
Reduction of Arithmetic to Logic and Set Theory 
 
 In the 19th century Giuseppe Plano (1858-1932) axiomatized arithmetic and Georg 
Cantor (1845-1918) worked out in a non-axiomatic way the fundamental ideas of set 
theory.  The stage was set for a remarkable synthesis.  The German logician Gottleb 
Frege (1848-1925) was the first to see that the two theories could be combined by means 
of symbolic logic into a single axiom system in a way that “reduced” arithmetic to logic 
and set theory. In the last decade of the 19th century, Frege published an important work 
in which he deduced as theorems Peano’s postulates for arithmetic from a handful of 
more basic axioms from logic and set theory.  On the basis of his technical 
accomplishment, he advanced a hypothesis about the nature of mathematics generally.  
Mathematics, he suggested,  was a part of logic. This thesis, known as logicism,  is rich 
in implications for mathematics, logic, and philosophy. 
 
 For the mathematician logicism explains what mathematics is all about, and what 
its methods should be.  Math turns out to consist of the working out of reason’s 
implications. Its method is the production of axiom systems that, in principle at least, could 
be formulated in symbolic logic. Non-Euclidean geometry then proves to have been a 
misleading storm in a teacup.  Whatever the peculiarities of geometry, arithmetic, the 
heart of mathematics, remains groundable in a priori truths of reason. 
 
 For philosophy logicism breathes new life into a species of rationalism.  There still 
seems to be an important branch of science, namely mathematics, which consists of 
working out the implications of the self-evident principles of pure thought. 
    
 For logic logicism is the supreme validation.  Logic becomes the science of pure a 
priori reason.  Logic provides the symbolic language, reasoning patterns, and axiomatic 
method  applicable to all the sciences, and for non-empirical mathematics it provides in 
addition its basic truths. 
 
 To show how brief and elegant Frege’s sort of theory can be, I will now provide a 
statement of a basic axiom set sufficient for his purposes.  The system will be called F  
(for Fregean Arithmetic).  We begin by specifying the set of sentences LF of the system.  
Only two primitive symbols are necessary beyond those of logic, and these two concern 
sets: the set membership symbol ∈ and the set abstract {x|P[x]}, which in symbols says 
“the class of all x such that P[x].  Here P[x] is what is called “an open sentence”.  The 
letter P represents some sentence – it can be any sentence – and the [x] indicates that 
the sentence P contains the variable x. 
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Primitive Symbols of Fregean Arithmetic (the System F ): 
 
  Primitive English Symbol Example: Translation of the 
  Symbol: Translation: Name & Idea:  Example in English: 
 ∈ is a member of set membership x∈A x is a member of A 
 {x|P[x]}  set of  x such that P[x] set abstract {x|∃y(x=2y)} the even numbers 
 
 
 The set LF of sentences in the formal language will be all sentences of symbolic 
logic that we can make up from the primitive terms ∈ and  {x|P[x]}  by means of the usual 
expressions of symbolic logic.  These include variables x,y,z, etc. and logical symbols: 
 
Sentential Connectives: 

∼   the negation symbol for “not” or “it is not the case that”,  
∧  the conjunction symbol for “and” 
∨  the disjunction symbol for “or” 
→  the conditional symbol for “if … then” 
↔  the biconditional symbol for “… if and only if …” 
 

Quantifiers:  
∀   the universal quantifier symbol for “for all …” 
∃  the existential quantifier symbol “for some …” or “there exists an…such that” 

 
A Relational Symbol: 

=  the identity symbol for “… is identical to …” 
 
To define the axiom system, it is necessary to specify three things: 
 

(1)  a set of axioms,  
(3)  rules of inference for deducing theorems from the axioms, and  
(3)  definitions for abbreviating longer expressions into shorter. 

 
In place of Peano’s axioms using primitive ideas from arithmetic, Frege uses axioms from 
logic and set theory.  These may be divided into three sorts. 
 
The Three Kinds of Axioms for the Axiom System F 
• Axioms for sentence logic (which was then called the propositional calculus) 
• Axioms for predicate logic and identity, (then called the predicate calculus or 

quantification theory and now called first-order logic) 
• Axioms for set theory  
 
Since Frege’s original work in the 1890’s the required axiom set has been reduced and 
simplified.1 In place of  Frege’s original five axioms of the propositional calculus, here we 

1 Gottlob Frege, Grundgesetze der Arithmetik, vol. I (1893), vol. II (1903) (Jena: Verlag Hermann Pohle).  
(A partial translation is avialable in Montgonery Furth, The Basic Laws of Arithmetic (Berkeley: Univ. of 
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shall use a three axiom simplification first proposed by the Polish logician Jan Lukasiewicz 
in 1930.  Frege’s original axioms for the quantifiers were reduced and stated in a 
rigorously logistic system by David Hilbert and Wilhelm Ackermann  in 1922.  The three 
axiom version used here is due to W.V.O.Quine (1940).  For naive set theory we shall 
use Bertrand Russell’s two axioms of 1903.  Strictly speaking the axioms are called axiom 
schemata because each schema validate a set of axioms, namely the set of all sentences 
that have the same form as the schema.  (More precisely, an axiom is an instance of a 
schema obtained as the result of uniformly replacing in the schema all occurrences of 
non-logical letters by descriptive expressions of the appropriate grammatical type.)  One 
reason I have chosen this particular set of axioms is that it needs only the one rule of 
inference, modus ponens. 
  

California Press, 1964).  Jan Lukasiewicz and A. Tarski, “Untersuchugen über den Aussagenlalkül,” C. R. 
Soc. Sci. Varsovie 23 (1930).  David Hilbert and Wilhem Ackermann, Mathematical Logic [1928] (N.Y.: 
Chelsea, 1950). W.V.O.Quine, Mathematical Logic [First ed.,1940] (N.Y.:Harper, revised ed.1951; 
Bertrand Russell, op. cit. 
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The System F  for Arithmetic. (Modeled on Frege’s, Grundgesetze der Arithmetik, 
1893,1903): 
 
1.  The inference rules of F.   RF  contains just one rule: 
 If  ├F P and ├F P→Q, then  ├F Q  (modus ponens) 
 
2.  The Axioms of F.   The set AxF of axioms consist of all sentences of the following 
forms: 
 
Axioms of the Propositional Calculus (Sentence Logic) (Lukasiewicz , 1930) 
1. ├F P→(Q→P) 
2. ├F(P→(Q→R))→((P→Q)→(P→R)) 
3. ├F(∼P→∼Q)→(Q→P) 
 
Axioms of First-Order with Identity (Quine, 1940) 
4. ├F ∀x(P→Q)→(∀xP→∀xQ)    If every P is Q, then if everything is, it is Q. 
5. ├F P→∀xP  where x is not free in P. If P then everything is P 
6. ├F∀xP[x]→P[y]  where P[y] is like P[x] except for containing free occurrences of y where P[x] contains 
free occurrences of x.      If everything is P, then a particular case of it for y is true. 
7. ├F∀x(x=x)      Everything is identical to itself. 
8. ├F∀x∀y(x=y ∧ P[x]) → P[y])  where P[y] is like P[x] except for containing free occurrences of y 
where P[x] contains free occurrences of x.  If x and y are identical, you can substitute y for x in P. 
 
Axioms of (Naive) Set Theory (Russell’s version of Frege, 1903) 
9. ├F ∃A∀x(x∈A ↔ P[x])        For any sentence P there is a set that contains all and only those things 
                                            that P is true of.  You can make any sentence the defining conditions for a set. 
10. ├F A=B↔∀y(y∈A↔y∈B)                   Two sets are identical if and only if they have the same 
                                                                              members 
 
Definition (Set Abstract) 
Q[{x|P[x]}] ↔df ∃A(∀x(x∈A ↔ P[x])∧∀B(∀x(x∈A ↔ P[x])→B=A)∧ P[A] 
To say the set of P’s has the property Q means that there is a set of P’s, there is only one, and it has Q. 
 
Theorems (Abstraction for Set Abstracts) 
├F ∃A(A={x|P[x]}            The set of things that are P exists. 
├F ∀y(y∈{x|P[x]}↔P[y])      Something is in the set of P’s exactly when it is P. 
 
Theorem (Extensionality for Set Abstracts) 
├F {x|P[x]}={x|Q[x]}↔ ∀y(y∈{x|P[x]}↔y∈{x|Q[x]) The set of P’s is identical to the set of Q’s 
                                                                                             if and only if they have the same members.  
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 If we now add several of the elementary definitions of arithmetical ideas, we can 
state some of the theorems provable within the system. 
 
3.  “Bridging” Definitions within  F. Concepts of Arithmetic defined in Set Theory and Logic. 
 
             English Translation:  Definition: 
S(n) the successor of n   n∪{n}              The successor operation adds another element                     
      to n, i.e. it increases its size by one. 
0 zero  ∅, the empty set, i.e. = {x|x≠x}.   The empty set has 0 elements. 
1 one  S(0)                            This set has one more element than 0. 
2 two  S(1)                             This set has one more element than 1. 
3 three  S(2),   etc. 
Nn the natural numbers  the least set A such that  0∈A & (x∈A→S(x)∈A) 
n+m the sum of n and m  the element e of Nn such that for some non-overlapping sets A and B,                           
                                                    A maps 1-1 to n, B maps 1-1to m, and  maps 1-1 to (A∪B) 
n≤m n is less than m  n⊆m (for n and m in Nn) 
 
 Given these axioms and definitions it is possible to prove as theorems Peano’s 
postulates for arithmetic and from them in turn the truths of the simple arithmetic of the 
natural numbers. 
 
Theorems in  F. 
Peano's Postulates are theorems of F. 
  ├F 0∈Nn      0 is a natural number. 

           ├F ∀x[x∈Nn →S(x)∈Nn)] The successor of a natural number is a natural number.   
  ├F ∀x[x∈ Nn →∼S(x)=0)] 0 is not the successor of any natural number. 
  ├F ∀x∀y([S(x)=S(y)]→x=y) Two successor of x and y are identical only if x=y. 
  ├F{0∈A∧∀x∀y[x∈Nn∧y∈Nn∧x∈A∧S(x)=y]→y∈A)}→∀x(x∈Nn →x∈A) 
                                The Principle of Mathematical Induction: if 0 is in a set, and if a number is in the set 
                                only if its successor is, then every natural number is in that set. 
 
Theorems of F that were also Peano’s Theorems – they are “reduced to” the system F. 
  ├F 1≤3 
  ├F 2+2=4 
     
Since most mathematicians would identify the heart of mathematics with arithmetic, the 
success of this derivation was thought to show that mathematics is “part of” logic, and 
that the methods of mathematics should be those of the axiomatic logician. These hopes 
were dashed, and logicism refuted, when Kurt Gödel (1906-1978) later proved his very 
famous incompleteness theorem (1931) that no axiom system can contain all the truths 
of Peano arithmetic, and that, therefore, the system F is incomplete. 
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