \mathsf{D}^{\mathfrak{M}}, \mathfrak{M} \models \neg \mathsf{P}(x)[g(x/d)] \\ \text{iff} \quad \text{for all } g, \text{ for some } d \text{ in } \mathsf{D}^{\mathfrak{M}}, \llbracket x \rrbracket_{g(x/d)}^{\mathfrak{M}} \notin \mathsf{P}^{\mathfrak{M}} \\ \text{iff} \quad \text{for all } g, \text{ for some } d \text{ in } \mathsf{D}^{\mathfrak{M}}, d \notin \mathsf{P}^{\mathfrak{M}} \end{cases}$

MT. $\mathfrak{M} \models \exists x P(x)$ iff, for all g, for all d in $D^{\mathfrak{M}}$, $d \notin P^{\mathfrak{M}}$ Proof:

 $\mathfrak{M} \models \exists x \mathsf{P}(x) \quad \text{iff} \quad \text{for all } g, \ \mathfrak{M} \models \exists x \mathsf{P}(x)[g]$ $\mathfrak{M} \models \exists x \mathsf{P}(x)[g]$ $\mathfrak{M} \notin \mathfrak{P}(x)[g]$ $\mathfrak{M} \notin \mathfrak{P}(x)[g(x/d)]$ $\mathfrak{M} \notin \mathfrak{P}(x)[g(x/d)]$

```
MT. \mathfrak{M} \models \exists x(P(x) \land Q(x)) iff, for all g, for some d in D^{\mathfrak{M}}, d \in P^{\mathfrak{M}} and d \in Q^{\mathfrak{M}}

Proof:

\mathfrak{M} \models \exists x(P(x) \land Q(x)) iff for all g, \mathfrak{M} \models \exists xP(x) \land Q(x)) [g]
```

```
iff for all g, m \in \mathbb{Z}^{M}(x) / \mathbb{Q}(x) [g]

iff for all g, for some d in \mathbb{D}^{\mathfrak{M}},

\mathfrak{M} \models P(x) \land Q(x)[g(x/d)]

iff for all g, for some d in \mathbb{D}^{\mathfrak{M}}, either \mathfrak{M} \models

P(x)[g(x/d)] and \mathfrak{M} \models Q(x)[g(x/d)]

iff for all g, for some d in \mathbb{D}^{\mathfrak{M}}, [x]_{g(x/d)}^{\mathfrak{M}} \in P^{\mathfrak{M}} and

[x]_{g(x/d)}^{\mathfrak{M}} \in Q^{\mathfrak{M}}

iff for all g, for some d in \mathbb{D}^{\mathfrak{M}}, d \in P^{\mathfrak{M}} and d \in Q^{\mathfrak{M}}
```

MT. ∀x(P(*x*) ⊧*P*(*c*)

Proof : Let \mathfrak{M} be arbitrary. Assume for a conditional proof that $\mathfrak{M} \models \forall x P(x)$. Then by previous truth-conditional metatheorems: for all g, for all d in $D^{\mathfrak{M}}$, $d \in P^{\mathfrak{M}}$. Since the quantification over g is vacuous, it may be dropped: for all d in $D^{\mathfrak{M}}$, $d \in P^{\mathfrak{M}}$. Since the quantification over g is vacuous, it may be dropped: for all d in $D^{\mathfrak{M}}$, $d \in P^{\mathfrak{M}}$. Since the quantification over $D^{\mathfrak{M}}$ is universal, it may be instantiated by the instance $\mathfrak{M}(c)$: $\mathfrak{M}(c) \in P^{\mathfrak{M}}$, which may be vacuously quantified: for all g, $\mathfrak{M}(c) \in P^{\mathfrak{M}}$. But this means by definition that $\mathfrak{M} \models P(c)$. Hence by conditional proof in the metalanguage, if $\mathfrak{M} \models \forall x P(x)$, then $\mathfrak{M} \models P(c)$. Since \mathfrak{M} is arbitrary, this fact may be universally generalized: for any \mathfrak{M} , if $\mathfrak{M} \models \forall x P(x)$), then $\mathfrak{M} \models P(c)$. Hence by definition of \models , $\forall x P(x) \models P(c)$. QED.

MT. $\forall x(P(x) \rightarrow Q(x)), P(c) \models Q(c)$

Proof : Let \mathfrak{M} be arbitrary. Assume for a conditional proof that $\mathfrak{M} \models \forall x(P(x) \rightarrow Q(x))$ and $\mathfrak{M} \models P(c)$. Then by previous truth-conditional metatheorems: for all g, for all d in $\mathsf{D}^{\mathfrak{M}}$, $d \notin P^{\mathfrak{M}}$ or $d \in Q^{\mathfrak{M}}$, and for all g, $\mathfrak{M}(c) \in P^{\mathfrak{M}}$. Since the quantifications over g are vacuous, they may be dropped: for all d in $\mathsf{D}^{\mathfrak{M}}$, $d \notin P^{\mathfrak{M}}$ or $d \in Q^{\mathfrak{M}}$, and $\mathfrak{M}(c) \in P^{\mathfrak{M}}$. Since the quantification over g are vacuous, they may be dropped: for all d in $\mathsf{D}^{\mathfrak{M}}$, $d \notin P^{\mathfrak{M}}$ or $d \in Q^{\mathfrak{M}}$, and $\mathfrak{M}(c) \in P^{\mathfrak{M}}$. Since the quantification over $\mathsf{D}^{\mathfrak{M}}$ is universal, it may be instantiated by the instance $\mathfrak{M}(c)$: $\mathfrak{M}(c) \notin P^{\mathfrak{M}}$ or $\mathfrak{M}(c) \in Q^{\mathfrak{M}}$. This combines with the earlier fact that $\mathfrak{M}(c) \in P^{\mathfrak{M}}$ to entail by truth-functional logic in the metalanguage that $\mathfrak{M}(c) \in Q^{\mathfrak{M}}$. But this means by definition that $\mathfrak{M} \models Q(c)$. Hence by conditional proof in the metalanguage, if $\mathfrak{M} \models \forall x(P(x) \rightarrow Q(x))$ and $\mathfrak{M} \models P(c)$, then $\mathfrak{M} \models Q(c)$. Since \mathfrak{M} is arbitrary, this fact may be universally generalized: for any \mathfrak{M} , if

 $\mathfrak{M} \models \forall x(P(x) \rightarrow Q(x)) \text{ and } \mathfrak{M} \models P(c), \text{ then } \mathfrak{M} \models Q(c). \text{ Hence by definition of } \models, \forall x(P(x) \rightarrow Q(x)), P(c) \models Q(c). \text{ QED.}$

MT. $\forall x(P(x) \rightarrow Q(x)), \neg Q(c) \models \neg P(c)$

Proof : Let \mathfrak{M} be arbitrary. Assume for a conditional proof that $\mathfrak{M} \models \forall x(P(x) \rightarrow Q(x))$ and $\mathfrak{M} \models \neg Q(c)$. Then by previous truth-conditional metatheorems: for all g, for all d in $\mathsf{D}^{\mathfrak{M}}$, $d \notin P^{\mathfrak{M}}$ or $d \in Q^{\mathfrak{M}}$, and for all g, $\mathfrak{M}(c) \notin Q^{\mathfrak{M}}$. Since the quantifications over g are vacuous, they may be dropped: for all d in $\mathsf{D}^{\mathfrak{M}}$, $d \notin P^{\mathfrak{M}}$ or $d \in Q^{\mathfrak{M}}$, and $\mathfrak{M}(c) \notin Q^{\mathfrak{M}}$. Since the quantification over g are vacuous, they may be dropped: for all d in $\mathsf{D}^{\mathfrak{M}}$, $d \notin P^{\mathfrak{M}}$ or $d \in Q^{\mathfrak{M}}$, and $\mathfrak{M}(c) \notin Q^{\mathfrak{M}}$. Since the quantification over $\mathsf{D}^{\mathfrak{M}}$ is universal, it may be instantiated by the instance $\mathfrak{M}(c)$: $\mathfrak{M}(c) \notin P^{\mathfrak{M}}$ or $\mathfrak{M}(c) \in Q^{\mathfrak{M}}$. This combines with the earlier fact that $\mathfrak{M}(c) \notin Q^{\mathfrak{M}}$ to entail by truth-functional logic in the metalanguage that $\mathfrak{M}(c) \notin P^{\mathfrak{M}}$, which may in turn be vacuously quantified: for all g, $\mathfrak{M}(c) \notin P$. But this means by definition that $\mathfrak{M} \models \neg P(c)$. Hence by conditional proof in the metalanguage, if $\mathfrak{M} \models \forall x(P(x) \rightarrow Q(x))$ and $\mathfrak{M} \models \neg Q(c)$, then $\mathfrak{M} \models \neg P(c)$. Since \mathfrak{M} is arbitrary, this fact may be universally generalized: for any \mathfrak{M} , if $\mathfrak{M} \models \forall x(P(x) \rightarrow Q(x))$ and $\mathfrak{M} \models \neg Q(c)$, then $\mathfrak{M} \models \neg P(c)$. Hence by definition of \models , $\forall x(P(x) \rightarrow Q(x))$, $\neg Q(c) \models \neg P(c)$. QED

MT. $P(c) \models \exists x(P(x))$

Proof : Let \mathfrak{M} be arbitrary. Assume for a conditional proof that $\mathfrak{M} \models P(c)$. By previous truth-conditional metatheorems: $\mathfrak{M}(c) \in P^{\mathfrak{M}}$. Let us give a name of convience d' to $\mathfrak{M}(c)$ in $D^{\mathfrak{M}}$. Hence $d' \in P^{\mathfrak{M}}$. This d' may be existentially generalized: for some d in $D^{\mathfrak{M}}$, $d' \in P^{\mathfrak{M}}$. A vacuous quantificastion over g may now be added: for all g, for some d in $D^{\mathfrak{M}}$, $d \in P^{\mathfrak{M}}$. Then, by an earlier truth-conditional metatheorem, $\mathfrak{M} \models \exists x P(x)$. Hence by conditional proof in the metalanguage, if $\mathfrak{M} \models P(c)$, then $\mathfrak{M} \models \exists x P(x)$. Since \mathfrak{M} is arbitrary, this fact may be universally generalized: for any \mathfrak{M} , if $\mathfrak{M} \models P(c)$, then $\mathfrak{M} \models \exists x P(x)$. Hence by definition of \models , $P(c) \models \exists x P(x)$. QED.

MT. $\forall \mathbf{x}(\mathbf{P}(x) \models \exists x(x)$

Proof : Let \mathfrak{M} be arbitrary. Assume for a conditional proof that $\mathfrak{M} \models \forall x P(x)$. Then by previous truth-conditional metatheorems: for all g, for all d in $D^{\mathfrak{M}}$, $d \in P^{\mathfrak{M}}$. Since the quantification over g is vacuous, it may be dropped: for all d in $D^{\mathfrak{M}}$, $d \in P^{\mathfrak{M}}$. Since the quantification over $D^{\mathfrak{M}}$ is universal, it may be instantiated by the instance d': $d' \in P^{\mathfrak{M}}$. This d' may be existentially generalized: for some d in $D^{\mathfrak{M}}$, $d \in P^{\mathfrak{M}}$. A vacuous quantification over g may now be added: for all g, for some d in $D^{\mathfrak{M}}$, $d \in P^{\mathfrak{M}}$. Then, by an earlier truth-conditional metatheorem, $\mathfrak{M} \models \exists x P(x)$. Hence by conditional proof in the metalanguage, if $\mathfrak{M} \models \forall x P(x)$, then $\mathfrak{M} \models \exists x P(x)$. Since \mathfrak{M} is arbitrary, this fact may be universally generalized: for any \mathfrak{M} , if $\mathfrak{M} \models \forall x P(x)$, then $\mathfrak{M} \models \exists x P(x)$. QED.

MT. (Barbara) $\forall x(M(x) \rightarrow P(x)), \forall x(S(x) \rightarrow M(x)) \models \forall x(S(x) \rightarrow P(x))$ Proof: Let \mathfrak{M} be arbitrary. Assume for a conditional proof that $\mathfrak{M} \models \forall x(M(x) \rightarrow P(x))$ and $\mathfrak{M} \models \forall x(S(x) \rightarrow M(x))$. Then by previous truthconditional metatheorems: for all g, for all d in $D^{\mathfrak{M}}, d \notin M^{\mathfrak{M}}$ or $d \in P^{\mathfrak{M}}$, and for all g, for all d in $D^{\mathfrak{M}}, d \notin S^{\mathfrak{M}}$ or $d \in M^{\mathfrak{M}}$. Since the quantifications over g are vacuous, they may be dropped: for all d in $D^{\mathfrak{M}}, d \in M^{\mathfrak{M}}$ or $d \notin P^{\mathfrak{M}}$, and for all d in $D^{\mathfrak{M}}, d \in S^{\mathfrak{M}}$ or $d \notin M^{\mathfrak{M}}$. Since the quantification over $D^{\mathfrak{M}}$ is universal, it may be instantiated to the

arbitrary instance $d': d' \notin M^{\mathfrak{M}}$ or $d' \in P^{\mathfrak{M}}$, and $d' \notin S^{\mathfrak{M}}$ or $d' \in M^{\mathfrak{M}}$. By truth-functional logic in the metalanguage, it follows that $d' \notin S^{\mathfrak{m}}$ and $d' \in P^{\mathfrak{M}}$. Since d' is arbitrary, this may be universally generalized: for any $d', d' \notin S^{\mathfrak{M}}$ and $d' \in P^{\mathfrak{M}}$. Consider now an arbitrary g'(x/d')such that Clearly g'(x/d')(x)=d', and hence by substitutivity of =, g' $(x/d')(x) \notin S^{\mathfrak{M}}$ and $g'(x/d')(x) \in P^{\mathfrak{M}}$. Then by the turh-conditions for \rightarrow , $\mathfrak{M} \models S(x) \rightarrow M(x)[g'(x/d')]$ Since d' is arbitrary this may be universally generalized, for any d in $D^{\mathfrak{M}}$, $\mathfrak{M} \models S(x) \rightarrow M(x)[g'(x/d')]$. But then by the truth-conditions for \forall , $\mathfrak{M} \models \forall x(S(x) \rightarrow M(x))[g']$. Now, since g' is also arbitray, it too may be universally generalized: for any g, $\mathfrak{M} \models \forall x(S(x) \rightarrow M(x))[g]$. But then by definition, $\mathfrak{M} \models \forall x(S(x) \rightarrow M(x))$. Hence by conditional proof in the metalanguage, if $\mathfrak{M} \models \forall x(M(x) \rightarrow P(x))$ and $\mathfrak{M} \models \forall x(S(x) \rightarrow M(x))$ then $\mathfrak{M} \models \forall x(S(x) \rightarrow M(x))$. Since \mathfrak{M} is arbitrary, this fact too may be universally generalized: for any \mathfrak{M} , if $\mathfrak{M} \models \forall x(M(x) \rightarrow P(x))$ and $\mathfrak{M} \models \forall x(S(x) \rightarrow M(x))$ then $\mathfrak{M} \models \forall x(S(x) \rightarrow M(x))$. Hence by definition of $\models, \forall x(M(x) \rightarrow P(x))$, $\forall x(S(x) \rightarrow M(x)) \models \forall x(S(x) \rightarrow P(x)).$ QED.

MT. (Celarent) $\neg \exists x(M(x) \land P(x)), \forall x(S(x) \rightarrow M(x)) \models \neg \exists x(S(x) \land P(x))$ Proof: Let \mathfrak{M} be arbitrary. Assume for a conditional proof that $\mathfrak{M} \models \neg \exists x(M(x) \land P(x))$ and $\mathfrak{M} \models \forall x(S(x) \rightarrow M(x))$. Then by previous truthconditional metatheorems: not (for some *g*, for all *d* in $D^{\mathfrak{M}}, d \in M^{\mathfrak{M}}$ and $d \in P^{\mathfrak{M}}$), and for all *g*, for all *d* in $D^{\mathfrak{M}}, d \notin S^{\mathfrak{M}}$ or $d \in M^{\mathfrak{M}}$. By quantifier negation and DeMorgans Law in the metalanguage, for all *g*, for some *d* in $D^{\mathfrak{M}}, d \notin M^{\mathfrak{M}}$ and $d \notin P^{\mathfrak{M}}$. Since the quantifications over g are vacuous, they may be dropped: for all *d* in $D^{\mathfrak{M}}, d \notin S^{\mathfrak{M}}$ or $d \in M$. of convenience to this "some d" and call it d', and universally instantiate the "for all d" to d' as well: $d' \notin S^{\mathfrak{M}}$ or $d' \in M^{\mathfrak{M}}$, and $d' \notin M^{\mathfrak{M}}$ and $d' \notin \mathcal{P}^{\mathfrak{M}}$. Since $d' \notin \mathcal{M}^{\mathfrak{M}}$, and either $d' \notin \mathcal{S}^{\mathfrak{M}}$ or $d' \in \mathcal{M}^{\mathfrak{M}}$, it follows by truth-conditional logic in the metalanguage that $d' \notin S$. Hence, $d' \notin S^{\mathfrak{M}}$ and $d' \notin P^{\mathfrak{M}}$. This case of d' may be existentially generalized: for some d in $D^{\mathfrak{M}}$, $d \notin S^{\mathfrak{M}}$ and $d' \notin P^{\mathfrak{M}}$, to which a vacuous universal quantification over g may be added: for all g, for some d in $D^{\mathfrak{M}}$, d $\notin S^{\mathfrak{M}}$ and $d' \notin P^{\mathfrak{M}}$. Then by DeMorgan's Law and quantifier negation in the metalanguage, not (for some g, for all d in $D^{\mathfrak{M}}$, $d' \in S^{\mathfrak{M}}$ and $d' \in \mathcal{S}^{\mathfrak{M}}$ $P^{\mathfrak{M}}$ Hence, by previous truth-conditional metatheorems, $\mathfrak{M} \models \exists x(S(x) \land P(x))$. Hence by conditional proof in the metalanguage, $\mathfrak{M} \models \exists \mathsf{x}(M(x) \land P(x))$ $\mathfrak{M} \models \forall \mathbf{x} (S(\mathbf{x}) \rightarrow M(\mathbf{x}))$ if and then $\mathfrak{M} \models \exists x(S(x) \land M(x))$. Since \mathfrak{M} is arbitrary, this fact too may be universally generalized: for any \mathfrak{M} , if $\mathfrak{M} \models \exists x(M(x) \land P(x))$ and $\mathfrak{M} \models \forall x(S(x) \rightarrow M(x))$ then $\mathfrak{M} \models \neg \exists x(S(x) \land M(x))$. Hence by definition of \models , $\neg \exists x(M(x) \land P(x)), \forall x(S(x) \rightarrow M(x)) \models \neg \exists x(S(x) \land P(x)).$ QED.