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� ukasiewicz’s Many-valued Logic and Neoplatonic
Scalar Modality

JOHN N. MARTIN

University of Cincinnati, Cincinnati, OH 54221, USA

Received 10 January 1998 Revised 22 April 2002

This paper explores the modal interpretation of � ukasiewicz’s n-truth-values, his conditional and the puzzles
they generate by exploring his suggestion that by `necessity’ he intends the concept used in traditional
philosophy. Scalar adjectives form families with nested extensions over the left and right ®elds of an
ordering relation described by an associated comparative adjective. Associated is a privative negation that
reverses the `rank’ of a predicate within the ®eld. If the scalar semantics is interpreted over a totally
ordered domain of cardinality n and metric y, an n-valued � ukasiewicz algebra 5C,6,V, ) ,y,e4 is
de®nable. Privation is analysed in terms of non-scalar adjectives. Any Boolean algebra of 2

n
`properties’

determines an n+1 valued � ukasiewicz algebra. The Neoplatonic `hierarchy of Being’ is essentially the
order presupposed by natural language modal scalars. � ukasiewicz’s * is privative negation, and ?
proves to stand for the extensional (antitonic) dual if . . . then for scalar adjectives, especially modals.
Relations to product logics and frequency interpretations of probability are sketched.

1. The Problem
The many-valued logic of � ukasiewicz is doubly puzzling: modal and non-modal

ideas seem to be con¯ated into the same `truth-values’, and the conditional is dif®cult
to motivate in a principled manner.

� ukasiewicz con¯ates modal with non-modal ideas, for example, in explaining
that three-valued logic’s 0,

1
2, and 1 simultaneously represent three seemingly non-

equivalent families:

false, neither-true-nor-false , true
impossible, possible, necessary
determinately-true , neither-determinately-true-nor-determinately-false ,
determinately-false

Likewise he explains the values in the interval [0,1] as `degrees of probability
corresponding to various possibilities’,

1

In standard possible worlds semantics, however, truth and falsity are the prior
terms used to de®ne concepts of modality and determination. The usual
understanding is that � ukasiewicz is not using terms in the standard way, and that
by `necessity’ he means something other than `truth in all (relevant) worlds’. What
modal concepts he intends, however, remains an open question.

The mystery is deepened by the connectives. In applications of three-valued
semantics there are two standard sets of truth-tables usually employed in large part
because they can be motivated by clear principles. These are called by Kleene the
weak and strong connectives respectively:

1 1920, 87; 1917, 113, 123, 124; 1922/23, 130.
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* ^ 0
1
2 1 _ 0

1
2 1 ? 0

1
2 1
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1
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1
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2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 0 0
1
2 1 1

1
2 1 0

1
2 1

Kleene’s weak matrix

* ^ 0
1
2 1 _ 0

1
2 1 ? 0

1
2 1

0 1 0 0 0 0
1
2 1 1 1 1

1
2

1
2 0

1
2

1
2

1
2

1
2 1

1
2

1
2 1

1 0 0
1
2 1 1 1 1 0

1
2 1

Kleene’s strong matrix

The classical truth-values will be understood here to be 0 and 1. The three relevant
principles are:

1. Weak classical conservativeness: if the values of the parts are all classical, then the
value of the whole is determined by the classical truth-table.

2. Contagion of the non-classical: if any part is non-classical then so is the whole.
3. Strong classical conservativeness: if the value of one part is suf®cient for

determining the value of the whole in all classical cases (when the parts are all 0
or 1), then it remains so in the non-classical cases (when some parts receive
values other that 0 or 1).

The ®rst two rules determine the weak matrix, and are argued to be plausible in
various applications in which

1
2 is interpreted as meaningless, non-sense, incoherent,

or paradoxical.
2

If the third principle is also adopted so that it takes precedence over the second in
cases of con¯ict, then the three principles together determine the strong matrix. This
matrix is often applied when the third value represents non-determinateness or lack of
knowledge. It is plausible to argue that if it is determined that P is false or if known
that it is so, then it is determined or known on the basis of this information alone that
P ^ Q is false, even if Q is neither determined nor known. Similarly, given this reading,
it is plausible to hold that P _ Q is true if either part is, and that P?Q is true if P is
false or Q is true.

� ukasiewicz’s tables are very like those for the strong connectives.

* ^ 0
1
2 1 _ 0

1
2 1 ? 0

1
2 1

0 1 0 0 0 0
1
2 1 1 1 1

1
2

1
2 0

1
2

1
2

1
2

1
2 1

1
2 1 1

1 0 0
1
2 1 1 1 1 0

1
2 1

Lukasiewicz’s L3

They depart, however, in the evaluation
1
2?

1
2=1 which violates the second principle in

a way not justi®ed by the third.

2 They have also been so used by Halden, AÊ qvist, and others. The weak connectives are what Bochvar’s
calls the internal connectives and are used by him to interpret semantic paradoxes. The strong
connectives have been applied by Kleene, Kripke and others. See any standard introduction for a
review, e.g. Bolc and Borowik, 1992 and Rescher 1969.
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What justi®es this special assignment? Though � ukasiewicz makes general
remarks about truth-values and the inferential properties desirable in a logical
system, he says very little about the individual `lines’ of the truth-tables, and
nothing speci®cally about his assignment of 1 to

1
2?1

2.
Most have assumed the motivation is grounded in the goal of a plausible logic.

� ukasiewicz lays down the condition of adequacy for a logical system that the
theorem set be the non-empty closure of a set of axioms under a set of rules that
includes detachment and substitution.

3
The logics he investigates are all systems of

this sort. They also conform to other logical standards he does not speci®cally
mention but which are relevant. Relative to an axiom system, let A be the set of
axioms and let s range over substitution assignments. Let X `P (deducibility) iff
there is a proof of P from X; `P (theoremhood ) iff A `P; and X ƒP (provability) iff
((for all Q[X, `Qs) only if `Ps)). Further, ` is a consequence relation iff it is
re¯exive, transitive and monotonic, and is classically constrained iff (X `P only if
the argument from X to P is classically deducible (and hence classically valid)).

In intuitionistic logic and � ukasiewicz’s systems, but not in the weak and strong
matrices, ƒ is a consequence relation and ` is classically constrained. The reason
is that semantic entailment, which is co-extensional with `, is de®ned in matrix
logic as a relation transmitting `designated values’, and tautologies (co-extensional
with theorems) as sentences that are always designated. In three-valued
applications moreover usually only 1 is designated. There are then no tautologies
among the weak and strong connectives because for any sentence there is the
valuation in which it is non-designated because all its parts are non-classical. The
resulting provability relation cannot be a consequence relation nor the deducibility
relation classically constrained except in a trivial sense. Since � ukasiewicz was
developing axiom systems designed to characterize sets of tautologies, these defects
would be decisive. He avoids the problem by adopting as primitives the weak
negation (same as the strong) and a version of the strong conditional in which the
case

1
2?

1
2 is changed to equal 1. A non-empty set of tautologies is then

axiomatizable as a deductive system, deducibility is classically constrained, and
provability a consequence relation.

The choice has two additional desirable consequences. It allows for strong
conjunction and disjunction to be introduced by de®nition, and it corrects the
implausible anomaly of both the weak and strong matrices that P?P is not a
tautology.

When truth-values are interpreted modally, however, � ukasiewicz’s conditional
remains puzzling, even paradoxical. It may be granted that it is plausible to say
P?P is a tautology and should therefore be 1, even when P is

1
2. But the situation

is less clear when the antecedent and consequent are distinct. Indeed, it is odd to
say that it follows as a truth of semantics from the fact that the distinct sentences P
and Q both have the value

1
2, that P?Q is necessary, or even that it is true.

Consider Socrates is human as a typical sentence true in the actual world but
neither necessary nor impossible. By assumption both the sentences Socrates is
human and *(Socrates is human) are possible. Then by the truth-table of the
conditional Socrates is human?*(Socrates is human) is actually true. By
detachment, then, *(Socrates is human) is also true in the actual world, which is
absurd. By reductio it follows that Socrates is human is not true. This argument

3 � ukesiewicz and Tarski, 1956.
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may be generalized to show that there could be no non-necessary truths. (The same
argument applies mutatis mutandis if the third value is explained in terms of
`determination’.)

The argument’s fallacy lies no doubt in its implicit understanding of modalities in
terms of possible worlds. It was already evident from � ukasiewicz’s collapsing of
modal with non-modal ideas that possible world analysis does not ®t his account.
But if he has some other notion in mind, what is it?

At one point � ukasiewicz explains the third truth-value in these words:

If we make use of philosophical terminology which is not particularly clear, we
could say that ontologically there corresponds to these sentences neither being
nor non-being but possibility. Indeterminate sentences, which ontologically have
possibility as their correlate, take the third truth-value.

4

The philosophy being alluded to is not that of Carnap or Kripke; it is rather part
of classical metaphysics, which � ukasiewicz knew well. This is the tradition of the
Platonists and Neoplatonists, of St Augustine and Thomas Aquinas, with notions
of modality rather foreign to today’s metalogic. Modal ideas are not de®ned in
terms of possible worlds. Rather, `necessity’ is collapsed with `truth in the highest
sense’ and with `Being itself’, all three ideas being variable concepts admitting of
`degrees.’ Their ranks are described by philosophers of the period using what
linguists today call scalar adjectives. Scalar adjectives in turn are explainable in a
semantic theory of variable degrees. These degrees fall in a total ordering (the
`chain of Being’), with algebraic operations in terms of which the connectives may
be interpreted. These include a negation operation * that is antitonic around a
midpoint of the ordering, a minimum operation, and a maximum. Thus if P
corresponds to at least n degrees of Being, *P would represent 7n degrees. If P
represented at least n degrees of Being and Q at least m degrees, then P ^ Q would
stand for the minimum of {n,m} and P _ Q the maximum. An operation for the
conditional is also de®nable that insures a straightforward interpretation of the
conditional: P?Q asserts that the consequent corresponds to at least as much
Being as the antecedent. If the consequent does have at least as much Being as the
antecedent, then the conditional is true without quali®cation; it represents the
totality of Being. There are however degrees of failure. The lower the being
represented by the antecedent relative to that represented by the consequent, the
less true is the conditional and the lower the degree of Being it represents.

Given this reading of the truth-values, the motivation immediately follows for the
many-valued truth-tables, including the values they assign to classical tautologies. Let
there be three values {0,

1
2,1}. Since

1
2 is the midpoint of the scale, if P is

1
2, so is *P.

Thus, if ^ represents the minimum operation and _ the maximum, P ^ *P,
*(P ^ *P), and P _ *P will all be

1
2. However, P?P will be 1 because the

antecedent possesses at least as much Being as the consequent.
The remainder of the paper sets out the semantics for scalar adjectives, especially

modal ones, and employs essentially � ukasiewicz’s readings of the truth-values to
explain how they determine his truth-tables. Section 2 presents the theory and its
motivation informally. Section 3 de®nes the ideas precisely and sets forth the key
results.

4 1970b, 126.
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2. Informal Analysis of Scalar Necessity

2.1. Scalar adjectives
Natural languages like English possess comparative adjectives (phrases) which

function conjointly with associated families of monadic scalar adjectives. For
example the comparative happier than works in combination with the adjective
series ecstatic, happy, content, so-so. Semantically the comparative stands for an
ordering relation over individuals. The union of the left and right ®elds of this
relation constitutes `a ®eld of comparison’ within which individuals may be
understood as possessing, to various degrees, a common `background property’ like
happiness. The associated scalar adjectives then are interpreted over this ®eld, and
take it as their `range of signi®cance’ in the sense that they are meaningful for
precisely the elements that fall in the ordering. Their extensions are subsets of the
®eld; they are `not true’ of objects in the ®eld outside their extensions, and are
unde®ned for objects entirely outside the ®eld.

The various scalars moreover are understood as threshold concepts. Something
falls under a scalar predicate if it possess the background property to suf®cient
degree. The notion of degree is unpacked in its most fundamental sense not in
terms of a metric or measure, but by means of the set inclusion ordering relation
on predicate extensions. This ordering `nests’ the extensions of the predicates in a
linear (total) ordering. Objects falling under P have the background property `to a
higher degree’ than those under Q iff the extension of P is a subset of that of Q.
For example, the set of objects for which it is true to say that they have suf®cient
happiness to fall under ecstatic is a subset of that for which it is true to say that
they are happy enough to fall under content. That is, the extension of (at least)
ecstatic is included in that of (at least) content. Adjectives in a family are
conventionally listed in a series (row) with a predicate of narrower extension to the
left of one with a broader extension. In natural language the background ordering
itself is usually described by the comparative form of one of the monadic adjectives
in the series; e.g. happier than describes an ordering over the signi®cance range of
the happiness predicates, which includes as a subset the extension of the non-
comparative happy. Below are some examples from English of scalar families and
their associated comparatives:

ecstatic, happy, content, so-so is happier than
miserable, sad, down, so-so is sadder than
boiling, hot, warm, tepid is hotter than
freezing, cold, cool, tepid is colder than

Horn has proposed what he calls `test frames’ as a criterion for identifying the
inclusion of P1 to the left of (less inclusive, higher in the order than) P2 in a scalar
family:

5

X is not only P2, but P1.
X is at least P2, if not (downright) P1.

5 See Horn 1989 for a full discussion of the background syntax and distribution of scalar adjectives and
their negations, as well as evidence for the scalar properties of modal predicates. Horn, however, argues
for the superiority of pragmatic rather than matrix or model theoretic explanations of scalar inference.
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X is P2, {or/possibly} even P1.
X is not even P2, {let alone/much less} P1.
X is P2 , and is {in fact/indeed} P1.
X is P1, or at least P2.

If speakers naturally say somebody is not only happy but ecstatic, this is evidence for
the semantic hypothesis that the predicate ecstatic has a extension included in that
of happy. If this frame and others hold for a series of monadic adjectives with an
associated comparative, there is evidence that the series forms a scalar family. Once
this fact has been established, it follows as a prediction of the semantics theory that
the inference from x is (at least) ecstatic to x is (at least) happy is valid.

6

Scalar lists, moreover, come in pairs related to one another as opposite
perspectives on the same ordering, the predicates in the second list ranking objects
using the converse relation of that in the ®rst. The happier than comparative of the
®rst list, for example, is the converse of the is sadder than ordering of the second
list. The ®rst list nests from left to right predicates with increasingly broader sets of
less happy individuals. The second list, if reversed, would then continue this order
of increasingly broader sets of less happy individuals.

Horn proposes arraying a list and its `opposite’ as a single series, ordered by the
relation appropriate to the former. The four lists then become two.

ecstatic, happy, content, so-so, down, sad, miserable
boiling, hot, warm, tepid, cool, cold, freezing

He observes that the joined lists sometimes meet at a common or `mid-point’ termÐat
so-so in lists one and two, at tepid in lists three and four. In addition there is frequently
a semantic evaluation associated with the over-all comparison. This evaluation often
allows one extreme to be identi®ed as `good’ or `positive’, and the other as `bad’ or
`negative’. Being ecstatic and warm, for example, is `better than’ being miserable
and cold. In the manner of Horn, the purported `positive’ pole is placed to the left
and the negative to the right. We return to this dif®cult idea below.

Scalar adjectives are also associated with a family of logically rich negation
operations. One variety is a 1-1 antitonic mapping on truth-values. It is expressed
in English by various af®xes including the pre®x un-. Though it is not lexically
acceptable with every scalar adjective, when it is grammatical , it converts a scalar
into an complex adjective of the corresponding `rank’ on the opposite pole of the
order. Thus un-happy is roughly synonymous with sad, the predicate of the `same
position’ on the opposite side of the happiness list.

A restriction observed by Horn is that privative negation appears to be acceptable to
speakers when af®xed to adjectives from the positive (left) pole of the full ordering, but
not with those on the negative (right). Though unhappy is acceptable, unsad is not; though
discontent is acceptable, un-down and un-glum are not.

7
He suggests that this asymmetry

6 Horn explains many other kinds of supporting evidence that help identify scalar famlies, including the
acceptability of various negative af®xes, some of which are described below. For details on the relational
properties that the comparative must intuitively support see AÊ qvist 1981, 1±26, and on logical relations
that scalars together with the comparative must intuitively support Martin 1995, 169±196.

7 In addition, when a series has a midpoint adjective, it too, as a rule, is not open to this negation. We do
not say un-tepid or un-so-so. The reason may be parsimony because a midpoint privative is equivalent to
a Boolean negation.
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in distribution may be used as a linguistic criterion for identifying the direction of the scalar
order: the `positive’ (higher, left) side is that open to privative negation.

There is also classical Boolean negation, expressed in English by sentence
negations it is not the case that and adjective af®xes like non-, that transforms a
scalar into a compound that stands for its Boolean complement within the domain
of scalar comparison, e.g. non-happy is true of e iff happy is false of e.

There is also hyper-negation . This is the alpha intensivum of classical Greek,
regularized in later philosophical Greek by the pre®x hyper (super in Latin),
expressed in English by some uses of not:

Its not hot, its boiling.
He’s not(just) active, he’s hyperactive.
It’s not (just) a conductor but a superconductor .

It transforms a scalar into a compound synonymous to a scalar higher in the series
with a narrower extension, e.g. super-happy is synonymous to ecstatic. What we
know of God, say the Neoplatonists, are not positive propositions like God is
(merely) good, but negatives like God is hyper-good.

Scalar usage also makes use of an operator that is the inverse of hyper-negation,
known in traditional grammar as the alpha privatum. Its semantic function is to
convert a predicate to one at the next stage lower in the scalar ordering. It is
represented in classical Greek by the alpha pre®x and also by hypo-. In Latin it is
expressed by sub-, and in English by af®xes like sub- and -less, as in subhuman and
sightless.

8

Neoplatonism treats modal predicates as scalar adjectives in this sense that their
semantics presupposes a scalar order.

9
Though details vary within the tradition, it

is fair to say that its standard metaphysics assumes the universe of existing things is
ordered by a relation variously described as marking degrees of reality, `ontic
generation’, or causation. It is also referred to as a moral and aesthetic order, and
as one of perfection or, viewed oppositely, of privation. Though Neoplatonic
philosophy is often technical, it is typically formulated using adjectives that in
natural language form scalar families with associated comparative adjectives
describing their fundamental order. For example, associated with is more real than
is the scalar series of technical terms:

absolute, substantial , subsistent, unreal

Comparatives describing substantiality, understanding, beauty, and goodnessÐall
viewed in the tradition as different ways of talking about the same underlying
orderÐare likewise associated with scalar families:

adamantine, hard, solid, ®rm, tangible, soft/weak, wispy/evanescent
strong/®rm/solid,self-supporting,weak /rickety/wobbly,insecure/dangerous
riveted, attentive, awake, wandering, dreamy, asleep
incisive, lucid, cognizant, scatter-brained, dotty, demented

8 This is closely related to the negatio privatum of mediaeval logic. See the discussion below and Martin in
press (Synthese).

9 The historical account here is necessarily much simpli®ed. For a fuller discussion of both historical and
logical issues see Martin 1995.
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brilliant, smart, pedestrian, dull, stupid
all, most, some, rare, unheard of
eternal, occasional/intermittent, never

In particular, Horn and others have amassed a good deal of evidence for the scalar
nature of the modal series associated with comparatives like is more real than, is
more certain than, is truer than:

10

necessary, likely/probable, possible, unlikely/improbable, impossible

The list meets Horn’s criteria for a scalar series in which impossible is the `opposite’ (anti-
tonic re¯ection) of necessary. In philosophical usage, which as � ukasiewicz remarks is
not particularly clear, the series may be viewed as describing degrees of being or truth.
The most real and most true is the necessary or determined. Somewhat less real, having
less being, and being somewhat less true is the possible. The least real, having no being or
truth at all, is the impossible or the determined-to-be-false. Necessity, possibility and
impossibility are not to be understood as derivative semantic concepts de®ned in a more
primitive vocabulary within possible worlds semantics. Rather, the Platonic tradition
attaches modalities directly to the background ordering governing reality.

Since the subset relation holding among scalar extensions is a ®nite linear ordering, it
invites an idealized description in terms of a metric. Once metrizied, moreover, it allows
for the de®nition of operations that form a � ukasiewicz algebra, which is a generalization
of � ukasiewicz’s many-valued matrix. Let the set of truth-values in the ®nite n-valued
case be n ˆ 0

n¡1 ; 1
n¡1

2
n¡1 ; . . . ; n¡1

n¡1

© ª
and o in the denumerable case.

De®nition 1.
11

An n-valued � ukasiewicz algebra relative to a metric y is a structure
Ljnj=5C, ^ , _ , ) ,7,e4 such that jC ƒn, y is a 1-1 onto mapping from C to
f i

n
j 04i5ng if jCj=n4o, or to o if jCj=n=o, such that:

y(e)=1;
y(7a)=17y(a);
y(a ^ b)=min{y(a), y(b)};
y(a _ b)=max{y(a), y(b)};
y(a ) b)=min{1,17y(a)+y(b)}.

In such a structure the dual ( of ) is de®ned: a ( b=7(7a ) 7b). Hence,

10 Here unlikely and improbable are privatives that obey the predicted regularities by attaching to
predicates of a corresponding position on the opposite pole of the ordering. Horn remarks on
additional regularities that explain why impossible is formed from the midpoint predicate though it is
the semantic privative of the supremum necessity.

11 This generalization of the algebra supporting � ukasiewicz’s many-valued logics is different from that of
the same name developed in Bolc and Borowik 1992. There ) is de®ned in terms of a Heyting pseudo-
complement (as in intuitionistic semantics) with a resulting many-valued truth-table that is not the same
as that of � ukasiewicz’s conditional. In the case of four-values, for example, the table reads:

) 0
1
3

2
3 1

0 1 1 1 1
1
3 0 1 1 1
2
3 0

1
3 1 1

1 0
1
3

2
3 1
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y(a(b)=17min{1,17y(b)+y(a)}=max{0, y(b)7y(a)}.
It remains to be explained how the operations of this algebra ®t the natural

language semantics of negations, conjunctions and conditionals formed by scalar
adjectives, especially those from the modal series. The explanation calls for a
deeper account of privation.

2.2. Privation
Consider Aristotle’s paradigms of privative predicates, blindness and

toothlessness . A simple model for sight privation posits a two-element property
set P={R,L} in which R represents sightedness-in-the-right-ey e and L

sightedness-in-the-left . There are then four possible property combinations or
`compound properties’: 1, {R}, {L}, and {R,L}. The power set P forms a
four element Boolean algebra, and sight privation may be analyzed as the
inhering in an individual of some compound other than P itself. Semantically
this property structure is intensional and classical. It would provide intensional
interpretations for the full set of sentences formed from the sentence variables
{x can see in the right eye, x can see in the left eye} by the connectives *, ^ ,
_ and ?.

A ®nite Boolean algebra of n sets, moreover, has the property that it may be
partitioned into n+1 ranks determined by the cardinality of its elements. The
four element algebra of sight, for example, may be partitioned into three
ranks: {1}, {{R},{L}}, and {{R,L}}. A rank may be viewed as a disjunction
of compound properties. For example {{R},{L}} represents the property of
being either right- or left-eyed. Moreover, these sets correspond to the
adjectives in a scalar series:

fully sighted, monocular, blind

and as such they may be called scalar properties. Since the sets in the partition fall
into a linear ordering, they determine a � ukasiewicz algebra. Indeed, it is a
general truth that the ranks of a ®nite Boolean algebra determine a n-valued
� ukasiewicz algebra.

The elements of both the Boolean structure and its corresponding � ukasiewicz
algebra are formal proxies of properties, of Boolean monadic properties in the ®rst
structure and of scalar properties in the second. Within semantic theory, then, they
are properly thought of as intensions. As determined by the metatheory of
standard intensional logic, to these intensional structures correspond antitonic
extensional algebras. Following the tradition in mediaeval logic, let the signi®cation
of a property be de®ned as the set of all possible objects that posses that
property.

12
Corresponding to the Boolean algebra of compound properties {1,

{R}, {L},{R,L}} is a Boolean algebra of signi®cation sets (hereafter `signi®cations’)
that reverses the original order:

1³{R}³{R,L}, but

{xj x is possible & 8P2{R,L}, P inheres in x} ³ {xj x is possible & 8P2{R}, P

inheres in x}
³ {xj x is possible & 8P21, P

inheres in x}.
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A signi®cation in addition determines an extension relative to a world, namely the set
theoretic intersection of the signi®cation with that world’s domain. These Boolean
structures then provide the usual framework for a classical intensional semantics of
a sentential language. Sentences are interpreted intensionally by a homomorphism
from syntax to the properties in the Boolean structure. These in turn are mapped
homomorphically into signi®cations, which in turn are mapped homomorphically
into extensions. A logical matrix may be de®ned by specifying as the designated
value some maximal ideal of a Boolean algebra. The resulting logic is classical.

If ®nite, the Boolean algebra of signi®cations also determines as its rank reduction
a � ukasiewicz algebra of possible object sets. Each such rank of the Boolean algebra
determines a set of possible objects: those that fall under at least one of the compound
properties of the corresponding rank in the Boolean property structure. We may
group these sets into the universe of a second algebra in which its elements, ordered
by the subset relation, represent the possiblia at each privational rank.

Starting, then, with the initial intensional Boolean algebra of properties, two series
of three structures is determined: (1) the intensional Boolean algebra of properties, its
intensional � ukasiewicz rank reduction and its antitonic signi®cational � ukasiewicz
algebra; and (2) the intensional Boolean algebra of properties, its antitonic
signi®cational Boolean algebra and the � ukasiewicz rank reduction of this
signi®cational structure. If the intensional � ukasiewicz algebra is understood with
is ranking reversed in the usual manner so that extensions are genuinely antitonic
to extensions, then the third structure of the ®rst series is the same as that of the
second. The same set is simultaneously the signi®cation of a scalar property and
the union of the signi®cations of the various conjuncts in a compound Boolean
property de®ning that scalar.

A logical matrix may be de®ned from an n-valued � ukasiewicz algebra by
specifying the structure’s maximal element as the only designated value. The
entailment relation then is characterized by � ukasiewicz’s n-valued logic.

The full algebraic situation is diagramed below. The intensional structure of
properties are on the top, with their antitonic signi®cational structures beneath
them. The Boolean structures are on the left with their � ukasiewicz rank reductions
to their right. Note that to preserve the conceptual paradigm that intensional is
antitonic to extensional structure, the enumeration in the two structures is reversed.
Since in extensional logic, 1 traditionally represents the highest degree of `truth’,
and 0 the lowest, here 0 is used as the intensional correlate of extensional 1 and 0
as that of extensional 1.

Aristotle’s other paradigm of privation, toothlessness, is open to a similar analysis.
Humans have 32 teeth, each of which has a number: t1, . . .,t32. To these corresponds a
set P of primitive properties of the form having tooth ti, for i432. There are then 32

2

12 In fourteenth-century termist logic, signi®cation is the relation that holds between a term and the
possible objects that it could stand in for some true proposition. It is distinguished from the related
idea of supposition and ampliation which are de®ned relative to special contexts: supposition is
de®ned relative to a true sentence and is the relation holding between a term and the objects it stands
for in that sentence, and ampliation is de®ned relative to a true sentence in which the copula is
modi®ed by by an ampliative modi®er like possibly or will be and is de®ned as the relation holding
between a term and the possiblia that the term stands for in the context of that sentence. Signi®cation
and ampliation are related in modal cases, e.g. in true sentences in which possibly modi®es the
copula, a term supposits for the objects it signi®es. In this paper signi®cation is used because it has
the properties required by the analysis: signi®cation determines a 1±1 mapping from a term’s
intension to set of objects that fall under the term, and does so in a manner that is well de®ned
independently of the truth of propositions relative to worlds.
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different combinations of teeth represented by the set P of compound properties.
This set includes the property having no teeth represented by 1, and the property
having all 32 teeth represented by P itself. The relation ³ over P is then a partial
order, and 5 P,\,[,7,1,P4 is a Boolean algebra. Antitonic to this structure is
an algebra of signi®cations, and coordinate to each of these Boolean algebras are
rank reductions which are mutually antitonic � ukasiewicz algebras. In principle,
except perhaps in technical contexts, natural language could then have predicates
naming the compound `tooth’ properties of the Boolean structures, and scalar
predicates for the nodes of their reduction.

One of the best examples of privation relevant to this discussion is the algebra of
lightÐlight, moreover, is probably the most frequently cited metaphor used by
Neoplatonists attempting to explain the structure of reality. Colored light forms a
Boolean algebra ordered by a relation of physical privation. By using subtractive
®lters, white light yields an eight element algebra of black, red, green, blue, cyan,
yellow, magenta and white. By applying one of three appropriate ®lters to white
light, it may be reduced to cyan, magenta or yellow. By pairwise overlaying these
®lters, blocking out yet more light, red, blue and green are produced. Overlaying all
three ®lters blocks out all light and yields black, the utter deprivation of light.
Antitonic to the structures of light properties are those of their signi®cations.

13

13 There is actually much more to the analysis of privation. The Neoplatonic account used here is
expounded in detail in Martin 2001, 187±240. Aristotelian privation is closely related. Let {R,L} be a
set of privative properties for `full sightedness’ that hold naturally of a natural kind K understood as
the extension of {R,L}, e.g. the set of humans. The set {L} is then a privation set relative to {R,L} in
the Neoplatonic sense. It represents a degree lower in the privational hierarchy since any entity in the
extension of {L} but not in that of {R,L} suffers a privation. This fact is described slightly differently
in the medieval tradition. Following Aristotle, it observes that objects in the extension of {R} are
`naturally apt’ to be fully sighted, to be in K, to possess both properties R and L and that being just
R is a privation. To express membership in the extension of {L} privatively, the medievals then
exploited the fact that the extension of {L} is the relative complement the extension of {R} relative to
K, and interpreted a privative negation operator non- in terms of this complementation, de®ning it by
exposition. For example, S is left-blinded or S is non-left-sighted is analyzed as S is naturally a human
(in the extension of {R,L}) and :(S is R). That is, S is non-L means S is in K and :(S is L). This is
logically equivalent to saying that S is in the Neoplatonic privation of the extension of {R,L} with
respect to L. For a discussion of this sense of privation and a related sense in modern linguistics see
Martin in press.
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2.3. The � ukasiewicz connectives
While it is true that Boolean algebras generate � ukasiewicz algebras and that these

determine logical matrices with classical and � ukasiewicz logics, it remains to be
shown that their operations are those appropriate for interpreting the natural
language meaning of the connectives not, and, or and if . . . then when employed
with sortal adjectives.

2.3.1. The Strong Tables for not, and, and or � ukasiewicz tables for not, and, and or
generalize to n-values Kleene’s strong tables. If non-bivalence, in which falsity is
understood as a genuine subvariety of non-truth, is considered conceptually
plausible, then principles 1±3 of }1 do seem to capture general intuitions about
evaluating these connectives. As it was remarked earlier, logicians have found fault
with the strong connectives less for the intuitive implausibility of their tables than
for the dif®culty of de®ning for them a plausible entailment relationÐa problem
� ukasiewicz avoids by introducing ^ and _ in terms of the more expressive *
and ?. At this level of abstraction, then, the strong tables may be assumed to have
some plausibility as capturing conceptual intuitions about the relation of the truth-
values to the connectives. � ukasiewicz’s semantics, however, goes further by
relegating the full panoply of values to a linear order not postulated by Kleene or
by the three motivating rules. His negation pivots around a midpoint, conjunction
is an extensional minimum operation and disjunction an extensional maximumÐall
features that turn on the order among values. It is the tie to order, moreover, that
makes the operators suitable for interpreting the connectives conjoined to scalar
adjectives.

2.3.2. Negation Intuitively the un- operator of natural language af®xed to a scalar
adjective reverses the `ontic rank’ of its interpretation, whether considered
intensionally or extensionally. The algebraic operation on the values {0, . . .1} that
accomplishes this reversal is 7 as de®ned in a � ukasiewicz algebra. If x is sighted
stands for the property of having sight to at least the degree n, then x is un-sighted
has as its intension the property of being sighted to the opposite degree, to degree
17n. Signi®cationally the value of x is un-sighted is the set antitonic to that picked
out by x is sighted, namely the set of all possibilia for which the double negation of
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the original argument is true. In addition the formal operation 7 goes beyond natural
language in abstracting away from its lack of nested negations of this sort, an
abstraction required here if the explanatory framework is to be that of a full
sentential syntax.

Consider in particular the modal interpretation of truth-values in terms of degrees
of Being or Truth. If P is necessary then *P should be impossible, and conversely. If
P is possible but not necessary, then *P should be so as well. Again, these values are
those determined by the operation 7 on intensions. Extensionally, if P is necessary
and stands for the `smallest’ set of possible objects, then *P is impossible and
stands for the `largest’, and conversely. Also, P is possible and not necessary, and
stands for an intermediate set, iff *P does likewise. This is the operation 7
de®ned on signi®cations.

2.3.3. Conjunction and disjunction Intuitively, the conjunctive predicate x is bright
and x is dull has as its intension the property of being either bright or dull, and as
its signi®cation the set of all possible objects that are either. Intuitions about
disjunction are dual. In a formal four-valued representation within a � ukasiewicz
algebra, x is bright would be assigned an intensional property with the value

1
3 while

x is dull would be assigned the value
2
3. The compound x is bright and x is dull is

assigned the intensional join of the two intensional parts having the value
1
3, which

is the intensional maximum of the values of the parts since among intensions 0 is
maximal. Among signi®cations x is bright is assigned a set with the rank

2
3, x is dull

one with the rank
1
3, and x is bright and x is dull stands for their extensional meet of

these two, the extensional minimum, which has rank
1
3. Overall the formal pattern

matches the scalar intuitions, and the situation is similar for disjunction.

2.3.4. The conditional Perhaps not surprisingly, it is the intensional ( that directly
captures the meaning of the natural language scalar conditional. It in turn dictates in
accordance with the framework of intensional semantics that the corresponding
extensional operation is ) .

� ukasiewicz’s ? is best understood as describing the intensional interpretation of
if . . . then applied to modal scalars. Let it be assumed (as in the Platonic tradition)
that there are degrees of being and truth, a sentence’s degree of truth being a direct
re¯ection of the degree of being it describes. In scalar semantics the intensional (
is an operation that assigns to the argument pair 5being-P, being-Q4 the value
consisting of the complex property being-P-insures-at-least-as-much-being-as-being-
Q. Such a property is conveyed in natural language by the more or less contrived
phrases:

having as much being as P insures having as much being as Q
P-ness is (at least) as real as Q-ness.
it’s as true that x is P as it is that x is Q
if x is P then x is Q

That this semantics and its associated truth-table for ( correspond to intuitions
about the meaning of scalar if . . . then is shown by a consideration of cases.

2.3.5. Cases in which the intensional value of P has `more being’ than that of Q Such
cases are represented in the intensional � ukasiewicz algebra by assigning to P a value
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greater (closer to 0) than that of Q, and in the antitonic signi®cational structure by
requiring that the set picked out by Q includes (is `higher than’) that which is
picked out by P.

Consider a typical case in a three-valued intensional semantics. Let P be possibly
true of an individual i and Q necessarily true. Then in the scalar intensional
interpretation, P receives the maximal intensional value 0 indicating necessity, and
Q is assigned the midpoint value

1
2 indicating possibility. Moreover the property of

being-necessary ranks higher than that of being-possible on the relevant ontic scale.
All the primitive Boolean properties that constitute being-necessary are thus
included in those of being-possible. It is a truth of the metaphysics assumed by the
semantics that being-necessary is suf®cient for being-possible. It is then appropriate
to summarize this situation in property vocabulary by saying that the following is
true: the complex property `if-necessary-then-possible ’ is true of i. But saying this
property truly applies is not enough in a semantics in which truth has variable
values. How true is it? It is trivially true, forced by the content of the concepts
`necessity’ and `possibility’. This is truth to the fullest extent. The appropriate
intensional value is therefore 0. This is exactly the value of possibility ( necessity.
Signi®cationally {xj x is possible} has the value

1
2, and {xj x is necessary} has 1. The

antitonic mirroring dictates that its antitonic value is that of {xj x is possible} ) {xj
x is necessary}, namely 1.

This line of reasoning explains the problematic assignment of 1 to P?Q when P
and Q are non-synonymous and both have the value

1
2. When if . . . then is meant in the

scalar `metaphysical’ sense captured by the intensional � ukasiewicz algebra, the
conditional must receive the maximal value because it is a trivial conceptual truth
that if a subject i has an ontic value of

1
2 then it has an ontic value of

1
2. Another

way to say the same thing is that � ukasiewicz’s connectives abstract away from all
of an adjective’s descriptive content other than its degree of being or truth. If an
antecedent and consequent pick out the same region of the ontic scale, they have
the same content in this sense.

There are two important ways in which non-synonymous adjectives may represent
the same ontic rank. The ®rst is philosophically interesting because it captures the
famous Neoplatonic doctrine of `the univocity of the good’. This is the thesis that a
broad family of seemingly distinct evaluative propertiesÐbeing, goodness, beauty,
perfection, causation, necessity, spirituality, substantialityÐare claimed to describe the
same single ontological order. Associated with each of these evaluative comparatives is
its own family of scalar adjectives. If they all describe the same order, it is possible for
a predicate from one family to describe the same portion of the ordering as one from
another family. It is this fact, for example, that underlies the standard Neoplatonic
claim that matter is the privation of evil. Semantically, the predicates material and evil
belong to different scalar familiesÐthe morality and spirituality groups respectivelyÐ
but abstractly represent the same (lowest) portion of the ontic ordering.

Even standard Boolean predicates may be understood abstractly in terms of
� ukasiewicz algebras. Let us call the abstract content of a Boolean predicate the
region assigned to its rank within the background ordering of the rank reduction of
the governing Boolean algebra. This region is represented by a truth-value in the
� ukasiewicz algebra. In the color example the abstract content of the predicates red
and blue is the same, which is the region in the � ukasiewicz structure assigned to
dull. Under its `� ukasiewicz reading’ then the conditional x is red ? x is blue has
the highest value, 0 intensionally and 1 extensionally.
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Indeed, the reading encapsulates the conceptual content of � ukasiewicz’s truth-
table for the conditional. The conditional is extensional and multiply abstract. It is
extensional because its truth-table describes the antitonic function mirroring the
intensional operation appropriate to the unpacking of `has at least as much being
or truth’. It is abstract to the ®rst degree in that among scalar predicates it
subtracts any descriptive content characteristic of the particular scalar family to
which the adjectives belong. In addition, among Boolean predicates it abstracts
from any descriptive differences among predicates of the same rank. A full intuitive
reading then of P?Q with � ukasiewicz’s truth-table is:

If any descriptive content other than degree of being or truth is ignored and matters
are considered extensionally, if P then Q.

2.3.6. Cases in which the intensional value of the antecedent is less than that of the
consequent Some properties have less than complete being and some sentences less
than complete truth. To ®t the framework of the intensional � ukasiewicz semantics,
the conditional in these cases should vary, being intensionally higher (closer to 0)
the more the arguments differ. Again let us consider a three point modal scale and
stipulate that P is 1, Q is

1
2) and R is 0. Consider the three sub-cases given the three

point scale:

Sentence Intensional Interpretation
1. Q?P necessity(possibility
2. R?P necessity(impossibility
3. R?Q possibility(impossibility

If we compare the examples, it would be natural to say they differ in `degrees of
truth.’ Possibility carries half the being of necessity, and hence there is some
truth to saying that being-possible insures as much being as being-necessary. It
is, however, not entirely or utterly true as is the conditional in earlier cases in
which the being of the antecedent equaled or exceeded that of the consequent. It
is even less true to say that being-impossible, which has the lowest degree of
being, insures as much being as being-necessary, because being-impossible carries
along with it none of the being that makes up necessity, certainly less than
being-possible. In this way it is plausible and natural to say that the degrees of
truth of the three examples are respectively the highest (the intensional value 0),
middle (

1
2) and lowest (1). Lastly, consider the case of R?Q in which the values

of both parts is less than complete, but that of the antecedent is less than that
of the consequent. Since being impossible insures no degree of being, the
conditional is not true in any complete sense. The situation however is less
egregious than R?P, which makes a bolder claim and is utterly untrue. To
distinguish between the two cases using the framework of degrees of truth, it is
plausible, even natural, to say that R?P is less truth than R?Q. Since the
former possesses no truth whatever and is more misleading than the latter, it is
natural to say that the latter possesses some truth, and to represent this fact on
the three point scale by assigning it

1
2. The analysis is analogous whatever the

number of values in the language, and may be generalized: the greater the
difference between the truth-value of the antecedent and consequent, the greater
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the degree of truth of the conditional. Since among intensions, the value 0 ranks
top, the generalization may be given the precise form:

Int(P?Q)=Int(Q) 7 Int(P)

In the earlier cases in which the antecedent is equal to or greater than the
consequent, the whole is 0. Combining both sorts of case yields the global
generalization:

Int(P?Q)=max{0,Int(Q)7Int(P)}=17min{1, 17Int(Q)+Int(P)}

This is exactly the de®ning condition in the intensional � ukasiewicz algebra of a
scalar language for Int(P) ) Int(Q).

In this analysis the conditional’s truth-values represent degrees within a modality
ranking. However, any n-valued scalar privation ranking, regardless of whether the
family of scalars is explicitly modal, determines an extensional conditional within
� ukasiewicz’s truth-table. More importantly, when viewed abstractly, any privation
process is implicitly `modal’ in the Platonic sense because, as connoted by the term
privation, it presumes an ordering from the fuller, more complete, and more real to
the less. Pivation is not possible without such a `subtractive’ ordering. It is such an
order that is described in the intensional structure of any scalar family.

� ukasiewicz semantics is most plausibly understood as implementing ideas at this
level of abstraction. Truth-values represent degrees of scalar privation in which all
conceptual content other than the scalar ordering has been suppressed. � ukasiewicz
truth-tables then are direct descriptions of the rules characteristic of the connectives
that govern the projection of such degrees from parts to wholes.

It should also be remarked that the reading of modality in a scalar language
provides a simple frequentist explanation of � ukasiewicz’s characterization, cited
above, of the truth-values as `degrees of probability corresponding to various
possibilities’. The values are numerical representatives of ordered ®nite sets of the
possibilia that the predicate is true of. These are the signi®cations that form an
Boolean structure of sets, antitonic to intensions. They are in effect abstractions to
possiblia form the more usual notion of extension. It will suf®ce to state the ®nite
case. The ratio of (the ®nite cardinality of) the signi®cation of (at least) necessary
to that of (the ®nite cardinality of) the set of all possible objects is `less than’, and
in this sense less probable than, that of (the ®nite cardinality of) the signi®cation of
(at least) possible to that of all possible objects. Likewise possibility is less probable
than impossibility.

Much of the plausibility of the overall analysis turns on the formal development of
the main de®nitions and results, which is the subject of the next section. The paper will
conclude with some brief remarks on the relation of n-value � ukasiewicz logics to
classical product logics.

3. Formal Theory

3.1. Structures
An ordering 4 is said to be total on C, if it is a partial ordering (re¯exive,

transitive and antisymmetric) on C and 8a,b2C, either a4b or b4a. An algebra
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or structure is any S=5C1, . . .,Ck, R1, . . .,Rl, f1, . . ., fm , O1, . . .,On4 such that each
Ci is a set, each Ri is a relation on U=[{Ci j 14k} (called the universe of S), each fi

is a function on these elements, and each Oi is one of the elements. Two structures
are of the same character if they have the same number of sets, relations, functions,
and objects, and functions and relations of the same rank are of the same number
of places. A homomorphism from S=5C1, . . .,Ck, R1, . . .,Rl, f1, . . ., fm,O1, . . .,On4
to S’=5C’1, . . .,C’k, R’1, . . .,R’l, f ’1, . . ., f ’m,O’1, . . .,O’n4 is any mapping y from U

to U’ such that for 14i4l, 5a1, . . .,an42Ri iff 5y(a1), . . ., y(an)42R’i ; for
14i4m, y(fi (a1, . . .,an))=f ’i(y(a1), . . .,(an)); and for 14i4n, y(Oi)=O’i 2 U’. An
isomorphism is any 1-1 onto homomorphism. By the lattice (determined by the
ordering 4) is meant the structure 5C,o1,o24 such that C is closed under the
binary operations o1 and o2 de®ned as follows: o1(a,b) (called the lattice meet of
a and b) is the greatest 4-lower-bound of {a,b} and o2(a,b) (called the lattice
joint of a and b) is the least 4-upper-bound of {a,b}. When only one matrix is
under discussion it is customary to use the in®x operator ^ to refer to lattice
meet, and _ to lattice join, and to the lattice as 5C, ^ , _ 4. In some cases
below however these operators will refer to the meet of one lattice and the join
of a second, or vice versa. In all cases, however, the order in which the
operations are listed in the lattice name determines which is its meet (the ®rst)
and which its join (the second).

If 5C, ^ , _ 4 is a lattice, it follows directly that the operations are idempotent,
commutative and associative. Further, a is called the zero element of a lattice iff,
a2C and is the unique 4-least element. It is called the unit element iff, a2C and is
the unique 4-greatest element of C. If only one lattice is under discussion its unit
element is named 1 and its zero element 0. In some case below however 0 will name
the zero element of one lattice and the unit element of another, and similarly for 1.
A structure is ®nite if its domain is. A homomorphism y from a lattice 5C, ^ , _ 4
to another 5C’, ^ ’, _ ’4 is said to be antitonic iff for any a,b2C, a4b iff
y(b)4y(a). 5C, ^ , _ 4 is said to be antitonic to 5C’, ^ ’, _ ’4 iff there is an
antitonic homomorphism from the ®rst to the second. If y is antitonic, it follows
that y(a ^ b)=y(a) _ ’y(b) and y(a _ b)=y(a) ^ ’y(b). The structures are strictly
antitonic if the mapping y is an isomorphism. A congruence relation : on C is any
binary re¯exive, transitive and symmetric relation on C, and the equivalence class of
a under : (denoted [a]) is the set of all elements of C equivalent to a under :. The
quotient algebra (determined by a lattice 5C, ^ , _ 4 and an equivalence relation :
on C) is 5{[a]}a2C, ^ :, _ :4 such that [a] ^ :[b]=[a ^ b] and [a] _ :[b]=[a _ b]. It
then follows that the operation [ ] is a homomorphism from a lattice onto its
quotient algebra.

3.2. � ukasiewicz algebras
A structure � jnj=5C, ^ , _ , ) ,7,e4 is an n-valued � ukasiewicz algebra relative

to y iff y (called a rank assignment) is a 1-1 onto mapping from domain C to range
f i

n
j 04i5ng if jCj=n4o, or to range o if jCj=o, such that:

y(e)=1
y(7a)=17y(a)
y(a ^ b)=min{y(a), y(b)}
y(a _ b)=max{y(a), y(b)}
y(a ) b)=min{1,(17y(a))+y(b)}
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� jnj ranges over such algebras for n=2, . . .,o. In � ukasiewicz algebras it follows that C
is closed under its operations, that 5C, ^ , _ 4 is a distributive lattice with unit
element 1 and zero element 0, with a total ordering relation 4, and that:

71=0 and 70=1
7(7a)=a and 7(a _ b)=7a ^ 7b
y(a ) b)=1 if y(a)4y(b)
y(a ) b)=17y(a)+y(b) if y(a)4y(b)

If a � ukasiewicz algebra contains an element a such that 7a=a, this element is
unique and is called the algebra’s midpoint. a(b (the dual of ) ) is de®ned as
7(7a ) 7b). In the four-valued case, the truth-tables for ) and ( are:

) 0
1
3

2
3 1 ( 0

1
3

2
3 1

0 1 1 1 1 0 0
1
3

2
3 1

1
3

2
3 1 1 1

1
3 0 0

1
3

2
3

2
3

1
3

2
3 1 1

2
3 0 0 0

1
3

1 0
1
3

2
3 1 1 0 0 0 0

Lukasiewicz’s Conditional ) and its Dual ( in L4

It follows that C is closed under (, and

y(a(b)=17min{1,17y(b)+y(a)}=max{0, y(b)7y(a)}
y(a(b)=0 if y(b)4y(a)
y(a(b)=y(b)7y(a) if y(b)4y(a)

Note that if � jnj=5C, ^ , _ , ) ,7,14 is a � ukasiewicz algebra, then 5C, ^ , _ 4 and
5C, _ , ^ 4 are strictly antitonic distributive lattices, the former with zero element
0=71 and unit element 1, and the latter with zero element 1 and unit element 0=71.

If the domain C of � jnj is { i
n
j04i5n} or o, making y the identity mapping, then � jnj

is called the (distinguished) n-valued � ukasiewicz algebra, and referred to as � 2n. � n

ranges over these structures. It follows in � n that:

7a=17a;
a ^ b=min{a,b};
a _ b=max{a,b};
a ) b=min{1,17a+b};
a(b=17min{1,17b+a}.

Clearly � n is unique and isomorphic to � jnj. It will be convenient to identify the two.
Moreover, it is clear that there is an antitonic isomorphism to � jnj (and hence also to
� n) that reverses the order of � n. This antitonic image plays a role in the intensional
semantics below and it is constructed as follows. The operation 7 on C of
� n=5C, ^ , _ , ) ,7,14 is such that:

a4b iff 7b47a;
77a=a;
7(a ^ b)=7a _ 7b;
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7(a _ b)=7a ^ 7b;
7(a ) b)=7a(7b.

Let � jnj¶=5C,_ , ^ ,(,7,04 be called the antitonic re¯ection of � jnj (and likewise
�

¶n=5C,_ , ^ ,(,7,04 is that of � n). Then 7 is an antitonic isomorphism form �
¶n

to � n, and more generally, from � jnj¶ to � jnj. �
¶n and � jnj range over antitonic images of

this sort. In the intensional semantics below � jnj¶ and � ¶n function as an intensional
structure that are mirrored in `reverse’ by the signi®cational structure � jnj and � n.

3.3. Boolean Algebras
A Boolean algebra is any 5C, ^ , _ ,7,0,14 such that:

1. 5C, ^ , _ 4 is a lattice,
2. ^ and _ are distributive,
3. 0 (the ®rst distinguished element listed) is its zero element and 1 (the second

distinguished element) is its unit element, and
4. C is closed under 7, a ^ 7a=0 and a _ 7a=1 (7 is the complementation

operation on C).

A homomorphism y from one Boolean algebra 5C, ^ , _ ,7,0,14 to another
5C’, ^ ’, _ ’,7’0’,1’4 is antitonic iff if it is antitonic from 5C, ^ , _ 4 to
5C’, ^ ’, _ ’4. If it is isomorphic then the two Boolean algebras are strictly
antitonic. Clearly, the operation 7 is an antitonic isomorphism from
5C, _ , ^ ,7,1,04 onto the Boolean algebra 5C, ^ , _ ,7,0,14. In the classical
intensional semantics below a Boolean algebra of `intensions’ is employed as the
structure in terms of which a syntax is interpreted. This structure is then mirrored
in `reverse’ by its strictly antitonic Boolean algebra of sets of possible objects
determined by the intensions.

3.4. Determination of � ukasiewicz by Boolean algebras
A Boolean algebra determines a � ukasiewicz algebra. By a branch of a ®nite

Boolean algebra 5C, ^ , _ ,7,0,14 is meant a series a1, . . .,an such that a1=0 and
for each i4n, ai is a 4-immediate predecessor of ai+1.

The rank of an element a relative to some n-tuple a1, . . .,an is i (brie¯y r(a)=i) iff
a=ai. The notion of rank is extended to Boolean and � ukasiewicz algebras: r(a)=i for
an element a of a ®nite Boolean algebra B iff r(a)=i relative to some branch a1, . . .,ai

of B; and r(a)=i for an element a of a n-valued � ukasiewicz is algebra � iff r(a)=i
relative to the n-tuple a1, . . .,an formed by the lattice ordering 4 on � . If (i) U is a
family of subsets of some set D, (ii) \, [, and 7 are the usual set theoretic
operations on U, and (iii) 1 is the empty set, it follows that
5U³ D,\,[,7,1,D4 is a Boolean algebra.

By a (rank) equivalence is meant the equivalence relation : that holds between all
elements of the same rank: a:b iff Ai, jaj=jbj=i. Let 5{[a]}a2C, ^ :, _ :,
7:,[0],[1]4 be the quotient algebra determined by a ®nite Boolean algebra
5C, ^ , _ ,7,0,14 and its rank equivalence :. It follows that (i) if the cardinality
of C is n, then the cardinality of {[a]}a2C is n+1; (ii) that ^ : and _ : are the set
theoretic operations \ and [ restricted to {[a]}a2C; (iii) the ordering 4 on {[a]}a2C

(de®ned [a]4[b] iff [a] ^ :[b]=[a] iff [a] _ :[b]=[b]) is such that [a]4[b] iff for some
c such that a:c, c(b, and (iv) 4 is total.
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Theorem
If

(1) B=5C, ^ , _ ,7,0,14 is a ®nite Boolean algebra of cardinality n with rank
function r;

(2) 5{[a]}a2C, ^
:, _

:,7:,[0],[1]4 is the quotient algebra of 5C, ^ , _ ,7,0,14;
(3) y is a 1-1 function on {[a]}a2C such that y([a])=r(a);
(2) [a] ) :[b]={c2Cj r(c)=min{1,17r(a))+r(b)}};

then

(1) 7:[a]=[7a]=17r(a) and [a](:[b]={c2Cj r(c)=17min{1,17r(b)+r(a)}};
and

(2) 5{[a]}a2C, ^ :, _ :, ) :,7:[1]4 is a � ukasiewicz algebra of cardinality n+1.

By the � ukasiewicz reduction (of cardinality n+1) determined by an 2
n
-valued Boolean

algebra B (brie¯y, � Bjn+1j) is meant this quotient algebra of B under rank equivalence
with ) :. It follows from the de®nition that such a reduction is an n+1-valued
� ukasiewicz algebra.

In the case in which the Boolean algebra is an algebra of sets 5 D,\,[,7,1,D4
with jDj=n, its reduction � jn+1j on C’ may be further simpli®ed. Each equivalence
class [a] of rank r(a) in C’ may be uniquely represented, in a way that preserves
order, by the set of objects in D that are elements of any set in some family of that
rank. That is, the function y from C’ into D such that y([a])={xjAy, y2[a] and
x2y} is a 1-1 mapping such that [a]4[b] iff y[a]³y[b]. Below [a] is identi®ed with y
[a] in cases in which y is well de®ned.

3.5. Syntax
By a (classical sentential) syntax is meant a structure Syn=5Sen,w ^ ,w_ ,w?,w*4

such that Sen is the closure of a denumerable set of sentential variables Var under
syntactic operation w^ ,w _ ,w?,w* (which are called *, ^ , _ ,? when there is no
possibility of confusion).

3.6. Extensional Semantics
By a (logical) matrix for the syntax Syn=5Sen,w ^ ,w _ ,w?,w* is meant a structure

5C,D,o1, . . .,o44 such that (i) 5C,o1, . . .,o44 is of like character to Syn, (ii)
5C,o1,o24 is a lattice and (iii) D (called the set of designated values) is a non-
empty subset of C. Here each oi is understood as the truth-function used to
interpret the grammatical operation wi

. Thus o1 interprets conjunction and o2

disjunction. When there is only one lattice or matrix under discussion it is
convenient to refer respectively to ,o1, . . .,o4 by ^ , _ , ) and *.

By a valuation v
Syn
M relative to a syntax Syn=5Sen, ^ , _ ,?,*,4 and a matrix

M=5C,D, ^ , _ , ) ,74 is meant any homomorphism from Syn to
M=5C, ^ , _ , ) ,74. The set of all such valuations is referred to by Val

Syn
M .

A homomorphism y from one matrix M=5C,D, ^ , _ , ) ,74 to another
M’=5C’,D’, ^ ’, _ ’, ) ’,7’4 of like character is said to be a matrix homomorphism
and to preserve designation and non-designation iff for any a2C, a2D iff y(a)2D’.
The two matrices M=5C,D, ^ , _ , ) ,74 and M’=5C’,D’, ^ ’, _ ’, ) ’,7’4 are
antitonic iff there is a homomorphism y from M=5C, ^ , _ , ) ,74 to
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M’=5C’, ^ ’, _ ’, ) ’,7’4 in terms of which 5C, ^ , _ 4 and 5C’, ^ ’, _ ’4 are
antitonic lattices and y preserves designation and non-designation. The structures
are strictly antitonic if y is an isomorphism.

By an extensional language L is meant a structure 5Syn,M4 such that Syn is a
sentential syntax and M is a matrix for Syn. Syn ranges over syntaxes, M over
matrices, and L over languages. If L=5Syn,M4 is a language, then a set X of
sentences is said to semantically entail a sentence P in L (brie¯y Xk-LP) iff for any
v2Val, if v assigns every sentence in X a value in D, then v(P)2D. A sentence is a
tautology relative to L (brie¯y, k-LP) iff 8v2Val, v(P)2D.

Boolean algebras are used to interpret classical logic and � ukasiewicz algebras to
interpret � ukasiewicz’s ®nitary logics. The logical and proof theoretic notions `,
tautology, and ƒ are de®ned in Section I. Though there are stronger results, it will
be suf®cient for purposes here to state characterizations of tautologies only.

3.7. Classical Semantics
F is a ®lter on a Boolean algebra 5C, ^ , _ ,7,0,14 iff, F³C and 8a,b2C (a2F iff

a ^ b2F); and a ®lter F is maximal iff 8a2C, not(a2F and 7a2F). If
B=5C, ^ , _ ,7,0,14 is a Boolean algebra, then by a Boolean matrix for Syn
determined by B is meant any MBC=5C,F, ^ , _ , ) ,74 such that F is a
maximal ®lter on B and a ) b=7a _ b. LC=5Syn,MBC4 is called a classical
language. In general a Boolean algebra has more than one maximal ®lter and does
not uniquely determine a Boolean matrix. A Boolean matrix, however, is uniquely
paired with the Boolean algebra that determines it. In the special case in which C
has the cardinality 2, the algebra is called BC2, its matrix MBC2, and its language
LC2. Let `C be the classical deducibility relation as characterized by any standard
proof theory. It is well known that a Boolean matrix is statement complete for
classical logic.

Theorem For any classical language LC, `CP iff k-Lc P iff k-LC2P.
Proof That `

CP iff k-LC2
P is true by induction. That k-LC

P iff k-LC2
follows from

two facts: (1) the matrix property that if there is an onto matrix homomorphism
from one matrix to a second (hence preserving designation and non-
designation), then the entailment relations of the two matrices coincide, and (2)
(depending on Zorn’s lemma) for any x,y of a Boolean algebra B such that
not(y5x), x is a member of some maximal ®lter F of B. There is then an onto
matrix homomorphism from B to the quotient algebra determined by the two
equivalence classes M and its corresponding ideal (F’s complement). This
quotient algebra, with F designated, is isomorphic to the classical matrix MBC2.

3.8. � ukasiewicz semantics
Though � ukasiewicz algebras are truth-functionall y incomplete, their valid

sentences (unit element designated) as well as those of functionally complete
extensions are axiomatizable.

14
Since n-valued � ukasiewicz algebras over sets of

truth-values are isomorphic, relative to some rank assignments y, to � ukasiewicz
algebras over any set, the same axiomatizations will apply to the more general
notion.

14 See the summary in Rescher 1969.

� ukasiewicz’s Logic and Neoplatonic Scalar Modality 115

D
ow

nl
oa

de
d 

by
 [

Jo
hn

 N
. M

ar
tin

] 
at

 1
2:

06
 2

5 
Se

pt
em

be
r 

20
12

 



If � jnj=5C, ^ , _ , ) , 7,14 is a � ukasiewicz algebra then the logical matrix of
cardinality n determined by � jnj is M� jnj =5C,{1}, ^ , _ , ) , 74. This matrix is
unique, and the matrix uniquely determines the algebra that generates it. A
� ukasiewicz language L� jnj is any 5Syn, M� jnj4 such that Syn is a sentential
syntax and M� jnj is a matrix relative to Syn and � jnj. � jnj will be identi®ed with its
isomorphic image � n, and M� jnj with the matrix M� n.

Though the axioms will not be listed here, by `�
n
is meant the deducibility relation

characterized by a � ukasiewicz’ axiomatization for n-valued logic. Such a system is
statement complete.

Theorem For any n=1, . . .,o, `�
n
P iff k-�

n
P iff k-� jnjP.

Proof That `�
n
P iff k-�

n
P is well known. That k-�

n
P iff k-� jn jP follows from the fact

that � jnj and � n are isomorphic.

The theorems of k-�
n

form a system in � ukasiewicz’ sense.

3.9. Intensional Semantics
It is assumed as facts of nature prior to the speci®cation of a syntax and a semantic

theory that there is a set of properties (intensions), and a function k that pairs each
property p with its signi®cation k(p), understood as the set of all possible objects in
which p inheres.

De®nition By an interpreted intensional language is meant any
L=5Syn,MInt,MSig4 such that Syn is a sentential syntax, MInt and MSig are
matrices for Syn of like character to Syn (MInt and MSig are respectively
intensional and signi®cational structure) and
1. MInt is a structure on properties,
2. MSig is an algebra of subsets of possible objects such that k is a strictly antitonic

isomorphism from MInt onto MSig.

Let L=5Syn,MInt,MSig4 be an intensional language. By an intensional
interpretation of L is meant any valuation (matrix homomorphism) from Syn into
MInt. The intensional interpretations of L are grouped into the set IntL and Int
ranges over IntL. By the signi®cational interpretation of L relative to Int is meant
the composition function Int¯k. In L each Int determines a unique signi®cational
interpretation Int¯k. Let SigL be the set of all Int¯k such that Int2 IntL, and let Sig
range over SigL. Let MSig=5U,D, ^ , _ , ) ,74 and oiD

be de®ned:
oiD

(x1\D, . . .,xn\D)=(oi(x1, . . .,xn))2D. Then by MExt,D
(called the extensional

matrix determined by MSig and D) is meant 5{x\D}x2U,{x\D}x2D, ^ jD, _ jD, )
jD,7jD4. Then yD such that yD(x)=x\D is a onto homomorphism
from=5U, ^ , _ , ) ,74 to 5{x\D}x2U, ^ jD, _ jD, ) jD,7jD4 that preserves
designation (but not in general non-designation) . Hence Sig¯yD is a valuation in
ValMSig,D

. Sig¯yD (=Int¯k¯yD), for any D, is called an extensional interpretation for
L. All such extensional interpretations are grouped into the set ExtL and let Ext
range over ExtL.

Various levels of entailment for intensional languages are de®nable. Intensional
entailment relative to an intensional interpretation Int is any inference invariant
under the extensional interpretations consistent with Int. It in is this sense that x is
red entails x is coloured in English. Entailment relative to a language is any
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inference invariant over different intensional interpretations over its intensional
structure.

15

. Intensional Entailment in L. Xk-IntL
P iff for an extension determination yD of L

(8Q2X, Int¯k¯yD (Q)2DExt) only if Int¯k¯yD(P)2DExt.
. Logical Entailment in L. Xk-LP iff, for any Int2IntL, Xk-IntL

P.

3.10. Classical and � ukasiewicz n-valued Semantics
Since the various semantic levels of intensional language tightly mirror one

another, classical logic and n-valued � ukasiewicz logic are straightforwardly
characterizable in intensional logics by means of Boolean and � ukasiewicz
algebras. The theorems below follow directly from the de®nitions.

De®nition 3 An intensional language L=5Syn,MBInt,MBSig4 is called Boolean
iff MBSig is determined by a Boolean algebra BSig=5U,\,[,1,04 of sets.

Theorem In a Boolean intensional language it follows that:
1. MBInt is determined by a Boolean algebra BInt;
2. In MBSig and MBSig,D , \ interprets ^ , and [ interprets _ ;
3. If MBInt is an algebra of sets, then its maximal element is 1, and in MBInt ^

(intersection over equivalence class members) interprets _ , and _ (union over
equivalence class members) interprets ^ .

De®nition 4 An n-valued � ukasiewicz language is any intensional language
L=5Syn,M� j¶njInt,M� jnjSig4 such that:
1. M� jnjSig is the matrix determined by the signi®cational � ukasiewicz algebra on

sets � jnj=5C, ^ , _ , ) ,7,14;
2. M� j¶njInt is the matrix determined by the intensional algebra

� j¶nj=5C, _ , ^ (,7,04 that is the antitonic image of the signi®cational
algebra � jnj.

Theorem In an n-valued � ukasiewicz intensional language it follows that:
1. In M� j¶njInt, ^ interprets the connective _ , _ interprets ^ , and ( interprets ?.
2. In M� jnjSig and M� jnjSig,D , \ interprets ^ , [ interprets _ , and ) interprets ?.
3. For any element a of C in � jnj and any [a]\D and [b]\D of M� jnjSig,D ,

r(a)=r([a]\D) and [a]\D )
D [b]\D=([a]\[b])\D, and hence [a]\D )

D

[b]\D={cjc2D& r([c]\D)=min{1,17r([a]\D)+r([b]\D)}}, and � jnj,D=
5{[c]\D}D ³C,\D,[D, ) D,7D,1\D4is a � ukasiewicz algebra which
determines M� jnjSig,D .

4. M� n is strictly isomorphic to M� jnjSig and M� jnjSig,D ; and in M� jnjSig, M� jnjSig,D

and M� n, ) is an n-valued conditional.

Since `� n and `C are co-extensive respectively with the matrix entailments of arbitrary
n-valued � ukasiewicz and Boolean matrices, the logics of the signi®cational matrices are
the same as those of their corresponding intensional matrices.

16

15 Though it is natural to de®ne entailment at yet a further level of abstraction as that which holds under all
intensional languages of a certain type, e.g. Boolean or � ukasiewicz languages, this abstraction is not
needed here since each instance of a Boolean or � ukasiewicz intensional language is alone suf®cient
for determining classical or � ukasiewicz n-valued entailment.
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Theorem If L is a Boolean intensional language, then `CP iff k-LP; and if L is an
n-valued � ukasiewicz intensional language, `�

n
P iff k-LP.

3.11. Scalar Languages
The formal exposition is completed by de®ning a language that incorporates both

classical and scalar predicates. The former are interpreted over a 2
n
-valued Boolean

intensional structure and the latter over its n+1-valued � ukasiewicz reduction. The
intensional and signi®cational structures of the Boolean language each determine
its corresponding � ukasiewicz algebra. Further, since the two Boolean algebras are
isomorphic, so are their reductions. Unlike the Boolean algebras, however, which
are antitonic, their reductions are both � ukasiewicz algebras and by de®nition have
1 as their maximal element. Hence as de®ned they preserve each other’s order and
are not antitonic. In order for the combined languages to count as intensional,
however, the two � ukasiewicz algebras must be antitonic as well. This feature is
insured in the extended language by substituting for the intensional reduction
� jn+1j its antitonic isomorphic image � jn+1j¶, which as required is strictly antitonic
to the � ukasiewicz reduction of signi®cational structure. Though algebraically it
matters not at all which of the two antitionic � ukasiewicz structures is viewed as
having 1 on top and which 0, the de®nition given preserves the convention that it is
the `extensional’ that has 1 as its maximal value.

De®nitions Let n be ®nite. By an n+1-valued scalar (intensional) language is
meant any L=5L1,L24 such that:
1. Syn and Syn’ are disjoint sentential syntaxes;
2. L1=5Syn, MBInt, MBSig4 is an 2

n
-valued Boolean intensional language;

3. L2=5Syn’, M� (BInt)jn+1j¶, M� (BSig)jn+1j4. (Here � (BInt)jn+1j is the
� ukasiewicz reduction of BInt, and � (BSig)jn+1j that of BSig.)

Theorem In an n+1-valued scalar (intensional) language:
1. the � ukasiewicz reductions � (BInt)jn+1j and � (BSig)jn+1j are strictly antitonic,

and (hence)
2. L2 is an n+1 valued intensional � ukasiewicz language.

M� (BSig)jn+1j is identi®ed with its isomorphic image M� (BSig)n+1, and similarly
M� (BSig)jn+1j and M� (BSig)jn+1jD with M� (BSig)n+1. Thus, 55Syn, MBInt,

16 For intensional languages it is not true in general that the matrix entailment of MSig coincides with that
of MExt,D because it is not generally the case that there is an onto matrix homomorphism preserving
non-desigation from MSig to MExt,D , nor is there is the case of Boolean or � ukasiewicz languages.
However, in both Boolean and Lukasiewicz intensional languages, signi®cational and extensional
entailments do coincide because each language type is such that the set of designated values of
MSig,D, meets the conditions for a matrix of that type. In a � ukasiewicz intensional language
{x\D}x2D automatically contains only the ³-maximal element of M� Sig,D and hence ®ts the
de®nition for a � ukasiewicz matrix. In a Boolean intensional language {x\D}x2D is provably a
maximal ®lter on the Boolean signi®cational structure 5{x\D}x2U,\D,[D, ) D,7D,U\D,14.
Theorem If MBSig,D is an extensional structure determined by MBSig in a Boolean intensional
language, and L=5Syn, MBSig4 and L’=5Syn, MBSig,D4 are extensional languages, then

Xk-LP iff Xk-L’P iff Xk-LC2P.
If M� Sig,D is an extensional structure determined by M� Sig in an n-valued Lukasiewicz intensional
language, and L=5Syn, M� Sig4 and L’=5Syn, M� Sig,D4 are extensional languages, then

Xk-LP iff Xk-�
n
P iffXk-� .
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MBSig4,5Syn’, M� (BSig)jn+1j¶, M� (BSig
)n+144 is an n+1 valued scalar language,

with M� (BSig)n+1 being the (distinguished) � ukasiewicz n-valued matrix.
Lastly, � ukasiewicz interpretations are extended to Boolean expressions. Each full

branch (containing maximal and minimal elements) of the Boolean property tree is
isomorphic to the intensional � ukasiewicz algebra M� B1

jn‡1j¶ . If P is a Boolean
expression of L1, Int1 is an interpretation of L1, and Int2 is an intensional
interpretation of L2, the � ukasiewicz intensional interpretation of P relative to Int1

(brie¯y Int1
¯¶r ) is de®ned as 17r(Int1(P)). P is then given signi®cational and

extensional values in L2 as determined by the intension Int1
¯¶r .

3.12. Classical Product Logics
Intensional and scalar languages as de®ned here are related to JasÂ kowski’s product

logics
17

inasmuch as classical product algebras that are de®ned so that each dimension
conforms to the classical bivalent matrix also meet the de®ning conditions for a
Boolean property structures as developed in this study. Let M1, . . .,Mn be matrices of
like character, and 5Ci,Di,o1,i, . . .,o4,i4 be the i-th matrix in the series. Then
M1x . . .xMn (called M

n
if all Mi are identical) is 5C1x . . .xCn,D1x . . .xDn,o1, . . .,o44

such that oi(a1, . . .,am)=5oi,1(a1, . . .,am), . . ., oi,n(a1, . . .,am)4.
Recall that MC2 is the classical Boolean matrix on 2={0,1}. Let L=5L1,L24 be

a scalar language as de®ned above. Then MInt of LC2 is isomorphic to the product
structure Mn

c2. Proof: to each atomic property y in P, assign a unique n-tuple
position, and a characteristic function f from P into 2 indicating whether it is an
element of any given conjunctive property in P taken as the argument of f.

De®ne a mapping f from the domain P of MInt to that of Mn
c2 as follows: to each

compound property p in P, let f(p) be 5a1, . . .,an4 such that for i=1, . . .,n, ai=f(y)
where y is the primitive property with n-tuple position i and characteristic function f.
It follows that f is an isomorphism.

Of special relevance to an understanding of the conceptual motivation for the
three-valued � ukasiewicz algebra with matrix M� 3 is the product matrix M2

C2.
M2

C2 is isomorphic to the intensional Boolean property structure of any scalar
language generated by two primitive properties, and M� 3 is then the
signi®cational/extensional structure of the scalar ordering it determines. For
example, M� 3 is the resulting scalar structure determined by the Boolean
intensions of the two primitive properties `truth/falsity’ and `determined/
undetermined’, which have the `four-valued logic’ described in M2

C2. Hence,
� ukasiewicz’ three-valued logic and its conditional are dictated as the
extensional representation of the scalar order of these properties understood as
independent Boolean classi®cations. This framework thus provides an
`explanation’ of how both the three-valued ideas in M� 3 (and its ) ) and
four-valued classical product logics have a source in bivalent determinations of
truth and determination.
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