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Notes on Infinity 

Infinity in Classical and Medieval Philosophy 
 

Aristotle (Metaphysics 986a22) reports that limited (peras, πέρας) and unlimited 
or “infinite” (apeiron, ἄπειρον) occur as the first pairing in the Pythagorean table of ten 
opposites.  In the table the limited occurs in the positive or “good” column along with 
one and good, while unlimited occurs in the negative or “bad” column along with many 
and bad.  Throughout classical philosophy the infinite or boundless is viewed as a 
privation of what is positive or good.  Around the close of the classical period, however, 
the infinite became viewed as something positive, and eventually was understood to be 
one of god’s properties.  On a Neoplatonic understanding of god he is an entity that 
possesses all non-privative properties including being, goodness, and beauty.  
According to this understanding these properties occur in various degrees along what 
has been called the “great chain of being’.  God is at the top of the ordering; ideas in his 
mind occupy a lower stage’ spirits (angles and immortal souls) occupy a yet lower level; 
material substances occur at a lower level still.  Evil is understood as the total privation 
of all positive properties and occupies the lowest level.  In this framework the infinite is 
an ordering rather than a numerical concept.  To say god is infinite in this sense means 
that he possesses all positive properties to the highest degree.  By the 17th century the 
infinite acquired its modern mathematical meaning in which it refers to an uncountable 
quantity.  This is a quantity so large that it cannot be completely counted.  Today we 
would say this is a quantity so large that no matter how many of its elements are 
counted there is always one more.    
 

The Natural Numbers and Countably Infinite Sets   
 
According to both raw intuition and to the modern mathematics as well, the number of 
elements in a set is determined by counting its elements.  Counting is understood as 
assigning numbers (the so-called “counting numbers”) progressively to elements in the 
set, much as you count sheep when going to sleep.  Mathematicians make this idea 
precise in steps.  First they define a number n so that it is itself a set that contains 
exactly n elements.  This point is important.  The number n will be defined so that it 
contains exactly n things.  A set A then can be said to have n elements if its elements 
can be matched 1 to 1 with the elements of n.  In this case mathematicians say that the 
set and n are in a 1 to 1 correspondence with n.  Logicians start counting with 0 rather 
than 1 and call the counting numbers the natural numbers or Nn:  0,1,2,3,… .   

In addition to containing exactly n elements the definition of n will make sure that 
these elements are exactly the number that are less than n.  How many numbers are 
there that are less than n?  Consider the number 12.  What are the numbers less than 
12?  They are 1,2,3,4,5,6,7,8,9,10, and 11.  There are eleven of these.  Let’s add 0.  
Then, {0,1,2,3,4,5,6,7,8,9,10,11} is the set of all natural numbers less than 12, and there 
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are 12 of them. Mathematicians will define the number 12 to be the set 
{0,1,2,3,4,5,6,7,8,9,10,11}.  It follows that  if n is less than m then n will be an element of 
m.  There is more.  Notice that 10 will be {0,1,2,3,4,5,6,7,8,9} , which contains 10 
elements.  Moreover {0,1,2,3,4,5,6,7,8,9} is a subset of {0,1,2,3,4,5,6,7,8,9,10,11}.  

The definition of arbitrary numbers starts by defining 0 as the set with nothing in 
it.  That is, 0 is the empty set ∅.  The definition next defines S(n), the successor of n.  
S(n), or n+1, is defined so that it adds one more element to n. What element should this 
be?  It does not matter so long as it is not already in n.  The new element logicians have 
decided to use is {n}, the set that contains the number n.  Beside not being already in n 
another reason for adding the element {n} to n is that it is then easy to define S(n).  
S(n),or n+1 is just n∪{n}, the set you get by combining (taking the union of) n and the 
set containing n.  That is, n∪{n} is just adding to n the new element that is n itself.  
 
 First we need some notation: 
   

{a,…,b} is the set containing  a,…,b;  
a∈B means that the element a is in the set B;  
A⊆ B means A is a subset of B;   
A⊂ B means A is a proper subset of B, i.e. that A is a subset of B but A≠B; 
A∪B means the union of the sets A and B, i.e. the set you get when you 
combine the elements of both sets; 
P(A) is  the set of all subsets of A and is called the power set of A. 

 
We can now define:   
 

Nn the set of natural numbers, 
≤ the less than relation,  
S  the so-called successor operation,  
+  the addition operation,  
• the multiplication operation,  
0 zero or the additive identity, 
1 one or the multiplicative identity.   

 
The definition of Nn then has three steps.  First it says that 0 is in Nn.  Second it says 
that if any number n is in Nn, then so its successor S(n).  Lastly it says that nothing else 
in is Nn. The definition of Nn below is said to be recursive.   
 
Definition. The structure <Nn ≤,S,+,•,0,1> is defined as follows: 
1. S is a unary operation (the successor operation) on sets such that S(x) =x ∪{x} 
2. 0=∅and 1= S(0) 
3. Nn (the set of natural numbers) is the least set B such that 

a. ∅∈B 
b. for any x, if x∈B, then S(x)∈B, 
c. nothing else is in B 

4. ≤is a binary relation on Nn (the less than relation) defined as follows: x≤y iff x∈ y. 
     (By convention x<y abbreviates x≤y and not x=y.) 
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2. + is a binary operation of Nn (addition) defined (recursively): 
a. for all x in Nn , x + 0 = x, 
b. for all x and y Nn , x + S(y) = S(x + y) 

3. •is a binary operation (multiplication) of Nn defined (recursively): 
a. for all x in Nn , x•0 = 0, 
b. for all x and y Nn , x•S(y) = (x •y) + x 

 

Definitions 2= S(1), 3= S(2), 4= S(3), etc. 

Theorems   
 
Each natural number is a set. The 
set definition is designed to insure that their set theoretic properties coincide with 
numerical properties that we are more familiar with. 

0 is the empty set ∅. Hence 0 is the set with no members. 
 
1 is the set containing 0, i.e. 1 is the set containing∅: 1={0}={∅}. Hence 1 
is a set with just one member. Note also that since ∅is a subset of every set, ∅ 
is a subset of {∅}. 
 
2 is the set containing 0 and 1, i.e. 2={0,1}={∅,{∅}}. Hence 2 is a set 
containing just two members, and is in fact the set containing all the natural 
numbers less than itself. Note also that both ∅, which is 0, and {∅}, which is 1, 
are subsets of {∅,{∅}}, which is 2. Hence the relation �of subset captures the 
less than relation ≤for numbers less than 2. 
 
3 is the set containing 0,1, and 2, i.e. 3={0,1,2}={∅,{∅},{∅,{∅}}}. Hence 3 
is a set that contains just three elements, namely all the natural numbers less 
than 3. Note also that ∅, which is 0, and {∅}, which is 1, and {∅,{∅}}, which is 2, 
are subsets of {∅,{∅},{∅,{∅}}}, which is 3. Hence the relation ⊆ of subset 
captures the less than relation ≤for numbers less than 3. 
 
Nn={0,1,2,3,…}. 
 
In general, the definitions insure that a natural number n is a set that 
contains exactly n elements, and that these are exactly all the natural numbers 
less than n. Moreover, the numbers are defined as sets in such a way that any 
number less than n is a subset of n. 

Theorem.  For any natural numbers n and m the following are equivalent:  
n≤m, 
n∈m, 
n⊆m.   
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Definitions 
A is equipollent to B or A has the same cardinality as B (in symbols A≈B) iff 

there is a 1-1 mapping (correspondence) from the elements of A to those of B. 
A<B iff there is C⊂B such that  A≈C. 
A is countable (or denumerable) iff for some n∈Nn, n≈A 
A is infinite iff for some B⊂A, A≈B. 
A is countably infinite iff for some n∈Nn, n≈A. 

 
It is a relatively easy matter to prove that Nn is infinite in the sense of Cantor. 
Though we shall not prove so here Nn is also the smallest infinite set – any set that 
is infinite is either larger than or equipollent to it. 
 
Theorems. 
1. Nn is infinite. 
2. For any A, if A is infinite, then either A≈ Nn or Nn<A. 
 
Definition. A set A is countably infinite or denumerable iff it can be put into 1-1 
correspondence with Nn , i.e. A≈Nn 

Transfinite and Uncoutably Infinite Sets 
 

Georg Cantor (1845 –1918) proved that some infinite sets are larger than other. 

Theorem (Cantor). For any set A, A<P(A) 

Proof. We show first that it is not the case that A≈P(A).  We do so by a reduction to the 
absurd. To begin the proof, we assume the opposite, that A≈P(A).    Then, there is a 1-1 
mapping f from A onto P(A).  Now consider the set: 

 B = {x| x∈A & ∼x∈f(x)}. 

Clearly B is a subset of A.  Hence, since f maps A onto P(A), there must be  some y in 
A, such that f(y)=B.  Consider now two alternatives. 

I.  Suppose first that y∈f(y).  Then, since f(y)=B, we may substitute identities and obtain 
y∈B.  But then by the definition of B, ∼y∈f(y).  Hence, y∈f(y)→∼y∈f(y). 

II.  Suppose the opposite, alternative, namely that ∼y∈f(y).  Now, since y∈A by 
hypothesis, y meets the conditions for membership in B, briefly y∈B.  Then, since 
f(y)=B, by Substitutivity of identity, y∈f(y).  Hence, ∼y∈f(y) iff y∈f(y). 

By I and II, it follows that y∈f(y) iff ∼y∈f(y).  But this is a contradiction.  Hence the 
original hypothesis is false, and we have established what we set out to prove, namely  
it is not the case that A≈P(A).  There remain two possibilities: either P(A)<A or A<P(A).  
However, we can apply the argument above to any B⊆A, showing that it is not the same 
size as P(A).  Hence we may generalize that for all B⊆A, ∼[B≈P(A)].  But logically, this 
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fact entails that there no proper subset B of A such that B≈P(A). We have therefore 
eliminated the possibility that P(A)<A.  It follows that the only remaining alternative must 
be true, namely that  A<P(A). QED 

Notation for number sets: 
 

Nn  the set of natural numbers: 0,1,2,3,… ; 
ZZ  the set of integers: …,-3,-2,-1,0,1,2,3,… ;  
QQ  the rational, i.e. the integers and all whole number fractions of integers, both 

positive and negative;   
RR   the set of reals, i.e. the set of rationals and irrationals like √2 and π.  

 
It is not difficult to prove several counter-intuitive results.  First even though the natural 
numbers is a proper subset of the integers and the rationals, and the integers are a 
proper subset of the rational, there are exactly as many natural number as there are 
integers and rationals.  However, there are more reals than natural numbers, integers, 
and rationals. 
 
Theorems   

1. The natural numbers, integers, and rationals are all countably infinite and 
equipollent: Nn≈ZZ ≈QQ  

2. The cardinality of the set of reals  RR  is greater than that of the natural numbers 
Nn, the integers ZZ , and the rational QQ , i.e. Nn<RR ,  ZZ <RR , and QQ <RR . 

 
A conjecture in set theory is that the set RR of the reals, called the continuum, is the 
smallest transfinite set. This hypothesis is so far neither are proven or refuted: 
 
The Continuum Hypothesis: There is no A such that Nn<A<RR . 
 

Transfinite Numbers 
 

The existence of infinite sets of increasing “size” has lead in mathematics to the 
discovery of numbers suitable for “counting” or “measuring” the “size” of such sets. 
There are two concepts of “size” that in the case of finite sets coincide but that in the 
case of infinite sets diverge, and these two concepts have lead to the development of 
two distinct concept of “number” appropriate to measuring size in the two different 
sense.   

Cardinal Numbers. The cardinality of a set is roughly how large a set is if you 
count its members.  Using this sense of cardinality the set of contains two elements has 
a “smaller cardinality” than one that contains four elements.  It is in this sense that the 
counter-intuitive result holds that some infinite sets are the same size even though one 
is a proper subset of the other, e.g. the set of integers is the same “size” as the set of 
rationals despite the fact that the integers form a proper subset of the rationals.  There 
is a set of numbers called the cardinal numbers that are appropriate for measuring 
sets according to this concept of size. 
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For finite sets the ordinary definition of the natural numbers – the counting 
numbers – is fine.  Therefore the cardinal numbers start with the series 0,1,2,3,… .  For 
infinite sets however new numbers are necessary.  The first cardinal number is the one 
appropriate for measuring the set of natural numbers itself, which, recall, is the set we 
use to define when a set is infinite.  (Recall that a set is countably infinite if it is in 1-1 
correspondence to the set of natural numbers.)  Therefore, the first infinite cardinal 
number, with is called ℵ0 (read “aleph zero” or “aleph null” – ℵ is the first letter of the 
Hebrew alphabet) simply identified with the set of natural numbers itself: 
ℵ0={0,1,2,3,…}.   Before explaining the next larger cardinal number, which measures 
the size of the next largest infinite seit P(Nn), which in alternative notation is P(ℵ0)), we 
must turn to the second sense of “larger than.” 

 
Ordinal Numbers and Transfinite Cardinal Numbers. The cardinal numbers 

appropriate for measuring size according to the number of elements in a set are defined 
by 
The second sense of “size,” with its own set of numbers, is defined in terms of the 
subset relation or – what is the same thing – whether one set has one more element 
than another.  Numbers appropriate for measuring size in this sense are called ordinal 
numbers.  In the case of finite sets there is no difference between the size of a set if it is 
measured by its cardinality – by how many elements it contains – or by its ordinality – 
by whether it is a subset of another set.  The number 2 is defined as {∅,{∅}} and the 
number three is defined as {∅,{∅},{∅,{∅}}}.  Given this definition 2 is less than 3 in 
cardinality because 2 has fewer elements that 3, and 2 is less than 3 in ordinality 
because 2 is a subset of 3.   However, it is possible to add an extra element to an 
infinite set without altering its cardinality.  Recall that one way to add a new element to a 
set is by means of the successor operation S.  This operation adds to a set A the set 
itself: S(A)=A∪{A}.  In ordinal number theory it is customary to use the symbol ω 
(omega) name the set of natural numbers (0 plus the positive integers).  It follows that ω 
is countably infinite.  Let us add one more element to ω and call it ω+1, i.e. ω+1= 
S(ω)=A∪{ω}.   It is easy to put  ω and ω+1 in 1-1 correspondence, and therefore the two 
infinite sets have the same cardinality.  However, ω ⊂ ω+1.  Therefore, ω is less than 
ω+1 as measured by ordinality. 
 As in the case of cardinal numbers the standard natural numbers are perfectly 
adequate for measuring the ordinality size of finite sets.  Therefore the set of ordinal 
numbers, like the set of cardinal numbers, starts with the natural numbers: 0,1,2,3,… .  
The first infinite set appropriate for measuring ordinality, again like the case of cardinal 
numbers, is the set of natural numbers itself.  The first ordinal number ω or in alternative 
notation ω0, is identified with {0,1,2,3,…), which recall is also the same as ℵ0.  That is,  
ω=ω0={0,1,2,3,…}=ℵ0=Nn.   

Note something that it will be important in a minute: ω is special in that though it 
is a “number,”  it is not obtained by the successor operation.  Rather it is defined by the 
special property that it is the union (combination of elements of) all the numbers in 
{0,1,2,3,…}, each of which is the set of its predicessors. That is  

 ω0=U{0,1,2,3,…}=U{0,0+1,0+2,…,0+n,…} 
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Now, unlike cardinals we can increase the “size” of an ordinal in the sense of 
making a set with a new member by simply adding a new element.  We can do this to  
ω0.  S(ω0)=ω0+1=ω0∪{ω0} is “larger than”  ω0 in this sense because ω0⊂(ω0∪{ω0}). We 
can make a series of such ordinals of increasing ordinal “size”: 

 
ω0,ω0+1,ω0+2,…,ω0+n,…   
 
Each ordinal in the series is a proper subset of its successor, and therefor the 

successor is larger in ordinality than its predecessor because it contains its predecessor 
as a proper subset.  However, perhaps suprisingly, all of these sets are the same size 
as measured by cardinality.  Each set in the series can be put into 1-1 correspondence 
with any other member of the series.   

Moreover if we take the union of the series, we obtain a larger set and thereofore 
a new ordinal number: 
 
 ω1 = U{ω0,ω0+1,ω0+2,…,ω0+n,…} 
 
This set is larger than any previous ordinal because unlike its predecessors it conatins 
all its predecessors.   

Notice that like ω0=U{0,0+1,0+2,…,0+n,…}, ω1 not formed by the successor 
operation, but rather is formed by taking the union of the set of prior ordinals.   It is not 
the successor of any prior ordinal.  It turns out, moreover, ω1 is also larger than its 
predecessors in cardinality.  It is in fact equipollent to – can be put into 1-1 
correspondence – to P(Nn), which in alternative notiation is with P(ℵ0), which recall is 
larger in cardinality than Nn.  There is moreover no set of cardinality between that of Nn 
and P(Nn), or in alternative notation  between ℵ0, and P(ℵ0).  For this reason ω1       
Is indentified ℵ1,the next are cardinal number larger in cardinality than ℵ0. 
 Obviously, by the successor operation we can now start adding elements to ω1 
and make yet another series of sets of increasing ordinality,   
 

ω1,ω1+1,ω1+2,…,ω1+n,… 
All these too are of the same cardianality because they too can be put into 1-1 
correspondenceand with one another.  Moreover, we can take their union to make yet 
anther ordinal: 
 
  ω2 = U{ω1,ω1+1,ω1+2,…,ω1+n,…}. 
 
which turns out to have the next higher cardinality compared to all its predecessors.  It 
turns out to be equipollent to P(P(Nn)) and is identified with ℵ0, the next higher cardinal 
mumber. 
 Clearly, there is a pattern hear.   
The set of all can be defined: 
 
Definition of Ordinal Number: 

0 is an ordinal; 
if n is an ordinal, then S(n) is an ordinal; 
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if A is a set of ordinals, then UA is an ordinal; 
nothing else is an ordinal. 

 
An ordinals formed by union but not by the successor operation are called limit ordinal. 
It is customary to refer to limit ordinals by the Greek letter lambda λ: 
 
Definition.  If n is an ordinal but is not the successor of any ordinal then n is a limit 
ordinal. 
 
It turns out that the series of increasingly larger sets as measured by cardinality turns 
out to be equipollent to the the infinite series of limit ordinals.  For this reason the infinite 
series of transfinite cardinal numbers is identified with the infinite series of limit ordinals: 
 
Definition of the Transfine Cardinals: 

ℵn=ωn. 
 

Conclusions for the Philosophy of Religion   
 

• The major lesson of this review of modern mathematics is that the concept of the 
infinite is now extremely well understood. 

 
• The concept of infinity as it is traditionally applied to god in theology and 

philosophy turns out to have nothing to do with infinity in well understood 
mathematical sense.  Strictly speaking it is nonsense to say that god is infinite in 
the mathematical sense because god is not a set containing elements.   

 
• The theological notion of infinity is quite different from the mathematical sense.  

This sense presupposes an ordering relation: “having more being or perfection 
than”.  An infinite being in the theological sense, then, would be the maximal or 
highest element in this ordering.  

 
• There is nothing mathematically or logically contradictory or absurd to the notion 

of a series of cause or instances of time that recede infinitely into the past.  Such 
a regression would simply be equipollent to the negative integers or perhaps to 
the negative reals. 
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