
JOHN N. MARTIN

SOME FORMAL PROPERTIES OF INDIRECT
SEMANTICS1

The ideas of context free and logistic grammars are defined within the theory of
inductive sets, and necessary and sufficient conditions are established for homomor-
phic translation from the first sort of structure into the second. The method is of
interest because of its recent use in the indirect semantic interpretation of context free
grammars by translating them into intensional logic. Examples of such interpretations
found in the literature fail to meet the required conditions for successful
homomorphism.

1. Introduction

In this paper we characterize the conditions under which a context
free grammar can be given a model theoretic semantics indirectly by means
of a homomorphic translation into a logistic syntax like that of intensional
logic. Since logistic structures are as a matter of course homomorphic to
semantic structures, the characterization problem reduces to that of stating
the conditions for" homomorphic translation from a context free grammar
into a logistic grammar.2 The general method of the paper consists of bring-
ing to bear standard definitions and results from the theory of inductive sets,
formal grammar, and formal semantics. Since the background theory is well-
known, proofs will be provided only for the final results.

In order to compare formal and logistic grammars, a governing cover
theory of inductive sets is employed. Being a branch of set theory, it is
general enough for the purpose without forcing either theory into an unfam-

The author would like to thank John S. Schlipf for some helpful comments and correc-
tions and the University of Cincinnati Research Council and Taft Fund which helped
support this research.
For a general statement of the homomorphic features of semantic interpretation see the
definition of'meaning assignment for L' in Montague (1970), § 3, p. 227 in Thomason
(1974).
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2 John N. Martin

iliar idiom. Since we shall be considering at most denumerable sets, we
appeal only to naive set theory.

A second major assumption of the study is the sense of translation
employed in the idea of an indirect interpretation. Translation is understood
here in the relatively strict sense of homomorphism from one syntactic struc-
ture to another. The choice is justified in part by the resulting characteriz-
ation. In a well-defined set of cases indirect interpretation is possible under
conditions of homomorphism. Moreover homomorphic translation is the
intended sense in the literature. The recent work by Gerald Gazdar and
others in phrase structure grammar includes as a major feature of its analysis
an indirect semantic interpretation. Paired with each type of basic expression
of a context free grammar is a category of expressions in intensional logic,
and paired with each production rule of the context free grammar is a syntac-
tic rule of intensional logic. A translation is then defined as a homomorph-
ism induced by mapping basic expressions into the corresponding category.
Since the syntax of intensional logic has a well-defined model theory, a
semantic interpretation of the context free grammar is defined as the compo-
sition function composed by pairing with each expression of the context free
grammar a model theoretic interpretation of its translation. The process is
very much like the indirect interpretation of disambiguated languages in
Montague's theory of universal grammar. It differs only in having a context
free grammar as the source language where Montague has a disambiguated
logistic syntax. As in Montague's theory the device of using intensional logic
as a mediating level between the source language and its semantic interpret-
ation is dispensible in principle. If the indirect interpretation is possible, then
in principle so is a direct mapping of expressions from the source language
into semantic structure.3

Indirect translation as a technique of semantic interpretation is cer-
tainly not new in linguistics. In transformational grammar the process of
transforming surface forms from deep structures may be viewed as a kind of

For indirect semantics in phrase structure grammar see Gerald Gazdar (1981) and
(1982); and Gerald Gazdar et al. (1985). On Montague's indirect semantics see Mon-
tague (1970) and David R. Dowty et al. (1981), pp. 178-181 and 254-265. Strictly
speaking, Montague's syntax is not required to be a concatenation structure on sym-
bols as stipulated below. We make the narrower stipulation because it is the more
common practice among writers on the logistic method and because the extra gener-
ality is irrelevant to the characterization problem at hand. The particular examples of
languages discussed by Montague, both target and source, count as logistic on the
definitions given below.
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Some formal properties of indirect semantics 3

translation, and so likewise may the derivations from underlying logical
forms in generative semantics. Similarly in the philosophical literature the
reformulation of ordinary language expressions into canonical notation or
logical form is a common device. But these notions of translation differ from
the one at hand. The frameworks in which they are used are not algebraic and
the translation procedure cannot be construed as a homomorphism induced
by the translation of basic expressions on parallel syntactic structures. Trans-
lation as homomorphism is an idea that hearkens back rather to the seman-
tics of Tarski and his idea of interpreting a formal language by means of a
homomorphic translation into a metalanguage. Indeed, the induced homo-
morphic translation between object language and metalanguage, on the one
hand, and the induced homomorphic interpretation mapping the object lan-
guage into semantic structure, on the other, are two ways of describing the
same phenomenon.4 The metalinguistic translation of an object language
sentence is the metalinguistic statement entailed by Tarski's definition of
truth which describes the truth conditions of the object language sentence.
What Montague and the phrase structure grammarians may be said to do is
to use three structures where Tarski uses two. They employ Tarski's general
strategy of interpreting one algebraic structure by mapping it into another,
only they do it twice, mapping a source language into a target language and
then the target language into semantic structure or, to put it Tarski's way,
into parts of the metalanguage. The theoretical advantage of a Tarski-style
semantics lies in the succinct and uniform determination of a semantic inter-
pretation for any expression of the language, and this paper may be viewed as
exploring some of the formal properties of indirect semantics of this sort.

A third assumption of the study concerns the mode of reformulating
context free grammars before mapping them into logistic structures. A de-
rivation in context free grammar consists of a sequence that starts with the
sentence symbol S and contains progressively longer strings each of which is
derived from the preceding member of the sequence by the expansion of one
of its parts in accordance with a production rule. Well-formed expressions in
logistic syntax, on the other hand, are derived by tree constructions that start
with basic expressions as leaves and take as higher nodes any complex ex-
pression which has as its immediate parts the expressions on the immediately
preceding nodes, in accordance with one of the rules for well-formed ex-
pressions. Thus the linear derivations of a context free grammar must be
transformed into tree-like constructions before it can be mapped, homomor-

For a clear exposition of this aspect of Tarski's theory see Hartry Field (1972).
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4 John N. Martin

phically or otherwise, into a logistic syntax. The usual method of reformul-
ation, a version of which is used here, is to recast the linear derivations as
trees that exhibit the relations of constituent structure. One way of doing so
is suggested by McCawley and employed by Gazdar in his indirect phrase
structure semantics. The proposal is to construe the production rules of
context free grammar as node admissibility conditions on constituent struc-
ture trees. McCawley's idea and Gazdar's use of it are open to various precise
mathematical formulations, and the definitions employed here are designed
to facilitate representation in logistic syntax.5

One of the causes of the failure in general for context free grammars
to homomorphically map into logistic structures is the existence among the
former of various kinds of lexical and syntactic ambiguity precluded by
definition from the latter. There is yet a more radical reformulation of con-
text free grammars that we shall not pursue here but which does eliminate
these ambiguities. On this reformulation a context free grammar is transfor-
med into a formal grammar that has the constituent structure trees of the
original grammar as elements and relations on these trees as structural oper-
ations. Ambiguities are eliminated because there is a unique tree for each
syntactic derivation in the original grammar. Montague employes a similar
idea to disambiguate a fragment of English as a preliminary to his indirect
semantics, and Wall eliminates the ambiguities of context free grammars in a
similar way.6

One of the conclusions of our study is that indirect semantics for
context free grammars are non-trivial. The particular grammars discussed by
Gazdar are a case in point. Though we shall not detail the grammars here, we
shall discuss why they fail to meet several of the required conditions for
homomorphic translation into intensional logic.

5 See McCawley (1973), and Gazdar (1982), esp. pp. 137-140.
6 See Montague (1973) in Thomason (1974), p. 263, and the discussion in Dowty et al.

(1981), pp. 254-260, esp. p. 256, and Wall (1972), pp. 214-221.
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Some formal properties of indirect semantics 5

2. The Theory of Inductive Sets7

In the definitions below we make use of the standard notation of set
theory.

Definition An inductive set relative to a universe U is any <A, B, F> such
that
(1) B is a series (possibly infinite) Bb ..., Bn , . . . of subsets of U;
(2) F is a series (possibly infinite but usually finite) fb ..., f n , . . .

of functions of various finite degrees on U;
(3) A is the least set such that all sets in B are included in A .and A

is closed under the operations in F, or:
A = n (C|(l) for any Bi? if Bj is in B, then Bj c Q and

(2) for any xh ..., xn 6 C, any f e F and
<x,, . . . ,xn>eDF,f(x I , . . . ,xn)eC}.

Definition A set C is said to be indexed by a sequence s iff s maps the whole
set I+ of positive integers onto C (in which case s is called an
infinite sequence) or s maps some finite subset (l,..., n} of I +

onto C (in which case f is a finite sequence.)

Clearly a sequence is a set of pairs consisting of a positive integer and
an element of C. We shall have occasion to speak both of the pair begining
with i in s, i.e. <(i, s(i)), and of the value paired in s with i, i.e. s(i). When
the context makes it clear which is meant, we shall refer to either ^i, s (i)) or
s(i) by si? and when there is possibility of confusion we shall refer to s(i) in
the usual way as Sj, but to <^i, s (i)) by ̂ s^. It is also customary to refer to the
indexing function s by <sb ..., sn,...) if s is infinite or by <s I ? . . . , sn> if s is
finite.

Definition A sequence s indexing a subset of a universe U is said to be a
construction sequence of e relative to a family B of subsets of U,
and a set F of functions on U and a function g on s is said to
analyze s iff
(1) Si is e;

The account of inductive set, construction, the use of constructions sequences to
define substitution, and the idea of a logistic grammar may be found in Haskell
B. Curry (1963). For a more general account of inductive sets see Yiannis
N. Moschovakis (1974), and for a recent discussion of the variety of ideas of construc-
tion see Charles McCarthy (1983).
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John N. Martin

(2) for any <Si) either
(i) there is some Bj in B such that Sj 6 Bj and g«Si» = Bj,

(ii) there are some integers k, . . . , m and some f in F such that
i < k, . . . , m, f (sk, . . . , sm) = si? and g«Si» = <f, k, . . . , m>.

For simplicity we shall write g (sj) for

This definition is quite general and allows for possibilities that would
not normally occur in syntactic constructions or logical proofs. Basic sets
may overlap, constructions may be infinitely long8, items may be generated
from themselves, and the same item may have many quite different construc-
tion sequences.

Theorem (Induction) If ( A, B, F]> is an inductive set, and
(i) (Basic Step) every Bj in B is a subset of C, and
(ii) (Inductive Step) for any xl5 . . . , xn and f, if f 6 F,

<x1? . . . , xn> e Df and x1? . . . , xn e C, then f (xx, . . . , xn) C,
then A c Q

Intuitively, it is not important which order the arguments of a gen-
erating function are listed in so long as all the arguments of a function appear
earlier in the sequence. Nor does it matter which of two functions is applied
first in cases in which the outputs of the functions are not nested inside one
another. Thus, we shall call two construction sequences equivalent if they
differ only in the order of listing earlier items in the construction or in the
order of the generation of non-nested parts.

Definition A construction sequence s = <sl9 . . . , sn, . . . > with analysis g on
<^A, B, F) is equivalent to a construction sequence
s' = <(si, . . . , sn, . . . > with analysis g' on <A, B, F> iff there is a
1 — 1 function P from {l, . . . , n, . . . } onto (1, . . . , n, . . . } (called a
permutation) such that for any <Sj) of s,
(1) s, = s;(i);and
(2) g(Si) = g'(s;(i)).

It is perhaps more usual to require by definition that construction sequences terminate.
Thus it is common to find definitions of construction sequence which differ from ours
in that they require that the sequence be finite and that e be identical to sn rather than to
Si as we have it. Nothing we shall say about the theory of constructive sets turns on the
possibility of infinite construction sequences. We prefer the more general definition
because it is adequate to the theory and because it simpifies some of our applications of
the general ideas to the particular sorts of constructions we shall encounter in the
theory of formal grammar.
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Some formal properties of indirect semantics 7

The second fashion in which constructions are displayed is by means
of tree diagrams. The item being constructed is assigned the root node of the
tree, and other items of the inductive set are paired with other nodes in such a
way that the items paired with the nodes immediately above a node would, if
fed into a construction operation, yield the item assigneded the node below.
Further the tips of the tree (the "leaves") are all assigned basic elements.

Definition A tree is a structure <T, < > such that
(1) < is a partial ordering of elements of T (it is a reflexive,

transitive, and antisymmetric subset of T2);
(2) there is a unique maximal element t* of T (called the root)

(i.e., t* is the unique element of T such that for any t in T, t < t*);
(3) for any t in T, there is a unique <t1 ? . . . , tn> such that tx = t,

tn = t*, and for each ti? tj <ξ ti + 1, where the relation <^ of immediate
predecessor is defined as follows: for any χ and y of Τ, χ <^ y iff [χ φ y,
χ < y, and for any ζ of T, if χ < ζ and ζ < y, then either χ = ζ or y = z].

The finite sequence defined in clause (3) is said to be the subbranch
ending with t. The tree is said to be finitary if T is finite, and to be finitely
branching if every node has only a finite number of immediate successors. In
general a finitely branching tree need not be finitary, and every branch of a
tree may be finitely long yet the tree not be finitely branching nor finitary. A
node t is minimal (is a leaf) if it has no < -successors, i. e., for any t' of T, if
t' < t, then t' = t.

We now explain how to represent the construction of an element of
an inductive set by a tree. The element constructed is assigned to the tree's
root, and assigned to the immediate predecessors of any node are the ele-
ments used to generate it by a generating function. To the leaves of the tree
are assigned basic elements. The annotation of the tree consists of identify-
ing for each non-basic node the function used to generate it and the nodes, in
the right order, to which are assigned the arguments used in the generation.
If a node is basic the annotation cites one of the basic sets in which can be
found the element assigned to it.

Definition A tree <s, < ) is a construction tree for an element e of a universe
U relative to a family B of subsets of U and set F of functions on U,
and g annotates <^s, <^> iff
(1) s is some possibly infinite sequence indexing some subset of

U;
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8 John N. Martin

(2) e is sn such that <sn> is the maximal element of <s, <>;

(3) for any <Si> of s, either
(i) ^Sj) is minimal and Sj is in some Bj of B, and g (s, i) is one

of these (usually there is only one); or
(ii) {Sj)> is not minimal, and there are some integers k,. . . , m

and some fin F such that <sk>,.. . , <sm> are all < -immediate successors
of <Si>, f (sk,..., sm) = si? and g(s, i) = <f, k,. . . , m>.

Theorem If <A, B, F> is an inductive set, then A is:

(x|there is a finite construction tree for χ relative to B and F}.

Again as in the case of construction sequences, some trees represent
essentially the same construction and differ only in unimportant variations in
labelling. In the case of trees the order of arguments in a generation and the
order of application of generating functions is fixed. But what can vary is the
numerical subscript used in identifying a node. The uniform changing of the
numerical index for items would in the technical sense generate a new tree,
but intuitively the tree would continue to describe the same constructions.

Definition A construction tree ^s, < )> relative to B and F on U with annot-
ation g is equivalent to a construction tree (s', <'} relative to
<A, B,F> and annotation g' iff there is a permutation P on
{1,..., n,...} such that for any <Sj> and <Sj> of s,
(1) Sl = 4(1);
(2) < δ ί><< δ ; .>ίίί< δ ; ( ί )><< δ ;ω> ;
(3) g(Si) = g'(s;(i)).

Definition A construction sequences s relative to B and F on U with analysis,
g is equivalent.in a direct sense to a construction tree <s, <)
relative to <[A, B, F) with annotation g' iff g = g'.

Definition A construction sequence s relative to B and F on U with analysis g
is equivalent (in a wide sense) to a constructions tree <^s, < y
relative to <( A, B, F> with annotation g' iff there is some construc-
tion sequence s" on B and F with analysis g" and construction tree
<s", < > on B and F with annotation g" such that the sequences s
and s" are equivalent, the sequence s" is equivalent in the direct
sense to the tree <s", < ">, and the trees <s", < "> and <s, < >
are equivalent.
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Some formal properties of indirect semantics 9

Like construction sequences, construction trees are defined in a gen-
eral way that permits possibilities usually excluded from syntactic construc-
tions. These include overlapping basic sets, items generated from themselves
(in terms of orderings, some Sj = Sj and <(s^ < <(Sj)), infinitely long bran-
ches, and multiple non-equivalent constructions for the same item.

In an important variety of cases, the domains and ranges of the gen-
erating functions form a partitioning of expressions into non-overlapping
expression categories. In such grammars if a generating rule is defined for
one expression of a category it is defined for all, and the ranges of formation
functions are proper parts of these categories. Grammars in logic usually
have this property.

Let us single out the set of all i-th arguments of a function fand call it
the i-th subdomain of f: D'f = {x|for some y1? . . . , νί?..., yn,
<y l 5 . . . , V j , . . . , yn) e Df and χ = yj. In interesting cases these subdomains
partitions the inductive set. So that we may identify this and other important
properties for discussion, we list some formal definitions.

Definition An inductive set <A, B, F> relative to a universe U is:

(1) syntactic iff U is Σ (the set of expressions or symbols) and
each f in F is definable in terms of concatenation and set theory (Σ and
concatenation are explained below);

(2) finitary iff every construction tree of every element in A is
finitary (has a finite number of nodes);

(3) non-circular iff there is no construction tree s for any e in A
such that for some distinct i and j, sf = Sj = e and <Sj) < <Sj>;

(4) monotectonic iff each f in F is 1 -*· 1 and no item is in the
range of more than one function in F.

(5) lexically unambiguous iff no element is a member of more
than one basic category;

(6) categorized iff any two subdomains of any one or two func-
tions in F are either disjoint or identical, and the range of any function in
F is a subset of some subdomain of some function in F.

Theorem If an inductive set is monotectonic, then the construction trees of
any element of the set are all equivalent.

Theorem If an inductive set is monotectonic, then all the construction se-
quences of any element of the set are equivalent.
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10 John N. Martin

At this point it is possible to define several very useful syntactic
notions like substitution that though intuitively clear require for their formal
definitions the concepts just introduced. As has been observed, the same
expression may be used more than once in the construction of a longer
expression. Multiple use is even possible in non-circular trees if the same
item is used to construct different collateral parts of a whole. We therefore
define an instance or occurrence of an item e in a construction sequence or
tree s as any <Sj) such that Sj = e.

A second concept that is straightforwardly defined in terms of cons-
truction sequences and trees is the grammatical relation of part to whole. It is
common to call any expression that enters into the construction of a longer
expression its "part". Thus any item which by iterated application of the
construction rules together with other arguments leads to a member of the
inductive set is a part of the member so constructed. We may then define an
element Sj to be part of another Sj relative to a construction tree for an
inductive set iff <(sj) < <^Sj). Thus the ordering < on the tree determines the
part-whole relation. Moreover, if the inductive set is monotectonic, we
know that all the construction trees of an item have the same ordering
relation, so that relative to a monotectonic set we may say s{ is a part of Sj iff
relative to any tree, ^sf) < <(sj). Obviously it is possible to give an equiva-
lent definition of "part-whole" using construction sequences rather than
trees.

A third idea that is easily definable in terms of constructions is substi-
tution. For various purposes both in grammar and logic we want to sub-
stitute one expression for another in the grammatical constructions of a
whole. For the process to be well-defined, two assumptions must be met.
The first is that there is a unique grammatical construction for the whole in
question or, in other words, that the inductive set of well-formed-
expressions is monotectonic. If not, there would not necessarily be a single
result of substituting one part for another but rather various different results
relative to the various possible constructions for the whole. Secondly, the
process presupposes that the part being substituted is of the appropriate
grammatical type, i. e. that the generating function is defined for it. One way
to insure that this assumption is satisfied is to require that the grammar be
categorized and that the part being substituted is of the same category as the
part it is replacing. The result of replacing the one by the other is then
definable as the result of the construction that results from the replacement.
In the definition below we use the concept of tree rather than sequence
though sequences may be used equally well.
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Some formal properties of indirect semantics 1 1

First we define the useful notion of substituting y for z in a construc-
tion tree for x. The result is a tree, but proving as much requires appeal to the
definition of a tree.

Definition Let < A, B, F) be a categorized monotectonic inductive set with
elements x, y, and z; let y and z be of the same category; and let
T = <(s, < ) be a construction tree for x with annotation g. We
define [T]£ as <s, <'> such that

(I) s' = <si, ...,s;, . . .> suchthat
(a) if <Sj) is minimal and s{ φ ζ, then s'{ = s{;
(b) if <Sj) is minimal and Sj = z, then s{ = y;
(c) if (sj) is not minimal and g(sj) = <f, k, . . . ,m>, then

(2) for any <Si'>, <sj> of s', <s{> < ' <sj> iff <Si> < <Sj>; and we
define a function g' on s' as follows: g' (sj) = <f, k, . . . , m> iff
g(sj) = <f,k, . . . ,m>.

Theorem [T]^ meets the conditions for being a construction tree for its
maximal element, and g' meets the conditions for being an
annotation.

Definition If < A, B, F) is a categorized monotectonic inductive set with
elements x, y, and z, and if y and z are of the same category, we
define the result of substituting y for z in x (written briefly [x]£ as
the maximal element of [T]£ such that Τ is some construction tree
for x.

Exactly what is a constructive set is a matter of wide debate, but
mathematicians and logicians would agree that our notion of inductive set
would not qualify as a plausible analysis of the idea of constructivity unless it
meets the further condition that all the functions generating the set were
effective processes. Some functions, called effective or mechanical processes
by mathematicians, are such that for any argument a value is determined by a
executing a straightforward finitary process. The idea is important and it is
possible to analyze it in different ways. One way to do so is by means of what
philosophers would call conceptual analysis or definition by necessary and
sufficient conditions. An analysis of this sort would take the form of the
biconditional:

f is an effective process iff P.
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12 John N. Martin

To meet the standards typical of conceptual analysis the biconditional
would also have to have "the ring of analyticity" in the sense that it should be
customary either in ordinary language or in technical discussions to explain
or define the term 'effective process' as equivalent in usage to whatever
conditions are formulated by T'. Ideally, the terms used in the statement of
these conditions would be well understood, either by being embedded in a
developed scientific theory or more likely by being central terms of tra-
ditional philosophy which even if controversial are nevertheless very fam-
iliar. In our discussion here we shall limit ourselves to a philosophical analy-
sis of this sort, but effective process is perhaps primarily a mathematical idea,
and mathematicians have explained it axiomatically in the classical work by
Gödel, Markov, Turing, Church, and Post.9

Informally, an effective process can be characterized first by
examples. Euclid's algorithm for long division and the construction of mole-
cular from atomic sentences in the propositional logic are paradigm cases.
These procedures are typical of many in mathematics. Their important pro-
perties may be roughly abstracted as follows. They all begin with an input
that is readily identifiable as an acceptable argument for which the function is
defined. Second, the process consists of performing a series of steps which
consists of the manipulation of symbols, often with pencil and paper on a
page, that have the property that the outcome of each step is transparent to
the manipulator. Finally, after a finite number of these steps the process
terminates with an output, and it is clear to the manipulator that it has
terminated -with this output. Each of these stages is in part epistemic. The
manipulator is able to know that the function is defined for an argument,
that each step terminates in a particular result, and that the whole process
terminates in a final result in a finite amount of time. Moreover this know-
ledge is of a particularly reliable sort. It derives from the fairly crude
manipulation of symbols which has beginning and ending stages that are
perfectly evident. When the process is performed with pencil and paper on a
page the knowledge in question has a kind of perceptual certainty, and it has
the reliability typical of straightforward judgments about the arrangements
of quite visible marks on a page. We may informally characterize an effective
process then as an epistemically evident calculation that proceeds in a finite
number of transparent mechanical steps, from an argument that is evidently
acceptable, to a value readily identitifable as the end of the process.

For an introduction to formal characterizations of "effective process" see Martin
Davis (1958), and Hans Hermes (1965).
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Some formal properties of indirect semantics 13

The second philosophical notion relevant to the characterization of
constructions is that of a decidable set. Intuitively, a set is decidable if there is
an effective test for determining its members. Moreover, this test must be
clear and short. Thus decidability is usually defined in terms of effective
process.

Definition If A is a subset of U, then A is decidable relative to U (alterna-
tively, A is recursive in U) iff the characteristic function for A
relative to U is definable as an effective process.

Definition An inductive set <^ A, B, F^> relative to a universe U is constructive
iff

(1) B, F, each set in B, and the domain of each fin F are decidable
sets (relative to their respective universes), and

(2) each f in F is an effective process.

Definition A logistic grammar is any structure <A, B, F) that is inductive,
syntactic, fmitary, non-circular, monotectonic, lexically unam-
biguous, and constucture.

3. Formal Grammar

The definitions of inductive set and construction sequence require
that the generating relations be functions. It is interesting to note, however,
than none of the basic properties of inductive sets depend on this assump-
tion. We may, for example, weaken the definition of inductive set by subst-
ituting for clauses (2) and (3) the following:

(2') F is a set of finitary relations (i. e. for each R in F, there is an n such
that R c Vn), and

(3') for any xl9...9^xm and f, if feF, x t, . . . ,x n eC and
<Xi, ..., xn, xm> G f, then xm 6 C.

Likewise in the definition of construction sequence the functional
condition f (sk,..., sm) = Sj may be replaced by the weaker relational re-
quirement <^s k , . . . , sm, Sj) G f. Let us use the term weak to refer to these
amended notions of inductive set and construction relation, and to any no-
tions defined in terms of these notions rather than their stronger originals.
The theorems previously stated using the strong notions continue to hold
using the weak reformulations. In particular, induction holds for weak in-
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14 John N. Martin

ductive sets, and there is a finite weak construction sequence for each ele-
ment of a weak inductive set.

The philosophical characterication that we have used of an effective
process is that of an epistemically transparent method for proceeding in a
finite number of steps from any starting point to a unique end. On the basis
of this definition, it would seem perfectly reasonable to abstract away from
the requirement that a unique end be associated with any given starting
point. The new notion is that of a method that proceeds from any starting
point in a finite number of steps to one of various acceptable ends. At each
step it is epistemically transparent whether a prescribed method was applied
correctly and what the outcome of the step is. What is no longer required is
that each step yield a unique result.

Let us recall moreover the general fact that any finitary relation can be
partitioned into functional subsets. Since there is no defining limitation on
the number of generating relations in an inductive set, the set of relations of a
weak inductive set may be partitioned into functional subsets. A weak induc-
tive set is thus equivalent to some strong inductive set. If any generating
relation was effective in the sense proposed here, its functional parts would
be also. Conversely, the union of any set of η-place effective functions would
seems to produce an effective n 4- 1-place effective relation in the new sense.
Formal grammars are constructions that make use of this relational type of
effective process.10

We assume an undefined set Σ of symbols, a primitive binary oper-
ation"* of concatination on Σ, an empty symbol e in Σ, and the set Σ* of finite
strings of elements of Σ. Σ* may be defined as the universe A of the induc-
tively defined set <(A, Σ,~)>.). We also assume that these ideas conform to the
following syntactic restrictions:11

For the original statement of the theory of formal grammar see Noam Chomsky (1959)
and (1965) in R. Duncan Luce et al. (1965). Formal grammar is to be contrasted with
grammar in the logistic sense first formulated clearly in Rudolf Carnap [1934], trans-
lated in Carnap (1964).
For fully explicit accounts of assumptions about symbols and concatenation used in the
logistic traditions see W.V.O. Quine (1951)); Alon2o Church, §07, "The Logistic
Method", in Church (1956); and Haskell B. Curry, Chapter II, "Formal Systems", in
Curry (1963).
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Some formal properties of indirect semantics 15

Axiom of Syntactic Metatheory

{Z*,~, e) is a group with identity element e in the sense that:

(1) for any x, y and z in Σ*, (x~y)~z = x^(y~z);

(2) for any χ in Σ*, x~e = e~x = x.

It is conventional to let upper-case Roman letters stand for arbitrary
members of and for lower case Greek letters (e. g. φ, ιρ, £, χ, ω) to range over
Σ*.

Every grammar is defined relative to two disjoint finite subsets of Σ,
the set Ν of terminal symbols and the set Τ of terminal symbols. Intuitively,
the nonterminal symbols represent entire parts of speech (e. g. nouns and
noun phrases, verbs and verb phrases, prepositions, prepositional phrases,)
and are sometimes called phrases markers by linguists. Typical examples
would be N, V, NP, VP. It should be stressed however that these are really
single symbols, not the sets or categories of symbols that a logician might
prefer to speak of. The terminal symbols, on the other hand, are to be
understood as rather abstract versions of the particular words of the lan-
guage that when strung together in the right order produce a grammatical
sentence. In the general case we allow that the generating relations in a
grammar be any binary relation on Σ*, and call such relations productions.
Let us assume that a special designated symbol S (for "sentence") is in N; and
by T* let use mean the set of finite strings of elements of T.

Definition A formal grammar is any <A, S, P, N, T) such that

(1) <A, S, P) is a weak inductive set;

(2) P is a finite set of productions (binary relations on Σ*);

(3) N and T are disjoint finite subsets of Σ.

Definition The language or set of sentences L of a formal grammar
<A, S, P, N, T> is A n T* (i. e. the set of terminal strings produ-
ctible in the inductive set).

Definition Two formal grammars are productively equivalent iff their sets of
sentences are identical.

A construction sequence relative to S and P of a formal grammar is
called a derivation of its first element, and a production is called terminal if
its range is a subset of T*.

There are two properties of productions in terms of which varieties of
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16 John N. Martin

formal grammars are distinguished. The first is a property of lengthening. If
all productions of a grammar have the feature that <x, y) 6 P{ iff the number
of symbols in χ (its length) is less than the number of symbols in y, then the
set of sentences for a language is straightforwardly decidable: for any string
ω of length 1, we need only review the finite set of derivations of 1 or fewer
steps to see whether ω is the first element in any of them. In some of the cases
discussed below the requirement that productions all yield values longer
than their arguments is unnecessarily strong. The same effect can be
achieved by weaker assumptions. Even in these cases, however, the decida-
bility of sentences will be established by first showing the weaker grammar is
productively equivalent to one with lengthening productions.

A second property of some productions is that they may be described
as rewriting rules. Every argument of such a production is characterized by
some occurrence of a symbol A, and a value for that argument is any result of
replacing A in the argument by a characteristic string CO. Some such replace-
ments are context sensitive in the sense that rewriting is allowed only when
A falls within some context φΑψ. For any such rule every argument con-
tains at least one occurrence of some φΑψ, and a value for it is any replace-
ment of φΑψ by φ(ύψ in the argument. For any such production, then, there
is a φΑψ such that an argument χφΑψξ produces a value χφωψξ. (Here for
reasons of lengthening A is required to be a simple symbol while ω is al-
lowed to be any string.) A production on the other hand that allows the
rewriting of A by ω regardless of its context is called context free. For any
such production, there is an A such that an argument φΑψ produces a value
φωψ. Both sorts of productions are relations rather than functions because
more than one occurrence of A may be rewritten in a single argument.

Definition The context sensitive rule φΑψ -> φωψ is defined as
{< jT«^A~;r& χ>~αη/Τθ | χ, φ, ω, ψ, ξ e Σ* & Α e N} .

Definition A formal grammar is context sensitive iff each production is some
φΑψ -* φωψ such that ω Φ e.

Definition The context free rule A -> ω is defined as
{<;ΓΑ~ί, Γω~Ο Ι χ, ω, ξ e Σ* & A e N} .

By definition, then, a context sensitive rule φ Αφ — » φωψ is context
free in the special case that φ = ψ = e, and these conform to the lengthening
condition that ω Φ e. For the purposes of decidability it proves unnecessary
to prohibit for context free rules, as we did for context sensitive, the possi-
bility that a symbol may be rewritten by e.
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Some formal properties of indirect semantics 17

Definition A formal grammar is context free iff all its productions are con-
text free.

Formal grammars generally, and context free and context sensitive
varieties specifically, differ from grammars as they are usually defined by
logicians. Some of these differences are inessential and can be eliminated by
sometimes tedious but quite trivial reformulations producing equivalent
results. Other differences are deep and not eliminable in equivalent ways. We
shall discuss the merely apparent differences first.

There are no restrictions on the defining conditions of the generating
relations of a formal grammar other than that they be finitary relations. In
particular there is no requirement that they be functional. Likewise the de-
fining conditions on the relations of context sensitive and context free gram-
mars do not require that they be functional. For example, there might be a
context sensitive rule φΑψ —* φωψ and a string σ such that σ has two
occurrences of the substring φ At/;, being broken down as both χφΑψζ and
χ'φΑψξ'. In that case both <σ, χφωψξ) and (σ,χ'φωψξ') are in the
relation φΑψ -> φωψ. In the special case in which φ = ψ = e, the rule
would be an example of a non-functional context free production. Thus the
main varieties of formal grammar, strictly speaking, fall outside the tradition
of grammar in logic because they determine a weak rather than a strong
inductive set. For a several reasons, however, this difference is not very
important.

First of all we have already seen that weak inductive sets have just as
much conceptual claim to be classified as constructions as do strong induc-
tive sets. Secondly, formal grammars defined as weak inductive sets are
equivalent to certain strong inductive sets, and in special cases these equiva-
lents will be formal grammars themselves.

A strong inductive set productively equivalent to an arbitrary formal
grammar is easily defined if only by considering the degenerate case in which
the productions of the grammar are partitioned into the unit sets (i. e. sets
containing a single element) of the pairs they contain. Each of these sin-
gletons will be a degenerate function. In general, however, a strong induc-
tive set productively equivalent to a formal grammar will not itself be a
formal grammar. It might, for example, contain an infinite number of gen-
erating functions, as the trivial partition just described would if any of the
original productions had an infinite domain. The situation is somewhat
different for context sensitive grammars. Though it is true that removing
non-functional pairs from productions would in general prevent the struc-
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18 John N. Martin

ture from qualifying as context sensitive, there are methods for insuring that
the new structure remains a formal grammar. The method sketched below
exploits the fact that as defined there is a finiteness condition on the number
of productions of a formal grammar.

Theorem For any context-sensitive grammar there is a productively equiva-
lent formal grammar with functional productions.

The existence of an equivalent does not provide a method for produc-
ing one. In the case of context free grammars, however, there are simple
ways to pare-down the context free relational rules into productively equiva-
lent functions. Instead of allowing the rule A -> ω to assign multiple values
to a string containing A, we require that it assign only one of these, and for
regularity we stipulate that this is the value which rewrites the left most
occurrence of A. Any derivation using the non-functional rule in its original
form may then be recast using the new rule, changing the order of its applic-
ation as needed.

Definition The left most context free production A =£· CD is defined as
{<χ~Ά~£, jfYxrt;) | χ, ω, ξ e Σ*, Α 6 Ν, and A occurrs only once
in χ~Α}.

Definition A left-most context free grammar is any formal grammar in which
every production is a left-most context free production.

Theorem Every context free grammar is productively equivalent to the left-
most context free grammar formed by taking, the left-most ver-
sion of each of its productions.

The discussion shows that both context sensitive and context free
grammars might have been defined in terms of strong inductive sets without
altering their productive powers, and that in the case of context free gram-
mars the strong equivalent differs in only minor ways from its weak counter-
part. Most presentations of formal grammar theory do not attempt to de-
velop it as part of the theory of inductive class or as part of any similar broad
account of construction. It is this sort of account we are attempting here. A
formal grammar is to count as a construction in the same sense as a tra-
ditional construction in logical syntax and proof theory.12

One account that does attempt this more general view is M. Gross and A. Lentin
(1970) which subsumes the context free grammars under a more abstract notion of a
strong inductive class known as a combinatory system. In their exposition the authors
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Some formal properties of indirect semantics 19

The definition of a formal grammar allows for the possibility of cir-
cular construction sequences in the sense that a string may be constructed
out of itself. When this occurs, the string occurs more than once in the
sequence, and the earlier occurrence (with the greater index value) is cited as
an argument for a production used to generate either the later occurrence or
some other string that is used to generate the later occurrence.13 Though we
know that every element of even a weak inductive set has at least one finite
construction sequence, not all its constructions sequences need be finite. In
general, there is no positive integer n such that all construction sequences of
ω have some domain m such that m < n. The method of deciding whether ω
is a member of the inductive set requires the inspecting of all construction
sequences with domains less than some finite bound n, but in this case the
method will not work. Indeed formal grammars in general are undecidable.
The decision procedure of inspecting all sequences of a given finite bound
will, however, work for the special cases of context sensitive and context free
grammars. But the idea requires some preliminary regularization.

For any ω in (N u T)*, let its length (briefly, 1(ω)) be defined as the
number of symbols from N u T that are concatenated to form CO, and define
(N u T)n to be the set of all strings in (N u T)* of length n. Thus, in general
(N u T)* is infinite, but (N u T)n is finite because N and T are. The idea is to
insure that the inductive set exhibits the following property of finitary
boundedness:

For any string ω of the inductive set and any construction sequence s
of ω, if i < j, then 1 (sj) > l(Sj).

simultaneously maintain three propositions: (1) combinatory systems are defined as
having functional rules of generation; (2) productions in context free grammar are
assumed to be non-functional rewrite rules as in customary in the theory of formal
grammar; and (3) context free grammars are defined as being a special sort of com-
binatory system. What is necessary to make the account consistent, and what no doubt
the authors pressume without saying so, is a regularization step which explains how
each context free grammar in the strong sense is productively equivalent to one in the
weak sense. It is just such a step we are discussing here. Other general accounts of
formal grammar do develop the notion as a special case of wider concepts of construc-
tive class, but the wider notions are weak varieties. See, for example, Wall (1972).
Circles in this sense are to be distinguished from what linguists call loops defined as the
application of a production twice in a construction so that the argument of one applic-
ation is either the value of the other or constructed from some value of the other.
Loops in this sense are merely instances of inductive constructions and do not in
general form circles: the strings generated by the iterated application of the rule are not
in general the same string.
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20 John N. Martin

If the property holds, then all construction sequences of CO are
bounded by the finite value l(ctf), and the decision procedure will work.

First, however, circles and the infinite regresses they engender must
be eliminated, and in the case of context free grammars so must the empty
rule which allows the length of constructs to decrease rather than increase as
the method requires.

The empty rule can be eliminated from a context free grammar with-
out altering productive power as follows. If the rules A -> e, A -> ω, and
Β -> φΑψ are rules of the grammar, construct a grammar like the original
except that the rule A ~> e is dropped and the rule Β -» φωψ is added. In
general there is no productively equivalent way of deleting a rule A —> e
from a formal grammar that has context sensitive rules, and it is for this
reason that the empty rule is prohibited by definition in a context sensitive
grammar. In our development here we have not excluded the empty rule
from context free grammars because for any such grammar there is a produc-
tive equivalent without the empty rule. On the definitions we have used, a
regularized context free grammar without the empty rule is a special case of a
context sensitive grammar.

A simple way to eliminate circular constructions is by means of the
more powerful device of eliminating in a productively equivalent manner all
non-terminal singulary rules. These are rules of the form φΑψ -» φ&ψ in a
context sensitive grammar and rules of the forma A -> B in a context free
grammar. These are replaced respectively by some rules φΑψ —* φωψ and
A -> ω in which 1(A) < l(o>).

Theorem The language of any context sensitive or context free grammar is
decidable.

There are two properties of formal grammars that cannot be regu-
larized away in equivalent forms and which make them different from gram-
mars as defined by logicians. Formal grammars unlike their counterparts in
logic are in general ambiguous and non-categorized. An inductive set is
ambiguous in our earlier terminology if it is not monotectonic or, in other
words, if there are two or more non-equivalent construction sequences for
some element of the set. Context free grammars, and therefore context sensi-
tive and formal grammars generally, fail to be categorized for two reasons:
the domains of productions may overlap without coinciding perfectly, and
not every element of the inductive set is part of and argument for some
production.
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Some formal properties of indirect semantics 21

4. Translation from Phrase Structure to Logistic Grammar

We now turn to the conditions under which a regularized context free
grammar and a logistic grammar are productively equivalent. We shall see
that the match between the two is imperfect in both directions. More interes-
tingly perhaps we shall show in some detail how formal grammars are
equivalent to inductive sets. These will be sets of strings constructed from,
first of all, atomic strings of terminal symbols and, secondly, formation rules
on strings of terminal symbols. These structures are much like logistic gram-
mars even though they fail to have some of the structural properties usually
required in logic. In particular, we shall see how the usual tree analysis of a
syntactic structure generated in a formal grammar is not the construction
tree used to derive it, but rather the construction tree of the same string as
derived in a productively equivalent inductive set of the logical sort.

Throughout this section we shall mean by a context free grammar a
left-most context free grammar that has been regularized in the sense that it
does not contain the empty rule, any non-productive rule or symbol, or any
circular constructions. We let s range over construction sequences, and for
an annotation function g of s, we write g(sj) = A' -> CO instead of
g(si) = (A —> CO, i H- 1). For each occurrence i of a non-terminal symbol A
in a construction s (i. e., for each node occupied by A) we define a function
that translates the occurrence into what we shall call (A, i, s) j, the string of
terminal symbols that it is eventually replaced by in the derivation.

Definition Let G be a context free grammar, s a contruction sequence for
some element of G, i some integer in the domain of s, and A a
nonterminal symbol of G such that for some χ and ξ, Sj = χ^Α^ξ
and g(Si) = A —> 0). Then the terminal string which rewrites the
occurrence at i of A in s (briefly, (A, i, s) |) is defined recursively
as follows:
(1) if ω e T, then (A, i, s) j = ω;

(2) if ω e N*, then (A, i, s) J, = (B^i - 1, a) J~ . Γ(Βη, i - 1, s)|
where ω = B^ .TBn.

We now define the logistic equivalent A => CD for a production
A -> ω as a function from η-tuples of strings of terminal symbols to strings
of terminal symbols. Intuitively, A => CO generates the terminal string that
rewrites the phrase markers A from the rewritten phrase markers that consti-
tute ω.
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22 John N. Martin

Definition Let A —> CO be a production of a context free grammar G. Then
A => ω (relative to G) is defined as:
{<(Bl5 i - 1, s)|, ..., (Bn, i - l, s)|, (A, i, s)|>| s is a construc-
tion sequence for some element of G, g is the annotation function
of s, i is in the domain of s, g(sj) = A -> ω, and ω = B^. . .~Bn}.

Theorem A => CO is a function.

Theorem A => co is 1 — 1.

Since the property of having 1 — 1 generating functions will prove
important shortly, we coin a term to describe such structures.

Definition An inductive set is biunique iff all its generating functions are
1-1.

Theorem A => co is finitary.

Theorem A => co is syntactic.

Theorem A => ω is constructive.

In order to use these new operations to build a structure consisting of
strings of terminal symbols, we must identify the appropriate basic elements
from which to launch the construction. For any non-terminal category A of
the context free grammar, we first define the set of all terminal strings that
fall under it in any construction.

Definition If A 6 N, then the terminal extention of A (briefly [A] is defined
as
{x|for some construction sequence s and integer i, χ = (A, i, s) j}.

Theorem R (A => B^. . ~Bn) ^ [A], and for any i from 1 to n,

The relevant basic elements of [A], what we shall call its atomic parts,
are comprised by that part of [A] generated by terminal rules.

Definition For A e N, the atomic extension of A (briefly [[A]]) is defined as
{ω | A -* ω is a terminal rule}.

Theorem [[A]] c [A].

Theorem [[A]] = [A] n T*.

Definition If G = < A, S, P, N, T> is a context free grammar, then its ter-
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Some formal properties of indirect semantics 23

minal reflection (briefly, GT) is defined as the inductive set
<A*,{A => ω|Α -> coeP}, {[[A]]|AeN}>.

Theorem A* = u {[C] | C e N}.

Proof Α* £Ξ {[C] | C 6 N} because every basic element of A* is in some
atomic part of some non-terminal category of G and because the
generating functions C —> ω of G T pair η-tuples of elements in
category extensions to elements in category extensions,
u {[C] | C 6 N} c A* because every element ω in u {[C] | C e N}
is some (C, i, s) J, relative to G. By reference to this s we can
construct a construction sequence in GT for ω. End of Proof.

Corollary [S] c A*

From the perspective of grammatical theory, the terminal reflections
of context free grammars have two intersting features. First, the constituent
structure trees commonly cited by linguists in the grammatical analysis of
terminal strings turn out to be precisely the contruction trees of the reflected
structure. Secondly, not in all cases but in a well defined subset of cases the
reflected structure will meet all the conditions for counting as a logistic
grammar in the sense of the logical tradition.

The reader may have observed that in the discussion of grammar
there are two rather different notions of grammatical tree. First, there is the
idea of a construction tree from the theory of inductive sets. Since the cons-
tructive operations of a formal grammar are all binary relations, its construc-
tion tree will not branch and the notion of a construction tree reduces to that
of a construction sequence ordered by the trivial relation holding between Sj
and Sj just in case i < j. Thus any derivation is in a literal sense a construction
tree. But a second notion of branching tree that has not be rigorously defined
here is also used to sketch the grammatical structure of sentences. These are
the familiar constituent structure trees from linguistics that have S as their
root, other non-terminal symbols as intermediate nodes, and terminal sym-
bols as leaves. Each descent in the tree, moreover, represents the application
of a production rule that rewrites a nonterminal symbol by its successors in
the tree. The normal practice in expositions of the theory of formal grammar
is to sketch a general procedure for constructing a constituent structure tree
from any derivation.14 Our account here will be more general. We will show

See Gross and Lentin (1970), p. 83 and Wall (1972), p. 214; and also Ronald V. Book
(1973), pp. 4-5.
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24 John N. Martin

that every construction sequence of a categorial grammar determines a con-
stituent structure tree on strings of terminal symbols and that this tree is
precisely the construction tree defined relative to the terminal reflection of
the sentence constructed. The notion of constituent structure tree then turns
out to be a special case of the concept of construction tree. Constituent
structure trees are construction trees used to generate a particular class of
structures on strings of terminal symbols. The exact delimitation of this class
of structures will concern us next. It should be noted that some grammarians
have advocated adopting constituent structure trees as the central idea of
syntactic theory and have reinterpreted the productions of formal grammar
as rules defining these trees, and Gazdar proposes such a reading for his
phrase structure rules. But the linguists offer no mathematical definition of
the phrase structure rules under this new interpretation as conditions of the
well-formedness of constituent structure trees, and we shall take up this
problem shortly.15

In the special case in which the terminal reflection GT of a context
free grammar G is monotectonic, any sentence CO of G would have a unique
construction sequence in GT. But in general GT is not monotectonic (we
investigate the conditions under which it is shortly), and the various cons-
truction trees for ω in GT must be defined relative to constructions se-
quences of G. There are numerous ways in which such a sequence can be
mapped onto a constituent structure tree in GT, and different details can be
found in standard works on formal grammar.

Theorem For every construction sequence s for a sentence ω of a context free
grammar G, there is a construction tree for in GT.

Proof We describe in general terms a procedure for defining a construc-
tion tree t in GT from any construction sequence s in G. The two
will have the same maximal element. We leave to the reader the
straightforward proof that t meets the conditions for being a cons-
truction tree of co in GT.
(1) Start by constructing the trivial tree t' consisting of the single

node Sr such that r is the index of the leftmost (minimal) node of s (and is
therefore occupied by S).

(2) From any tree t' with a minimal node Ar construct a new tree t"

See McCawley (1973); Wall (1972), pp. 214-218; Ga2dar (1982), esp. pp. 137-140.
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Some formal properties of indirect semantics 25

as follows: Let r* be the left-most (greatest) element of s such that for
some B!,..., Bm r* is annotated by the rule A -» Bj~.. rBm,

(a) replace Ar by (A, r*, s)J,n such that n is that number such
that either or the following conditions holds: either n is 1 or the
immediate predecessor of Ar in t' has some annotation
<(A' => Bfc~ .. -~B1? k, ..., \y such that there exists an i such
that, A and n are the i-th elements respectively of B^, ..., B\
and k, ..., 1;
(b) if A —> B^.. ~Bm is non-terminal,

(i) add to the annotation function g of t' the new annot-
ation for (A, r*, s)ln as follows: g((A, r*, s) |n) =
<A=>Bf\ .rBm ,n + l , . . . ,n + m> and

(ii) append to (A, r*, s)J,n as immediate descendents
B l f l , . . . .Besuch

that rj is the left most (greatest) element of s in which
Bj occurrs;

(c) if A -> ΒΓ- - ΓΒ« is terminal, let g ((A, r*, s) |n = [[A]].
(3) Continue applying step (2) to the newly produced trees as long

as it is applicable, i. e. as long as the tree produced has some minimal
element Ar such that A is a non-terminal symbol of G. When (2) is no
longer applicable, stop.
Is is now a straightforward matter to show that the result of applying the
procedure of the proof to a construction sequence s of G yields a tree that
meets the conditions for being a construction tree of GT.

It is also true that the construction trees yielded by this procedure
capture the idea of a constituent structure tree commonly found in lingu-
istics, but since this latter notion has in the literature no generally accepted
formal definition, this coincidence cannot be rigorously proven. We shall
return to the issue of the proper analysis of constituent structure shortly, but
for the moment let us assume that every derivation of a context free grammar
may be recast as a constituent structure tree understood in the sense of a
construction tree in the terminal reflection of the grammar. It is interesting
to note that something like the converse of this proposition also holds.
Peters and Ritchie have shown that a formal grammar for which every sen-
tence has a constituent structure analysis is a context free grammar.16 Their

See P. Stanley Peters, Jr. and Robert W. Ritchie (1972).
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sense of constituent structure tree is essentially the same as ours though it is
not formulated in terms of terminal reflections of the logistic sort.

We have already seen how a context free grammar determines a pro-
ductively equivalent inductive algebra on terminal strings. We now explain
the conditions under which this algebra meets the quite strict requirements
of a syntax in the logical tradition. Some logistic properties hold trivially of
terminal reflections because similar properties hold necessarily of context
free grammars. These properties, which were enumerated earlier, may be
summarized as follows:

Theorem The terminal reflection of any context free grammar is syntactic,
constructive, finitary, and biunique.

Moreover, if there were a circle in any construction sequence for a
terminal reflection GT of G, we could determine one for G contradicting the
requirement that G is regularized.

Theorem The terminal reflection of any context free grammar is not circular.

Some required properties of logistic grammars, however, fail in gen-
eral for reflections of context free grammars. They are not generally mono-
tectonic, lexically ambiguous, or categorized.

Theorem Some terminal reflection of some categorial grammar is not
monotectonic.

We now formulate necessary and sufficient conditions governing the
special case in which a terminal reflection is monotectonic.

Definition A categorical grammar is logistically unambiguous iff there is no
ω nor distinct rules of the grammar A -> B^.. ~Bn and
A' —> ΒΊ~ .. Λ BJn such that O) is a terminal string and an element
of both [A] and [A'].

Theorem A context free grammar is logistically unambiguous iff its ter-
minal reflection is monotectonic.

Proof If Part. Suppose GT is not monotectonic. Then there is some
string co, there are some rules A => B^.. ΓΒη and
A' => Bi"\ . .^B^, there are some construction sequences s and s',
and there are integers i and j such that:

(1) ω = (B1; i, s) i".. Γ(Βη, i, s) i = (Bi, j, s') i~.. r(B^ j, s') |;
but
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(2) <B1 , i ,s) i , . . . , (Bm i
Then the rules A -> B^. . ΓΒη and A' -> Β^Λ. .rB^ are dis-
tinct, for if they were the same (2) would be false. But by (1), ω is
an element of both [A] and [A'], contradicting the assumption
that G is logistically unambiguous.
Only-if Part. Suppose that there is a string CO and distinct rules
A -> B p. . ~Bn and A7 ->· Bi~.. ~B^ of G such that ω is an
element of both [A] and [A']. But then (1) and (2) hold as before,
and A => Β p. . ~Bn applied to either the argument
<(Bi, i, s) |, . . . , (Bn, i, s) |> or the argument
<(B1, j, s') |, - · . , (BJa, j, s') |> yields the value ω. But since by (2)
these are distinct arguments, GT is not monotectonic. End of
Proof.

According to the strict definition of "lexical ambiguity" as we have
defined it in the theory of inductive sets, every formal grammar is trivially
lexically unambiguous because a grammar has only the single basic element
S. But linguists too speak of lexical ambiguity and have a different notion in
mind. A grammar is lexically unambiguous in the linguist's sense if its ter-
minal elements fall under a single category.

Definition A context free grammar is terminally unambiguous iff for any
nonterminal symbols A and B of the grammar, if
[[A]] n [[B]] = 0, then [[A]] = [[B]].

Since the various categories [[A]] and [[B]] are exactly the basic
categories of a grammar's terminal reflection, it follows immediately that
terminal ambiguity in a context free grammar corresponds exactly to lexical
ambiguity in its reflection.

Theorem A context free grammar is terminally ambiguous iff its terminal
reflection is lexically ambiguous.

The requirement common in logic that grammar be categorized is not
in general met by terminal reflections. Both the defining conditions of a
categorized grammar may fail: the subdomains of its generating functions
may overlap imperfectly and a generating function may produce a value that
is not in turn defined for some other function.

Theorem There is some context free grammar such that its terminal reflec-
tion is not categorized.
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28 John N. Martin

Theorem There is a context free grammar in which the range of some rule
A => CO is not included as a subset of the subdomain of any rule
Β => ω.

Definition A context free grammar G is categorizable iff
(1) {[A] | A 6 N} partitions the inductive set defined by its ter-

minal reflection GT, and
(2) if ω is any string produced in GT, then there is some rule

A —> Bi~..,T\Bn of G, some construction sequence s of G, and some
integers i and j such that ω = (Bj, i, s) J.

Theorem A context free grammar is categorizable iff its terminal reflection
is categorized.

Proof Clearly (2) holds iff the range of any A => B^.. ~Bn is a sub-
domain of some A' => Bi~.. ΠΒ^. Likewise if {[A] | A e N} par-
titions the inductive set defined by GT, then the subdomains of
any A => B^.. ~Bn and A' => Bi~.. .~B^ are either disjoint or
identical. Further, if these subdomains are either disjoint or ident-
ical, {[A] | A e N} partitions GT because by definition χ 6 [A]
only if χ is in the subdomain of some generating function of GT.
End of Proof.

We may now summarize the conditions under which a context free
grammar may be reformulated logistically.

Theorem A categorized context free grammar is lexically and terminally un-
ambiguous iff its terminal reflection is a logistic grammar.

Having set forth the conditions under which a context free grammar
determines a logistic grammar, it is natural to inquire about the determin-
ation in the reverse direction. Do logistic grammars translate in every case to
productively equivalent context free grammars? They fail to do so in general
but only because they are defined in a very generous way so as (1) to allow for
an infinite number of basic expressions or rules, and (2) to generate ex-
pressions that are not necessarily part of some sentence. But in the special
case in which the logistic grammar is restricted to finitary resources and
sentential parts, it is a straightforward matter to show the grammar's set of
sentences coincides with that of a context free grammar.

Theorem Assume L is a logistic grammar with a finite number of basic ex-
pressions and generating functions, and that there is some sub-
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domain S (called the set of sentences of L) of some generating
function of L which is such that every element generated by L is
part of some element of S (i. e. for any element e of L, there is some
construction sequence s and some element of P of S such that
P = SJL and e = sn, for some n > 1). Then S is identical to the set of
sentences of some context free grammar.

5. Conclusions

There are two conclusions of some broad conceptual interest that
follow from our discussion here. The first concerns the intuitive content of
the notion of constituent structure. We have seen that constituent structure
analysis is essentially logistic. It consists of displaying construction trees
within inductive structures on strings of terminal symbols. These structures
do not in general meet all the defining conditions for syntax in logic. Specifi-
cally, they fail to be monotectonic and categorized. The logistic properties
they do satisfy are impressive and suggest a general definition of a constitu-
ent structure grammar.

Definition An algebra is a constituent structure grammar iff it is inductive,
syntactic, finitary, non-circular, constructive, and biunique.

The definition is broad enough to capture all the traditional constitu-
ent structure analyses in linguistics because it embraces the terminal reflec-
tions of all context free grammars.

There may be some worry that it is too broad in that it counts as a
constituent structure analyses those of logistic grammars that are not pro-
ductively equivalent to any context free grammars, e. g. logistic grammars
with an infinite number of basic expressions. But all logistic grammars are
well behaved from the point of view of construction by constituent parts
because they are monotectonic and categorized. For any expression of a
logistic grammar there is a construction tree that explains how the ex-
pression is constructed from a finite number of basic elements in a finite
number of applications of formation rules. There seems to be no motivation
for not calling these trees constituent structure trees. One conclusion of our
discussion then is that the identification by some linguists of constituent
structure analysis with context free grammars is too narrow. Peters and
Ritchie are misleading, not in their proof that all constituent structure ana-
lyses are essentially context free grammars, but in their definition of const-
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ituent structure. The idea should be defined broadly enough to include
grammars from the logistic tradition.

A second conclusion is that the technique of providing model theore-
tic semantical interpretations for the recent phrase structure grammars fails.
It does so because the context free grammars the technique is typically ap-
plied to fail to have the required structural properties that allow for terminal
reflections of a logistic sort. Specifically, the technique presupposes an inten-
sional logic with a precisely defined semantic structure of the model theore-
tic sort. Thus much of the theory is not problematic. But the theory also
presupposes a mapping of the sentences of the context free grammar into
those of the syntax of intensional logic, and the mapping seems to be a
structure preserving homomorphism. This mapping is not rigorously de-
fined nor is the relevant constituent structure understanding of the context
free grammar. Moreover, it seems that any attempt to make these ideas
precise must fail because the syntax of intensional logic is logistic. It is
categorized, and lexically and terminally unambiguous. But neither of these
properties holds of the context free grammar. The grammars proposed are
logistically and terminally unambiguous, and they are not categorized. Their
productively equivalent constituent structures reformulated as terminal re-
flections, which employ a precise version of the constituent structure under-
standings of phrase structure rules as stipulated by Gazdar, are thus not
monotectonic and are lexically ambiguous and noncategorized. They are
therefore not logistic structures and could not be homomorphic to the syn-
tax of any intensional logic. Nor would any reformulation of the context free
grammar as a structure of constituent structure trees, as mentioned in the
introduction, suffice to insure homomorphism because though the resulting
grammar would be unambiguous it would not in general be categorized.

The desired semantic parallelism between phrases structure gram-
mars and model theoretic constructions may indeed be realizable by means
other than Gazdar's technique. What seems to be required first of all is a
precise statement of the context free grammars reformulated as constituent
structure grammars, perhaps by use of some notion like our terminal reflec-
tion. Then two options are open. First, the context free grammars refor-
mulated as consituent structure grammars could be interpreted indirectly
through a suitably liberal notion of intensional syntax defined so as be a
constituent structure grammar but not logistic in the full sense. But rewrit-
ing intensional logic so that it is not a logistic grammar is a major underta-
king, and it would be necessary to prove that a homomorphic mapping
existed from any reformulated context free grammar to the new sort of
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syntax for intensional logic. A second alternative would be to abandon any
attempt at the kind of short cutting translation envisoned by Gazdar and to
interprete the reformulated context free grammars directly by mappings
onto a semantic structure. It is not structural limitations on the semantic
structures that cause the problem. In the usual definitions of model theoretic
semantic structures, there are in general no restrictions requiring the mirror-
ing of logistic properties like that of being categorized, monotectonic, or
lexically unambiguous, and hence there is no reason in principle to question
whether constituent structure grammars that lack these properties can be
homomorphic to semantic structures.
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