
A History of Satisfiability

Armin Biere, Hans van Maaren, Toby Walsh, editors 1

August 7, 2007

in Armin Biere, Hans van Maaren, and Toby Walsh, eds., Handbook of Satisfiability, IOS Press, 2009

1With sections contributed by John Franco, John Martin, Hantao Zhang, and
others to be named.

Chapter 1

A History of Satisfiability

1.1 Preface: the concept of satisfiability

Logic is about validity and consistency. The two ideas are interdefinable if we
make use of negation (¬): the argument from p1, . . . , pn to q is valid if and
only if the set {p1, . . . , pn,¬q} is inconsistent. Thus, validity and consistency
are really two ways of looking at the same thing and each may be described
in terms of syntax or semantics.

The syntactic approach gives rise to proof theory. Syntax is restricted to
definitions that refer to the syntactic form (that is, grammatical structure)
of the sentences in question. In proof theory the term used for the syntactic
version of validity is derivability. Proofs are derived with respect to an ax-
iom system which is defined syntactically as consisting of a set of axioms with
a specified grammatical form and a set of inference rules that sanction proof
steps with specified grammatical forms. Given an axiom system, derivability is
defined as follows: q is derivable from p1, . . . , pn (in symbols, p1, . . . , pn ⊢ q) if
and only if there is a proof in the axiom system of q (derivable) from p1, . . . , pn.
Because the axioms and rules are defined syntactically, so is the notion of deriv-
ability. The syntactic version of consistency is simply called consistency, and
is defined as follows: {p1, . . . , pn} is consistent if and only if it is not possi-
ble to derive a contradiction from {p1, . . . , pn}. It follows that {p1, . . . , pn}
is inconsistent if and only if, there is some contradiction q ∧ ¬q such that
{p1, . . . , pn} ⊢ q ∧ ¬q. Since derivability has a definition that only makes ref-
erence to the syntactic shapes, and since consistency is defined in terms of
derivability, it follows that consistency too is a syntactic concept, and is de-
fined ultimately in terms of grammatical form alone. The inference rules of
axiom systems, moreover, are always chosen so that derivability and consis-
tency are interdefinable: that is, p1, . . . , pn ⊢ q if and only if {p1, . . . , pn,¬q}
is inconsistent.

The semantic approach gives rise to model theory. Semantics studies the

1

2 CHAPTER 1. A HISTORY OF SATISFIABILITY

way sentences relate to “the world.” Truth is the central concept in semantics
because a sentence is said to be true if it “corresponds to the world.” The con-
cept of algebraic structure is used to make precise the meaning of “corresponds
to the world.”

An algebraic structure, or simply structure, consists of a non-empty set of
objects existing in the world w, called the domain and denoted below by D,
and a function, called an interpretation and denoted below by R, that assigns
to each constant an entity in D, to each predicate a relation among entities in
D, and to each functor a function among entities in D. A sentence p is said
to be true in w if the entities chosen as the interpretations of the sentence’s
terms and functors stand to the relations chosen as the interpretation of the
sentence’s predicates. We denote a structure by 〈D,R〉. Below we sometimes
use A to stand for 〈D,R〉 by writing A = 〈D,R〉. A more traditional, algebraic
notation for structure is stated in the glossary, Page 81, and used in Section 1.6.
We will speak of formulas instead of sentences to allow for the possibility that
a sentence contains free variables. The customary notation is to use A |= p to
say p is true in the structure A.

The semantic versions of validity and consistency are defined in terms of
the concept of structure. In model theory validity is just called validity. In-
tuitively, an argument is valid if whenever the premises are true, so is the
conclusion. More precisely, the argument from p1, . . . , pn to q is valid (in sym-
bols, p1, . . . , pn |= q) if and only if, for all structures A, if A |= p1, . . . ,A |= pn,
then A |= q.

We are now ready to encounter, for the first time, satisfiability, the central
concept of this book. Satisfiability is the semantic version of consistency. A
set of formulas is said to be satisfiable if there is some structure in which all
its component formulas are true: that is, {p1, . . . , pn} is satisfiable if and only
if, for some A, A |= p1 and . . . and A |= pn. It follows from the definitions
that validity and satisfiability are mutually definable: p1, . . . , pn |= q if and
only if {p1, . . . , pn,¬q} is unsatisfiable.

Although the syntactic and semantic versions of validity and consistency -
namely derivability and consistency, on the one hand, and validity and satis-
fiability, on the other - have different kinds of definitions, the concepts from
the two branches of logic are systematically related. As will be seen later, for
the languages studied in logic it is possible to devise axiom systems in such
a way that the syntactic and semantic concepts match up so as to coincide
exactly. Derivability coincides with validity (i.e. p1, . . . , pn ⊢ q if and only if
p1, . . . , pn |= q), and consistency coincides with satisfiability (i.e. {p1, . . . , pn}
is consistent if and only if {p1, . . . , pn} is satisfiable). Such an axiom system
is said to be complete.

We have now located satisfiability, the subject of this book, in the broader
geography made up of logic’s basic ideas. Logic is about both validity and

1.1. PREFACE: THE CONCEPT OF SATISFIABILITY 3

consistency, which are interdefinable in two different ways, one syntactic and
one semantic. Among these another name for the semantic version of consis-
tency is satisfiability. Moreover, when the language possesses a complete axiom
system, as it normally does in logic, satisfiability also coincides exactly with
syntactic consistency. Because of these correspondences, satisfiability may
then be used to “characterize” validity (because p1, . . . , pn |= q if and only if
{p1, . . . , pn,¬q} is unsatisfiable) and derivability (because p1, . . . , pn ⊢ q if and
only if {p1, . . . , pn,¬q} is unsatisfiable).

There is a further pair of basic logical ideas closely related to satisfiability:
necessity and possibility. Traditionally, a sentence is said to be necessary (or
necessarily true) if it is true in all possible worlds, and possible (or possibly
true) if it is true in at least one possible world. If we understand a possible
world to be a structure, possibility turns out to be just another name for
satisfiability. A possible truth is just one that is satisfiable. In logic, the
technical name for a necessary formula is logical truth: p is defined to be a
logical truth (in symbols, |= p) if and only if, for all A, A |= p. (In sentential
logic a logical truth is called a tautology.) Moreover, necessary and possible
are predicates of the metalanguage (the language of logical theory) because
they are used to describe sentences in the “object” language (the language
that refers to entities in the world that is the object of investigation in logical
theory).

There is one further twist. In the concept of consistency we have already
the syntactic version of satisfiability. There is also a syntactic version of a
logical truth, namely a theorem-in-an-axiom-system. We say p is a theorem
of the system (in symbols |= p) if and only if p is derivable from the axioms
alone. In a complete system, theorem-hood and logical truth coincide: ⊢ p
if and only if |= p. Thus, in logical truth and theorem-hood we encounter
yet another pair of syntactic and semantic concepts that, although they have
quite different sorts of definitions, nevertheless coincide exactly. Moreover,
a formula is necessary if it is not possibly not true. In other words, |= p if
and only if it is not the case that p is unsatisfiable. Therefore, satisfiability,
theorem-hood, logical truths and necessities are mutually “characterizable.”

This review shows how closely related satisfiability is to the central concepts
of logic. Indeed, relative to a complete axiom system, satisfiability may be
used to define, and may be defined by, the other basic concepts of the field -
validity, derivability, consistency, necessity, possibility, logical truth, tautology,
and theorem-hood.

However, although we have taken the trouble to clearly delineate the dis-
tinction between syntax and semantics in this section, it took over 2000 years
before this was clearly enunciated by Tarski in the 1930s. Therefore, the for-
mal notion of satisfiability was absent until then, even though it was informally
understood since Aristotle.

4 CHAPTER 1. A HISTORY OF SATISFIABILITY

The early history of satisfiability, which will be sketched in the next sec-
tions, is the story of the gradual enrichment of languages from very simple
languages that talk about crude physical objects and their properties, to quite
sophisticated languages that can describe the properties of complex structures
and computer programs. For all of these languages, the core concepts of logic
apply. They all have a syntax with constants that stand for entities and with
predicates that stand for relations. They all have sentences that are true or
false relative to possible worlds. They all have arguments that are valid or
invalid. They all have logical truths that hold in every structure. They all
have sets that are satisfiable and others that are unsatisfiable. For all of them,
logicians have attempted to devise complete axiom systems to provide syntac-
tic equivalents that capture, in the set of theorems, exactly the set of logical
truths, that replicate in syntactic derivations exactly the valid arguments, and
provide derivations of contradictions from every unsatisfiable set. We shall
even find examples in these early systems of attempts to define decision pro-
cedures for logical concepts. As we shall see, in all these efforts the concept of
satisfiability is central.

1.2 The ancients

It was in Athens that logic as a science was invented by Aristotle (384-322
B.C.). In a series of books called the Organon, he laid the foundation that
was to guide the field for the next 2000 years. The logical system he invented,
which is called the syllogistic or categorical logic, uses a simple syntax limited
to subject-predicate sentences.

Aristotle and his followers viewed language as expressing ideas that sig-
nify entities and the properties they instantiate in the “world” outside the
mind. They believed that concepts are combined to “form” subject-predicate
propositions in the mind. A mental thought of a proposition was something
like being conscious of two concepts at once, the subject S and the predicate
P . Aristotle proposed four different ways to capture this notion of thought,
with respect to a given “world” w, depending on whether we link the subject
and predicate universally, particularly, positively, or negatively: that is, every
S is P , no S is P , some S is P , and some S is not P . These categorical
propositions were called, respectively, A (universal affirmative), E (universal
negative), I (particular affirmative), and O (particular negative) propositions.
Their truth-conditions are defined as follows:

A:
Every S is P
is true in w

iff
Everything in w signified by S is
something signified in w by S and P

E:
No S is P
is true in w

iff Some S is P is false in w

1.2. THE ANCIENTS 5

I:
Some S is P
is true in w

iff
There is some T such that everything
signified in w by S and P is something
that is signified in w by P and T

O:
Some S is not P
is true in w

iff Every S is P is false in w

These propositions have the following counterparts in set theory:

S ⊆ P iff S = S ∩ P
S ∩ P = ∅ iff ¬(S ∩ P 6= ∅)
S ∩ P 6= ∅ iff ∃T : S ∩ P = P ∩ T
S ∩ P̄ 6= ∅ iff ¬(S = S ∩ P)

The resulting logic is two-valued: every proposition is true or false. It is
true that Aristotle doubted the universality of this bivalence. In a famous
discussion of so-called future contingent sentences, such as “there will be a
sea battle tomorrow,” he pointed out that a sentence like this, which is in
the future tense, is not now determined to be either true or false. In modern
terms such a sentence “lacks a truth-value” or receives a third truth-value.
In classical logic, however, the law of excluded middle (commonly known as
tertium non datur), that is, p or not p is always true, was always assumed.

Unlike modern logicians who accept the empty set, classical logicians as-
sumed, as a condition for truth, that a proposition’s concepts must signify at
least one existing thing. Thus, the definitions above work only if T is a non-
empty set. It follows that A and E propositions cannot both be true (they
are called contraries), and that I and O propositions cannot both be false.
The definitions are formulated in terms of identity because doing so allowed
logicians to think of mental proposition formulation as a process of one-to-
one concept comparison, a task that conciousness seemed perfectly capable of
doing.

In this theory of mental language we have encountered the first theory of
satisfiability. A proposition is satisfiable (or possible, as traditional logicians
would say) if there is some world in which it is true. A consistent proposition
is one that is satisfiable. Some propositions were recognized as necessary, or
always true, for example: every S is S.

Satisfiability can be used to show that propositions p1, . . . , pn do not logi-
cally imply q: one only needs to show that there is some assignment of concepts
to the terms so that all the propositions in {p1, . . . , pn,¬q} come out true. For
example, consider the statement:

(some M is A ∧ some C is A) → every M is C.

6 CHAPTER 1. A HISTORY OF SATISFIABILITY

Aristotle would show this statement is false by replacing the letters with fa-
miliar terms to obtain the requisite truth values: some man is an animal and
some cow is an animal are both true, but every man is a cow is false. In
modern terms, we say the set

{ some M is A, some C is A,¬(every M is C) }

is satisfiable.

The means to deduce (that is, provide a valid argument) was built upon
syllogisms, using what is essentially a complete axiom system for any con-
ditional (p1, . . . , pn) → q in which p1, . . . , pn, and q are categorical proposi-
tions [197]. A syllogism is defined as a conditional (p ∧ q) → r in which p,q,
and r are A, E, I, or O propositions. To show that propositions are valid,
that is (p1 ∧ . . . ∧ pn) → q, Aristotle would create syllogisms (p1 ∧ p2) →
r1, (r1 ∧ p3) → r2, . . . , (rn−2 ∧ pn) → q, then repeatedly reduce valid syllogisms
to one of

A1: (every X is Y ∧ every Y is Z) → every X is Z
A2: (every X is Y ∧ no Y is Z) → no X is Z

The reduction, when viewed in reverse, is an axiom system where A1 and A2
are axiom schemata, from which are deduced the valid syllogisms, and from
the valid syllogisms are deduced all valid conditionals. The system used four
inference rules:

R1: From (p ∧ q) → r infer (¬r ∧ q) → ¬p
R2: From (p ∧ q) → r infer (q ∧ p) → r
R3: From no X is Y infer no Y is X
R4: From (p ∧ q) → no X is Y infer (p ∧ q) → some X is not Y

For example, to prove

(every P is M ∧ no S is M) → some S is not P

deduce

1. (every P is M ∧ no M is S) → no P is S Axiom A2
2. (every P is M ∧ no S is M) → no S is P Rule R3
3. (every P is M ∧ no S is M) → some S is not P Rule R4

The logic of the Stoics (c. 300s-200s BC) developed into a sophisticated
sentential logic, using operators →, ∧, ¬, and ∨, where a proposition is the

1.3. THE MEDIEVAL PERIOD 7

meaning of a sentence that expresses it and the truth of a proposition may
change over time. They combined this with the standard definition of validity
to discover a series of propositional inferences that have remained part of
logical lore ever since:

p, p→ q |= q (modus ponens)
¬q, p→ q |= ¬p (modus tollens)
¬q, p ∨ q |= p (disjunctive syllogism)
p→ q, q → r |= p→ r (hypothetical syllogism)

1.3 The medieval period

The development of concepts open to decision by an effective process (such as
a mechanical process) was actually an important goal of early modern logic,
although it was not formulated in those terms. A goal of symbolic logic is to
make epistemically transparent judgments that a formula is a theorem of an
axiom system or is deducible within an axiom system. An effective process en-
sures this transparency because it is is possible to know with relative certainty
that each stage in the process is properly carried out.

Logicians of the medieval period knew all of the logic of Aristotle and the
Stoics, and much more. The syntax of the languages they used was rich, in-
corporating combined categorical propositions (with and without modal and
epistemic operators), other quantifiers, restrictive and non restrictive relative
clauses, and the propositional connectives into complex sentences. Moreover,
although they did not have set theory, they described interpretions of predi-
cates using set-like notions such as “group” or “collection.”

The work of Ramon Lull (1232-1315) was influential beyond the medieval
period. He devised the first system of logic based on diagrams expressing truth
and rotating wheels to achieve some form of deduction. It had similarities to
important later work, for example Venn circles, and greatly influenced Leibniz
in his quest for a system of deduction that would be universal.

1.4 The renaissance

In the 17th century Descartes and Leibniz began to understand the power
of applying algebra to scientific reasoning. To this end, Leibniz devised a
language that could be used to talk about either ideas or the world. He
thought, like we do, that sets stand to one another in the subset relation ⊆,
and that a new set can be formed by intersection ∩. He also thought that
concepts can be combined by definitions: for example the concepts animal
and rational can be combined to form the concept rational+animal, which is

8 CHAPTER 1. A HISTORY OF SATISFIABILITY

the definition of the concept man, and the concept animal would then be a
“part” of the concept man. The operator �, called concept inclusion, was
introduced to express this notion: thus, animal � man.

Leibniz worked out dual Boolean interpretations of syllogistic propositions
joined with the propositional connectives. The first (intensional) interpreta-
tion assigns terms to “concepts” within a structure of concepts ordered by
� and organized by operations that we would call meet and join. The dual
(extensional) interpretation is over a Boolean algebra of sets.

The logical operations of multiplication, addition, negation, identity, class
inclusion, and the null class were known at this time, well before Boole, but
Leibniz published nothing on his ideas related to formal logic. In addition to
� his logic is rooted in the operators of identity (=), and a conjunction-like
operator (⊕) called real addition, which obeys the following:

t⊕ t = t (idempotency)
t⊕ t′ = t′ ⊕ t (commutativity)
t⊕ (t′ ⊕ t′′) = (t⊕ t′) ⊕ t′′ (associativity)

where t, t′, and t′′ are terms representing substance or ideas. The following,
Leibniz’s equivalence, shows the tie between set inclusion and real addition
that is the basis of his logics.

t � t′ if and only if t⊕ t′ = t′

Although Leibniz’s system is simplistic and ultimately implausible as an ac-
count of science, he came very close to defining with modern rigor complete
axiom systems for well-defined formal languages that also possessed decision
procedures for identifying the sentences satisfied in every interpretation. It
would be 250 years before modern logic accomplished the same for its more
complex languages. His vision is relevant to modern times in other ways too.
As examples, he invented binary arithmetic, and his calculus ratiocinator is
regarded by some as a formal inference engine, its use not unlike that of a
computer programming language, and by others as referring to a “calculat-
ing machine” that was a forerunner to the modern digital computer. In fact,
Leibniz constructed a machine, called a Stepped Reckoner, for mathematical
calculations. Yet, at this point in history, the notion of satisfiability still had
not been enunciated.

1.5 The first logic machine

According to Gardner [106] the first logic machine, that is the first machine
able to solve problems in formal logic (in this case syllogisms), was invented by
Charles Stanhope, 3rd Earl Stanhope (1753-1816). It employed methods simi-
lar to Venn circles (Section 1.6) and therefore can in some sense be regarded as

1.6. BOOLEAN ALGEBRA 9

Boolean. However, it was also able to go beyond traditional syllogisms to solve
numerical syllogisms such as the following: 8 of 10 pigeons are in holes, and
4 of the 10 pigeons are white (conclude at least 2 holes have white pigeons).
See [106] for details.

1.6 Boolean algebra

George Boole (1815-1864) advanced the state of logic considerably with the
introduction of the algebraic structure 〈B,∨,∧,¬, 0, 1〉 that bears his name1:
a structure 〈B,∨,∧,¬, 0, 1〉 is a Boolean algebra if and only if ∨ and ∧ are
binary operations and ¬ is a unary operation on B under which B is closed,
1, 0 ∈ B, and

x ∧ y = y ∧ x; x ∨ ¬x = 1;
x ∨ y = y ∨ x; 1 ∧ x = x;
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z); 0 ∨ x = x;
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z); x ∧ ¬x = 0;

Boole’s main innovation was to develop an algebra-like notation for the
elementary properties of sets. His own objective, at which he succeeded, was
to provide a more general theory of the logic of terms which has the traditional
syllogistic logic as a special case. He was one of the first to employ a symbolic
language. His notation consisted of term variables s,t,u,v,w,x,y,z etc., which
he interpreted as standing for sets, the standard “Boolean” operators on sets
(complementation indicated by −, union indicated by +, intersection indicated
by ·), constants for the universal and empty set (1 and 0), and the identity
sign (=) used to form equations. He formulated many of the standard “laws”
of Boolean algebra, including association, commutation, and distributions,
and noted many of the properties of complementation and the universal and
empty sets. He symbolized Aristotle’s four categorical propositions, relative
to subject y and predicate x, by giving names of convenience V (V 6= 0) to
sets that intersect appropriately with y and x forming subsets:

Boole Sets
Every x is y: x = x · y x ⊆ y
No x is y: 0 = x · y x ⊆ ȳ
Some x is y: V = V · x · y x ∩ y 6= ∅
Some x is not y: V = V · x · (1 − y) x ∩ ȳ 6= ∅

Boole was not interested in axiom systems, but in the theory of inference.
In his system it could be shown that the argument from p1, . . . , pn to q is valid

1The structures we call ’Boolean algebras’ were not defined by Boole but by Jevons (see
below) who advocated the use of the inclusive or.

10 CHAPTER 1. A HISTORY OF SATISFIABILITY

(i.e. p1, . . . , pn |= q) by deriving the equation q from equations p1, . . . , pn by
applying rules of inference, which were essentially cases of algebraic substitu-
tion.

However, Boole’s algebras needed a boost to advance their acceptance.
Gardner [106] cites John Venn (1834-1923) and William Stanley Jevons (1835-
1882) as two significant contributors to this task. Jevons regarded Boole’s work
as the greatest advance since Aristotle but saw some flaws that he believed
kept it from significantly influencing logicians of the day, particularly that it
was too mathematical. To fix this he introduced, in the 1860’s, the “method of
indirect inference” which is an application of reductio ad absurdum to Boolean
logic. For example, to handle ‘All x is y’ and ‘No y is z’ Jevons would write
all possible “class explanations” as triples

xyz, xy¬z, x¬yz, x¬y¬z, ¬xyz, ¬xy¬z, ¬x¬yz, ¬x¬y¬z,

where the first represents objects in classes x, y, and z, the second represents
objects in classes x and y but not in z, and so on2. Then some of these triples
would be eliminated by the premises which imply they are empty. Thus, x¬yz
and x¬y¬z are eliminated by ‘All x is y’ and xyz and ¬xyz are eliminated by
‘No y is z’. Since no remaining triples contain both x and z, one can conclude
‘No x is z’ and ‘No z is x’.

Although Jevons’ system is powerful it has problems with some statements:
for example, ‘Some x is y’ cannot eliminate any of the triples xyz and xy¬z
since at least one but maybe both represent valid explanations. Another prob-
lem is the exponential growth of terms, although this did not seem to be a
problem at the time3. Although the reader can see x, y and z taking truth
values 0 or 1, Jevons did not appreciate the fact that truth-value logic would
eventually replace class logic and his attention was given only to the latter.
He did build a logic machine (called a “logic piano” due to its use of keys)
that can solve five term problems [150] (1870). The reader is refered to [106]
for details.

What really brought clarity to Boolean logic, though, was the contribution
of Venn [272] (1880) of which the reader is almost certainly acquainted since
it touches several fields beyond logic. We quote the elegantly stated passage
of [106] explaining the importance of this work:

2Jevons did not use ¬ but lower and upper case letters to distinguish inclusion and
exclusion.

3Nevertheless, Jevons came up with some labor saving devices such as inked rubber
stamps to avoid having to list all possibilities at the outset of a problem.

1.7. FREGE, LOGICISM, AND QUANTIFICATION LOGIC 11

It was of course the development of an adequate symbolic notation that reduced
the syllogism to triviality and rendered obsolete all the quasi-syllogisms that had
been so painfully and exhaustively analyzed by the 19th century logicians. At the
same time many a controversy that once seemed so important no longer seemed
so. ... Perhaps one reason why these old issues faded so quickly was that, shortly
after Boole laid the foundations for an algebraic notation, John Venn came forth
with an ingenious improvement to Euler’s circles4. The result was a diagrammatic
method so perfectly isomorphic with the Boolean class algebra, and picturing the
structure of class logic with such visual clarity, that even a nonmathematically
minded philosopher could “see” what the new logic was all about.

As an example, draw a circle each for x, y, and z and overlap them so all
possible intersections are visible. A point inside circle x corresponds to x and
a point outside circle x corresponds to ¬x and so on. Thus a point inside circles
x and y but outside circle z corresponds to Jevons’ xy¬z triple. Reasoning
about syllogisms follows Jevons as above except that the case ‘Some x is y’ is
handled by placing a mark on the z circle in the region representing xy which
means it is not known whether the region xyz or xy¬z contains the x that is
y. Then, if the next premise is, say, ‘All y is z’, the xy¬z region is eliminated
so the mark moves to the xyz region it borders allowing the conclusion ‘Some
z is x’. Since the connection between 0-1 logic and Venn circles is obvious,
syllogisms can be seen as just a special case of 0-1 logic.

The results of Boole, Jevons, and Venn rang down the curtain on Aris-
totelian syllogisms, ending a reign of over 2000 years. In the remainder of this
chapter syllogisms will appear only once, and that is to show cases where they
are unable to represent common inferences.

1.7 Frege, logicism, and quantification logic

In the nineteenth century mathematicians like Cauchy and Weierstrass put
analysis on a clear mathematical footing by precisely defining its central terms.
George Cantor (1845-1918) extended their work by formulating a more global
theory of sets that allowed for the precise specification of such important de-
tails as when sets exist, when they are identical, and what their cardinality
is. Cantor’s set theory was still largely intuitive and imprecise, though math-
ematicians like Dedekind and Peano had axiomatized parts of number theory.
Motivated as much by philosophy as logic, the mathematician Gottlob Frege
(1848-1925) conceived a project called logicism to deduce from the laws of logic
alone “all of mathematics,” by which he meant set theory, number theory, and
analysis [184]. Logicism as an attempt to deduce arithmetic from the axioms
of logic was ultimately a failure. As a research paradigm, however, it made
the great contribution of making clear the boundaries of “formal reasoning,”

3The difference between Euler circles and Venn circles is that Venn circles show all
possible overlaps of classes while there is no such requirement for Euler circles. Therefore,
Euler circles cannot readily be used as a means to visualize reasoning in Boolean logic.
Leibniz and Ramon Lull also used Euler-like circles [27].

12 CHAPTER 1. A HISTORY OF SATISFIABILITY

and has allowed deep questions to be posed, but which are still unanswered,
about the nature of mathematical truth.

Frege employed a formal language of his own invention, called “concept
notation” (Begriffsschrift). In it he invented a syntax which is essential to the
formal language we know today for sentential and quantificational logic, and
for functions in mathematics. In his Grundgesetze der Arithmetik (1890) he
used a limited number of “logical axioms,” which consisted of five basic laws
of sentential logic, several laws of quantifiers, and several axioms for functions.
When he published this work, he believed that he had succeeded in defining
within his syntax the basic concepts of number theory and in deducing their
fundamental laws from his axioms of logic alone.

1.8 Russell and Whitehead

Bertrand Russell (1882-1970), however, discovered that he could prove in
Frege’s system his notorious paradox: if the set of all sets that are not mem-
bers of themselves is a member of itself, then, by definition, it must not be a
member of itself; and if it is not a member of itself then, by definition, it must
be a member of itself.

In Principia Mathematica (1910-13), perhaps the most important work of
early modern logic, Russell and Whitehead simplified Frege’s logical axioms of
functions by substituting for a more abstract set describing sets and relations.
One of the great weaknesses of traditional logic had been its inability to repre-
sent inferences that depend on relations. For example, in the proof of Propo-
sition 1 of his Elements Euclid argues, regarding lines, that if AC=AB and
BC=AB, it follows by commutativity that CA=AB, and hence that AC=BC
(by either the subsitutivity or transitivity or identity). But, the requirement
of Aristotelian logic that all propositions take subject-predicate form ‘S is P ’
makes it impossible to represent important grammatical facts: for example,
that in a proposition AC = AB, the subject AC and direct object AB are
phrases made up of component terms A, B, and C, and the fact that the
verb = is transitive and takes the direct object AB. The typical move was to
read “=AC” as a unified predicate and to recast equations in subject-predicate
form:

AC = AB: the individual AC has the property being-identical-to-AB
BC = AB: the individual BC has the property being-identical-to-AB
AC = BC: the individual AC has the property being-identical-to-BC

But the third line does not follow by syllogistic logic from the first two.

One of the strange outcomes of early logic is that syllogistic logic was so
unsuccessful at representing mathematical reasoning that in the 2000 years in

1.9. GÖDEL’S INCOMPLETENESS THEOREM 13

which it reigned there was only one attempt to reproduce geometrical proofs
using syllogisms; it did not occur until the 16th century, and it was unsuc-
cessful [134]. Boole’s logic shared with Aristotle’s an inability to represent
relations. Russell, however, was well aware both of the utility of relations in
mathematics and the need to reform syntax to allow for their expression [239].

Accordingly, the basic notation of Principia allows for variables, one-place
predicates standing for sets, and n-place predicates standing for relations. For-
mulas were composed using the sentential connectives and quantifiers. With
just this notation it was possible to define all the constants and functions nec-
essary for arithmetic, and to prove with simplified axioms a substantial part
of number theory. It appeared at first that Principia had vindicated logicism:
arithmetic seemed to follow from logic.

1.9 Gödel’s incompleteness theorem

In 1931, Kurt Gödel astounded the mathematical world by proving that the
axiom system of Principia, and indeed any axiom system capable of formulat-
ing the laws of arithmetic, is and must be incomplete in the sense that there
will always be some truth of arithmetic that is not a theorem of the system.
Gödel proved, in short, that logicism is false - that mathematics in its entirety
cannot be deduced from logic. Gödel’s result is sweeping in its generality. It
remains true, however, that limited parts of mathematics are axiomatizable,
for example first-order logic. It is also true that, although incomplete, math-
ematicians as a rule still stick to axiomatic formulations as their fundamental
methodology even for subjects that they know must be incomplete. Axiomatic
set theory, for example, contains arithmetic as a part and is therefore provably
incomplete. But axiomatics is still the way set theory is studied even within
its provable limitations.

Although logicism proved to be false, the project placed logic on its modern
foundations. Principia standardized the modern notation for sentential and
quantificational logic. In the 1930s Hilbert and Bernays christened “first-
order” logic as that part of the syntax in which quantifiers bind only variables
over individuals, and “higher-order” logic as the syntax in which variables bind
predicates, and predicates of predicates, etc.

1.10 Effective process and recursive functions

As logic developed in the 20th century, the importance of effective decidablilty
(see Section 1.3) increased and defining effective decidablility itself became
a research goal. However, since defining any concept that incorporates as
a defining term “epistemic transparency” would require a background theory

14 CHAPTER 1. A HISTORY OF SATISFIABILITY

that explained “knowledge,” any direct definition of effective process remained
elusive. This difficulty motivated the inductive definitions of recursive func-
tion theory, Turing machines, lambda calculus, and more, which, by Church’s
thesis, succeeds in providing an indirect definition of effective process.

One outcome of logicism was the clarification of some of the basic concepts
of computer science: for example, the notion of recursive functions which
are supposed to be what a mathematician would intuitively recognize as a
“calculation” on the natural numbers. Gödel, in his incompleteness paper
of 1931, gave a precise formal definition of the class of primitive recursive
functions, which he called “recursive functions.” Gödel first singled out three
types of functions that all mathematicians agree are calculations and called
these recursive functions. He then distinguished three methods of defining new
functions from old. These methods moreover were such that everyone agreed
they produced a calculation as an output if given calculations as inputs. He
then defined the set of recursive functions as the closure of the three basic
function types under the three construction methods.

Given the definition of recursive function, Gödel continued his incomplete-
ness proof by showing that for each calculable function, there is a predicate in
the language of Principia that has that function as its extension. Using this
fact, he then showed, in particular, that Principia had a predicate T that had
as its extension the theorems of Principia. In an additional step he showed
that Principia also possesses a constant c that stands for the so-called liar
sentence ¬Tc, which says in effect “This sentence is not a theorem.” Finally,
he demonstrated both that ¬Tc is a truth of arithmetic and that it is not a
theorem of Principia. He proved, therefore, that the axiom system failed to
capture one of the truths of arithmetic and was therefore incomplete.

Crucial to the proof was its initial definition of recursive function. Indeed,
by successfully analyzing “effective process,” Gödel made a major contribu-
tion to theoretical computer science: the computable function. However, in
his Princeton lectures of 1934, Gödel, attributing the idea of general recursive
functions to a suggestion of Herbrand, did not commit himself to whether all
effective functions are characterized by his definition. In 1936, Church [57]
and Turing [268] independently proposed a definition of the effectively com-
putable functions. It’s equivalence with Gödel’s definition was proved in 1943
by Kleene [166]. Emil Post (1897-1954), Andrei Markov (1903-1979), and oth-
ers confirmed Gödel’s work by providing alternative analyses of computable
function that are also provably coextensive with his.

1.11 Herbrand’s Theorem

Herbrand’s theorem relates issues of validity and logical truth into ones of
satisfiability, and issues of satisfiability into ones concerning the definition of

1.12. MODEL THEORY AND SATISFIABILITY 15

computable functions on syntactic domains. The proof employs techniques
important to computer science. A Herbrand model for a formula of first-order
logic has as its domain literally those terms generated from terms that occur
in the formula p. Moreover, the predicates of the model are true of a term if
and only if the formula asserting that the predicate holds of the term occurs
in p. The first part of Herbrand’s theorem says that p is satisfiable if and only
if it is satisfied in its Herbrand model.

Using techniques devised by Skolem, Herbrand showed that the quantified
formula p is satisfiable if and only if a specific set of its truth-functional in-
stantiations, each essentially a formula in sentential logic, is satisfiable. Thus,
satisfiability of p reduces to an issue of testing by truth-tables the satisfiability
of a potentially infinite set S of sentential formulas. Herbrand showed that, for
any first-order formula p, there is a decision function f such that f(p) = 1 if p
is unsatisfiable because, eventually, one of the truth-functions in S will come
out false in a truth-table test, but f(p) may be undefined when p is satisfiable
because the truth-table testing of the infinite set S may never terminate.

1.12 Model theory and Satisfiability

Although ideas in semantics were central to logic in this period, the primary
framework in which logic was studied was the axiom system. But the seemingly
obvious need to define the grammar rules for a formal language was skipped
over until Gödel gave a completely formal definition of the formulas of his
version of simple type theory in his 1931 paper [111].

In the late nineteenth and early twentieth centuries Charles Sanders Peirce,
see [221], and Ludwig Wittgenstein [276] had employed the two-valued truth-
tables for sentential logic. In 1936 Marshall Stone proved that the more general
class of Boolean algebras is of fundamental importance for the interpretation
of classical logic. His “representation theorem” showed that any interpretation
of sentential logic that assigns to the connectives the corresponding Boolean
operators and defines validity as preserving a “designated value” defined as
a maximal upwardly closed subset of elements of the algebra (called a “fil-
ter”) has as its logical truths and valid arguments exactly those of classical
logic [258]. The early decades of the twentieth century also saw the devel-
opment of many-valued logic, in an early form by Peirce [224] and then in
more developed versions by Polish logicians lead by Jan Łukasiewicz (1878-
1956). Thus, in sentential logic the idea of satisfiability was well understood
as “truth relative to an assignment of truth-values” in a so-called “logical
matrix” of truth-functions.

A precise notion of satisfiability for first-order logic, however, was not de-
veloped until the 1930s in the work of Alfred Tarski (1902-1983) [261, 262, 263].
Tarski’s task was to define a set of necessary and sufficient conditions for “p

16 CHAPTER 1. A HISTORY OF SATISFIABILITY

is true,” for any formula p of first-order syntax. His solution was not to define
the idea in a single phrase applicable to all formulas, but, like Gödel, to give
an inductive definition, first defining truth for basic formulas and then extend-
ing the definition to more complex formulas. The problem was made complex,
however, by the fact that, unlike sentential logic in which the truth-value of the
parts immediately determine that of the whole (by reference to truth-tables),
when the whole expression is universally quantified, it is unclear how its truth
is determined by the interpretation of its part. How does the “truth” of the
open formula Fx determine that of ∀x : Fx?

Tarski solved the problem in two stages. In the first stage he assigned
fixed interpretations to the variables. Having done so, it is possible to say when
∀x : Fx is true if we know whether Fx is true under its various interpretations.
If Fx is true under all interpretation of x, then ∀x : Fx is also true under
each of these interpretations. If Fx is false under even one interpretation
of x, however, ∀x : Fx is false under any interpretation of the variables.
Tarski coined the technical term satisfaction to refer to truth relative to an
interpretation of variables.

Let A = 〈D,R〉 be a structure and define a variable assignment as any
function s that assigns to each variable an entity in D. Given R and s, all
the basic expressions of the syntax have a referent relative to D. We can now
inductively define “p is satisfied relative to A and s.” The atomic formula
Ft1, . . . , tn is satisfied relative to A and s if and only if the interpretations
of t1, . . . , tn in R and s stand in the relation assigned by R to F . The “sat-
isfaction” of molecular formulas made up by the sentential connectives are
determined by the two-valued truth-tables depending on whether or not their
parts are satisfied. Finally, ∀x : Fx is satisfied relative to A and s if and only
if Fx is satisfied relative to R and every variable assignment s. The notation
for “p is satisfied relative to A and s” is A |=s p.

The second stage of Tarski’s definition is to abstract away from a variable
assignment and define the simpler notion “p is true relative to A.” His idea
at this stage is to interpret an open formula Fx as true in this general sense
if it is “always true” in the sense of being satisfied under every interpretation
of its variables. That is, he adopts the simple formula: p is true relative to A
if and only if, for all variable assignments s, p is satisfied relative to A and s.
In formal notation, A |= p if and only if, for all s, A |=s p.

Logicians have adopted the common practice of using the term “satisfied
in a structure” to mean what Tarski called “true in a structure.” Thus, it is
common to say that p is satisfiable if there is some structure A such that p
is true in A, and that a set of formulas X is satisfiable if and only if there is
some structure A such that for all formulas p in X, p is true (satisfied) in A.

1.13. COMPLETENESS OF FIRST-ORDER LOGIC 17

1.13 Completeness of first-order logic

First-order logic has sufficient expressive power for the formalization of virtu-
ally all of mathematics. To use it requires a sufficiently powerful axiom system
such as the Zermelo-Fraenkel set theory with the axiom of choice (ZFC). It is
generally accepted that all of classical mathematics can be formalized in ZFC.

Proofs of completeness of first-order logic under suitable axiom systems
date back at least to Gödel in 1929. In this context, completeness means that
all logically valid formulas of first-order logic can be derived from axioms and
rules of the underlying axiom system. This is not to be confused with Gödel’s
incompleteness theorem which states that there is no consistent axiom system
for the larger set of truths of number theory (which includes the valid formulas
of first-order logic as a proper subset) because it will fail to include at least
one truth of arithmetic.

Tarski’s notion of truth in a structure introduced greater precision. It was
then possible to give an elegant proof that first-order logic is complete under
its usual axiom systems and sets of inference rules. Of particular interest is the
proof due to Leon Henkin (1921-2006) that makes use of two ideas relevant to
this book: satisfiability and a structure composed of syntactic elements [132]
(1949). Due to the relationship of validity to satisfiability, Henkin reformulated
the difficult part of the theorem as: if a set of formulas is consistent, then it
is satisfiable. He proved this by first extending a consistent set to what he
calls a maximally consistent saturated set, and then showing that this set
is satisfiable in a structure made up from the syntactic elements of the set.
Although differing in detail, the construction of the structure is similar to that
of Herbrand.

Herbrand models and Henkin’s maximally consistent saturated sets are
relevant prototypes of the technique of constructing syntactic proxies for con-
ventional models. In complexity theory, the truth of predicates is typically
determined relative to a structure with a domain of entities that are programs
or languages which themselves have semantic content that allow one to deter-
mine a corresponding, more conventional, model theoretic structure. In that
sense, the program or language entities can be said to be a proxy for the con-
ventional model and the predicates are second-order, standing for a property
of sets.

1.14 Application of logic to circuits

Claude Shannon provided one of the bridges connecting the path of logic over
the centuries to its practical applications in the information and digital age.
Another bridge is considered in the next section. Whereas the study of logic
for thousands of years was motivated by a desire to explain how humans use

18 CHAPTER 1. A HISTORY OF SATISFIABILITY

information and knowledge to deduce facts, particularly to assist in decision
making, Shannon, as a student at MIT, saw propositional logic as an op-
portunity to make rigorous the design and simplification of switching circuits.
Boolean algebra, appreciated by a relatively small group of people for decades,
was ready to be applied to the fledgling field of digital computers.

In his master’s thesis [256] (1940), said by Howard Gardner of Harvard
University to be “possibly the most important, and also the most famous,
master’s thesis of the century,” Shannon applied Boolean logic to the design
of minimal circuits involving relays. Relays are simple switches that are either
“closed,” in which case current is flowing through the switch or “open,” in
which case current is stopped. Shannon represented the state of a relay with
a variable taking value 1 if open and the value 0 if closed. His algebra used
the operator ’+’ for “or” (addition - to express the state of relays in series), ’·’
for “and” (multiplication - to express the state of relays in parallel), and his
notation for the negation of variable x was x′.

The rigorous synthesis of relay circuits entails expressing and simplifying
complex Boolean functions of many variables. To support both goals Shannon
developed two series expansions for a function, analogous, in his words, to
Taylor’s expansion on differentiable functions. He started with

f(x1, x2, ..., xn) = x1 · f(1, x2, ..., xn) + x′1 · f(0, x2, ..., xn)

which we recognize as the basic splitting operation of DPLL algorithms and
the Shannon expansion which is the foundation for Binary Decision Diagrams
(Section 1.19), and its dual

f(x1, x2, ..., xn) = (f(0, x2, ..., xn) + x1) · (f(1, x2, ..., xn) + x′1).

Using the above repeatedly he arrived at the familiar DNF canonical form

f(x1, x2, ..., xn) = f(0, 0, ..., 0) · x′1 · x′2 · ... · x′n +

f(1, 0, ..., 0) · x1 · x′2 · ... · x′n +

f(0, 1, ..., 0) · x′1 · x2 · ... · x′n +

...

f(1, 1, ..., 1) · x1 · x2 · ... · xn

and its familiar CNF dual. These support the expression of any relay circuit
and, more generally, any combinational circuit. To simplify, he introduced the
following operations:

x = x+ x = x+ x+ x = ...

x+ x · y = x

x · f(x) = x · f(1)

x′ · f(x) = x′ · f(0)

x · y + x′ · z = x · y + x′ · z + y · z

1.15. RESOLUTION 19

and their duals. In the last operation the term y ·z is the consenus of terms x·y
and x′ · z. The dual of the last operation amounts to adding a propositional
resolvent to a CNF clause set. The first two operations are subsumption rules.

In his master’s thesis Shannon stated that one can use the above rules to
achieve minimal circuit representations but did not offer a systematic way to do
so. Independently, according to Brown [44], Archie Blake, an all but forgotten
yet influential figure in Boolean reasoning, developed the notion of consensus
in his Ph.D. thesis [34] of 1937. Blake used consensus to express Boolean func-
tions in a minimal DNF form with respect to their prime implicants (product
g is an implicant of function h if g · h′ = 0 and is prime if it is minimal in
literals) and subsumption. An important contribution of Blake was to show
that DNFs are not minimized unless consensus is not possible. The notion of
concensus was rediscovered by Samson and Mills [240] (1954) and Quine [233]
(1955). Later, Quine [234] (1959) and McCluskey [199] (1959) provided a sys-
tematic method for the minimization of DNF expressions through the notion of
essential prime implicants (necessary prime implicants) by turning the 2-level
minimization problem into a covering problem. This was perhaps the first con-
frontation with complexity issues: although they did not know it at the time,
the problem they were trying to solve is NP-complete and the complexity of
their algorithm was O(3n/

√
n), where n is the number of variables.

1.15 Resolution

Meanwhile, the advent of computers stimulated the emergence of the field
of automated deduction. Martin Davis has written a history of this period
in [81] on which we base this section. Early attempts at automated deduc-
tion were aimed at proving theorems from first-order logic because, as stated
in Section 1.13, it is accepted that given appropriate axioms as premises, all
reasoning of classical mathematics can be expressed in first-order logic. Propo-
sitional satisfiability testing was used to support that effort.

However, since the complexity of the problem and the space requirements
of a solver were not appreciated at the time, there were several notable failures.
At least some of these determined satisfiability either by simple truth table
calculations or expansion into DNF and none could prove anything but the
simplest theorems. But, each contributed something to the overall effort.
According to Davis [81], Gilmore’s [109] (1960) system served as a stimulus
for others and Prawitz [229] (1960) adopted a modified form of the method
of semantic tableaux. Also notable were the “Logic Theory Machine” of [215]
(1957), which used the idea of a search heuristic, and the Geometry machine
of [107] (1959), which exploited symmetry to reduce proof size.

Things improved when Davis and Putnam proposed using CNF for satisfi-
ability testing as early as 1958 in an unpublished manuscript for the NSA [82].

20 CHAPTER 1. A HISTORY OF SATISFIABILITY

According to Davis [81], that manuscript cited all the essentials of modern
DPLL variants. These include, in the words of Davis:

1. The one literal rule also known as the unit clause rule.

2. The affirmative-negative rule also known as the pure literal rule.

3. The rule for eliminating atomic formulas: that is, replace

(v ∨ l1,1 ∨ . . . ∨ l1,k1) ∧ (¬v ∨ l2,1 ∨ . . . ∨ l2,k2) ∧ C

with
(l1,1 ∨ . . . ∨ l1,k1 ∨ l2,1 ∨ . . . ∨ l2,k2) ∧ C

if literals l1,i and l2,j are not complementary for any i, j.

4. The splitting rule, called in the manuscript ‘the rule of case analysis.’

Observe that rule 3. is ground resolution: the CNF expression it is applied
to having come from a prenex form with its clauses grounded. The published
version of this manuscript is the often cited [83] (1960). The Davis-Putnam
procedure, or DPP, reduced the size of the search space considerably by elim-
inating variables from a given expression. This was done by repeatedly choos-
ing a target variable v still appearing in the expression, applying all possible
ground resolutions on v, then eliminating all remaining clauses still containing
v or ¬v.

Loveland and Logemann attempted to implement DPP but they found
that ground resolution used too much RAM, which was quite limited in those
days. So they changed the way variables are eliminated by employing the
splitting rule: recursively assigning values 0 and 1 to a variable and solving
both resulting subproblems [84] (1962). Their algorithm is, of course, the
familiar DPLL.

Robinson also experimented with DPP and, taking ideas from both DPP

and Prawitz, he generalized ground resolution so that instead of clauses having
to be grounded to use resolution, resolution was lifted directly to the Skolem
form [235, 236] (1963,1965). This is, of course, a landmark result in mechani-
cally proving first-order logic sentences.

Resolution was extended by Tseitin in [267] (1968) who showed that, for
any pair of variables a, b in a given CNF expression φ, the following expression
may be appended to φ:

(z ∨ a) ∧ (z ∨ b) ∧ (¬z ∨ ¬a ∨ ¬b)

where z is a variable not in φ. The meaning of this expression is: either a and
b both have value 1 or at least one of a or b has value 0. Judicious use of such
extensions can result in polynomial size refutations for problems that have no

1.16. THE COMPLEXITY OF RESOLUTION 21

polynomial size refutations without extension, a notable example being the
pigeon hole formulas. By adding variables not in φ one obtains, in linear
time, a satisfiability-preserving translation from any propositional expression
to CNF with at most a constant factor blowup in expression size.

After this point the term satisfiability was used primarily to describe the
problem of finding a model for a Boolean expression. The complexity of Sat-
isfiability became the major issue due to potential practical applications for
Satisfiability. Consequently, work branched in many directions. The following
sections describe most of the important branches.

1.16 The complexity of resolution

Perhaps the theoretically deepest branch is the study of the complexity of res-
olution. As seen in previous sections, the question of decidability dominated
research in logic until it became important to implement proof systems on a
computer. Then it became clear that decidable problems could still be ef-
fectively unsolvable due to space and time limitations of available machinery.
Thus, many researchers turned their attention to the complexity issues associ-
ated with implementing various logic systems. The most important of these,
the most relevant to the readers of this chapter, and the subject of this section
is the study of resolution refutations of contradictory sets of CNF clauses (in
this section clause will mean CNF clause).

Rephrasing the “rule for eliminating atomic formulas” from the previous
section: if A∨ l and B ∨¬l are clauses, then the clause A∨B may be inferred
by the resolution rule, resolving on the literal l. A resolution refutation of a
set of clauses Σ is a proof of the empty clause from Σ by repeated applications
of the resolution rule.

Refutations can be represented as trees or as sequences of clauses; the worst
case complexity differs considerably depending on the representation. We shall
distinguish between the two by describing the first system as “tree resolution,”
the second simply as “resolution.”

Lower bounds on the size of resolution refutations provide lower bounds
on the running time of algorithms for the Satisfiability problem. For example,
consider the familiar DPLL algorithm that is the basis of many of the most
successful algorithms for Satisfiability. If a program based on the splitting rule
terminates with the output “The set of clauses Σ is unsatisfiable,” then a trace
of the program’s execution can be given in the form of a binary tree, where
each of the nodes in the tree is labeled with an assignment to the variables in
Σ. The root of the tree is labeled with the empty assignment, and if a node
other than a leaf is labeled with an assignment φ, then its children are labeled
with the assignments φ[v := 0] and φ[v := 1] that extend φ to a new variable
v; the assignments labeling the leaves all falsify a clause in Σ. Let us call

22 CHAPTER 1. A HISTORY OF SATISFIABILITY

such a structure a “semantic tree,” an idea introduced by Robinson [237] and
Kowalski and Hayes [170].

A semantic tree for a set of clauses Σ can be converted into a tree resolution
refutation of Σ by labeling the leaves with clauses falsified by the assignment at
the leaves, and then performing resolution steps corresponding to the splitting
moves (some pruning may be necessary in the case that a literal is missing
from one of the premisses). It follows that a lower bound on the size of
tree resolution refutations for a set of clauses provides a lower bound on the
time required for a DPLL-style algorithm to certify unsatisfiability. This lower
bound applies no matter what strategies are employed for the order of variable
elimination.

The first results on the complexity of resolution were proved by Grigori
Tseitin in 1968 [267]. In a remarkable pioneering paper, Tseitin showed that
for all n > 0, there are contradictory sets of clauses Σn , containing O(n2)
clauses with at most four literals in each clauses, so that the smallest tree
resolution refutation of Σn has 2Ω(n) leaves. Tseitin’s examples are based on
graphs. If we assign the values 0 and 1 to the edges of a finite graph G, we can
define a vertex v in the graph to be odd if there are an odd number of vertices
attached to v with the value 1. Then Tseitin’s clauses Σ(G) can be interpreted
as asserting that there is a way of assigning values to the edges so that there
are an odd number of odd vertices. The set of clauses Σn mentioned above is
Σ(Gn), where Gn is the n× n square grid.

Tseitin also proved some lower bounds for resolution but only under the
restriction that the refutation is regular. A resolution proof contains an ir-
regularity if there is a sequence of clauses C1, . . . , Ck in it, so that Ci+1 is the
conclusion of a resolution inference of which Ci is one of the premisses, and
there is a variable v so that C1 and Ck both contain v, but v does not occur
in some intermediate clause Cj , 1 < j < k. In other words, an irregularity
occurs if a variable is removed by resolution, but is later introduced again in
a clause depending on the conclusion of the earlier step. A proof is regular if
it contains no irregularity. Tseitin showed that the lower bound for Σn also
applies to regular resolution. In addition, he showed that there is a sequence
of clauses Πn so that there is a superpolynomial speedup of regular resolu-
tion over tree resolution (that is to say, the size of the smallest tree resolution
refutation of Πn is not bounded by any fixed power of the size of the smallest
regular refutation of Πn).

Tseitin’s lower bounds for the graph-based formulas were improved by Zvi
Galil [105], who proved a truly exponential lower bound for regular resolution
refutations of sets of clauses based on expander graphs En of bounded degree.
The set of clauses Σ(En) has size O(n), but the smallest regular resolution
refutation of Σ(En) contains 2Ω(n) clauses.

The most important breakthrough in the complexity of resolution was made

1.16. THE COMPLEXITY OF RESOLUTION 23

by Armin Haken [124], who proved exponential lower bounds for the pigeonhole
clauses PHCn. These clauses assert that there is an injective mapping from
the set {1, . . . , n + 1} into the set {1, . . . , n}. They contain n + 1 clauses
containing n literals asserting that every element in the first set is mapped to
some element of the second, and O(n3) two-literal clauses asserting that no
two elements are mapped to the same element of {1, . . . , n}. Haken showed
that any resolution refutation of PHCn contains 2Ω(n) clauses.

Subsequently, Urquhart [271] adapted Haken’s argument to prove a truly
exponential lower bound for clauses based on expander graphs very similar to
those used earlier by Galil. The technique used in Urquhart’s lower bounds
were employed by Chvátal and Szemerédi [59] to prove an exponential lower
bound on random sets of clauses. The model of random clause sets is that of
the constant width distribution discussed below in Section 1.18. Their main
result is as follows: if c, k are positive integers with k ≥ 3 and c2−k ≥ 0.7, then
there is an ǫ > 0, so that with probability tending to one as n tends to infinity,
the random family of cn clauses of size k over n variables is unsatisfiable and
its resolution complexity is at least (1 + ǫ)n.

The lower bound arguments used by Tseitin, Galil, Haken and Urquhart
have a notable common feature. They all prove lower bounds on size by
proving lower bounds on width – the width of a clause is the number of literals
it contains, while the width of a set of clauses is the width of the widest clause
in it. If Σ is a contradictory set of clauses, let us write w(Σ) for the width of
Σ, and w(Σ ⊢ 0) for the minimum width of a refutation of Σ.

The lower bound techniques used in earlier work on the complexity of
resolution were generalized and unified in a striking result due to Ben-Sasson
and Wigderson [31]. If Σ is a contradictory set of clauses, containing the
variables V , let us write S(Σ) for the minimum size of a resolution refutation
of Σ. Then the main result of [31] is the following lower bound:

S(Σ) = exp

(

Ω

(

(w(Σ ⊢ 0) − w(Σ))2

|V |

))

.

This lower bound easily yields the lower bounds of Urquhart [271], as well
as that of Chvátal and Szemerédi [59] via a width lower bound on resolution
refutations.

Tseitin was the first to show a separation between tree resolution and
general resolution, as mentioned above. The separation he proved is fairly
weak, though superpolynomial. Ben-Sasson, Impagliazzo and Wigderson [32]
improved this to a truly exponential separation between the two proof systems,
using contradictory formulas based on pebbling problems in directed acyclic
graphs.

These results emphasize the inefficiency of tree resolution, as opposed to
general resolution. A tree resolution may contain a lot of redundancy, in the

24 CHAPTER 1. A HISTORY OF SATISFIABILITY

sense that the same clause may have to be proved multiple times. The same
kind of inefficiency is also reflected in SAT solvers based on the DPLL frame-
work, since information accumulated along certain branches is immediately
discarded. This observation has led some researchers to propose improved
versions of the DPLL algorithm, in which such information is stored in the
form of clauses. These algorithms, which go under the name “clause learn-
ing,” lead to dramatic speedups in some cases – the reader is referred to the
paper of Beame, Kautz and Sabharwal [30] for the basic references and some
theoretical results on the method.

1.17 Upper bounds

Deciding satisfiability of a CNF formula φ with n Boolean variables can be
performed in time O(2n|φ|) by enumerating all assignments of the variables.
The number m of clauses as well as the number l of literals of φ are further
parameters for bounding the runtime of decision algorithms for SAT. Note
that l is equal to length(φ) and this is the usual parameter for the analysis of
algorithms. Most effort in designing and analyzing algorithms for SAT solving,
however, are based on the number n of variables of φ.

A first non-trivial upper bound of O(αn
k · |φ|), where αn

k is bounding the
Fibonacci-like recursion

T (1) = T (2) = . . . = T (k − 1) = 1 and

T (n) = T (n− 1) + T (n− 2) + . . .+ T (n− k + 1), for n ≥ k,

for solving k-SAT, k ≥ 3, was shown in [212, 213]. For example, α3 ≥ 1.681,
α4 ≥ 1.8393, and α5 ≥ 1.9276.

The algorithm supplying the bound looks for a shortest clause c from the
current formula. If c has k − 1 or less literals, e.g. c = (x1 ∨ . . . ∨ xk−1) then
φ is split into k − 1 subformulas according to the k − 1 subassignments

1) x1 = 1;
2) x1 = 0, x2 = 1;

. . .
k-1) x1 = x2 = . . . = xk−2 = 0, xk−1 = 1.

If all clauses c of φ have length k, then φ is split into k subformulas as described,
and each subformula either contains a clause of length at most k − 1 or one
of the resulting subformulas only contains clauses of length k. In the former
case, the above mentioned bound holds. In the latter case, the corresponding
subassignment is autark, that is, all clauses containing these variables are
satisfied by this subassignment, so φ can be evaluated according to this autark
subassignment thereby yielding the indicated upper bound.

1.17. UPPER BOUNDS 25

For the case k = 3, the bound was later improved to α3 = 1.497 by a sophis-
ticated case analysis (see [246]). Currently, from [78], the best deterministic
algorithms for solving k-SAT have a run time of

O
(

(2 − 2

k + 1
)n
)

.

For example, the bounds are O(1.5n), O(1.6n), O(1.666...n) for 3,4,and 5
literal clause formulas. These bounds were obtained by the derandomization
of a multistart-random-walk algorithm based on covering codes. In the case
of k = 3 the bound has been further improved to O(1.473n) in [43]. This is
currently the best bound for deterministic 3-SAT solvers.

Two different probabilistic approaches to solving k-SAT formulas have re-
sulted in better bounds and paved the way for improved deterministic bounds.
The first one is the algorithm of Paturi-Pudlak-Zane [227] which is based on
the following procedure:

Determine a truth assignment of the variables of the input formula φ
by iterating over all variables v of φ in a randomly chosen order: If φ
contains a unit clause c = (x), where x = v or v̄, set t(v) such that
t(x) = 1. If neither v nor v̄ occur in a unit clause of φ, then randomly
choose t(v) from {0, 1}. Evaluate φ := t(φ). Iterate this assignment
procedure at most r times or until a satisfying truth assignment t of φ
is found, starting each time with a randomly chosen order of variables
for the assignment procedure.

After r = 2n(1− 1
k
) rounds a solution for a satisfiable formula is found with

high probability [227]. By adding to φ clauses originating from resolving input
clauses up to a certain length this bound can be improved. In case of k = 3, 4,
and 5, the basis of the exponential growth function is 1.36406, 1, 49579, and
1, 56943 [228]. For k ≥ 4 this is currently the best probabilistic algorithm for
solving k-SAT.

The second approach is due to Schöning [244, 245] and extends an idea of
Papadimitriou [226]. That procedure is outlined as follows:

Repeat the following for r rounds: randomly choose an initial truth
assignment t of φ; if t does not satisfy φ, then repeat the following for
three times the number of variables of φ or until a satisfying assignment
t is encountered: select a falsified clause c from φ and randomly choose
and flip a literal x of c.

If the algorithm continues, round after round, without finding a satisfying
assignment nothing definite can be said about the satisfiability of φ. However,
in this case the higher the number of rounds r, the lower the probability that
φ is satisfiable. To guarantee an error probability of e−λ, the number of rounds

26 CHAPTER 1. A HISTORY OF SATISFIABILITY

should be at least O(λ(2k−1
k

)n). For k = 3, 4, and 5 the basis of the exponential
growth is 1.3334, 1.5, and 1.6.

The case of k = 3 has since been improved to O(1.324n) by Iwama and
Tamaki [148]. For CNF formulas of unrestricted clause length the best time

bound for a deterministic solution algorithm is O(2n(1− 1
log(2m)

)), where n is the
number of variables and m the number of clauses. This result, by Dantsin and
Wolpert [79], is obtained from a derandomization of a randomized algorithm by
Schuler [252], of the same time complexity. Dantsin and Wolpert recently im-

proved this bound for randomized algorithms to O
(

2
n(1− 1

ln(m
n)+O ln(ln(m)

)
)

[80].

1.18 Classes of easy expressions

An entire book could be written about the multitude of classes of the Satis-
fiability problem that can be solved in polynomial time so only some of the
classical results will be mentioned here. It is often not enough that a class of
problems is solved in polynomial time - an instance may have to be recognized
as a member of that class before applying an efficient algorithm. Perhaps sur-
prisingly, for some classes the recognition step is unnecessary and for some it
is necessary but not known to be tractable.

All clauses of a 2-SAT expression contain at most two literals. A two
literal clause describes two inferences. For example, inferences for the clause
(x ∨ y) are: 1) if x is 0 then y is 1; and 2) if y is 0 then x is 1. For a given
2-SAT expression an implication graph may be constructed where directed
edges between pairs of literals represent all the inferences of the expression. A
cycle in the inference graph that includes a pair of complementary literals is
proof that no model exists. Otherwise a model may be determined easily with
a depth-first search of the graph, which amounts to applying unit propagation.
A full algorithm is given in [90] (1976). A linear time algorithm is given in [22]
(1979).

All clauses of an expression said to be Horn have at most one positive
literal. This class is important because of its close association with Logic
Programming: for example, the clause (¬v1 ∨ ¬v2 ∨ v) expresses the rule v1 ∧
v2 → v or v1 → v2 → v. However, the notion of causality is generally lost when
translating from rules to Horn expressions. An extremely important property
of Horn expressions is that every satisfiable one has a unique minimum model
with respect to 1 (the unique minimum model is the intersection of all models
of the expression). Finding a model is a matter of applying unit propagation
on positive literals until all positive literals are eliminated, then assigning
all remaining literals the value 0 (if satisfiable, a unique minimum model is
the result). It took a few iterations in the literature to get this universally
understood and the following are the important citations relating to this:[146]

1.18. CLASSES OF EASY EXPRESSIONS 27

(1982), [85] (1984), [254] (1990).

A given expression may be renameable Horn, meaning a change in the
polarity of some variables results in an equivalent Horn expression. Rename-
able Horn expressions were shown to be recognized and solved in linear time
by [186] (1978) and [23] (1980).

A number of polynomially solvable relaxations of Linear Programming
problems were shown to be equivalent to classes of Satisfiability; this work,
quite naturally, originated from the Operations Research community. Repre-
senting CNF expressions as (0,±1) matrices where columns are indexed on
variables and rows indexed on clauses, Satisfiability may be cast as an Integer
Programming problem. If the matrix has a particular structure the Integer
Program can be relaxed to a Linear Program, solved, and the non-integer val-
ues of the solution rounded to 0 or 1. Notable classes based on particular
matrix structures are the extended Horn expressions and what we call the
CC-balanced expressions.

The class of extended Horn expressions was introduced by Chandru and
Hooker [52] (1991). Their algorithm is due to a theorem of Chandrasekaran [51]
(1984). Essentially, a model for a satisfiable expression may be found by ap-
plying unit propagation, setting values of unassigned variables to 1/2 when no
unit clauses remain, and rounding the result by a matrix multiplication. This
algorithm cannot, however, be reliably applied unless it is known that a given
expression is extended Horn and, unfortunately, the problem of recognizing an
expression as extended Horn is not known to be solved in polynomial time.

The class of CC-balanced expressions has been studied by several researchers
(see [61] (1994) for a detailed account of balanced matrices and a description
of CC-balanced formulas). The motivation for this class is the question, for
Satisfiability, when do Linear Programming relaxations have integer solutions?
The satisfiability of a CNF expression can be determined in linear time if it
is known to be CC-balanced and recognizing that a formula is CC-balanced
takes linear time.

Horn, Renameable Horn, Extended Horn, CC-balanced expressions, and
other classes including that of [259] (1991) turn out to be subsumed by a
larger, efficiently solved class called SLUR for Single Lookahead Unit Reso-
lution [251] (1995). The SLUR class is peculiar in that it is defined based
on an algorithm rather than on properties of expressions. The SLUR algo-
rithm recursively selects variables sequentially and arbitrarily, and considers a
one-level lookahead, under unit propagation in both directions, choosing only
one, if possible. If a model is found, the algorithm is successful, otherwise it
“gives up.” An expression is SLUR if, for all possible sequences of variable
selections, the SLUR algorithm does not give up. Observe that due to the
definition of this class, the question of class recognition is avoided. In fact,
SLUR provides a way to avoid preprocessing or recognition testing for several

28 CHAPTER 1. A HISTORY OF SATISFIABILITY

polynomial time solvable classes of SAT when using a reasonable variant of
the DPLL algorithm.

The worst case time complexity of the SLUR algorithm would appear to
be quadratic. However, a simple modification brings the complexity down to
linear: run both calls of unit propagation simultaneously, alternating execution
of their repeat blocks. When one terminates without an empty clause in its
output formula, abandon the other call.

The q-Horn class also originated in the Operations Research community [37,
38] (1990) and for several years was thought to be what was described as the
largest, succinctly expressed class of polynomial time solvable expressions.
This claim was due to a measure on an underlying (0,±1) matrix representa-
tion of clauses called the satisfiability index [39] (1994). The q-Horn class was
also studied as a special case of the maximum monotone decomposition of ma-
trices [265] (1994). We find it easier to describe the efficient solution of q-Horn
expressions by following [266] (1998). Using the (0,±1) matrix representation,
an expression is q-Horn if columns can be multiplied by -1, and permuted, and
rows can be permuted with the result that the matrix has four quadrants as
follows: northeast - all 0s; northwest - a Horn expression; southeast - a 2-
SAT expression; southwest - no +1s. A model may be found in linear time,
if one exists, by finding a model for the northwest quadrant Horn expression,
cancelling rows in the southern quadrants whose clauses are satisfied by that
model, and finding a model for the southeast quadrant 2-SAT expression. It
was shown in [39] (1994) that a CNF expression is q-Horn if and only if its
satisfiability index is no greater than 1 and the class of all expressions with a
satisfiability index greater than 1+1/nǫ, for any fixed ǫ < 1, is NP-complete.
The SLUR and q-Horn classes are incomparable [100] (2003).

The class of linear autarkies was developed by van Maaren [193] (2000)
and shown to include the class of q-Horn formulas. It was also shown to
be incomparable with the SLUR class. An autarky for a CNF formula φ is
a partial assignment that satisfies all those clauses of φ affected by it: for
example, a pure literal is an autarky. Therefore, a subformula obtained by
applying an autarky to φ is satisfiable if and only if φ is. A formula with
(0,±1) matrix representation A has a linear autarky x ∈ Qn, x 6= 0, if Ax ≥
0. In [178] it was shown that a linear autarky can be found in polynomial
time. There exists a simple, efficient decomposition that results in a partial,
autark assignment. Applying this decomposition repeated results in a unique,
linear-autarky-free formula. If the decomposition is repeatedly applied to a
renameable Horn formula without unit clauses what is left is empty and if it
is applied repeatedly to a 2-SAT formula, the formula is unsatisfiable if what
is left is not empty and satisfiable otherwise.

The class of matched expressions was analyzed to provide a benchmark for
testing the claim made for the q-Horn class. This is a class first described
in [264] (1984) but not extensively studied, probably because it seems to be a

1.18. CLASSES OF EASY EXPRESSIONS 29

rather useless and small class of formulas. Establish a bipartite graph Gφ =
(V1, V2, E) for an expression φ where V1 vertices represent clauses, V2 vertices
represent variables, and edge 〈c, v〉 ∈ E if and only if clause c contains v or its
complement. If there is a total matching in Gφ, then φ is said to be matched.
Clearly, matched expression are always satisfiable and are trivially solved. The
matched class is incomparable with the q-Horn and SLUR classes. However,
as is shown in Section 1.21, with respect to frequency of occurrence on random
expressions, matched expressions are far more common than both those classes
together [100] (2003).

The worst case complexity of nested satisfiability, a class inspired by Licht-
enstein’s theorem of planar satisfiability [188] (1982), has been studied in [176]
(1990). Index all variables in an expression consecutively from 1 to n and let
positive and negative literals take the index of their respective variables. A
clause ci is said to straddle another clause cj if the index of a literal of cj is
strictly between two indices of literals of ci. Two clauses are said to overlap
if they straddle each other. A formula is said to be nested if no two clauses
overlap. For example, the following formula is nested

(v6 ∨ v̄7 ∨ v8) ∧ (v2 ∨ v4) ∧ (v̄6 ∨ v̄9) ∧ (v1 ∨ v̄5 ∨ v10).

The class of Nested formulas is quite limited in size for at least the reason
that a nested expression can contain no more than 2m + n literals. Thus,
no expression consisting of k-literal clauses is a nested formula unless m/n <
1/(k − 2). The class of nested expressions is incomparable with both the
SLUR and q-Horn classes. However, by the measure of Section 1.21 (also in
[100] (2003)) a random expression is far more likely to be matched, q-Horn, or
even SLUR than nested. The algorithm for nested expressions is notable for
being quite different than those mentioned above: instead of relying on unit
propagation, it uses dynamic programming to find a model in linear time. The
question of whether the variable indices of a given formula can, in linear time,
be permuted to make the formula nested appears to be open. An extension
to nested satisfiability, also solvable in linear time, has been proposed in [128]
(1993).

None of the classes above covers a significant proportion of unsatisfiable
expressions. Nevertheless, several classes of unsatisfiable expressions have been
identified. It is interesting that most known polynomial time solvable classes
with clauses containing three or more literals either are strongly biased toward
satisfiable expressions or strongly biased toward unsatisfiable expressions.

An expression is said to be minimally unsatisfiable if it is unsatisfiable and
removing any clause results in a satisfiable expression. A minimally unsatisfi-
able expression with n variables must have at least n + 1 clauses [11] (1986).
Every variable of a minimally unsatisfiable expression occurs positively and
negatively in the expression. The class of minimally unsatisfiable formulas is
solved in nO(k) if the number of clauses exceeds the number of variables by a

30 CHAPTER 1. A HISTORY OF SATISFIABILITY

fixed positive constant k [171] (1999) and [172] (2000). Szeider improved this
to O(2k)n4 [260] (2003). Kullmann has generalized this class in [179] (2003)
and continues to find larger versions. Some SAT solvers look for minimally
unsatisfiable sets of clauses to reduce search space size.

A CNF expression is said to be k-BRLR if all resolvents derived from it
have a number of literals bounded by k or if the null clause is deriveable from
resolvents having at most k literals. Obviously, this class is solved in time
bounded by 2k

(

n
k

)

.

1.19 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) were considered for a while to be the best
way to handle some problems that are rooted in real applications, particu-
larly related to circuit design, testing, and verification. They are still quite
useful in various roles [77, 101, 144, 151, 214, 219, 60] and in some ways are
complementary to search [269, 270].

A BDD may be regarded as a DAG representation of the truth table of a
Boolean function. In a BDD non-leaf vertices are labeled as variables, there
are two out-directed edges for each non-leaf vertex, each labeled with value
0 or 1, and two leaves, labeled 1 and 0. There is a single root and any path
from root to a “1” (“0”) leaf indicates an assignment of values to the variables
which causes the represented function to have value 1 (0). A BDD may also
be viewed as representing a search space in which paths to the 1 leaf represent
models.

The attraction to BDDs is due in part to the fact that no subproblem
is represented more than once in a collection of BDDs - this is in contrast to
the tree-like search spaces of DPLL implementations of the 1980s. In addition,
efficient implementations exist for BDD operations such as existential quantifi-
cation, “or,” “and,” and others. The down side is: 1) each path from the root
of a BDD must obey the same variable ordering, so BDDs are not necessarily
a minimal representation for a function; and 2) repeatedly conjoining pairs of
BDDs may create outragiously large intermediate BDDs even though the final
BDD is small. By the late 1990s, DPLL advances such as conflict resolution
(clausal learning), backjumping, restarts, and more gave rise to DAG search
spaces with dynamic variable ordering. The result was improved performance
for search over BDDs in some cases.

BDDs were introduced in [185] (1959) as a data structure based on the
Shannon expansion (see Section 1.14). They were publicized in [40] (1976)
and [12] (1978). But BDDs became most useful with the introduction of
reduced order BDDs by Bryant [45, 46] (1986,1992) and their implementa-
tion [41] (1990) which supports subproblem sharing over collections of BDDs
and the efficient manipulation of those BDDs.

1.19. BINARY DECISION DIAGRAMS 31

A number of operations on BDDs have been proposed over the years to
assist in the efficiency of combining BDDs. One of the most important and
basic operations is existential quantification which arises directly from
Shannon’s expansion of Section 1.14: namely, replace f with f |v=0∨f |v=1. This
operation can be used to eliminate a variable at the expense of first conjoining
all BDDs containing it. It is not clear when existential quantification was first
used but it was probably known very early. An important problem in managing
BDD size is how to simplify a function f (implemented as a BDD), given a
constaint c (implemented as a BDD): that is, replace f with a function f ′ that
is equal to f on the domain defined by c. The operation of restrict [66]
(1990) does this by pruning paths from the BDD of f that are ‘false’ in the
BDD of c. A more complex operation with restrict-like properties but admiting
removal of a BDD from a collection of BDDs at the expense of increasing
the size of some of the remaining BDDs is the constrain or generalized

cofactor operation [67] (1990). Constraining f to c results in a function
h with the property that h(x) = f(µ(x)) where µ(x) is the closest point
to x in c where distance between binary vectors x, y ∈ {0, 1}n is measured
by d(x, y) =

∑

1≤i≤n 2n−i · ((xi + yi) mod 2) under a BDD variable ordering
which matches the index order. Additional minimization operations, based on
restrict, that do not increase BDD size are proposed in [138] (1997).

BDDs were designed primarily for the efficient representation of switching
circuits and their manipulation, but a number of variations on BDDs have
appeared over the years to target related classes of problems. BDDs of vari-
ous kinds have been used successfully to represent relations and formulas to
support symbolic model checking [49, 201] (1992), although more recently,
it has been found that SAT solvers (see Section 1.28) for Bounded Model
Checking [33] (1999) can sometimes achieve even better results. The ZDD,
for Zero-suppressed BDD, introduced in 1993 [205], differs from the BDD in
that a vertex is removed if its 1 edge points to the 0 leaf. This helps im-
prove efficiency when handling sparse sets and representing covers. Thus, the
ZDD has been used successfully on problems in logic synthesis such as repre-
senting an irredundant DNF of an incompletely specified Boolean function [69]
(1993), finding all essential prime implicants in DNF minimization [68] (1994),
factorization [206] (1996), and decomposition [149] (2001). The BMD, for Bi-
nary Moment Diagram, is a generalization of the BDD for handling numbers
and numeric computations, particularly multiplication [47] (1995). The ADD,
for Algebraic Decision Diagram (also known as Multi-Terminal Decision Di-
agram), allows more than two leaves (possibly real-valued) and is useful for
mapping Boolean functions to sets [24] (1993) as might be needed to model
the delay of MOS circuits, for example [200] (2001). The XDD has been used
to efficiently represent equations involving the xor operation. The essential
idea is that vertex x with 1 edge to vertex a and 0 edge to vertex b represents
the equation (x∧a)⊕b = 1. Many other varieties of BDD have been proposed
but there is not enough space to mention them all.

32 CHAPTER 1. A HISTORY OF SATISFIABILITY

1.20 Probabilistic analysis: SAT algorithms

Probabilistic and average-case analysis of algorithms can give useful insight
into the question of what SAT algorithms might be effective and why. Under
certain circumstances, one or more structural properties shared by each of a
collection of formulas may be exploited to solve such formulas efficiently; or
structural properties might force a class of algorithms to require superpoly-
nomial time. Such properties may be identified and then, using probabilistic
analysis, one may argue that these properties are so common that the perfor-
mance of an algorithm or class of algorithms can be predicted for most of a
family of formulas. The first probabilistic results for SAT had this aim.

Probabilistic results of this sort depend on an underlying input distribution.
Although many have been proposed, well-developed histories exist for just two,
plus a few variants, which are defined over CNF inputs. All the results of this
section are based on these two. In what follows, the width of a clause is the
number of literals it contains. The distributions we discuss here are:

1. Variable width distribution: Given integers n, m, and a function p :
N+ ×N+ → [0, 1]. Let V = {v1, ..., vn} be a set of n Boolean variables.
Construct a random clause (disjunction) c by independently adding lit-
erals to c as follows: for each variable vi, 1 ≤ i ≤ n, add literal vi with
probability p(m,n), add literal ¬vi with probability p(m,n) (therefore
add neither vi nor ¬vi with probability 1 − 2p(m,n)). A random input
consists of m independently constructed random clauses and is referred
to below as a random (n,m, p)-CNF expression. In some cases p(m,n)
is independent of m and n and then we use p to represent p(m,n).

2. Constant width distribution: Given integers n, m, and k. Let V =
{v1, ..., vn} be a set of n Boolean variables. Construct a random clause
(disjunction) c by choosing, uniformly and without replacement, k vari-
ables from V and then complementing each, independently, with prob-
ability 1/2. A random input consists of m independently constructed
random clauses and is referred to below as a random (n,m, k)-CNF ex-
pression. Such an input is widely known as a uniform random k-SAT
instance or simply random k-SAT instance.

Variable width distribution

Goldberg was among the first to apply probability to the analysis of SAT
algorithms. He investigated the frequency with which simple backtracking
returns a model quickly on random CNF formulas by providing an average-
case analysis of a variant of DPLL which does not handle pure literals or unit
clauses [115] (1979). The result received a lot of attention when it was first
presented and even 10 years afterward some people still believed it was the
definitive probabilistic result on satisfiability algorithms.

1.20. PROBABILISTIC ANALYSIS: SAT ALGORITHMS 33

Goldberg showed that, for random (n,m, p)-CNF expressions, the DPLL

variant has average complexity bounded from above by O(m−1/ log(p)n) for
any fixed 0 < p < 1. This includes the “unbiased” sample space when p =
1/3 and all expressions are equally likely. Later work [116] (1982) showed
the same average-case complexity even if pure literals are handled as well.
Very many problems confronting the scientific and engineering communities
are unsatisfiable, but Goldberg made no mention of the frequency of occurrence
of unsatisfiable random (n,m, p)-CNF expressions.

However, Franco and Paull [99] (1983) pointed out that large sets of ran-
dom (n,m, p)-CNF expressions, for fixed 0 < p < 1/2, are dominated by
trivial satisfiable expressions: that is, any random assignment of values to
the variables of such a random expression is a model for that expression with
high probability. This result is refined somewhat in [95] (1986) where it is
shown that a random assignment is a model for a random (n,m, p)-CNF ex-
pression with high probability if p > ln(m)/n and a random expression is
unsatisfiable with high probability if p < ln(m)/2n. In the latter case, a
“proof” of unsatisfiability is trivially found with high probability because a
random (n,m, k)-CNF expression for this range of p usually contains at least
one empty clause, which can easily be located, and implies unsatisfiability.
The case p = c ln(m)/n, 1/2 ≤ c ≤ 1 was considered in [98] (1988) where
it was shown that a random (n,m, p)-CNF expression is satisfiable with high
probability if limn,m→∞m1−c/n1−ǫ <∞, for any 0 < ǫ < 1.

Although these results might be regarded as early threshold results (see
Section 1.21) the main impact was to demonstrate that probabilistic analysis
can be highly misleading and requires, among other things, some analysis of
input distribution to ensure that a significant percentage of non-trivial inputs
are generated. They show that random (n,m, p)-CNF expressions, satisfiable
or unsatisfiable, are usually trivially solved because either they contain empty
clauses (we get the same result even if empty or unit clauses are disallowed)
or they can be satisfied by a random assignment. In other words, only a
small region of the parameter space is capable of supporting significantly many
non-trivial expressions: namely, when the average clause width is c ln(m)/n,
1/2 ≤ c ≤ 1. These results demonstrate shortcomings in choosing random
(n,m, p)-CNF expressions for analysis and, because of this, such generators
are no longer considered interesting by many.

Nevertheless, some interesting insights were developed by further analysis
and we mention the most significant ones here. The results are shown graphi-
cally in Figure 1.1 which partitions the entire parameter space of the variable
width distribution according to polynomial-average-time solvability. The ver-
tical axis (p · n) measures average clause width and the horizontal axis (m/n)
measures density. Each result is presented as a line through the chart with a
perpendicular arrow. Each line is a boundary for the algorithm labeling the
line and the arrow indicates that the algorithm has polynomial average time

34 CHAPTER 1. A HISTORY OF SATISFIABILITY

performance in that region of the parameter space that is on the arrow side of
the line (constant and even log factors are ignored for simplicity).

Goldberg’s result is shown as the diagonal line in the upper right corner
of the figure and is labeled Goldberg: it is not even showable as a region
of the parameter space, so there is no arrow there. Iwama analyzed an al-
gorithm which counts models using inclusion-exclusion [147] (1989) and has
polytime-average-time complexity in the region above and to the right of the
line labeled Counting. A random expression generated at a point in that
region satisifes conditions, with high probability, under which the number of
terms in the inclusion-exclusion expansion is polynomial in m and n. How-
ever, every clause of the same random expression is a tautology (contains a
literal and its complement) with high probability. Therefore, this seems to be
another example of a misleading result and, judging from the relation between
the Counting and Goldberg regions in the figure, lessens the significance of
Goldberg’s result even more.

There have been a number of schemes proposed for limiting resolution steps
to obtain polynomial complexity. A simple example is to perform resolution
only if the pivot variable appears once as a positive literal and once as a nega-
tive literal - then, if an empty clause does not exist when no more resolutions
are possible, do a full search for a solution. The conditions under which this
algorithm runs in polynomial average time under random variable width ex-
pressions are too complex to be given here but they are represented by the
regions in Figure 1.1 below the lines labeled Limited Resolution [96] (1991).

If pure literal reductions are added to the algorithm analyzed by Goldberg
then polynomial average time is achieved in the Pure Literals region, con-
siderably improving the result of Goldberg [232] (1985). But a better result,
shown as the region bounded from above by the lines labeled Unit Clauses,
is obtained by performing unit propagation [97] (1993) and is consistent with
the empirically and theoretically demonstrated importance of unit propagation
in DPLL algorithms. Results for Search Rearrangement Backtracking [231]
(1983) are disappointing (shown bounded by the two lines labeled Back-
tracking) but a slightly different variant in which only variables from positive
clauses (a positive clause contains only positive literals) are chosen for elimina-
tion (if there is no positive clause, satisfiability is determined by assigning all
unassigned variables the value 0), has spectacular performance as is shown by
the line labeled Probe Order Backtracking [230] (1997). The combination
of probe order backtracking and unit clauses yield polynomial average time
for random (n,m, p)-CNF expressions at every point of the parameter space
except for some points along the thin horizontal region p · n = c · log(n).

By 1997, what Goldberg had set out to do in 1979, namely show DPLL
has polynomial average time complexity for variable width distributions, had
been accomplished. The research in this area had some notable successes such
as the analysis of probe order backtracking which demonstrated that a slight

1.20. PROBABILISTIC ANALYSIS: SAT ALGORITHMS 35

A
A

A
A

A
A

A
A

A
A

A
AA

@
@

@
@

@
@

@
@

@
@

@
@

@@

@
@

@
@

@
@

@
@

@
@

@
@

@ SS

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
SS

@
@

@
@

@
@

@
@

@@

?

6

��	

��	

��	

-

?

��+

���

m−1/2

1

m1/2

.p n

m−2 m−1 1 m/n

Goldberg

Counting

Backtracking

Backtracking

Pure Literals

Pure Literals

Limited Resolution

Unit Clauses

Unit Clauses & Limited Resolution

Probe Order Backtracking

Figure 1.1: The parameter space of the variable width distribution partitioned
by polynomial-average-time solvability. Pick a point in the parameter space.
Locate the lines with names of algorithms on the side of the line facing the
chosen point. Random formulas generated with parameters set at that point
are solved in polynomial average time by the named algorithms.

36 CHAPTER 1. A HISTORY OF SATISFIABILITY

algorithmic change can have a major effect on perfomance. But, the fact that
nearly every point in the parameter space is covered by an algorithm that has
polynomial average time complexity is rather disturbing, though, since there
are many practical applications where SAT is considered extremely difficult.
Largely for this reason attention shifted to the constant width distribution
and, by the middle of the 1990s, research on the variable width distribution
all but disappeared.

Constant width distribution

Franco and Paull (1983) in [99] (see [225], 1987, for corrections) set out to test
Goldberg’s result on other distributions. They formulated the constant width
distribution and showed that for all k ≥ 3 and every fixed m/n > 0, with
probability 1− o(1), the algorithm analyzed by Goldberg takes an exponential
number of steps to report a result: that is, either to report all (“cylinders” of)
models, or that no model exists. They also showed that a random (n,m, k)-
CNF expression is unsatisfiable with probability tending to 1 when m/n >
− ln(2)/ ln(1 − 2−k). For k = 3 this is m/n > 5.19.

Perhaps the first positive result using the constant width distribution was
presented in [53] (1986) where a non-backtracking, incremental assignment al-
gorithm employing unit propagation, called UC, was shown to find a model
with bounded probability when m/n < O(1) · 2k/k. This work introduced an
analysis tool called “clause-flows” which was refined by Achlioptas [1] (2001)
using a theorem of Wormald [278]. Analysis of clause flows via differential
equations was to be the basic analytic tool for most of the following results in
this area. In [54] (1990) it was shown that a generalization of unit propaga-
tion, called GUC, in which a variable from a “smallest” clause is chosen for
assignment finds a model with probability 1 − o(1) when m/n < O(1) · 2k/k,
k ≥ 4. This was improved by Chvátal and Reed [58] (1992) who showed that
GUC, with assignment rules relaxed if no unit or two literal clauses are present
(called SC for shortest clause), finds a model with probability 1 − o(1) when
m/n < O(1) · 2k/k for k ≥ 3.

Observe that the results of the previous two paragraphs show a gap between
the range m/n > ln(2)/ ln(1 − 2−k) ≈ 2k ln(2), where random expressions are
unsatisfiable with high probability, and m/n < O(1) · 2k/k, where analyzed
non-backtracking incremental assignment algorithms find models for random
expressions with high probability. According to results of Friedgut (1999 -
see Section 1.21) there is a sharp satisfiability threshold rk for every k ≥ 2
(it is still not known whether the threshold depends on n) and the results
above show 2k/k < rk < 2k ln(2). The question of the location of rk was
pondered for quite some time. Most people intuitively believed that rk was
located near 2k ln(2) so the question became known as the ‘Why 2 k?’ problem
(Pittel, 1999). This was verified by Achlioptas, Moore, and Perez in [4, 5]
(2002,2004) who showed that rk = 2k ln(2) − O(k) by applying the second
moment method to a symmetric variant of satisfiability, known as not-all-

1.20. PROBABILISTIC ANALYSIS: SAT ALGORITHMS 37

equal k-SAT (NAE-k-SAT). In NAE-k-SAT the question is whether, for a given
CNF expression, there is a satisfying assignment whose complement is also a
satisfying assignment. Obviously, the class of k-CNF expressions satisfiable in
NAE-k-SAT is a subset of the class satisfiable in the traditional sense. Hence,
for the purposes of finding the threshold, NAE-k-SAT may analyzed instead of
k-SAT. The symmetric nature of NAE-k-SAT results in a low variance in the
number of satisfying assignments and this makes the second moment method
work.

Most interest, though, has centered on the case k = 3. It is believed, from
experiment, that r3 ≈ 4.25. In [53] (1986) it is shown that UC finds a model
with bounded probability when m/n < 8/3 = 2.66.. and, when combined with
a “majority” rule (that is, choose a variable with the maximum difference
between the number of its positive and negative literals if unit propagation
cannot be applied), this improves to m/n < 2.9. Frieze and Suen [103] (1996)
considered SC and GUC and showed that for m/n < 3.003.., both heuris-
tics succeed with positive probability. Moreover, they proved that a modified
version of GUC, called GUCB, which uses a limited form of backtracking,
succeeds almost surely for the same range of m/n. Later, Achlioptas [2] (2000)
analyzed SC, modified slightly to choose two variables at a time from a clause
with two unfalsified literals, for an improvement to m/n ≤ 3.145 with proba-
bility 1 − o(1).

Nearly all the results above apply to myopic algorithms. A non-backtracking,
variable assignment algorithm is called myopic [3] if, under the spectral coa-
lescence of states, the distribution of expressions corresponding to a particular
coalesced state can be expressed by its spectral components alone: that is, by
the number of clauses of width i, for all 1 ≤ i ≤ k, and the number of as-
signed variables. Being myopic considerably assists an analysis by preserving
statistical independence from one algorithmic step to the next. Unfortunately,
in [3] (2000) it is shown that no myopic algorithm can have good probabilistic
performance when m/n > 3.26. In the same paper it is shown that at least
one myopic algorithm almost surely finds a model if m/n < 3.26.

However, Kaporis et al. [155] (2002) found a workaround to this “barrier”
and analyzed a simple non-myopic greedy algorithm for Satisfiability. They
control the statistical dependence problem by considering a different generator
of expressions such that probabilistic results also hold for random (n,m, 3)-
CNF expressions. Their result is that a greedy algorithm for satisfiability
almost always finds a model when m/n < 3.42. Similar algorithms have been
shown to find a model, almost always, when m/n < 3.52 [123, 156] (2003).
With this analysis machinery in place, better results are expected.

Although most of the results of the previous paragraph were motivated by
threshold research (see Section 1.21), their analyses can influence algorithm
development. It is hoped future probabilistic results will reveal new generally
useful search heuristics, or at least explain the mechanics of existing search

38 CHAPTER 1. A HISTORY OF SATISFIABILITY

heuristics.

Another analysis should be noted for the following non-myopic incremental
assignment algorithm: repeatedly assign values to pure literals to eliminate the
clauses containing them. Broder, Frieze and Upfal [42] (1993) proved that this
algorithm almost always finds a model when m/n ≤ 1.63 and k = 3. They
used Martingales to offset distribution dependency problems as pure literals
are uncovered. Mitzenmacher [209] (1997) showed that this bound is tight.

This section concludes with a history of results on algorithms which are
intended to return certificates of unsatisfiability. Most of these results, all
pessimistic, are obtained for resolution. The best result, though, is obtained for
an algorithm which finds lower bounds on the number of variable assignments
that must be positive and the number that must be negative (via translation
to two hitting set problems) and returns “unsatisfiable” if the sum is greater
than the number of variables. This result is notable also because it makes use
of a highly underused analysis tool in this area: eigenvalues. Recall that nearly
all random constant width expressions are unsatisfiable if m/n > 2k ln(2).

Chvátal and Szemerédi obtained the earliest result on constant width dis-
tributions, inspired by the work reported in Section 1.16, is that, with high
probability, every resolution proof for a random unsatisfiable expression is ex-
ponentially long if limn,m→∞m/n = f(k) > 2k ln(2) [59] (1988). The analysis
shows the root cause to be a property known as sparseness; which roughly
indicates the number of times pairs of clauses have a common literal or com-
plementary pair of literals. When an expression is sparse any “moderately
large” subset of its clauses must contain a “large” number of variables that
occur exactly once in that subset. Sparsity forces the proof to have a large re-
solvent. But, almost all “short” resolution refutations contain no long clauses
after eliminating all clauses satisfied by a particular small random partial as-
signment ρ. Moreover, resolution refutations for almost all unsatisfiable ran-
dom (n,m, k)-CNF expressions with clauses satisfied by ρ removed are sparse
and, therefore, must have at least one high width resolvent. Consequently,
almost all unsatisfiable random expressions have long resolution refutations.
Beame, Karp, Pitassi, Saks, Ben-Sasson, and Widgerson, among others, con-
tributed ideas leading up to a concise understanding of this phenomenon in [28]
(1996), [29] (1998), [31] (2001).

Despite considerable tweaking, the best we can say right now is that, with
probability tending to 0, the width of a shortest resolution proof is bounded
by a polynomial in n when m/n > 2k ln(2) and limm,n→∞m/n(k+2)/(4−ǫ) < 1,
where ǫ is some small constant; and with probability tending to 1, the width
is polynomially bounded when limm,n→∞m/n > (n/ log(n))k−2.

The failure of resolution has led to the development of a new technique by
Goerdt for certifying unsatisfiability, mentioned above, that uses eigenvalues.
In [114] this spectral technique is used to obtain bounds sufficient to show that

1.21. PROBABILISTIC ANALYSIS: THRESHOLDS 39

certifying unsatisfiability in polynomial time can be accomplished with high
probability when limm,n→∞m/n > nk/2−1+o(1) which is considerably better
than resolution.

1.21 Probabilistic analysis: thresholds

Results of the 1980s (see Section 1.20) showed that, for random width k ex-
pressions density, that is the ratio m/n, is correlated with certain interesting
expression properties. For example, it was shown that if m/n > 2k ln(2) then a
random instance is unsatisfiable with high probability and if m/n < O(1)·2k/k
a random expression is satisfiable with high probability. So, it was clear that a
crossover from probably unsatisfiable to probably satisfiable occurs as density
is changed. Early on it was speculated that “hardness” is directly related to the
nature of crossover and this motivated the study of Satisfiability thresholds.

Actually, thresholds can apply to a multitude of properties, not just the
property of a formula being satisfiable, so we give a general definition of thresh-
old here. Let X = {x1, ..., xe} be a set of e elements. Let AX , a subset of the
power set of X (denoted 2X), be called a property. Call AX a monotone prop-
erty if for any s ∈ AX , if s ⊂ s′, then s′ ∈ AX . Typically, a monotone property
follows from a high-level description which applies to an infinite family of sets
X. For example, let X = Ck,n be the set of all non-tautological, width k

clauses that can be constructed from n variables. Thus e = 2k
(

n
k

)

and any

s ∈ 2Ck,n is a k-CNF expression. Let UNSAT Ck,n
denote the property that a

k-CNF expression constructed from n variables is unsatisfiable. That is, any
s ∈ UNSAT Ck,n

has no model and any s ∈ 2Ck,n \ UNSAT Ck,n
has a model.

If s ∈ UNSAT Ck,n
and c ∈ Ck,n such that c /∈ s, then s ∪ {c} ∈ UNSAT Ck,n

so the property UNSAT Ck,n
is monotone for k < n.

For any 0 ≤ p ≤ 1 and any monotone property AX ⊂ 2X define

µp(AX) =
∑

s∈AX

p|s|(1 − p)e−|s|

to be the probability that a random set has the monotone property. For
the property UNSAT Ck,n

(among others), s is a set of clauses, hence this
probability measure does not match that for what we call random k-CNF
expressions but comes very close with p = m/(2k

(

n
k

)

) ≈ m · k!/(2n)k.

Observe that µp(AX) is an increasing function of p.5 Let pc(X) denote that
value of p for which µp(AX) = c. The values of pc(X) change as the size of X
increases. There are two threshold types.

5By illustration using UNSAT Ck,n
this reflects the fact that, as p increases, the average

number of clauses increases, so the probability that an expression has the UNSAT Ck,n

property increases.

40 CHAPTER 1. A HISTORY OF SATISFIABILITY

AX is said to have a sharp threshold if, for any small, positive ǫ,

lim
|X|→∞

(p1−ǫ(X) − pǫ(X))/p1/2(X) = 0.

AX is said to have a coarse threshold if, for any small, positive ǫ,

lim
|X|→∞

(p1−ǫ(X) − pǫ(X))/p1/2(X) > 0.

From experiments based on the constant width distribution it appeared
that UNSAT Ck,n

has a sharp threshold and that the density at which the
crossover occurs is a function of k. The so-called satisfiability threshold was
therefore denoted by rk. In addition, as m/n is reduced significantly below
(the experimentally determined) rk, algorithms of various types were observed
to perform better and expressions were more likely to be members of a poly-
nomial time solvable class (see Section 1.18 for a description - an analysis of
these classes is given later in this section), and as m/n is increased signifi-
cantly above rk various algorithms were observed to perform better. But, in
the neighborhood of rk random expressions seemed to reach a point of maxi-
mum difficulty, at least for well-known, well-tried algorithms. Hence, the study
of satisfiability thresholds was motivated by a possible connection between the
nature of hardness and the nature and location of thresholds. The constant
width distribution has dominated this study, perhaps because expressions gen-
erated when parameters are set near rk tend to be extremely difficult for known
algorithms.

The conjecture of a sharp threshold can be traced to a paper by Mitchell,
Selman, and Levesque [208] (1992) where the “easy-hard-easy” phenomenon
is pointed out. A possible explanation is given by Cheeseman in [55] (1991)
where long “backbones” or chains of inference are stated to be a likely cause
as the high density of well-separated “near-solutions” induced by backbones
leads to thrashing in search algorithms.

The satisfiability threshold for random (n,m, 2)-CNF expressions was found
by Chvátal and Reed to be sharp with r2 = 1 [58] (1992) (it is historically cor-
rect to note that de la Vega [92] and Goerdt [113] independently achieved
the same result in the same year). The fact that (n,m, 2)-CNF expressions
can be solved in polynomial time [62] means that there is a simple character-
ization for those instances which are unsatisfiable. Both [58] and [113] make
use of this characterization by focusing on the emergence of the “most likely”
unsatisfiable random (n,m, 2)-CNF expressions.

For k > 2 the situation was much more difficult. The results of Section 1.20,
some of which were bounded probability results, can be regarded as a history of
lower bounds for the satisfiability threshold. Upper bounds were improved at a
consistent rate for a while, the most intense investigation focusing on the case
k = 3. Results due to Frieze and Suen [103] (1996), Kamath, Motwani, Palem,
Spirakis [154] (1995), de la Vega [93] (1997), Dubois, Boufkhad [86] (1997),

1.21. PROBABILISTIC ANALYSIS: THRESHOLDS 41

Kirousis, Kranakis, Krizanc [162] (1996), Kirousis, Kranakis, Krizanc, Sta-
matiou [163] (1998), Dubois [87] (2001), and Dubois, Boufkhad, Mandler [88]
(2002), containing many beautiful ideas, have brought the upper bound down
to just over 4.5 for k = 3. From Section 1.20 the lower bound for k = 3 is
3.52. From experiments, we expect r3 ≈ 4.25.

Friedgut [102] (1999) proved that sharp satisfiability thresholds exist for
random (n,m, k)-CNF expressions, thereby confirming the conjecture of [208].
This result immediately lifted all previously known and future constant prob-
ability bounds, to almost surely bounds. Friedgut’s result has left open the
possibility that the satisfiability threshold is a function of both k and n and it
is still not known whether the satisfiability threshold depends on n, as weak
as that dependency must be.

Monasson [210, 211] (1999) and others conjectured that there is a strong
connection between the “order” of threshold sharpness, that is whether the
transition is smooth or discontinuous, and hardness. Consistent with this, us-
ing the characterization of unsatisfiable (n,m, 2)-CNF expressions mentioned
above, Bollobas et al. [35] (2001) completely determined the “scaling window”
for random (n,m, 2)-CNF expressions, showing that the transition from sat-
isfiability to unsatisfiability occurs for m = n + λn2/3 as λ goes from −∞
to +∞. For some time scaling windows for various problems were consistent
with Monasson’s conjecture (e.g. [71, 72]). But eventually the conjecture was
disproved in [10] (2001) where it was found that the order of threshold sharp-
ness for the 1-in-k SAT problem, which is NP-complete, is the same as that
of 2-SAT.

On the other hand, the work of Creignou and Daudé [70] (2002), [73] (2004)
revealed the importance of minimal monotonic structures to the existence of
sharp transitions. An element s ∈ AX is said to be minimal if for all s′ ⊂ s,
s′ ∈ 2X \ AX . Those results have been used, for example, to show the limita-
tions of most succinctly defined polynomial-time solvable classes of expressions,
such as those mentioned in Section 1.18. Using density m/n of (n,m, k)-CNF
distributions as a measure, thresholds for some classes of Section 1.18 have
been determined: for example, a random (n,m, k)-CNF expression, k ≥ 3,
is q-Horn with probability tending to 1 if m/n < O(1)/(k2 − k) and with
probability tending to 0 if m/n > O(1)/(k2 − k) [100, 74]. Except for the
matched class, the monotonic structure analysis shows why the classes of Sec-
tion 1.18, including q-Horn, SLUR, renameable Horn and many others, are
weak: they are “vulnerable” to cyclic clause structures, the presence of any
of these in an expression prevents it from having the polynomial-time solve-
able property. A random expression is matched with probability tending to
1 if m/n < 0.64 [100]: a result that adds perspective to the scope of most
polynomial-time solveable classes.

Also of historical importance are results on 2 + p mixed random expres-
sions: random expressions with width 2 and width 3 clauses, the p being the

42 CHAPTER 1. A HISTORY OF SATISFIABILITY

fraction of width 3 clauses. This distribution was introduced in [165] (1994) to
help understand where random expressions get hard during search: if a search
algorithm that embodies unit propagation is presented with a (n,m, 3)-CNF
expression, every search node represents such a mixed expression with a par-
ticular value of p so hardness for some range of p could translate to hardness
for search. Experimental evidence suggested that for some pc, figured to be
around 0.417, if p < pc the width 3 clauses were effectively irrelevant to the
satisfiability of a random expression but if p > pc the transition behavior was
more like that of a random width 3 expression. In [7] (2001) it was shown that
0.4 < pc < 0.696 and conjectured that pc = 0.4. In [9] (2004) it was shown that
a random 2 + p mixed expression has a minimum exponential size resolution
refutation (that includes any DPLL algorithm) with probability 1−o(1) when
the number of width 2 clauses is less than ρn, ρ < 1, and p is any constant.
Actually, the results of this paper are quite far-ranging and provide new in-
sights into the behavior of DPLL algorithms as they visit search nodes that
represent 2 + p expressions.

1.22 Stochastic Local Search

Stochastic local search (SLS) is one of the most successfully and widely used
general strategies for solving hard combinatorial problems. Early applications
to optimisation problems date back to the to the 1950s, and the Lin-Kernighan
algorithm for the Traveling Salesman problem [189] (1973) is still among the
most widely known problem-specific SLS algorithms. Two of the most promi-
nent general SLS methods are Simulated Annealing [164] (1983) and Evolu-
tionary Algorithms [94, 137, 243] (1966–1981).

SLS algorithms for SAT were first presented in 1992 by Gu [122] and Sel-
man et al. [248] (following earlier applications to Constraint Satisfaction [207]
and MAX-SAT [127]). Interestingly, both Gu and Selman et al. were appar-
ently unaware of the MAX-SAT work, and Hansen and Jaumard and Minton
et al. appear to have been unaware of each other’s work. The success of Sel-
man et al.’s GSAT algorithm in solving various types of SAT instances more
effectively than DPLL variants of the day sparked considerable interest in the
AI community, giving rise to a fruitful and active branch of SAT research.
GSAT is based on a simple iterative best improvement method with static
restarts; in each local search step, it flips the truth value of one propositional
variable such that the number of unsatisfied clauses in the given CNF formula
is maximally reduced.

Within a year, the original GSAT algorithm was succeeded by a number
of variants. These include HSAT [108], which uses a very limited form of
search memory to avoid unproductive cycling of the search process; GSAT
with Clause Weighting [249], which achieves a similar goal using dynamically

1.22. STOCHASTIC LOCAL SEARCH 43

changing weights associated with the clauses of the given CNF formula; and
GSAT with Random Walk (GWSAT) [249], which hybridizes the “greedy”
search method underlying GSAT with a simple random walk procedure (which
had previously been shown by Papadimitriou [226] to solve satisfiable 2-CNF
formulae almost certainly in O(n2) steps).

Two relatively subtle modifications of GWSAT lead to the prominent (ba-
sic) WalkSAT algorithm [250], which is based on the idea of selecting a cur-
rently unsatisfied clause in each step and satisfying that clause by flipping the
value assigned to one of its variables. Basic WalkSAT (also known as Walk-
SAT/SKC) was shown empirically to outperform GWSAT and most other
GSAT variants for a broad range of CNF formulae; it is also somewhat easier
to implement. Variants of WalkSAT that additionally use search memory, in
particular WalkSAT/Tabu [198] (1997) and Novelty+ [139, 140] (1998) – an
extension of the earlier Novelty algorithm of McAllester et al. [198] – typically
achieve even better performance. Novelty+, which has been proven to solve
satisfiable CNF formulae with arbitrarily high probability given sufficient time,
was later extended with an adaptive noise mechanism [141] (2002), and the
resulting Adaptive Novelty+ algorithm is still one of the most effective SLS
algorithms for SAT currently known.

Based on the same fundamental idea of dynamically changing clause weights
as GSAT with Clause Weighting, Wah et al. developed an approach known as
Discrete Lagrangian Method [255] (1998), whose later variants were shown to
be highly effective, particularly for solving structured SAT instances [280, 281].
A conceptually related approach, which uses multiplicatively modified clause
weights has been developed by Schuurmans et al. [253] (2001) and later im-
proved by Hutter et al. [143] (2002), whose SAPS algorithm was, until recently,
one of the state-of-the-art SLS algorithms for SAT.

A detailed survey of SLS algorithms for SAT up to 2004 can be found in
Chapter 6 of the book by Hoos and Stützle [142]. Since then, a number of
new algorithms have been developed, including Li and Huang’s G2WSAT [187]
(2005), which combines ideas from the GSAT and WalkSAT family of algo-
rithms, and Ishtaiwi et al.’s DDFW algorithm [145] (2006), which uses a dy-
namic clause weight redistribution. In another line of work, Anbulagan et al.
have reported results suggesting that by using a resolution-based preprocessing
method, the performance of several state-of-the-art SLS algorithms for SAT
can be further improved [16](2005).

SLS algorithms for SAT have also played an important role in theoretical
work on upper bounds on worst-case time complexity for solving SAT on k-
CNF formulae; this includes the previously mentioned random walk algorithm
by Papadimitriou [226] (1991) and later extensions by Schöning [244] (1999)
and Schuler et al. [247] (2001).

44 CHAPTER 1. A HISTORY OF SATISFIABILITY

1.23 Non-linear formulations

The nonlinear formulations for SAT are based on the application of the funda-
mental concept of liftand project for constructing tractable continuous relax-
ations of hard binary (or equivalently, Boolean) optimization problems. The
application of a continuous relaxation to a binary optimization dates back at
least to Lovász’s introduction of the so-called theta function as a bound for
the stability number of a graph a [190]. More generally, the idea of liftings
for binary optimization problems has been proposed by several researchers,
and has led to different general-purpose frameworks. Hierarchies based on
linear programming relaxations include the lift-and-project method of Balas,
Ceria and Cornuéjols [25], the reformulation-linearization technique of Sherali
and Adams [257], and the matrix-cuts approach of Lovász and Schrijver [191].
Researchers in the SAT community have studied the complexity of applying
some of these techniques, and generalizations thereof, to specific classes of SAT
problems (see the recent papers [50, 119, 120]).

While the aforementioned techniques use linear programming relaxations,
the recent Lasserre hierarchy is based on semidefinite programming relax-
ations [181, 182]. (Semidefinite constraints may also be employed in the
Lovász-Schrijver matrix-cuts approach, but in a different manner from that
of the a Lasserre paradigm.) A detailed analysis of the connections between
the Sherali-Adams, Lovász-Schrijver, and Lasserre frameworks was done by
Laurent [183]. In particular, Laurent showed that the Lasserre framework is
the tightest among the three.

Semidefinite programming (SDP) refers to the class of optimization prob-
lems where a linear function of a symmetric matrix variable X is optimized
subject to linear constraints on the elements of X and the additional con-
straint that X must be positive semidefinite. This includes linear program-
ming problems as a special case, namely when all the matrices involved are
diagonal. The fact that SDP problems can be solved in polynomial time
to within a given accuracy follows from the complexity analysis of the ellip-
soid algorithm (see [121]). A variety of polynomial time interior-point algo-
rithms for solving SDPs have been proposed in the literature, and several
excellent solvers for SDP are now available. The SDP webpage [130] and the
books [168, 277] provide a thorough coverage of the theory and algorithms in
this area, as well as a discussion of several application areas where semidefinite
programming researchers have made significant contributions. In particular,
SDP has been very successfully applied in the development of approximation
algorithms for several classes of hard combinatorial optimization problems,
including maximum-satisfiability (MAX-SAT) problems.

A σ-approximation algorithm for MAX-SAT is a polynomial-time algo-
rithm that computes a truth assignment such that at least a proportion σ
of the clauses in the MAX-SAT instance are satisfied. The number σ is the

1.23. NON-LINEAR FORMULATIONS 45

approximation ratio or guarantee. For instance, the first approximation al-
gorithm for MAX-SAT is a 1

2
-approximation algorithm due to Johnson [152]:

given n values πi ∈ [0, 1], the algorithm sets the ith Boolean variable to 1
independently and randomly with probability πi; the resulting total expected
weight of the satisfied clauses is 1

2
. Unless P=NP, there is a limit to the

approximation guarantees that can be obtained. Indeed, Hästad [129] proved
that unless P=NP, for any ǫ > 0, there is no (21

22
+ǫ)-approximation algorithm

for MAX-2-SAT, and no (7
8

+ ǫ)-approximation algorithm for MAX-SAT.

The most significant breakthrough was achieved by Goemans and Williamson [112]
who proposed an SDP-based 0.87856-approximation algorithm for MAX-2-
SAT. The key to their analysis is the ingenious use of a randomly generated
hyperplane to extract a binary solution from the set of n-dimensional vec-
tors defined by the solution of the SDP relaxation. The randomized hyper-
plane rounding procedure can be formally de-randomized using the techniques
in [196].

A further significant improvement was achieved by Feige and Goemans [91]
who proposed a 0.931-approximation algorithm for MAX-2-SAT. There are two
key innovations introduced by Feige and Goemans. The first one is that they
tighten the SDP relaxation of Goemans and Williamson by adding the

(

n
3

)

triangle inequalities (to be explained in the URL). From the optimal solution
of this strengthened SDP relaxation, they similarly obtain a set of vectors,
but instead of applying the random hyperplane rounding technique to these
vectors directly, they use them to generate a set of rotated vectors to which
they then apply the hyperplane rounding (to be explained in the URL).

Karloff and Zwick [158] proposed a general construction of SDP relaxations
for MAX-k-SAT. Halperin and Zwick [126] consider strengthened SDP relax-
ations for MAX-k-SAT, and specifically for MAX-4-SAT, they studied several
rounding schemes, and obtained approximation algorithms that almost attain
the theoretical upper bound of 7

8
. Most recently, Asano and Williamson [21]

have combined ideas from several of the aforementioned approaches and ob-
tained a 0.7846-approximation algorithm for general MAX-SAT.

For the decision version of SAT, the first SDP-based approach is the Gap
relaxation of de Klerk, van Maaren, and Warners [167, 169]. This SDP relax-
ation was inspired by the work of Goemans and Williamson as well as by the
concept of elliptic approximations for SAT instances. These approximations
were first proposed in [192] and were applied to obtain effective branching
rules as well as to recognize certain polynomially solvable classes of SAT in-
stances. The idea behind the elliptic approximations is to reformulate a SAT
formula on n boolean variables as the problem of finding a ±1 (hence binary)
n-vector in an intersection of ellipsoids in Rn. Although it is difficult to work
directly with intersections of ellipsoids, it is possible to relax the formulation
to an SDP problem. The resulting SDP relaxation is called the Gap relax-
ation. This relaxation characterizes unsatisfiability for 2-SAT problems [167].

46 CHAPTER 1. A HISTORY OF SATISFIABILITY

More interestingly, it also characterizes satisfiability for a class of covering
problems, such as mutilated chessboard and pigeonhole instances. Rounding
schemes and approximation guarantees for the Gap relaxation, as well as its
behaviour on (2 + p)-SAT problems, are studied in [169].

An elliptic approximation uses a quadratic representation of SAT formulas.
More powerful relaxations can be obtained by considering higher-degree poly-
nomial representations of SAT formulas. The starting point is to define for
each clause a polynomial in ±1 variables that equals 0 if and only if the clause
is satisfied by the truth assignment represented by the values of the binary
variables. Thus, testing satisfiability of a SAT formula is reduced to testing
whether there are values x1, . . . , xn ∈ {−1, 1} such that for every clause in the
instance, the corresponding polynomial evaluated at these values equals zero.

We present two ways that SDP can be used to attempt to answer this
question. One of them applies the Lasserre hierarchy mentioned above as
follows. The Gap relaxation has its matrix variable in the space of (n +
1) × (n + 1) symmetric matrices, and is thus a first lifting. To generalize
this operation, we allow the rows and columns of the SDP relaxations to be
indexed by subsets of the discrete variables in the formulation. These larger
matrices can be interpreted as higher liftings. Applying directly the Lasserre
approach to SAT, we would use the SDP relaxations QK−1 (as defined in [181])
for K = 1, 2, . . . , n where the matrix variable of QK−1 has rows and columns
indexed by all the subsets I with ‖I‖ ≤ K (hence for K = 1, we obtain
the matrix variable of the Gap relaxation). The results in [182] imply that
for K = n, the resulting SDP relaxation characterizes satisfiability for every
instance of SAT. However, this SDP has dimension exponential in n. Indeed,
the SDP problems quickly become far too large for practical computation. This
limitation motivated the study of partial higher liftings, where we consider
SDP relaxations which have a much smaller matrix variable, as well as fewer
linear constraints. The construction of such partial liftings for SAT becomes
particularly interesting if we let the structure of the SAT instance specify the
structure of the SDP relaxation.

One of these partial liftings was proposed in [18]. This construction con-
siders all the monomials

∏

i xi that appear in the instance’s satisfiability con-
ditions. An appropriate SDP relaxation is then defined where each row and
column of the matrix variable correspond to one of these terms. The resulting
matrix is highly structured, and hence the SDP relaxation can be strength-
ened by adding some constraints that capture this structure. The tradeoff
involved in adding such constraints to the SDP problem is that as the number
of constraints increases, the SDP problems become increasingly more demand-
ing computationally. Anjos [18] defines the SDP relaxation R3 by proposing
to add a relatively small number of these constraints, judiciously chosen so
that it is possible to prove the following result: if R3 is infeasible, then the
SAT instance is unsatisfiable; while if R3 is feasible, and Y is a feasible matrix

1.23. NON-LINEAR FORMULATIONS 47

such that rank(Y) ≤ 3, then the SAT instance is satisfiable, and a model can
be extracted from Y . Thus the SDP relaxation can prove either satisfiability
or unsatisfiability of the given SAT instance. A more compact relaxation is
obtained by defining the columns of the matrix variable using only the sets
of odd cardinality. This yields the SDP relaxation R2 [130], an intermedi-
ate relaxation between the Gap relaxation (call it R1) and R3. The names
of the relaxations reflect their increasing strength in the following sense: For
k = 1, 2, 3, any feasible solution to the relaxation Rk with rank at most k
proves satisfiability of the corresponding SAT instance. Furthermore, the in-
creasing values of k also reflect an improving ability to detect unsatisfiability,
and an increasing computational time for solving the relaxation.

From the computational point of view, it is only possible to tackle relatively
small SAT instances (regardless of the choice of SDP relaxation) if branching
is needed. However, when it does not require branching, the SDP approach
can be competitive. For instance, the SDP approach can successfully prove
(without branching) the unsatisfiability of the hgen8 instances, one of which
was the smallest unsatisfiable instance that remained unsolved during the SAT
competitions of 2003 and 2004.

A second way to test whether there is a set of ±1 values for which the clause
polynomials all equal zero was proposed by van Maaren and van Norden [194].
They consider (among others) the aggregate polynomial obtained by summing
all the polynomials arising from clauses. This polynomial turns out to be
non-negative on {−1, 1}n, and for x ∈ {−1, 1}n it equals the number of un-
satisfied clauses. (Hence, MAX-SAT is equivalent to the minimization of this
polynomial over {−1, 1}n.) An SDP relaxation is obtained as follows. Suppose
we are given a column vector β of monomials in the variables x1, . . . , xn and
a polynomial p(x). Then p(x) can be written as a sum-of-squares (SOS) in
terms of the elements of β if and only if there exists a matrix S � 0 such that
βTSβ = p [220]. If S is symmetric positive semidefinite, then S = W TW for
some matrix W , and hence we have an explicit decomposition of p as an SOS:
βTSβ = p⇒ ||Wβ||22 = p. The resulting SDP problem is

max g

s.t. FB
Φ (x) − g ≡ βTSβ modulo IB

S � 0

where IB denotes the ideal generated by the polynomials x2
k − 1, k = 1, . . . , n.

(The fact that each k polynomial that is non-negative on {−1, 1}n can be
expressed as an SOS modulo IB follows from the work of Putinar [222].) Note
that since β is fixed, the equation F (x) − g = βTSβ is linear in S and g,
and hence this is an SDP problem. The SOS approach can thus be applied to
obtain proofs of (un)satisfiability. For instance, it is straightforward to prove
that if there exists a monomial basis β and an ǫ > 0 such that F B(x) − ǫ is a

48 CHAPTER 1. A HISTORY OF SATISFIABILITY

SOS modulo IB , then the underlying SAT formula is unsatisfiable.

For the SOS approach, different choices of the basis β result in different
SDP relaxations. Among the choices considered by van Maaren and van Nor-
den are the following: SOS GW is the relaxation obtained using the basis con-
taining 1, x1, . . . , xn ; SOSp is obtained using the basis containing 1, x1, . . . , xn,
plus the monomial xk1xk2 for each pair of variables that appear together in
a clause; SOSap is obtained using the basis containing 1, x1, . . . , xn, plus the
monomials xk1xk2 for all pairs of variables; SOSt is obtained using the basis
containing 1, x1, . . . , xn, plus the monomial xk1xk2xk3 for each triple of vari-
ables that appear together in a clause; and SOSpt is obtained using the basis
containing 1, x1, . . . , xn, plus the monomial xk1xk2 for each pair of variables
that appear together in a clause, plus xk1xk2xk3 for each triple of variables
that appear together in a clause.

The notation SOSGW is justified by the fact that SOSGW is precisely the
dual of the SDP relaxation used by Goemans and Williamson in their seminal
paper [112]. van Maaren and van Norden prove that SOSGW gives the same
upper bound for MAX-2-SAT as the relaxation of Goemans and Williamson.
They also show that for each triple xk1xk2xk3 , adding the monomials xk1xk2 ,
xk1xk3 , and xk2xk3 gives an SDP relaxation at least as tight as that obtained
by adding the corresponding triangle inequality to the Goemans-Williamson
relaxation. Furthermore, they prove that the SDP relaxation SOSap is at least
as tight as the Feige-Goemans relaxation, and that for every instance of MAX-
3-SAT, the SDP relaxation SOSpt provides a bound at least as tight as the
Karloff-Zwick relaxation.

From the computational point of view, van Maaren and van Norden provide
computational results comparing several of these relaxations on instances of
varying sizes and varying ratios of number of clauses to number of variables.
They propose rounding schemes for MAX-2-SAT and MAX-3-SAT based on
SOSp and SOSt respectively, and present preliminary results comparing their
performance with the rounding schemes mentioned above. They also compare
the performance of the R3 relaxation with the SOS approach using either
SOSt or SOSpt . Their preliminary results suggest that SOSpt offers the best
performance.

The most recent result about the nonlinear approach is that the SDP ap-
proach can explicitly characterize unsatisfiability for the well-known Tseitin
instances on toroidal grid graphs. Consider a p × q toroidal grid graph and
for each node (i, j), set the parameter t(i, j) = 0 or 1. Introduce a Boolean
variable for each edge, and for each node (i, j), define 8 clauses on the four
variables adjacent to it as follows: if t(i, j) = 0, add all clauses with an odd
number of negations; and if t(i, j) = 1, add all clauses with an even number
of negations. It is clear that the SAT instance is unsatisfiable if and only if
∑

(i,j) t(i, j) is odd. It is shown in [19] how to construct an SDP relaxation with
matrix variable of dimension 14pq and with 23pq−1 linear equality constraints

1.24. QUANTIFIED BOOLEAN FORMULAS 49

such that the SDP problem is infeasible if and only if the SAT instance is un-
satisfiable. Therefore, for these instances, the SDP-based approach provides,
in theory, an explicit certificate of (un)satisfiability, and therefore makes it
possible to numerically compute such a certificate to within a given precision
in polynomial time.

1.24 Quantified Boolean formulas

The concept of quantified Boolean formulas (QBF) is an extension of propo-
sitional logic that allows existential (∃) and universal (∀) quantifiers. The
intended semantics of quantified Boolean formulas, without free variables, is
that a universally quantified formula ψ = ∀xφ is true if and only if for every
assignment of the truth values 1 and 0 to the variable x, ψ is true. For ex-
istentially quantified formulas ψ = ∃xφ, ψ is true if and only if there is an
assignment to x for which φ is true. In the case of free variables, ψ is called
satisfiable if there is a truth assignment to the free variables such that ψ is true.
The satisfiability problem for quantified Boolean formulas is often denoted as
QSAT.

Most of the research has been done for formulas in prenex form, that is, for-
mulas of the form Q1x1 . . . Qnxnφ, where Qi ∈ {∃, ∀}, x1, . . . , xn are variables,
and φ is a propositional formula called the matrix. By standard techniques,
every quantified Boolean formula can be transformed into a logically equiva-
lent formula in prenex form. In the same way, by the well-known procedure
for propositional formulas, logically equivalent formulas with a CNF matrix
or 3-CNF matrix can be obtained. These classes are denoted as QCNF and
Q3-CNF.

Quantified Boolean formulas with free variables are logically equivalent to
Boolean functions. But, clearly, there is no polynomial p such that every n-
ary Boolean function can be represented as a quantified Boolean formula of
length p(n). However, for various applications, QBFs lead to shorter formulas
in comparison to propositional formulas. See, for example, [153].

The first papers on QBFs were motivated by questions arising from compu-
tational complexity. Like SAT for NP, it has been shown in [203] that QSAT
is one of the prominent PSPACE -complete problems. In a more detailed
analysis, a strong relationship was shown between the satisfiability problem of
formulas with a fixed number of alternations of quantifiers and the polynomial–
time hierarchy [202] where the polynomial–time hierarchy is defined as follows
(k ≥ 0):

∆P
0 := ΣP

0 := ΠP
0 := P

ΣP
k+1 := NPΣP

k , ΠP
k+1 := coΣP

k+1, ∆P
k+1 := PΣP

k

For quantified Boolean formulas in prenex form, the prefix type is defined as

50 CHAPTER 1. A HISTORY OF SATISFIABILITY

follows:

1. The prefix type of a propositional formula is Σ0 = Π0.

2. Let Φ be a formula with prefix type Σn (Πn respectively), then the
formula ∀x1 . . .∀xnΦ (∃x1 . . .∃xnΦ respectively) is of prefix type Πn+1

(Σn+1 respectively).

It has been proved that for k ≥ 1, the satisfiability problem for formulas
with prefix type Σk (Πk respectively) is ΣP

k -complete (ΠP
k -complete respec-

tively) [223, 279]. Since PSPACE = NPSPACE [241], almost all quantified
Boolean formula problems are solvable in PSPACE . For example, in proposi-
tional logic, the equivalence problem is ⌋≀NP-complete, whereas for quantified
Boolean formulas, the problem remains PSPACE -complete.

In addition to propositional formulas, a dichotomy theorem for quantified
Boolean formulas has been established in [242]. The idea was to classify classes
of quantified Boolean formulas by means of a finite set of constraints, where
the constraints are Boolean functions. The dichotomy theorem says that if the
Boolean functions are equivalent to Horn formulas (anti-Horn formulas, 2-CNF
formulas, XOR-CNF formulas respectively), then the satisfiability problems
for the quantified classes are in P, otherwise they are PSPACE -complete. As
a consequence, the solvability of the satisfiability problem for Q2-CNF and
QHORN follows, where QHORN is the set of formulas, whose matrix is a
Horn formula. Detailed proofs and extensions of the dichotomy theorem can
be found, for example, in [76, 75]. For formulas with fixed prefix type, further
results have been shown in [131].
For Q2-CNF, the first linear-time algorithm for solving the satifiability problem
has been presented in [22]. For QHORN, the best known algorithm can be
found in [173]. The latter algorithm requires not more than O(r · n) steps,
where r is the number of universal variables and n is the length of the formula.

Not all the problems solvable in polynomial time for propositional formu-
las remain polynomial-time solvable for quantified formulas. For example,
in contrast to the polynomial-time solvability of the equivalence problem for
Horn formulas, the equivalence problem for quantified Horn formulas is ⌋≀NP-
complete [174].

Instead of restrictions on the form of clauses, classes of quantified formu-
las satisfying some graph properties have been investigated. Examples are
quantified versions of ordered binary decision diagrams (OBDDs) and free bi-
nary decision diagrams (FBDDs) (see, for example, [65]). For instance, the
satisfiability problem for quantified FBDDs is PSPACE -complete.

Q-resolution is an extension of the resolution calculus for propositional
formulas to quantified formulas. Q-unit-resolution was introduced in [160] and
was then generalized to Q-resolution in [173]. Here, a Q-unit clause contains at

1.25. MAXIMUM SATISFIABILITY 51

most one free or existentially quantified literal and arbitrarily many universal
literals. The idea of Q-resolution is to resolve only over complementary pairs of
existential or free variables, combined with a careful handling of the universal
literals. Q-resolution is refutation complete and sound for QCNF. Similar
to propositional Horn formulas, Q-unit-resolution is refutation complete for
QHORN, and also for the class QEHORN. That is the set of formulas for
which, after deleting the universal literals in the matrix, the remaining matrix
is a Horn formula. The satisfiability problem for that class remains PSPACE -
complete [161].

A more functional view of the valuation of quantified Boolean formulas
is the observation that a formula is true if and only if for every existential
variable y there is a Boolean function fy(x1, . . . , xm) depending on the domi-
nating universal variables x1, . . . , xm, such that after replacing the existential
variables y by the associated functions fy(x1, . . . , xm) the formula is true. The
set of such functions is called a satsifiability model. For some classes of quan-
tified Boolean formulas, the structure of the satisfiability models has been
investigated. For example, satisfiable quantified Horn formulas have satisfia-
bility models which consist of the constants true and false or conjunctions of
variables. For Q2-CNF, the models are constants or a literal [175]. Instead
of satisfiability models, one can ask for Boolean functions, such that after re-
placing the existentially quantified variables with the functions, the formula
is logically equivalent to the initial formula. These functions are called equiv-
alence model. Equivalence models describe in a certain sense the internal
dependencies of the formula. For example, quantified Horn formulas have
equivalence models consisting of monotone functions. By means of this result,
it has been shown that every quantified Horn formula can be transformed into
an equivalent existentially quantified Horn formula in time O(r · n), where r
is the number of universal variables and n is the length of the formula [48].

1.25 Maximum Satisfiability

The problem of finding a truth assignment to the variables of a CNF ex-
pression that satisfies the maximum number of clauses possible is known as
Maximum Satisfiability or MAX-SAT. If clauses have at most two literals each,
the problem is known as MAX-2-SAT. The decision version of MAX-SAT and
even MAX-2-SAT is NP-complete. Unfortunately, there is no polynomial
time approximation scheme for MAX-SAT unless P = NP [20]. Because the
MAX-SAT problem is fundamental to many practical problems in Computer
Science [127] and Electrical Engineering [282], efficient methods that can solve
a large set of instances of MAX-SAT are eagerly sought.

MAX-SAT: Decision Algorithms

Many of the proposed methods for MAX-SAT are based on approxima-

52 CHAPTER 1. A HISTORY OF SATISFIABILITY

tion algorithms [78] (2002); some of them are based on branch-and-bound
methods [127] (1990), [36] (1999), [26] (1999), [136] (2000), [217] (2000), [110]
(2003); and some of them are based on transforming MAX-SAT into SAT [282]
(2002), [15] (2002).

Worst-case upper bounds have been obtained with respect to three param-
eters: the length L of the input formula (i.e., the number of literals in the
input), the number m of the input’s clauses, and the number n of distinct
variables occurring in the input. The best known bounds for MAX-SAT are
O(L2m/2.36) and O(L2L/6.89) [26] (1999). The question of whether there ex-
ist exact algorithms with complexity bounds down to O(L2n) has been open
and of great interest (see [216] (1998), [13] (2000), [118] (2003)) since an algo-
rithm which enumerates all the 2n assignments and then counts the number
of true clauses in each assignment would take time O(L2n). Recently, it has
been shown that a branch-and-bound algorithm can achieve O(b2n) complexity
where b is the maximum number of occurrences of any variable in the input.
Typically, b ≃ L/n.

The operation of the best branch-and-bound algorithms for MAX-SAT is
similar to that of DPLL. Notable implementations are due to Wallace and
Freuder (implemented in Lisp) [274] (1996), Gramm [117] (1999), Borchers
and Furman [36] (1999 - implemented in C and publicly available), Zhang,
Shen, and Manyà [283] (2003), and Zhao and Zhang [284] (2004).

MAX-2-SAT: Decision Algorithms

MAX-2-SAT is important because a number of other NP-complete prob-
lems can be reduced to it, for example graph problems such as Maximum Cut
and Independent Set [56] (1996), [195]. For MAX-2-SAT, the best bounds have
been improved from O(m2m/3.44) [26] (1999), to O(m2m/2.88) [217] (2000), and
recently to O(m2m/5) [118] (2003). The recent branch-and-bound algorithm
cited above results in a bound of O(n2n) since b ≤ 2n. When m = 4n2 the
bound is O(

√
m1.414

√
m), which is substantially better than the result reported

in [118].

For random 2-CNF formulas satisfiability thresholds have been found as
follows:

Theorem [64] :
1. For c < 1, K(n, cn) = Θ(1/n).

2. For c large,

(0.25c− 0.343859
√
c+O(1))n ≻

∼
K(n, cn) ≻

∼
(0.25c− 0.509833

√
c)n

3. For any fixed ǫ > 0, 1
3
ǫ3n ≻

∼
K(n, (1 + ǫ)n).

In the above theorem, ≻
∼

is a standard asymptotic notation: f(n) ≻
∼
g(n)

means that f is greater than or equal to g asymptotically , that is, f(n)/g(n) ≥

1.26. PSEUDO-BOOLEAN FUNCTIONS 53

1 when n goes to infinity, although it may be that f(n) < g(n) even for
arbitrarily large values of n.

1.26 Pseudo-Boolean functions

1.27 Survey propagation

1.28 SAT solvers become important tools

GRASP, zChaff, miniSAT, Berkmin etc. Yearly SAT competitions.

54
C

H
A

P
T

E
R

1
.

A
H

IS
T

O
R
Y

O
F

S
A

T
IS

F
IA

B
IL

IT
Y

1930

1950

1940

1900

1800

1850

1880

1700

−500

2000

1990

1980

1970

1960

2006 kr 2
k

Probabilistic
Algorithms

Spectral
analysis

Proof size vs.
clause width

Stochastic
Local Search

Novelty+ Equivalence
Models

Equivalence is
coNP−complete

Large proofs
nearly always

Resolution/
Complexity

Easy
Classes

Large proofs
for PHCn

Upper
Bounds

Probabilistic
Analysis

QBF

Survey Prop.
Upper bounds

1st DPLL analysis Autarkies

Language syntax becomes richer

Boolean algebra, Venn diagrams

Appreciation of the power of applying algebra to scientific reasoning
First logic system based on diagrams, wheels

Syllogistic logic, deduction

The first machine to solve problems in formal logic

Boolean algebra applied to circuit design

BDD defined
BDD popularized

Consensus, circuit minimization

Model Checking
Simplifying ops

OBDD

BMD

Counting
Probe order

Non−myopic algs

Random k−SAT
UC/GUC/SC
Myopic limits

Minimal monotonic structures
Sharp vs. Hard

NP−complete

Davis−Putnam Procedure
DPLL
Resolution lifted to 1st order logic
Extended Resolution

Logicism, Begriffsschrift
Principia Mathematica
Relationship of Satisfiability to Computability

Precise notion of Satisfiability enunciated
Godel’s incompleteness theorem

..

CC−balanced

Extended Horn

q−Horn
Linear autarky

Horn (linear time)
2−SAT (linear time)
Renameable Horn
2−SAT

HSAT
WalkSAT

GWSAT

Tabu

MAX−SAT

PSPACE−complete
Q2−CNF, QHORN solvable

Q−unit−resolution
Q−resolution

ThresholdsBDD

F
igu

re
1.2:

T
im

e
lin

e
:

S
om

e
n
o
d
es

on
th

e
h
istory

tree.
T

h
e

in
ten

tion
is

to
p
rov

id
e

som
e

p
ersp

ective
on

th
e

level
of

activ
ity

in
a

p
aticu

lar
area

d
u
rin

g
a

p
articu

lar
p
erio

d
.

T
h
is

fi
gu

re
is

n
ot

yet
com

p
lete,

su
ggestion

s
an

d
com

m
en

ts
are

in
v
ited

.

1.28. SAT SOLVERS BECOME IMPORTANT TOOLS 55

19
30

19
50

19
40

19
00

18
00

18
50

18
80

17
00

−
50

0

20
00

19
90

19
80

19
70

19
60

20
06

M
A

X
−

S
A

T
S

ur
ve

y
P

ro
pa

ga
tio

n
S

ol
ve

rs
 a

nd
ap

pl
ic

at
io

ns
N

on
−

lin
ea

r
fo

rm
ul

at
io

ns
P

se
ud

o−
B

oo
le

an
fu

nc
tio

ns

Figure 1.3: Timeline: Some nodes on the history tree. The intention is to
provide some perspective on the level of activity in a paticular area during a
particular period. Suggestions and comments are invited.

56 CHAPTER 1. A HISTORY OF SATISFIABILITY

Bibliography

[1] D. Achlioptas. Lower bounds for random 3-SAT via differential equations.
Theoretical Computer Science, 265:159–185, 2001.

[2] D. Achlioptas. Setting 2 variables at a time yields a new lower bound for
random 3-sat. 32nd ACM Symposium on Theory of Computing , Associ-
ation for Computing Machinery, New York, 2000.

[3] D. Achlioptas, and G. Sorkin. Optimal myopic algorithms for random
3-SAT. 41st Annual Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 2000.

[4] D. Achlioptas, and C. Moore. The asymptotic order of the random k-
SAT thresholds. 43rd Annual Symposium on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 2002.

[5] D. Achlioptas, and Y. Peres. The threshold for random k-SAT is 2k(ln 2+
o(1)). Journal of the American Mathematical Society , 17:947–973, 2004.

[6] D. Achlioptas, L.M. Kirousis, E. Kranakis, D. Krizanc, M. Molloy, and
Y. Stamatiou. Random constraint satisfaction: a more accurate picture.
3rd Conference on the Principles and Practice of Constraint Programming
(Linz, Austria), LNCS, 1330:107–120, Springer, 1997.

[7] D. Achlioptas, L.M. Kirousis, E. Kranakis, D. Krizanc. Rigorous results
for random (2+p)-SAT. Theoretical Computer Science, 265(1-2):109–129,
2001.

[8] D. Achlioptas, and M. Molloy. The analysis of a list-coloring algorithm on
a random graph. 38th Annual Symposium on Foundations of Computer
Science (Miami, Florida), 204–212, IEEE Computer Society Press, Los
Alamitos, CA, 1997.

[9] D. Achlioptas, P. Beame, and M. Molloy. A sharp threshold in proof com-
plexity yields lower bounds for satisfiability search. Journal of Computer
and System Sciences , 68:238–268, 2004.

57

58 BIBLIOGRAPHY

[10] D. Achlioptas, A. Chtcherba, G. Istrate, and C. Moore. The phase transi-
tion in 1-in-k SAT and NAE 3-SAT. In Proceedings of the 12th ACM-IEEE
Symposium on Discrete Algorithms, 721–722, 2001.

[11] R. Aharoni and N. Linial. Minimal Non-Two-Colorable Hypergraphs and
Minimal Unsatisfiable Formulas. Journal of Combinatorial Theory, Series
A, 43:196–204, 1986.

[12] S.B. Akers. Binary Decision Diagrams. IEEE Transactions on Computers ,
C-27(6):509–516, 1978.

[13] J. Alber, J. Gramm, R. Niedermeier. Faster exact algorithms for hard
problems: a parameterized point of view. Discrete Mathematics, 229(1-
3):3–27, 2001.

[14] N. Alon, and J. Spencer. The Probabilistic Method (2nd Edition). Wiley,
2000.

[15] F.A. Aloul, A. Ramani, I.L. Markov, K.A. Sakallah. Generic ILP ver-
sus specialized 0-1 ILP: An update. In Proceedings of the 2002 Inter-
national Conference on Computer-Aided Design (ICCAD ’02), 450–457,
IEEE Computer Society Press, Los Alamitos, CA, 2002.

[16] Anbulagan, D.N. Pham, J. Slaney, and A. Sattar. Old resolution meets
modern SLS. In Proceedings of the 12th National Conference on Artificial
Intelligence, 2005.

[17] M.F. Anjos. On semidefinite programming relaxations for the satisfiability
problem. Mathematical Methods in Operations Research, 60(3), 2004.

[18] M.F. Anjos. An improved semidefinite programming relaxation for the
satisfiability problem. Mathematical Programming , 102(3):589–608, 2005.

[19] M.F. Anjos. An explicit semidefinite characterization of satisfiability for
Tseitin instances on toroidal grid graphs. Annals of Mathematics and
Artificial Intelligence, to appear.

[20] S. Arora, C. Lund. Hardness of approximation. In Approximation algo-
rithms for NP-hard problems, D. Hochbaum (ed.), Chapter 10, 399–446.
PWS Publishing Company, Boston, 1997.

[21] T. Asano, and D.P. Williamson. Improved approximation algorithms for
MAX SAT. Journal of Algorithms, 42(1):173–202, 2002.

[22] B. Aspvall, M.F. Plass, and R.E. Tarjan. A linear-time algorithm for
testing the truth of certain quantified Boolean formulas. Information
Processing Letters, 8(3):121–132, 1979.

BIBLIOGRAPHY 59

[23] B. Aspvall. Recognizing disguised NR(1) instances of the satisfiability
problem. Journal of Algorithms 1:97–103, 1980.

[24] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo,
and F. Somenzi. Algebraic decision diagrams and their applications. In
Proceedings of the International Conference on Computer-Aided Design,
188–191, IEEE Computer Society Press, Los Alamitos, CA, 1993.

[25] E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane
algorithm for mixed 0-1 programs. Mathematical Programming , 58(3,Ser.
A):295–324, 1993.

[26] N. Bansal, V. Raman. Upper bounds for MaxSat: Further improved.
In Proceedings of 10th Annual conference on Algorithms and Computa-
tion, ISSAC’99, Aggarwal and Rangan (eds.), Lecture Notes in Computer
Science, 1741:247–258, Springer-Verlag, 1999.

[27] M.E. Baron. A note on the historical development of logic diagrams.
The Mathematical Gazette: The Journal of the Mathematical Association,
LIII(383), 1969.

[28] P. Beame, and T. Pitassi. Simplified and improved resolution lower
bounds. In Proceedings of the 37th Annual Symposium on Foundations of
Computer Science (Burlington, VT), 274–282, IEEE Computer Society
Press, Los Alamitos, CA, 1996.

[29] P. Beame, R.M. Karp, T. Pitassi, and M. Saks. On the complexity of
unsatisfiability proofs for random k-CNF formulas. In Proceedings of the
30th Annual Symposium on the Theory of Computing (Dallas, TX), 561–
571, 1998.

[30] P. Beame, H. Kautz, and A. Sabharwal. On the power of clause learning.
In Proceedings of the 18th International Joint Conference in Artificial
Intelligence, 94–99, Acapulco, Mexico, 2003.

[31] E. Ben-Sasson, and A. Wigderson. Short proofs are narrow - resolu-
tion made simple. Journal of the Association for Computing Machinery ,
48:149–169, 2001.

[32] E. Ben-Sasson, R. Impagliazzo, and A. Wigderson. Near Optimal Sep-
aration of Tree-like and General Resolution. Combinatorica, 585–603,
2004.

[33] A. Biere, A. Cimatti, E. Clarke, Y. Zhu. Symbolic Model Checking with-
out BDDs. Lecture Notes in Computer Science, 1579:193–207, 1999.

[34] A. Blake. Canonical Expressions in Boolean Algebra. Ph.D. Dissertation,
Department of Mathematics, University of Chicago, 1937.

60 BIBLIOGRAPHY

[35] B. Bollobás, C. Borgs, J. Chayes, J.H. Kim, and D.B. Wilson. The scaling
window of the 2-SAT transition. Random Structures and Algorithms,
18:201–256, 2001.

[36] B. Borchers, J. Furman. A two-phase exact algorithm for MAX-SAT and
weighted MAX-SAT problems. Journal of Combinatorial Optimization,
2(4):299–306, 1999.

[37] E. Boros, Y. Crama, and P.L. Hammer. Polynomial-time inference of all
valid implications for Horn and related formulae. Annals of Mathematics
and Artificial Intelligence, 1:21–32, 1990.

[38] E. Boros, P.L. Hammer, and X. Sun. Recognition of q-Horn formulae in
linear time. Discrete Applied Mathematics, 55:1–13, 1994.

[39] E. Boros, Y. Crama, P.L. Hammer, and M. Saks. A complexity index for
satisfiability problems. SIAM Journal on Computing , 23:45–49, 1994.

[40] R.T. Boute. The Binary Decision Machine as a programmable controller.
EUROMICRO Newsletter , 1(2):16–22, 1976.

[41] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient Implementation of a
BDD Package. In Proceedings of the 27th ACM/IEEE Design Automation
Conference, 40–45, IEEE Computer Society Press, 1990.

[42] A.Z. Broder, A.M. Frieze, and E. Upfal. On the satisfiability and max-
imum satisfiability of random 3-CNF formulas. 4th Annual ACM-SIAM
Symposium on Discrete Algorithms (Austin, TX), 322–330. Association
for Ccomputing Machinery, New York, 1993.

[43] T. Brueggemann, and W. Kern. An improved local search algorithm for
3-SAT. Theoretical Computer Science, 329:1–3, 303–313, 2004.

[44] F.M. Brown. Boolean Reasoning. Dover Publications, Mineola, New York,
2003.

[45] R.E. Bryant. Graph-Based Algorithms for Boolean Function Manipula-
tion. IEEE Transactions on Computers , C-35(8):677–691, 1986.

[46] R.E. Bryant. Symbolic Boolean Manipulation with Ordered Binary De-
cision Diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[47] R.E. Bryant, and Y.-A. Chen. Verification of arithmetic circuits with
binary moment diagrams. In Proceedings of the 32nd ACM/IEEE Design
Automation Conference, 535–541, IEEE Computer Society Press, 1995.

[48] U. Bubeck, H. Kleine Büning, X. Zhao. Quantifier rewriting and equiv-
alence models for quantified Horn formulas. Lecture Notes in Computer
Science, 3569:386–392, Springer, 2005.

BIBLIOGRAPHY 61

[49] J.R. Burch, E.M. Clarke, and K.L. McMillan, D.L. Dill, and L.J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and Com-
putation, 98:142–170, 1992.

[50] J. Buresh-Oppenheim, N. Galesi, S. Hoory, A. Magen, and T. Pitassi.
Rank bounds and integrality gaps for cutting plane procedures. 44th
Annual Symposium on Foundations of Computer Science, 318–327, IEEE
Computer Society Press, Los Alamitos, CA, 2003.

[51] R. Chandrasekaran. Integer programming problems for which a simple
rounding type of algorithm works. In W. Pulleyblank, ed. Progress in
Combinatorial Optimization. Academic Press Canada, Toronto, Ontario,
Canada, 101–106, 1984.

[52] V. Chandru, and J.N. Hooker. Extended Horn sets in propositional logic.
Journal of the Association for Computing Machinery , 38:205–221, 1991.

[53] M.-T. Chao, and J. Franco. Probabilistic analysis of two heuristics for
the 3-Satisfiability problem. SIAM Journal on Computing , 15:1106–1118,
1986.

[54] M.-T. Chao, and J. Franco. Probabilistic analysis of a generalization of
the unit-clause literal selection heuristics for the k-satisfiability problem.
Information Sciences, 51:289–314, 1990.

[55] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard
problems are. Proceedings of the 12th International Joint Conference on
Artificial Intelligence, 331–340, Morgan Kaufmann, 1991.

[56] J. Cheriyan, W.H. Cunningnham, L. Tuncel, Y. Wang. A linear program-
ming and rounding approach to Max 2-Sat. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 26:395–414, 1996.

[57] A.S. Church. Formal definitions in the theory of ordinal numbers. Fun-
damental Mathematics, 28:11-21, 1936.

[58] V. Chvátal and B. Reed. Mick gets some (the odds are on his side). 33th
Annual Symposium on Foundations of Computer Science (Pittsburgh,
Pennsylvania), 620–627, IEEE Computer Society Press, Los Alamitos,
CA, 1992.

[59] V. Chvátal and E. Szemerédi. Many hard examples for resolution. Journal
of the Association for Computing Machinery , 35:759–768, 1988.

[60] A. Cimatti, E. Giunchiglia, P. Giunchiglia, and P. Traverso. Planning via
model checking: a decision procedure for AR. Lecture Notes in Artificial
Intelligence, 1348:130–142, Springer-Verlag, New York, 1997.

62 BIBLIOGRAPHY

[61] M. Conforti, G. Cornuéjols, A. Kapoor, K. Vušković, and M.R. Rao.
Balanced Matrices. Mathematical Programming: State of the Art. J.R.
Birge and K.G. Murty, eds. Braun-Brumfield, United States. Produced
in association with the 15th International Symposium on Mathematical
Programming, University of Michigan, 1994.

[62] S.A. Cook. The complexity of theorem-proving procedures. 3rd Annual
ACM Symposium on Theory of Computing (Shaker Heights, OH), 151–
158, ACM, New York, 1971.

[63] S.A. Cook and R.A. Reckhow. Corrections for “On the lengths of proofs
in the propositional calculus preliminary version.” SIGACT News (ACM
Special Interest Group on Automata and Computability Theory), 6:15-22,
1974.

[64] D. Coppersmith, D. Gamarnik, M. Hajiaghay, G.B. Sorkin. Random
MAX SAT, random MAX CUT, and their phase transitions. In Proceed-
ings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2003.

[65] S. Coste-Marquis, D. Le Berre, F. Letombe, and P. Marquis. Complexity
results for quantified Boolean formulae based on complete propositional
languages. Journal on Satisfiability , Boolean Modeling and Computation
1:61–88, 2006.

[66] O. Coudert, C. Berthet and J.C. Madre. Verification of synchronous
sequential machines based on symbolic execution. Lecture Notes in Com-
puter Science, 407:365–373, Springer, 1990.

[67] O. Coudert, and J.C. Madre. A unified framework for the formal verifica-
tion of sequential circuits. In Proceedings of the 1990 International Con-
ference on Computer-Aided Design (ICCAD ’90), 126–129, IEEE Com-
puter Society Press, Los Alamitos, CA, 1990.

[68] O. Coudert. Two-level logic minimization: an overview. Integration,
17(2):97–140, 1994.

[69] O. Coudert, J.C. Madre, H. Fraisse, H. Touati. Implicit prime cover com-
putation: an overview. In Proceedings of the First Workshop on Synthesis
And System Integration of Mixed Information technologies, 1993.

[70] N. Creignou and H. Daudé: Generalized satisfiability problems: Minimal
elements and Phase transitions. Theoretical Computer Science 302(1-
3) (2003) 417–430 (Appeared in an earlier version in: Proceedings of the
5th International Symposium on Theory and Applications of Satisfiability
Testing, SAT’2002 Cincinatti (2002) 17–26).

BIBLIOGRAPHY 63

[71] N. Creignou and H. Daudé. Satisfiability threshold for random XOR-CNF
formulas. Discrete Applied Mathematics, 96-97:41–53, 1999.

[72] N. Creignou and H. Daudé. Smooth and sharp thresholds for ran-
dom k-XOR-CNF satisfiability. Theoretical Informatics and Applications,
37(2):127–148, 2003.

[73] N. Creignou and H. Daudé. Combinatorial sharpness criterion and phase
transition classification for random CSPs. Information and Computation,
190(2):220–238, 2004.

[74] N. Creignou, H. Daudé, and J. Franco. A sharp threshold for the re-
nameable Horn and q-Horn properties. Discrete Applied Mathematics,
153:48–57, 2005.

[75] N. Creignou, S. Khanna, and M. Sudan. Complexity classifications of
Boolean constraint satisfaction problems. Monographs on Discrete Ap-
plied Mathematics , SIAM, 2001.

[76] V. Dalmau. Some dichotomy theorems on constant free Boolean for-
mulas. Technical Report TR-LSI-97-43-R, Universitat Polytechnica de
Catalunya, 1997.

[77] R. Damiano, and J. Kukula. Checking satisfiability of a conjunction of
BDDs. In Proceedings of the 40th ACM/IEEE Design Automation Con-
ference, 818–823, IEEE Computer Society Press, 2003.

[78] E. Dantsin, A. Goerdt, E.A. Hirsch, R. Kannan, J. Kleinberg, C. Pa-
padimitriou, P. Raghavan, U. Schöning. A deterministic (2− 2/(k+ 1))n

algorithm for k–SAT based on local search. Theoretical Computer Science,
289:69–83, 2002.

[79] E. Dantsin, and A. Wolpert. Derandomization of Schuler’s algorithm for
SAT. In Lecture Notes in Computer Science, 2919:69–75, Springer, New
York, 2004.

[80] E. Dantsin, and A. Wolpert. An improved upper bound for SAT. In
Lecture Notes in Computer Science, 3569:400–407, Springer, New York,
2005.

[81] M. Davis. The early history of Automated Deduction. In Handbook of
Automated Deduction, A. Robinson and A. Voronkov, eds., MIT Press,
2001.

[82] M. Davis, and H. Putnam. Computational methods in the propositional
calculus. Unpublished report, Rensselaer Polytechnic Institute, 1958.

64 BIBLIOGRAPHY

[83] M. Davis, and H. Putnam. A computing procedure for quantification
theory. Journal of the Association for Computing Machinery , 7(3):201–
215, 1960.

[84] M. Davis, G. Logemann, D. Loveland. A machine program for theorem
proving. Communications of the ACM , 5:394–397, 1962.

[85] W.F. Dowling, and J.H. Gallier. Linear-time algorithms for testing the
satisfiability of propositional Horn formulae. Journal of Logic Program-
ming , 1:267–284, 1984.

[86] O. Dubois, and Y. Boufkhad. A general upper bound for the satisfiability
threshold of random r-SAT formulae. Journal of Algorithms, 24:395–420,
1997.

[87] O. Dubois. Upper bounds on the satisfiability threshold. Theoretical
Computer Science, 265:187–197, 2001.

[88] O. Dubois, Y. Boufkhad, and J. Mandler. Typical random 3-SAT formulae
and the satisfiability threshold. In Proceedings 11th ACM-SIAM Sympo-
sium on Discrete Algorithms, (San Francisco, CA), 124–126, ACM, New
York, 2000. Also available from http://arxiv.org/abs/cs/0211036 (2002).

[89] A. El Maftouhi, and W. Fernandez de la Vega. On random 3-SAT. Com-
binatorics, Probability, and Computing , 4:189-195, 1995.

[90] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and
multi-commodity flow problems. SIAM Journal on Computing , 5:691–
703, 1976.

[91] U. Feige, and M. Goemans. Approximating the value of two prover proof
systems, with applications to MAX 2SAT and MAX DICUT. In Pro-
ceedings of the 3rd Israel Symposium on the Theory of Computing and
Systems , 182–189, 1995.

[92] W. Fernandez de la Vega. On random 2-sat. Manuscript, 1992.

[93] A. El Maftouhi, and W. F. de la Vega. On Random 3-SAT. Manuscript,
Laboratoire de Recherche en Informatique, Université Paris-Sud, France.
1997.

[94] L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial Intelligence Through
Simulated Evolution. John Wiley & Sons, New York, NY, USA, 1966.

[95] J. Franco. On the probabilistic performance of algorithms for the satisfi-
ability problem. Information Processing Letters, 23:103–106, 1986.

[96] J. Franco. Elimination of infrequent variables improves average case
performance of satisfiability algorithms. SIAM Journal on Computing ,
20:1119–1127, 1991.

BIBLIOGRAPHY 65

[97] J. Franco. On the occurrence of null clauses in random instances of sat-
isfiability. Discrete Applied Mathematics, 41:203–209, 1993.

[98] J. Franco and Y.C. Ho. Probabilistic performance of heuristic for the
satisfiability problem. Discrete Applied Mathematics, 22:35–51, 1988/89.

[99] J. Franco, and M. Paull. Probabilistic analysis of the Davis-Putnam
procedure for solving the satisfiability problem. Discrete Applied Mathe-
matics , 5:77–87, 1983.

[100] J. Franco, and A. Van Gelder. A Perspective on Certain Polynomial
Time Solvable Classes of Satisfiability. Discrete Applied Mathematics,
125(2-3):177–214, 2003.

[101] J. Franco, M. Kouril, J. Schlipf, J. Ward, S. Weaver, M. Dransfield, and
W.M. Vanfleet. SBSAT: a state-based, BDD-based satisfiability solver.
Lecture Notes in Computer Science, 2919:398–410, 2004.

[102] E. Friedgut, and an appendix by J. Bourgain. Sharp thresholds of graph
properties, and the k-sat problem. Journal of the American Mathematical
Society , 12(4):1017–1054, 1999.

[103] A.M. Frieze, and S. Suen. Analysis of two simple heuristics on a random
instance of k-SAT. Journal of Algorithms, 20:312–355, 1996.

[104] X. Fu. On the complexity of proof systems. Ph.D. Thesis, University of
Toronto, 1995.

[105] Z. Galil. On the complexity of regular resolution and the Davis-Putnam
procedure. Theoretical Computer Science, 4:23–46, 1977.

[106] M. Gardner. Logic Machines and Diagrams. McGraw-Hill, New York,
1958.

[107] H. Gelernter. Realization of a geometry-theorem proving machine. In
Proceedings of the International Conference on Information Processing ,
UNESCO House, 273–282, 1959.

[108] I.P. Gent, and T. Walsh. An empirical analysis of search in GSAT.
Journal of Artificial Intelligence Research, 1:47–59, 1993.

[109] P. Gilmore. A proof method for quantification theory: its justification
and realization. IBM Journal of Research and Development , 4:28–35,
1960.

[110] S. de Givry, J. Larrosa, P. Meseguer, T. Schiex. Solving MAX-SAT
as weighted CSP. Lecture Notes in Computer Science, 2833:363–376,
Springer, 2003.

66 BIBLIOGRAPHY

[111] K. Gödel. On Formally Undecidable Propositions of Principia Mathmat-
ica and Related Systems. 1931.

[112] M.X. Goemans, and D.P. Williamson. Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming. Journal of the Association for Computing Machinery ,
42(6):1115–1145, 1995.

[113] A. Goerdt. A threshold for unsatisfiability. Journal of Computer System
Science, 53:469–486, 1996.

[114] A. Goerdt, and M. Krivelevich. Efficient recognition of random unsatisfi-
able k-SAT instances by spectral methods. In Lecture Notes in Computer
Science, 2010:294–, 2001.

[115] A. Goldberg. On the complexity of the satisfiability problem. 4th Work-
shop on Automated Deduction (Austin, TX), 1–6, 1979.

[116] A. Goldberg, P.W. Purdom, and C. Brown. Average time analysis of sim-
plified Davis-Putnam procedures. Information Processing Letters, 15:72–
75, 1982.

[117] J. Gramm. Exact algorithms for Max2Sat and their applications. Diplo-
marbeit, Universität Tübingen, October 1999.

[118] J. Gramm, E.A. Hirsch, R. Niedermeier, P. Rossmanith. New worst-case
upper bounds for MAX-2-SAT with application to MAX-CUT. Discrete
Applied Mathematics, 130(2):139–155, 2003.

[119] D. Grigoriev, E.A. Hirsch, and D.V. Pasechnik. Complexity of semial-
gebraic proofs. Moscow Mathematics Journal , 2(4):647–679, 2002.

[120] D. Grigoriev, E.A. Hirsch, and D.V. Pasechnik. Exponential lower bound
for static semi-algebraic proofs. Lecture Notes in Computer Science,
2380:257–268, Springer, Berlin, 2002.

[121] M. Grötschel, L. Lovsz, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and Combinatorics,
Springer-Verlag, Berlin, second edition, 1993.

[122] J. Gu. Efficient local search for very large scale satisfiability problems.
SIGART Bulletin, 3(1):8–12, 1992.

[123] M.T. Hajiaghayi, and G.B. Sorkin. The satisfiability threshold of random
3-SAT is at least 3.52.
Available from http://arxiv.org/pdf/math.CO/0310193.

[124] A. Haken. The intractability of resolution. Theoretical Computer Sci-
ence, 39:297–308, 1985.

BIBLIOGRAPHY 67

[125] P. Hall. On representatives of subsets. Journal of London Mathematical
Society , 10:26–30, 1935.

[126] E. Halperin, and U. Zwick. Approximation algorithms for MAX 4-SAT
and rounding procedures for semidefinite programs. Journal of Algo-
rithms, 40(2):184–211, 2001.

[127] P. Hansen, B. Jaumard. Algorithms for the maximum satisfiability prob-
lem. Computing , 44:279–303, 1990.

[128] P. Hansen, B. Jaumard, and G. Plateau. An extension of nested satisfi-
ability. Les Cahiers du GERAD, G-93-27, 1993.

[129] J. Hästad. Some optimal inapproximability results. Journal of the As-
sociation for Computing Machinery , 48:798–859, 2001.

[130] C. Helmberg.
http://www-user.tu-chemnitz.de/ helmberg/semidef.html.

[131] E. Hemaspaandra. Dichotomy theorems for alternation-bound quanti-
fied Boolean formulas. ACM Computing Research Repository , Technical
Report cs.CC/0406006, June 2004.

[132] L. Henkin. The Completeness of the First-Order Functional Calculus.
Journal of Symbolic Logic, 14:159–166, 1949.

[133] J. Herbrand. Sur la Théorie de la Démonstration. Comptes Rendus des
Séances de la Sociéte des Sciences et des Lettres de Varsovie, Classe III
24:12–56, 1931.

[134] C. Herlinus, and C. Dasypodius. Analyseis Geometricae Sex Liborum
Euclidis. J. Rihel, Strausbourg, 1566.

[135] E.A. Hirsch. New worst-case upper bounds for SAT. Journal of Auto-
mated Reasoning, 24(4):397–420, 2000.

[136] E.A. Hirsch. A new algorithm for MAX-2-SAT. In Proceedings of 17th

International Symposium on Theoretical Aspects of Computer Science,
STACS 2000, Lecture Notes in Computer Science, 1770:65–73, Springer-
Verlag, 2000.

[137] J.H. Holland. Adaption in Natural and Artificial Systems. The Univer-
sity of Michigan Press, Ann Arbor, MI, 1975.

[138] Y. Hong, P.A. Beerel, J.R. Burch, and K.L. McMillan. Safe BDD mini-
mization using don’t cares. In Proceedings of the 34th ACM/IEEE Design
Automation Conference, 208–213, IEEE Computer Society Press, 1997,

[139] H.H. Hoos. Stochastic local search - methods, models, applications.
Ph.D. Thesis, TU Darmstadt, FB Informatik, Darmstadt, Germany, 1998.

68 BIBLIOGRAPHY

[140] H.H. Hoos. On the run-time behavior of stochastic local search algo-
rithms for SAT. In Proceedings of the 16th National Conference on Ar-
tificial Intelligence, 661–666, AAAI Press/The MIT Press, Menlo Park,
CA, 1999.

[141] H.H. Hoos. A mixture model for the behaviour of SLS algorithms for
SAT. In Proceedings of the 18th National Conference on Artificial Intel-
ligence, 661–667, AAAI Press/The MIT Press, Menlo Park, CA, 2002.

[142] H.H. Hoos, and T. Stützle. Stochastic Local Search. Elsevier, Amster-
dam, 2005.

[143] F. Hutter, D.A.D. Tompkins, and H.H. Hoos. Scaling and probabilistic
smoothing: efficient dynamic local search for SAT. Lecture Notes in Com-
puter Science, 2470:233-248, Springer Verlag, Berlin, Germany, 2002.

[144] J. Huang, and A. Darwiche. Toward good elimination orders for symbolic
SAT solving. In Proceedings of the 16th IEEE International Conference
on Tools with Artificial Intelligence, 2004.

[145] A. Ishtaiwi, J.R. Thornton, A.S. Anbulagan, and D.N. Pham. (2006).
Adaptive clause weight redistribution. In Proceedings of the 12th Interna-
tional Conference on the Principles and Practice of Constraint Program-
ming , CP-2006, Nantes, France, 229–243, 2006.

[146] A. Itai, and J. Makowsky. On the complexity of Herbrand’s theorem.
Working paper 243, Department of Computer Science, Israel Institute of
Technology, 1982.

[147] Iwama, K., “CNF satisfiability test by counting and polynomial average
time,” SIAM Journal on Computing 18:385–391, 1989.

[148] K. Iwama, and S. Tamaki. Improved upper bounds for 3-SAT. In
Proceedings of the 15th annual ACM-SIAM Symposium on Discrete Al-
gorithms, 328–328, Society for Industrial and Applied Mathematics
Philadelphia, PA, USA, 2004.

[149] J. Jacob, A. Mishchenko. Unate decomposition of Boolean functions. In
Proceedings of the 10th International Workshop on Logic and Synthesis,
2001.

[150] W.S. Jevons. On the mechanical performance of logic inference. Philo-
sophical Transactions of the Royal Society of London, 160:497, 1870.

[151] H.-S. Jin, and F. Somenzi. CirCUs: A hybrid satisfiability solver. Lecture
Notes in Computer Science, 3542:211–223, 2005.

[152] D.S. Johnson. Approximation Algorithms for Combinatorial Problems.
Journal of Computer and Systems Sciences, 9:256–278, 1974.

BIBLIOGRAPHY 69

[153] T. Jussilla, and A. Biere. Compressing bmc encodings with QBF. In Pro-
ceedings of the 44th International Workshop on Bounded Model Checking ,
27–39, 2006.

[154] A. Kamath, R. Motwani, K. Palem, and P. Spirakis. Tail bounds for
occupancy and the satisfiability conjecture. Random Structures and Al-
gorithms, 7:59–80, 1995.

[155] A.C. Kaporis, L.M. Kirousis, and E.G. Lalas. The probabilistic anal-
ysis of a greedy satisfiability algorithm. In em 10th Annual European
Symposium on Algorithms, (Rome, Italy), 2002.

[156] A.C. Kaporis, L.M. Kirousis, and E.G. Lalas. Selecting complementary
pairs of literals. Electronic Notes in Discrete Mathematics, 16(1):1-24,
2004.

[157] A.C. Kaporis, L.M. Kirousis, and Y.C. Stamatiou. How to prove con-
ditional randomness using the principle of deferred decisions. Available
from http://www.ceid.upatras.gr/faculty/kirousis/kks-pdd02.ps, 2002.

[158] H. Karloff, and U. Zwick. A 7/8-approximation algorithm for MAX
3SAT? 38th Annual Symposium on the Foundations of Computer Science,
406–415, IEEE Computer Society Press, Los Alamitos, CA, 1997.

[159] R.M. Karp, and M. Sipser. Maximum matchings in sparse random
graphs. In 22nd Annual Symposium on the Foundations of Computer
Science, (Nashville, Tennessee), 364–375, IEEE Computer Society Press,
Los Alamitos, CA, 1981.

[160] M. Karpinski, H. Kleine Büning, and P. Schmitt. On the computational
complexity of quantified Horn clauses. In Proceedings of Compute Science
Logic (CSL’88), Springer, LNCS 329:129–137, 1988.

[161] M. Karpinski, H. Kleine Büning, and A. Flögel. Subclasses of quantified
Boolean formulas. In Proceedings of Computer Science Logic (CSL’90),
Springer LNCS 533:145–155, 1991.

[162] L. M. Kirousis, E. Kranakis, and D. Krizanc. A better upper bound for
the unsatisfiability threshold. In DIMACS series in Discrete Mathematics
and Theoretical Computer Science, 60, 1996.

[163] L.M. Kirousis, E. Kranakis, D. Krizanc, and Y.C. Stamatiou. Approxi-
mating the unsatisfiability threshold of random formulae. Random Struc-
tures and Algorithms, 12:253–269, 1998.

[164] S. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecchi. Optimization by
simulated annealing. Science, 220:671–680, 1983.

70 BIBLIOGRAPHY

[165] S. Kirkpatrick, B. Selman. Critical behavior in the satisfiability of ran-
dom formulas. Science, 264:1297–1301, 1994.

[166] S.C. Kleene. Recursive predicates and quantifiers. Transactions of the
American Mathematical Society , 53:41–73, 1943.

[167] E. de Klerk, H. van Maaren, and J.P. Warners. Relaxations of the satis-
fiability problem using semidefinite programming. Journal of Automated
Reasoning , 24(1-2):37–65, 2000.

[168] E. de Klerk. Aspects of Semidefinite Programming, Volume 65 of Applied
Optimization, Kluwer Academic Publishers, Dordrecht, 2002.

[169] E. de Klerk, and H. van Maaren. On semidefinite programming relax-
ations of (2 + p)-SAT. Annals of Mathematics and Artificial Intelligence,
37(3):285–305, 2003.

[170] R. Kowalski, and P.J. Hayes. Semantic Trees in Automatic Theorem-
Proving. In Machine Intelligence, 4:87-101, Meltzer and Michie (eds.),
Edinburgh Uuniversity Press, Edinburgh, Scotland, 1969.

[171] H. Kleine Büning. An Upper Bound for Minimal Resolution Refutations.
Lecture Notes in Computer Science, 1584:171–178, 1999.

[172] H. Kleine Büning. On subclasses of minimal unsatisfiable formulas. Dis-
crete Applied Mathematics, 107(1-3):83–98, 2000.

[173] H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for quantified
Boolean formulas. Information and Computation, 117(1):12–18, 1995.

[174] H. Kleine Büning, and T. Lettmann. Propositional Logic: Deduction
and Algorithms. Cambridge University Press, 1999.

[175] H. Kleine Büning, K. Subramani, X. Zhao. Boolean functions as mod-
els for quantified Boolean formulas. Journal of Automated Reasoning ,
39(1):49–75, 2007.

[176] D. Knuth. Nested satisfiability. Acta Informatica, 28:1-6, 1990.

[177] M. Krivelevich, and V.H. Vu. Approximating the independence number
and the chromatic number in expected polynomial time. Lecture Notes
in Computer Science, 1853:13-, 2000.

[178] O. Kullmann. Investigations on autark assignments. Discrete Applied
Mathematics , 107:99-137, 2000.

[179] O. Kullmann. Lean clause-sets: generalizations of minimally unsatisfi-
able clause-sets. Discrete Applied Mathematics, 130(2):209–249, 2003.

BIBLIOGRAPHY 71

[180] T.G. Kurtz. Solutions of ordinary differential equations as limits of pure
jump Markov processes. Journal of Applied Probability , 7:49–58, 1970.

[181] J.B. Lasserre. Optimality conditions and LMI relaxations for 0-1 pro-
grams. Technical report, LAASCNRS, Toulouse, France, 2000.

[182] J.B. Lasserre. An explicit equivalent positive semidefinite program for
nonlinear 0-1 programs. SIAM Journal on Optimization, 12(3):756–769,
2002.

[183] M. Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver, and
Lasserre relaxations for 0-1 a programming. Mathematics of Operations
Research, 28(3):470–496, 2003.

[184] S. Lavine. Understanding the Infinite. Harvard University Press, Cam-
bridge, 1994.

[185] C.Y. Lee. Representation of Switching Circuits by Binary-Decision Pro-
grams. Bell Systems Technical Journal , 38:985–999, 1959.

[186] H.R. Lewis. Renaming a set of clauses as a Horn set. Journal of the
Association for Computing Machinery , 25:134–135, 1978.

[187] C.M. Li, and W. Huang. Diversification and determinism in local search
for Satisfiability. In Lecture Notes in Computer Science, 3569:158–172,
Springer, New York, 2005.

[188] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on
Computing , 11:329–343, 1982.

[189] S. Lin, and B.W. Kernighan. An effective heuristic algorithm for the
traveling salesman problem. Operations Research, 21(2):498–516, 1973.

[190] L. Lovász. On the Shannon capacity of a graph. IEEE Transactions on
Information Theory , 25(1):1–7, 1979.

[191] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1
optimization. SIAM Journal on Optimization, 1(2):166–190, 1991.

[192] H. van Maaren. Elliptic approximations of propositional formulae. Dis-
crete Applied Mathematics, 96/97:223– 244, 1999.

[193] H. vanMaaren. A short note on some tractable classes of the satisfiability
problem. Information and Computation, 158(2):125–130, 2000.

[194] H. van Maaren, and L. van Norden. Sums of squares, satisfiability and
maximum satisfiability. Lecture Notes in Computer Science, 3569:293–
307, Springer, Berlin, 2005.

72 BIBLIOGRAPHY

[195] M. Mahajan, V. Raman. Parameterizing above guaranteed values:
MaxSat and MaxCut. Journal of Algorithms, 31:335–354, 1999.

[196] S. Mahajan, and H. Ramesh. Derandomizing approximation algo-
rithms based on semidefinite programming. SIAM Journal on Computing ,
28(5):1641–1663, 1999.

[197] J.N. Martin. Aristotle’s natural deduction reconsidered. History and
Philosophy of Logic, 18:1–15, 1997.

[198] D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in
local search. In Proceedings of the 14th National Conference on Artificial
Intelligence, 321–326, AAAI Press/The MIT Press, Monlo Park, CA,
1997.

[199] E.I. McCluskey, Jr. Minimization of Boolean functions. Bell System
Technical Journal , 35:1417–1444, 1959.

[200] C.B. McDonald, and R.E. Bryant. Computing logic-stage delays using
circuit simulation and symbolic elmore analysis. In Proceedings of the 38th

ACM/IEEE Design Automation Conference, 283–288, IEEE Computer
Society Press, 2001.

[201] K.L. McMillan. Symbolic Model Checking: An Approach to the State
Explosion Problem. Kluwer Academic Publishers, 1993.

[202] A.R. Meyer, and L.J. Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential space. In Proceedings of
the 13th Symposium on Switching and Automata Theory , 125–129, 1972.

[203] A.R. Meyer, and L.J. Stockmeyer. Word problems requiring exponential
time. In Proceedings of the 5th Annual Symposium on the Theory of
Computing , 1–9, 1973.

[204] M. Mézard, and Riccardo Zecchina. The random k-satisfiability prob-
lem: from an analytic solution to an efficient algorithm. Technical report
available from http://arXiv.org 2002.

[205] S. Minato. Zero-suppressed BDDs for set manipulation in combinatorial
problems. In Proceedings of the 30th ACM/IEEE Design Automation
Conference, 272–277, IEEE Computer Society Press, 1993.

[206] S. Minato. Fast factorization method for implicit cube cover represen-
tation. IEEE Transactions on Computer Aided Design, 15(4):377–384,
1996.

[207] S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Solving large-
scale constraint satisfaction and scheduling problems using a heuristic
repair method. In Proceedings of the 8th National Conference on Artificial

BIBLIOGRAPHY 73

Intelligence, 17–24. AAAI Press/The MIT Press, Menlo Park, CA, USA,
1990.

[208] D. Mitchell, B. Selman, H. Levesque. Hard and easy distributions for
SAT problems. In Proceedings of the 10th National Conference on Artifi-
cial Intelligence, 459–465, 1992.

[209] M. Mitzenmacher. Tight thresholds for the pure literal rule. DEC/SRC
Technical Note 1997-011, June 1997.

[210] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyan-
sky. Determining computational complexity from characteristic “phase
transitions.” Nature, 400:133–137, 1999.

[211] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky.
2+ p-SAT: Relation of typical-case complexity to the nature of the phase
transition. Random Structures and Algorithms, 15(3-4):414–435, 1999.

[212] B. Monien, and E. Speckenmeyer. 3-Satisfiability is testable in O(1.62r)
steps. Reihe Informatik, Bericht Nr. 3 (1979), Universität-GH Paderborn

[213] B. Monien, and E. Speckenmeyer. Solving Satisfiability in less than 2n

steps. Discrete Applied Mathematics, 10:287–295, 1985.

[214] D. Motter, and I. Markov. A compressed breadth-first search for satis-
fiability. Lecture Notes in Computer Science, 2409:29–42, 2002.

[215] A. Newell, J. Shaw, and H. Simon. Empirical explorations with the
logic theory machine. In Proceedings of the Western Joint Computer
Conference, 15:218–239, 1957.

[216] R. Niedermeier. Some prospects for efficient fixed parameter algorithms.
In Proceedings of the 25th Conference on Current Trends in Theory and
Practice of Informatics (SOFSEM’98), 1521:168–185, Springer, 1998.

[217] R. Niedermeier, P. Rossmanith. New upper bounds for maximum satis-
fiability. Journal of Algorithms, 36:63–88, 2000.

[218] V.Y. Pan, and Z.Q. Chen. The complexity of the matrix eigenproblem.
31st ACM Symposium on Theory of Computing , Association for Comput-
ing Machinery, New York, 1999.

[219] G. Pan, and M. Vardi. Search vs. symbolic techniques in satisfiability
solving. Lecture Notes in Computer Science, 3542:235–250, 2005.

[220] P.A. Parrilo. Semidefinite programming relaxations for semialgebraic
problems. Mathematical Programming , 96(2, Ser. B):293–320, 2003.

[221] C.I. Lewis. A Survey of Symbolic Logic. Dover, New York, 1960.

74 BIBLIOGRAPHY

[222] M. Putinar. Positive polynomials on compact semi-algebraic sets. Indi-
ana University Mathematics Journal , 42(3):969–984, 1993.

[223] L.J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3:1–22, 1977.

[224] F. Turquette, M. Turquette, and A. Turquette. Peirce’s Triadic Logic.
Transactions of the Charles S. Peirce Society , 11:71–85, 1966.

[225] J.M. Plotkin, J.W. Rosenthal, and J. Franco. Correction to probabilis-
tic analysis of the Davis-Putnam procedure for solving the satisfiability
problem. Discrete Applied Mathematics, 17:295–299, 1987.

[226] C.H. Papadimitriou. On selecting a satisfying truth assignment. In Pro-
ceedings of the 32nd Annual IEEE Symposium on Foundations of Com-
puter Science, 163–169, IEEE Computer Society Press, Los Alamitos,
CA, USA, 1991.

[227] R. Paturi, P. Pudlak, and F. Zane. Satisfiability coding lemma. In
Proceedings of the 38th annual IEEE Symposium on Foundations of Com-
puter Science, 566–574, IEEE Computer Society Press, Los Alamitos,
CA, USA, 1997.

[228] R. Paturi, P. Pudlak, and F. Zane. An improved exponential-time al-
gorithm for k-SAT. In Proceedings of the 39th annual IEEE Symposium
on Foundations of Computer Science, 628–637, IEEE Computer Society
Press, Los Alamitos, CA, USA, 1998.

[229] D. Prawitz. An improved proof procedure. Theoria, 26(2):102–139,
1960.

[230] P.W. Purdom and G.N. Haven. Probe order backtracking. SIAM Journal
on Computing , 26:456–483, 1997.

[231] P.W. Purdom. Search rearrangement backtracking and polynomial av-
erage time. Artificial Intelligence, 21:117–133, 1983.

[232] P.W. Purdom, and C.A. Brown. The pure literal rule and polynomial
average time. SIAM Journal on Computing , 14:943–953, 1985.

[233] W.V.O. Quine. A Way To Simplify Truth Functions. American Mathe-
matical Monthly , 62:627–631, 1955.

[234] W.V.O. Quine. On cores and prime implicants of truth functions. Amer-
ican Mathematics Monthly , 66:755–760, 1959.

[235] J.A. Robinson. Theorem-proving on the computer. Journal of the ACM ,
10:163–174, 1963.

BIBLIOGRAPHY 75

[236] J.A. Robinson. A machine-oriented logic based on the resolution princi-
ple. Journal of the ACM , 12:23–41, 1965.

[237] J.A. Robinson. The generalized resolution principle. In Machine Intel-
ligence, 3:77–94, Dale and Michie (eds.), American Elsevier, New York,
1968.

[238] J.W. Rosenthal, J.W. Plotkin, and J. Franco. The probability of pure
literals. Journal of Logic and Computation, 9:501–513, 1999.

[239] B. Russell. Principles of Mathematics, Section 212. Norton, New York,
1902.

[240] E.W. Samson, B.E. Mills. Circuit minimization: algebra and algorithms
for new Boolean canonical expressions. AFCRC Technical Report 54-21,
1954.

[241] W.S. Savitch. Relationships between nondeterministic and deterministic
tape complexities. Journal of Computer and Systems Sciences, 4:177–192,
1970.

[242] T. Schaefer. The complexity of satisfiability problems. In Proceedings of
the 10th ACM Symposium on the Theory of Computing , 1–9, 1973.

[243] H.-P. Schwefel. Numerical Optimization of Computer Models. John
Wiley & Sons, Chichester, UK, 1981.

[244] U. Schöning. A probabilistic algorithm for k-SAT and constraint sat-
isfaction problems. In Proceedings of the 40th Annual IEEE Symposium
on Foundations of Computer Science, 410-414, IEEE Computer Society
Press, Los Alamitos, CA, USA, 1999.

[245] U. Schöning. A probabilistic algorithm for k-SAT based on limited local
search and restart. Algorithmica, 32:615-623, 2002.

[246] I. Schiermeyer. Pure literal look ahead: a 3-Satisfiability algorithm. In
Proceedings of the First Workshop on the Satisfiability Problem, J. Franco,
G. Gallo, H. Kleine Büning, E. Speckenmeyer, C. Spera, eds., Report
No.96-230, Reihe: Angewandte Mathematik und Informatik, Universität
zu Köln, 127–136, 1996.

[247] R. Schuler, U. Schöning, and O. Watanabe. An improved randomized
algorithm for 3-SAT. Technical Report TR-C146, Deptartment of Math-
ematics and Computer Sciences, Tokyo Institute of Technology, Japan,
2001.

[248] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard
satisfiability problems. In Proceedings of the 10th National Conference on
Artificial Intelligence, 440–446, AAAI Press/The MIT Press, Menlo Park,
CA, 1992.

76 BIBLIOGRAPHY

[249] B. Selman, and H. Kautz. Domain-independent extensions to GSAT:
solving large structured satisfiability problems. In Proceedings of the 13th

International Joint Conference on Artificial Intelligence, 290–295, Mor-
gan Kaufmann Publishers, San Francisco, CA, USA, 1993.

[250] B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving
local search. In Proceedings of the 12th National Conference on Artifi-
cial Intelligence, 337–343, AAAI Press/The MIT Press, Menlo Park, CA,
1994.

[251] J.S. Schlipf, F. Annexstein, J. Franco, and R. Swaminathan. On finding
solutions for extended Horn formulas. Information Processing Letters,
54:133–137, 1995.

[252] R. Schuler. An algorithm for the satisfiability problem of formulas in
conjunctive normal form. Journal of Algorithms, 54(1): 40–44, 2005.

[253] D. Schuurmans, F. Southey, and R.C. Holte. The exponentiated subgra-
dient algorithm for heuristic boolean programming. In Proceedings of the
17th International Joint Conference on Artificial Intelligence, 334–341,
Morgan Kaufmann Publishers, San Francisco, CA, USA, 2001.

[254] M.G. Scutella. A note on Dowling and Gallier’s top-down algorithm for
propositional Horn satisfiability. Journal of Logic Programming , 8:265–
273, 1990.

[255] Y. Shang, and B.W. Wah. A discrete Lagrangian-based globalsearch
method for solving satisfiability problems. Journal of Global Optimiza-
tion, 12(1):61–100, 1998.

[256] C.E. Shannon. A symbolic analysis of relay and switching circuits. Mas-
ters Thesis, Massachusetts Institute of Technology, 1940. Available from
http://hdl.handle.net/1721.1/11173.

[257] H.D. Sherali and W.P. Adams. A hierarchy of relaxations between the
continuous and convex hull representations for zero-one programming
problems. SIAM Journal on Discrete Mathematics, 3(3):411–430, 1990.

[258] M.H. Stone. The Theory of Representation for Boolean Algebras. TAMS ,
40:37–111, 1936.

[259] R.P. Swaminathan, and D.K. Wagner. The arborescence–realization
problem. Discrete Applied Mathematics, 59:267–283, 1995.

[260] S. Szeider. Minimal unsatisfiable formulas with bounded clause-variable
difference are fixed-parameter tractable. In Proc. 9th COCOON: An-
nual International Conference on Computing and Combinatorics, LNCS
2697:548–558. Springer, 2003.

BIBLIOGRAPHY 77

[261] A. Tarski. The Concept of Truth in Formalized Languages. In Logic
Semantics, Metamathematics, A. Tarski, ed., Clarendon Press, Oxford,
1956.

[262] A. Tarski. Truth and Proof. Philosophy and Phenomenological Research,
4:341–75, 1944.

[263] A. Tarski. Contributions to the Theory of Models. Indagationes Math-
ematicae, 16:572–88, 1954.

[264] C.A. Tovey. A simplified NP-complete satisfiability problem. Discrete
Applied Mathematics, 8:85–89, 1984.

[265] K. Truemper. Monotone Decomposition of Matrices. Technical Report
UTDCS-1-94, University of Texas at Dallas. 1994.

[266] K. Truemper. Effective Logic Computation. Wiley, 1998.

[267] G. Tseitin. On the complexity of derivation in propositional calculus.
In Studies in Constructive Mathematics and Mathematical Logic, Part 2 ,
115–125, 1968.

[268] A.M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society ,
Series 2, 42:230-265, 1936.

[269] T.E. Uribe, and M.E. Stickel. Ordered binary decision diagrams and the
Davis-Putnam procedure. Lecture Notes in Computer Science, 845:34–
49, 1994.

[270] J.F. Groote, and H. Zantema. Resolution and binary decision diagrams
cannot simulate each other polynomially. Discrete Applied Mathematics,
130(2):157–171, 2003.

[271] A. Urquhart. Hard examples for resolution. Journal of the Association
for Computing Machinery , 34:209–219, 1987.

[272] J. Venn. On the diagrammatic and mechanical representation of propo-
sitions and reasonings. Dublin Philosophical Magazine and Journal of
Science, 9(59):1–18, 1880.

[273] B.W. Wah, and Y. Shang. Discrete Lagragian-based search for solv-
ing MAX-SAT problems. In Proceedings of the 15th International Joint
Conference on Artificial Intelligence, 378–383, 1998.

[274] R. Wallace, E. Freuder. Comparative studies of constraint satisfaction
and Davis-Putnam algorithms for maximum satisfiability problems. In
Cliques, Coloring and Satisfiability , D. Johnson and M. Trick (eds.),
26:587–615, 1996.

78 BIBLIOGRAPHY

[275] I. Wegener. BDDs - design, analysis, complexity, and applications. Dis-
crete Applied Mathematics, 138(1-2):229–251, 2004.

[276] L. Wittgenstein. Tractatus Logico-Philosophicus. Reprinted by K. Paul,
Trench, Trubner, London, 1933.

[277] H. Wolkowicz, R. Saigal, and L. Vandenberghe (eds.), Handbook of
Semidefinite Programming. Kluwer Academic Publishers, Boston, MA,
2000.

[278] N.C. Wormald. Differential equations for random processes and random
graphs. Annals of Applied Probability , 5:1217–1235, 1995.

[279] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theo-
retical Computer Science, 3:22–33, 1977.

[280] Z. Wu, and B.W. Wah. Trap escaping strategies in discrete Lagrangian
methods for solving hard satisfiability and maximum satisfiability prob-
lems. In Proceedings of the 16th National Conference on Artificial Intel-
ligence, 673–678, AAAI Press/The MIT Press, Menlo Park, CA, USA,
1999.

[281] Z. Wu, and B.W. Wah. An efficient global-search strategy in discrete
Lagrangian methods for solving hard satisfiability problems. In Proceed-
ings of the 17th National Conference on Artificial Intelligence, 310-315,
AAAI Press/The MIT Press, Menlo Park, CA, USA, 2000.

[282] H. Xu, R.A. Rutenbar, K. Sakallah. sub-SAT: A formulation for related
boolean satisfiability with applications in routing. In Proceedings of the
2002 ACM International Symposium on Physical Design, 182–187, 2002.

[283] H. Zhang, H. Shen, F. Manyà. Exact algorithms for MAX-SAT. In Pro-
ceedings of the International Workshop on First-order Theorem Proving
(FTP 2003). Available from:
http://www.elsevier.com/gej-ng/31/29/23/135/23/show/Products/notes/index.htt.

[284] X. Zhao, W. Zhang. An efficient algorithm for maximum boolean sat-
isfiability based on unit propagation, linear programming, and dynamic
weighting. Preprint, Department of Computer Science, Washington Uni-
versity, 2004.

Appendix A

Glossary

algebraic structure: (2)
A set of underlying elements and operations on them obeying defining
axioms. See structure below for details and Boolean algebra below for the
definition of Boolean algebra as a structure.

Boolean algebra: (9)

An algebraic structure whose constant set is {0, 1}, whose operations ∨, ∧,
¬ obey axioms of distributivity, commutativity, associativity, absorbtion,
and where x ∨ ¬x = 1, x ∧ ¬x = 0, 1 ∧ x = x, and 0 ∨ x = x.

epistemic modifier: (7)
A grammatical element which is neither an argument nor a predicate, but
which modifies another element or phrase (e.g. a predicate) to indicate
degree of truth. For example, A knows B, A believes B

formal language: (8,13)

An unordered pair {A,F} where F is a set of finite-length sequences of
elements taken from a set A of symbols. A first-order logic language L
has the following sets of non-logical symbols in A:

1. C, the set of constant symbols of L.

2. P, the set of predicate symbols of L. For each P ∈ P, α(P) denotes
the arity of P . The symbols in P are also called relation symbols
of L.

3. F , the set of function symbols of L. For each f ∈ F , α(f) denotes
the arity of f . The symbols in F are also called operation symbols
of L.

4. {∀,∃}, the universal and existential quantifier symbols of L.

79

80 APPENDIX A. GLOSSARY

homomorphism: (80)
As used here, given structures A and B for a common language L, the
mapping h : A → B is a homomorphism if

1. For each constant c ∈ C, h(cA) = cB.

2. For each predicate symbol P ∈ P, if α(P) = n, then PB =
{h(a1), ..., h(an)|a1, ..., an ∈ PA}.

3. For each function symbol f ∈ F , if α(f) = n, then for any
a1, ..., an ∈ A,h(fA(a1, ..., an)) = fB(h(a1), ..., h(an)).

Thus, a homomorphism h between the Boolean algebras A and B is a
function such that for all a, b ∈ A:

h(a ∨ b) = h(a) ∨ h(b)

h(a ∧ b) = h(a) ∧ h(b)

h(0) = 0

h(1) = 1

interpretation: (2)
A homomorphism h : A → B from the syntax of a formal language viewed
as an algebraic structure to semantic values in some other structure. The
structure B is said to be a model. In first-order logic the underlying set
of A includes symbols D representing values that may be assigned to
variables. The interpretation supplies mappings for each of the function
and predicate symbols of A to arity consistent functions of domain D for
the former and domain {0, 1} for the latter.

modal modifier: (7)
A grammatical element which is neither an argument nor a predicate, but
which modifies another element or phrase (e.g. a predicate) to indicate the
attitude of the speaker with respect to the truth-value of the proposition
expressed. Examples are must, should, maybe, possibly, can.

model: (1)
A model of a theory T consists of a structure in which all sentences of T

are true.

81

prenex form: (20,49)

A formula of the form Q1x1 . . . Qnxnφ, where Qi ∈ {∃,∀}, x1, . . . , xn are
variables, and φ is a propositional formula called the matrix.

structure: (2,80)
For the purposes of this handbook, a structure for a language L is a pair
A = 〈D, R〉, where D is a non-empty set of entities (objects, concepts,
etc.) called the domain of L, and R is a function, called the interpreta-

tion, that assigns to each constant of L an entity in D, to each predicate
symbol of L a relation among entities in D, and to each function symbol
of L a function among entities in D. A sentence p of L is said to be
true if the entities chosen as the interpretations of the sentence’s terms
and functors stand to the relations chosen as the interpretation of the
sentence’s predicates.

Alternatively, A = 〈D, {PA}P∈P , {fA}f∈F , {cA}c∈C〉 where P, F , and C
are the constant, predicate, and function symbols for L. The set PA is a
set of predicate symbols, fA is a set of function symbols, and cA is a set
of constant symbols, such that

1. For each P ∈ P, PA ⊆ Dα(P),

2. For each f ∈ F , fA : Dα(f) → D.

3. For each c ∈ C, cA ∈ D,

where α is the arity function.

theory: (1)
A set of sentences in a language L. A theory is said to be closed if the
set of sentences is closed under the usual rules of inference.

