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I. Introduction 

The problem of representing 3-valued super- 
valuational languages by 2-dimensional product 
languages is pursued in [3], [8], and [4]. A 
solution is presented here that attempts to 
incorporate into such a representation famil- 
iar and plausible intuitive principles from 
traditional many-valued theories. In partic- 
ular, it is argued in Sections II and III that 
the concept of classical indeterminacy, which 
is the key motivational idea behind superval- 
uation, also underlies the matrices of Jan 
~ukasiewicz and of S.C. Kleene's strong con- 
nectives and that indeterminacy is of quite 
general importance to the understanding of one 
tradition in many-valued logic. In Section IV 
the kinship between supervaluations, on the 
one hand, and the 3-valued matrices of 
~ukasiewicz and Kleene, on the other, is de- 
veloped both in intuitive discussion and in a 
formal characterization of the former in terms 
of the latter. In Section V the four-valued 
semantics of Hans Herzberger [3] is interpret- 
ed in terms of classical indeterminacy and is 
used to express in two dimensions and four 
values the ideas of the Kleene and ~ukasiewicz 
theories. Then by the characterization of 
Section IV supervaluations are represented in 
two dimensions. Finally, in Section VI this 
representation is shown to be co-extensive to 
that of Herzberger in [4] and to provide, in 
effect, a defense of his theory in terms of 
traditional conceptual foundations. 

II. Indeterminacy and Projection b~ 
Classical Completion 

In his first serious effort to provide an 
interpretation for the third truth-value, 
~ukasiewicz writes: 

I maintain that there are propositions 
which are neither true nor false but 
indeterminate. All sentences about fu- 
ture facts which are not yet decided 
belong to this category .... If we make 
use of philosophical terminology which 
is not particularly clear, we could say 
that ontologically there corresponds to 
these sentences neither being nor non- 
being but possibility. ([7] p. 37) 

In addition, he says of such indeterminate 
propositions that we should "suspend our judg- 
ment" (p. 35) about whether they are true. 
Causal indeterminacy, possibility, and igno- 
rance may all be used to interpret the third 
value and to explain 3-valued projections of 
truth-values onto molecular sentences because 
of a common property: each of these concepts 
implies that though we may now be barred from 

a determination of truth or falsity, a deter- 
mination of truth or falisty is nevertheless 
possible in principle. If the barrier is 
epistemological, for example, we may not know 
whether a sentence is true, but it is true or 
false nevertheless. If the barrier consists 
of causal indeterminacy, a sentence describ- 
ing the indeterminate future may not now be 
determinate, but the fact it describes either 
will or will not come about, and in that 
sense the sentence is either true or false. 
Similarly if the barrier is metaphysical, a 
possibility either will Gr will not be 
realized. 

These readings of the third value go a long 
way towards determining the projection of val- 
ues onto molecular sentences. Consider con- 
junction and disjunction. The resolvability 
of indeterminacy into determinacy sometimes 
suffices for assigning a determinate value to 
a whole with determinate parts. Though one 
conjunct be indeterminate and the other false, 
the whole conjunction is false because however 
the indeterminacy is resolved, in either case 
the whole conjunction is false. Likewise, no 
matter how the indeterminacy of a sentence is 
resolved, whether into truth or falsity, its 
disjunction with determinately true sentence 
is always true. The reasoning process behind 
this projection may be broken down into the 
following steps. (i) Divide possible cases 
acc6rding to how the indeterminate parts are 
resolved into classically determinate values. 
(2) In each of these cases the parts with 
classical determinate values originally will 
continue to have these values. (3) Within 
each case apply classical truth-tables to 
determine the classical value for the whole 
within that case. (4) If the whole has the 
same value in every case, then it has that 
value determinately; otherwise it is indeter- 
minate. This reasoning process can be sum- 
marized by means of the concept of "classical 
completion" which may be informally understood 
as any resolution of the indeterminate parts 
of an expression into determinate values. The 
third value is then assigned according to the 
following rule: a sentence is determinate if 
all its classical completions are and is in- 
determinate otherwise. Interestingly, the 
concept of classical completion may be devel- 
oped in various ways and, as I shall endeavor 
to show, these developments characterize a 
family of familiar manyvalued projections. 

This family of projections falls along a 
scale of how much its concept of classical 
completion recognizes the internal grammati- 
cal structure of the parts of sentences to be 
evaluated. To explain this phenomenon some 
conventions are needed. A syntax consisting 
of a set of sentences S constructed from a 
set of atomic sentences A by syntactic 

*I would like to thank Hans Herzberger for comments on an earlier draft of this paper and es- 
pecially for remarks leading to the definition of a projection in Section V. I would also 
like to thank Calvin Normore for stimulating discussion on the nature of indeterminacy, par- 
ticularly that variety concerned with time. 
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operations ~ my be understood as a structure 

consisting of A followed by S followed by the 
various ~. (A--more definite--syntax will be 
stipulated below.) Let A, B, and C range over 
S, and p and q over A. Let ~i (Ai,...,A n) be 
the result of applying the i-th operation to 
sentences Ai,...,A n. As usual, one sentence 
may occur at more than one place in ~(AI,... , 
A n ) and may therefore occur more than once in 
the series Ai,...,A n. Let C be the set of 
all classical valuations c such that c maps S 
into {T,F} and conforms to the classical 
truth-tables for each operation of the syntax. 
Let v range over 3-valued valuations mapping 
S into {T,F,N}. Nothing I shall say will be 
inconsistent with the reading of 'v(A)=N' as 
'v is undefined for A'. 

To see how classical completions may re- 
spect more or less of the syntactical struc- 
ture of sentential parts, consider the case in 
which v assigns N to all the parts of a sen- 
tence to be evaluated. Let v(A)=v(B)=N. Then 
what is v(A&B)? Should any assignment of T or 
F to members of {A,B} be a classical comple- 
tion to v? If yes, then v(A&B)=N. But what 
if B=~A? Should there be a classical valua- 
tion that ignores the internal structure of B 
and assigns A and B the same value? Or sup- 
pose A contains an atomic part p that is de- 
terminate in the original 3-valued valuation 
v. Should there be a classical completion c 
that assigns a value to p other than that as- 
signed by v? Various projections have char- 
acteristic answers to these questions depend- 
ing on how much of the internal structure of 
parts is "sealed-off." Each projection, then, 
will employ its own sense of sealing-off. The 
only condition on acceptable sense of sealing- 
off is that it identify at least one sequence 
Bi,...,B n of sentences as a sealing-off for 
any sequence Ai,...,A n. (This concept of 

sealing-off is similar to one employed in [5] 
in connection with Bochvar's external connec- 
tives.) If Bi,...,B n is a sealing-off in the 
relevant sense for Ai,...,A n, then each B i 
(i=l,...,n) will be understood to stand as a 
proxy for the occurance A i in the classical 
calculations for the truth-value of ~(Ai,..., 
An). Let i be understood to range over 
{l,...,n} and the qualification i=l,...,n will 
generally be omitted. Notice that under these 
very weak restrictions, it is possible for 
there to be a sense of sealing-off such that 
Bi,...,B n may seal-off A],...,A n yet different 
sentences stand proxy fo9 the same sentence 
occurring at more than one place in Ai,...,A n. 

That is, it is possible that Ai=A j yet Bi~B j- 

Definition If Bi,...,B n is a sealing-off of 

Ai,...,A n in sense X, then by a 
classical completion in sense X of 
v for A],...,A n with sealing-off 
B~,...,B n is meant any c£C such 
that if v (Ai)e{T,F}, the c(Bi)= 
v (A i) . 

Thus, a sealing-off identifies proxies for the 
occurances of a sentence's parts and a classi- 
cal completion resolves indeterminacies by as- 
signing classical values to these proxies. We 
are now in a position to identify 3-valued 
projections that conform to the rule of as- 
signing determinate values if all classical 
completions do. A set V of 3-valued valuations 
will be said to confirm a sentence A iff 
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VveV, v(A)=T, said to fals~ A iff VveV, 
v(A)=F, and said to neutralize A otherwise. 
Definition A language with a projection by 

classical completion in sense X 
(briefly, X-val~ is any set of 
valuations v such that v maps A 
into {T,F,N} and 

(i) if for some sealing-off B 1 ..... B n 
of Ai,...,A n in sense X and any 
classical completion c of v for 
A 1 ..... A n with sealing-off 

B 1 ..... B n, c confirms ~(B 1 .... ,Bn), 
then v(~(A 1 ..... An))=T, 

(2) ~f for some sealing-off B 1 ..... B n 
and any classical completion c as 
in (I), c falsifies ~(Bi,...,Bn), 

then v(~(A 1 ..... A n ))=F, 
(3) v(~(A 1 ..... A n ))=N otherwise. 

Before proceeding to examples of such languages, 
let us limit the discussion to a particular 
syntax PCS=<A, S, ~, &, v, ÷> for the sake of 
perspicuity. 

III. Kleene and ~ukasiewicz 

The first classical completion language we 
shall consider is that which coincides with the 
valuations generated by Kleene's strong con- 
nectives ([6], pp. 334-5). Kleene's projection 
is characteristically blind to all internal 
structure of parts and seals them off complete- 
ly. 
Definition A sealing-off in sense K of 

Ai,...,A n is any sequence 
Pl,...,Pn of different atomic 

sentences. 
Thus, not only does the proxy Pi of A i have no 
internal structure, no two occurrences of the 
same sentence can be assigned the same proxy: 
pimp j even if A.=A.. The motivation for this 
verslon of seal~ng~off derives from examples 
with logically independent parts. Consider A 
&B in which neither A nor B logically implies 
the other in classical logic and veK-Val. Then 
if v(A)=v(B)=N, there is, as there intuitively 
should be, one classical completion c for 
sealing-off p,q such that c(p&q)=T and another 

c' such that c' (p&q)=F. Hence v(A&B)=N. Like- 
wise if v(A)=v(B)=N, v(AvB)=N. The reader may 
easily check that any set K-val projects values 
in accordance with Kleene's strong matrix K: 

TFN T FN 

F F F F T T 

NFN N NN 

The Matrix K 

Another example of a notion of classical 
completion that generates a matrix language is 
one inspired by ~ukasiewicz's treatment of the 
conditional. In contrast to the strong con- 
nectives and his own tables for & and v, 
~ukasiewicz's table for the conditional takes 
<N,N> into T. We may speculate that his pri- 
mary motive was to render A+A always T. A 
similar intuition concerns conjunction and dis- 
junction. If A÷A is always T, we would expect 
A&~A to be always F and Av~A to be always T. 



The matrix which carries through these ideas 
is that in which & and v are introduced by the 
usual definitions in terms of +. Zukasiewicz 
himself employs Kleene's strong tables for & 
and v, and it is only as a generalization of 
his table for ÷ that ~ and its motivational 
framework can be attributed to him. 

T liF!vllFilli N F F F T T 

N F N N T 

The Matrix 

In order to embrace the intuition that A÷A, 
A&~A, and Av~A should be always T, F, and T, 
the concept of classical completion must be 
defined so as to respect the grammatical struc- 
ture of sentential parts. In the case of A÷A, 
each occurrence of a sentence should be repre- 
sented by the same proxy in its sealing-off. 
Then if both occurrences of A were represented 
by the same atomic p, p+p would be T in all 
classical completions of v, and thus v(A+A)=T. 
In the case of A&~A and Av~A the internal 
structure of parts must constrain classical 
completions. If A is represented by a proxy 
p, then one would expect ~A to be represented 
by ~p. Then every classical completion of v 
would assign F to p&~p and T to pv~p, and hence 
v(A&~A)=F and v(Av~A)=T. Thus on these intu- 
itions we may conclude that at the very least 
sentential parts should be represented as hav- 
ing some structure in the analysis of a clas- 
sicalcompletion. But how much structure? 
The answer characteristic of ~ is the very 
generous principle that proxies may have any 
structure whatever consistent with our knowl- 
edge of classical logic and with our knowledge 
of the v-values of the various sentiential 
parts. This constraint follows directly from 
the intended reading of N as indeterminate. 
For consider what it is to say v(A)=N. It 
means that in the world that v describes, A is 
classically indeterminate. Hence A should not 
be either a classical tautology or a classical 
contradiction, for if so, then by inspection 
we should know its truth-value. But indeter- 
minacy should be a matter of contingent fact. 
Hence we arrive at the first way in which the 
interpretation of N constrains the possible 
structure of proxies: if v(A)=N, then a 
proxy B for A must not be either classically 
valid or classically unsatisfiable. A second 
way in which the interpretation of N constrains 
the classical structure of sentential parts in 
that any assignment of a value to A by v must 
be logically consistent with v's assignment 
of values to other sentences. The logic ap- 
plicable here is again classical logic. An 
inconsistency would arise, for example, if 
v(A)=N, v(B)=T and B classically entails A. 
Then we should know that v(A) was T and not N. 
The ability of a proxy to possess any struc- 
ture consistent with these two constraints is 
captured in the following definition of seal- 
ing-off. If F is any set of valuations, then 
let A be F-valid iff Vf~F, f (A)=T; let A be 
F-satisfiable iff EfeF, f(A)=T; and let A 
F-entail B, briefly A ~F B, iff VfgF, if f(A)=T, 
then f(B)=T. 

Definition (I) 

(2) 

B is a sealing-off of A in 
sense ~ for v iff if v(A)=N 
then B is C-satisfiable and 
not C-valid; 
B I, B 2 is a sealing-off of Ai, 
A 2 in sense ~ for v iff, if 
e~ther A i (ie{l,2}) is N in v 
then the other Aj (j~i) is 
such that 
(a) if v(A~)=T, then B4 is C- 
satisfiabl~, not Bj~Bi and not 

Bj~~B i,  
(b) if v(Aj)=F, then ~B. is 
C-satisfiable, not ~Bj~c3Bi, 
and not ~Bj ~~Bi, 

(c) if v(Aj)=N, then B i and 

Bo are both neither C-unsatis- 

f~able nor C-valid. 

Theorem Any set ~-Val projects values ac- 
cording to the matrix ~. 

Proof. The case for negation is straight for- 
ward and those for &, v, and ÷ have similar 
proofs. Consider &. Suppose £(Ai)=£(Aj)=T. 
Then that £(A 1 & A2)=T is shown by consldering 
those c, p, and q such that c(p) = c(q) = T. 
That £ is functionally well defined and 
£(Ai&A2)~F is shown by the fact that for any 

Bi, B 2 if c(Bi)=c(B2)=T, c(Bi&B2)=T. The 
proof for the other bivalent cases is similar. 
Suppose ~(Ai)=N , ~(Aj)=T. Clearly £(Ai&Aj)~T 

for if so for some B i, B~ and any c, c(Bi)=T, 
J 

c(Bi&Bi)=T, c(B~)=T, and B~ ~B~, absurd by 2a. 
LikewiSe Z(Ai&A~)~F for ifJso~ for some B i, Bj 

and any c, c(Bj)=T, c(Bi&Bj)=F, c(Bi)=F, c(~B i) 
=T, Bj ~c~Bi , absurd by 2a. Hence Z(Ai&Aj)=N. 
SuppoSe £(Ai)=N, £(Aj)=F. Then, Z(Ai&Ai)=F, for 
consider p, q, and c such that c(p)=c(q~=F = 
c(p&q). Further ~(Ai&Aj)~T for if so, for some 
B i, Bj and all c, c(Bj)=F~T. Suppose £(Ai)= 
~(Aj)~N. Then (Ai&Aj)=F for consider p and 
~p, and any c, c(p&~p)=F. Further £(Ai&Aj)#T 
for if so, for some Bi, Bj and any c, c(Bi&B~) 
=T, B i and Bj are C-valid, absurd by (2c). 3 
QED IV. SuPervaluations 

Supervaluations have always been explained 
by reference to an intuitive concept of clas- 
sical indeterminacy. Thus in his original 
paper [12], Bas van Fraassen explains how a 
supervaluation S assigns T or F, respectively, 
to A in a situation if all classical valua- 
tions for that situation that assign 
references to non-refering singular term all 
assign T or F, respectively, to A. The 
crucial idea is that a state of affairs may 
not determine a unique classical valuation 
but rather a set of valuations which agree on 
determinate sentences and disagree about sen- 
tences we do not care about. These "don't 
cares" must be given T or F in a classical 
valuation, but since they do not describe a 
determinate fact various classical valuations 
capturing what is determined in the situation 
will disagree about their value. A 3-va]ued 
supervaluation represents the situation by 
dividing sentences into those determinately 
true, those determinately false, and those 
which are neither by recording whether all 
classical valuations assign a sentence T, 
whether all classical valuations assign it F, 

117 



or whether some assign it T and others F. I 
shall first present the usual theory of super- 
valuations and then go on to show how super- 
languages may be developed within the frame- 
work of classical completions. 

Though in some developments of the theory 
(as in [12] and [i0]) a concept of a partial 
model representing a state of affairs is first 
defined and from it a set of classical valua- 
tions describing it, I shall follow the more 
abstract cause of [ii], p. 95 and [12], and 
represent possible situations directly by sets 
of classical valuations. Since in a given 
interpretation of supervaluations not every 
set of classical valuations corresponds to 
some possible situations, a language will be 
built up from a subset C*of the set C of all 
possible classical valuations. A set V of 2- 
valued valuations will be said to establish a 
3-valued valuation f iff f(A)=T if V confirms 
A, f (A)=F if V falsifies A, and f (A)=N other- 
wise. If V establishes f, we let V=Ef. 

Definition A su~erlanguage for PCS is any 
<C*,S> such that C*~C and there is 
some family F of subsets of C* such 
that S is the set of all 3-valued 
valuations established by members 
of F. 

We say <C*,S> is generated from F when, as in 
the definitz~on, S is the "set of ~aluations 
established by members of F. 

It is now possible to show that in a very 
strong sense of equivalent an equivalent 
theory results if the notion of an establish- 
ing set is replaced by a set of classical com- 
pletions. The relevant sense of classical 
completion is evident from the fact that all 
the structure of a sentence's parts and only 
that structure is admitted in calculating the 
various classical truth-values of a sentence. 
Parts stand for themselves and no other sen- 
tence may stand for them. 
Definition A sealing-off of Ai,...,A n in sense 

S* of Ai,...,A n is A 1 .... ,A n itself. 

AS the proof of the following result shows, 
sets of classical completions are maximal es- 
tablishing classes. By the maximal establish- 
ing class MEs for s let us mean the set of 
classical valuations c such that if s(A)e{T,F}, 
then s(A)=c(A). Also let CCs(Ai,...An) be the 
set of classical completions for AI,...,A n and 
and s in sense s*. Also let CC s be the set of 
all classical completion simpliciter of s in 
sense s*: CCs= ICCs(Ai,...,An) : Ai,...,A n 
are sentences of PCS}. 
Theorem For every superlanguage <C*,S> there 

exists a set S*-val, and conversely 
for every set S*-val there exists a 
superlanguage ~C*,S> such that 
S=S*-val. 

Proof Part I. Let <C*,S> be a superlanguage 
generated from F. Define F'={ME_: E eF}. 
Clearly S'=S, for S' the set of ~ii v~l~ations 
established by members of F' Claim: S' is 
a S*-val. (i) Clearly VsES', s(p)E{T,FTN}. 
(2~ Assume VceCC s (A 1 ..... An) , c (~ (A 1 ..... An) )= 

T. Now, ME s ~ CCs(Ai,...,An). Hence c(~(Al,. 

A~Ai,...,An, and f (A)e{T,F} otherwise. Since 
whenever A=Ai, .... An, c (A)=s (A) , it follows 

that fEME s. Also f(~(Al,...,An))=c(~(Al , .... 
An)). Likewise define f' like f except for c' 
in place of c. Then, f'eME s and f' (~(Ai,... , 
An))=c' (~(A 1 ..... An))=F. Hence s(~(Ai,.;.,An)) 
=N. 

Part II. Let S*-val be a classical com- 
pletion language. Define F={x: for some sE 
S*-val, x=CC s} and C*= F. Now, since MEs= 
CCs, seS*-val iff CCse [ iff MEseF iff sEF. QED 
Hence the two developments of supervalua~ions 
are equivalent in the strong sense that though 
the method of constructing supervaluations 
differs in the two theories, the set resulting 
from either method may be constructed from the 
other method. (See Herzberger [2] on this 
concept of equivalence for superlanguages.) 

The concept of classical completionhas 
served its purpose in showing the basic con- 
ceptual unity underlying K, ~, and supervalua- 
tions. I would like now to set aside the 
motivational ideas and show that superlanguage 
projections can be directly characterizable in 
terms of the matrices K and ~. 

By totally ignoring the structure of sen- 
tential parts,K ensures that <N,N> is taken 
into N with the desirable result that when two 
sentences A and B are logically independent, 
A+B, Av~B, and A&~B are N. On the other hand, 
by allowing a large degree of structure to 
parts, ~ ensures that <N,N> is taken into de- 
terminate values with the desirable result 
that A+A, Av~A, and A&~A are T, T, and F. Un- 
fortunately, given the constraints of truth- 
functionality, no matrix theory can combine 
both desirable features. Supervaluations 
manage to incorporate both by dropping truth- 
functionality and recognizing all and only the 
structure of a sentence's parts. This informal 
comparison of supervaluations to K and ~ can be 
developed into a precise characterization of 
superlanguage projections by stating the con- 
ditions under which K and ~ are to apply. Let 
M~ be the truth-function for operator ~ in 
matrix M. 
Definition A 3-valued Ko~ modal matrix 

language (a Ko~3) for PCS is any 
<C*, Ko~> suc~that C* ~ C and for 
some family F of subsets of C*, 
Ko~ is the set of all valuations v 
on {T,F,N} such that for some C'eF, 

(i) for any p, v(p)=T iff C' confirms-- 
p, v(p)=F iff C' falsifies p, 
v (p)=N otherwise, 

(2) v(~A)=K~ (v(A))=~~ (v(A)) 
(3) v(A&B)=K&(v(A), v(B)) if {A,B} is 

C'-satisfiable, v(A&B)=~&(v(A), 
v(B)) otherwise, 

(4) v(AvB)=Kv(V(A),v(B) ) if {A,B} is 
not C'-unassailable, v(AvB)=~ v(v(A), 
v(B)) otherwise, 

(5) v(A÷B)=K÷(v(A),v(B)) if A does not 
C'entail B, and v(A÷B)~+(v(A), 
v(B)) Qtherwise. 

The tables for Ko~ 3 given below are truths 
functional except for the case of <N,N>. Con- 
ventionally, when <N,N> is assigned two values 

..,An))=F. Hence, s(~(Ai,...,An))=F. (3) <x,y> in a table, let x be assigned when the 
Likewise, if VceCC s(A 1 .... ,An), c(~(Ai,...,A n )) relevant a-condition for the connective ~ holds 
=F, then s(~(A I,...,A n ))=F. (4) Suppose for (C'-satisfiability for &, not C'-unassailability 
some c,c'eCCs(Al,...,A n) that c(~(A I, ..,An))= for v, and not C'-entailment for ÷) and y 
T and c' (~(Ai,...,An))=F.. Define f: "f(A)=c(A ) otherwise. 

if A=A 1 ..... A n , f(A)=s(A) if s(A)E{T,F} and 
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T 

F 

N 

F 

T 

N 

TF Ivli N TFN 
T F N T T T F N 

F F F F N T T T 

F F N,F N N,T T N N,T 

The Ko~ 3 Projection 

Theorem Every superlanguage is a Ko~ 3 lan- 
guage and conversely. 

Proof Let <C*,S> and <C*,Ko~> based on F be 
respectively a superlanguage and a Ko~ l~n- 
guage. It is shown that S=Ko~. 
Part I. That S_ Ko~. Let seSi; then seKo~ 
relative to CseF _. For clearly condition 
for membership of atomic sentences is met. 
For negation only one case is not obvious. 
If s (A)=N, then C s neutralizes A and divides 

ii into two classes: C~ that confirms A and C s 
ii ' falsifies ~A, C s that falsifies A. Then C s 

confirms A, and C s neutralizes ~A. For con- 

junction, representative cases are considered. 
(i) If s(A)=s (B)=T, then C s confirms A and B, 

and confirms A&B; thus s (A&B)=T. (2) If 
s (A)=T, s(B)=N, then C s confirms A and neutral- 
izes B, and can be divided into C~ that con- 

firms B and A&B, and C~ that falsifies B and 
A&B. Hence C s neutralizes A&B, and s (A&B)=N. 
(3) If s(A)=s(B)=N, there are two cases. 
(a) If {A,B} is Cs-satisfiable, C s cannot 
confirm A&B, for if so s (A&B)=T, s(A)=T, and 
s(B)=T. Also C s cannot falsify A&B. Hence 
C s neutralizes A&B and s(A&B)=N. (b) If 
{A,B} is not Cs-satisfiable , then C s must 

falsify A&B and s(A&B)=F. Other cases and 
operators are similar. 
Part II. Let v~Ko~ relative to C'eF. It is 
shown that C' completes v and is then in S. 
Proof is by induction on length of A. Cl~arly 
if A is atomic, v completes A by the defini- 
tion of Ko~. It will suffice for the molecu- 
lar cases to illustrate conjunction, which is 
done in tabular form. Let 0 mean is falsified 
by C', 1 is confirmed, and 2 is neutralized. 

Possible Cases 
A B A&B 

0 0 0 

0 1 0 

0 2 2 

1 0 0 

1 1 1 

1 2 2 

2 0 2 

2 1 2 
i 

2 2 0,2 

By Induction 
Hypo. 

v (A) 

F 

F 

F 

T 

T 

T 

N 

N 

N 

By 
Matrices 

v (B) v (A&B) 

F F 

T F 

N N 

F F 

T T 

N N 

F N 

T N 

N F,N 

QED 

Ko~ 3 languages are called modal because 
the assignment of veKo~ relative to C'eF to 
~(A,B) will depend on the values of A and B 
throughout C'. This intuition can be made 
precise by dropping &,v,+ from the syntax, 
adding more usual matrix connectives plus a 
necessity operator ~, and introducing &,v, 
and + by definition. Consider ÷. First add 
to the syntax the K and ~ conditionals, call 
them ÷K and +~, and require v to interpret 

them by the K and ~ tables for the conditional. 
Then add Bochvar's external connectives ~, 
/~, and 3. Let v(~A)=T if v(A)~T, and 
v(~A)=F otherwise; v(A~B)=T if v(A)=v(B)=T, 
and v(A~B)=F otherwise; v(A~B)=F if v(A)=T 
and v(B)~T, and v(A~B)=T otherwise; let 
v(~A)=T if ¥ceC', c(A)=T, and v(~A)=F other- 
wise. It is then possible to introduce A+B by 
(~D ~B)~ (A÷KB))~ (~(A~B)~ (A÷~B)) which 
has the correct truth-table as the reader may 
easily check. 

V. Indeterminacy in Two Dimensions 

Hans Herzberger in [3] has recently ad- 
vanced a variety of 4-valued semantics that he 
has shown in [4] to be intimately related to 
supervaluations: each superlanguage can be 
represented by a certain kind of 4-valued lan- 
guage. It is the purpose of this section and 
the next to explore more deeply the kinship 
between these two approaches by interpreting 
them as theories of classical indeterminacy. 

Herzberger proposes 4-valued valuations w 
over {T,F,t,f}. The classical truth-values T 
and F may be read as determinate truth and 
determinate falsity, and t and f species of 
indeterminacy. Indeterminate sentences in any 
situation may be divided into those that if 
determinate would be true and those that if 
determinate would be false. These receive t 
and f respectively. Further elaborations of 
the semantics ensure that there is such a c 
and offer an explanation of indeterminateness. 
On the proposed view of language, a sentence 
is indeterminate because it fails of presup- 
position. But even among the indeterminate 
sentences failing of presupposition we can, as 

• explained before, grasp a distinction between 
those that would be true and false if determi- 
nate. In its most general sense, then, pre- 
supposition failure is merely the existence of 
a barrier - whether it be temporal, modal, 
epistemological, or semantic - between us and 
the determination of classical truth-value. 
Herzberger thus cross categorizes sentences 
relative to a situation first according to 
whether they would be true or false and second 
according to whether their presuppositions are 
satisfied. The characteristic functions of 
these two categories, which we shall call v 
and v, fully describe the situation. They are 
also bivalent valuations into, say, {1,0}. It 
is in terms of these that a 4-valued w is de- 
fined yoking together both bits of information: 
w(A)=<v(A),v(A) > such that T=<i,i>, F=<0,1>, 
t=<l,0>, and f=<0,0>. Herzberger further pro- 
poses that all such v conform to an underlying 
bivalent matrix capturing logical relations. 
This we shall assume to be the matrix C of 
classical logic, the most plausible candidate 

- for the matrix describing logic. (Let C be 
understood here to range over {i,0}.) The moti- 
vating idea is plausible. Truth and falsity, 
whether determinate or not, conform to classical 
intuitions. 
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T F t f The behavior of the second, presupposition- 
al dimension will depend on the particular 
theory of presupposition employed in defining 
the 4-valued language. Perhaps the simplest 
policy, similar to that of Kleene's weak con- 
nectives, is to allow presupposition failure 
of any part to affect the whole; then u will 
conform to a matrix: U(~(Ai,...,An))=I iff 
U(Al) .... =U(An)=l. But the theories of pre- 
supposition failure based on classical indeter- 
minateness - those of K, ~, and superlan- 
guages - all allow that a whole with some parts 
failing of presupposition may itself be 
determinate. 

In [3], Herzberger outlines a method for 
drawing into two dimensions and four values, 
the presuppositional theories of some 3-valued 
matrices. (See [9] also.) What I propose to 
do here is to apply these methods to K, ~, and 
their hybrid Ko~3. By doing so I will con- 
struct a bridge over Ko~ from superlanguages 
characteristic of Ko~3 to their four-valued 
representation. To draw out the presupposi- 
tional theories of K and ~, ~ will assign 1 
exactly when K and ~ would assign a deter- 
minate value. Let T*=i, F*=i, N*=0, ~=T, 
~=F, and ~=~=N. 
Definition For any C* ~ C, any family F of sub- 

sets of C*, any C'cF, and any 
ceC', u is projected from C' and C 
iff u is a valuation on {i,0} such 
that 

(I) for any p, u(p)=l iff C' confirms 
or flasifies p, 

(2) for any ~(Ai,A_), n<2, 
(a) if the ~-c~ndit~on holds, then 

u(~(Ai,An))=[K~(Tc(Ai),v(Ai)>, 

<c~n)>)]*, and 

(b) u (a (Ai,An)) = [~a (<c (Ai) ,V~n) >, 

<c(A l),c(An)>)]* otherwise. 

Definition A 4-valued Ko~ modal matrix language 
(a Ko~ ~) for PCS is any <C*,W> such 
that C*~C and for some family [ of 
subsets of C*,W is the set of all 
valuations into {T, F, t, f} such 
that for some ceC*, C'eF containing 
c, and u projected from--C' and c, 
w (A)=<c (A) ,u (A)>. 

The readily calculable tables for a Ko~4 read 
as follows. The tables for the second dimen- 
sion are given first (the first dimension obeys 
C) and then those for W. 

T 1 

F 1 

t 0 

f 0 

T F t f 

1 1 1 1 

1 1 0 0 

1 0 0,1 0,I 

1 0 0,1 0,i 

TF t f 

1 1 0 0 

1 1 1 1 

0 1 0,i 0,I 

0 1 0,i 0,i 

+ ITF t f 

1 1 1 

0 0 , 1  0 , 1  

0 0,i 0,i 

Projection of the Presupposition Dimension 

T F t f 

F F F F 

t f t,F f,F 

t f f,F f,F 

v 

T 

F 

t 

f 

T F t f 

T T T T 

T F t f 

T t t,T t,T 

T f t,T f,T 

÷ITF t f 

T T T 

f t,F f,T 

T t t,T t,T 

The Ko~ 4 Projection 

These tables illustrate that the importance 
of supervaluation theory is to make sentences 
which are logically decidable also semantical- 
ly determinate. By doing so, it allows for an 
analysis of logical entailment that is stated 
in terms of determinate truth and is conserva- 
tive in its emendations of classical inference. 
It is also clear that ~S is conservative with 

respect to classical lo~ic in the sense that 
if A entails B in C (and hence in C*) it also 
S-entails B. The Ko~ 4 languages follow super- 
languages in rendering determinate what is 
logically decidable. The exact extent to which 
classical logic is reflected in T in Ko~ 4 will 
be pursued in Section VI. But, in general, 
2-dimensional languages do not require depen- 
dence on T alone for the purposes of logical 
theory, in the sense that an adequate logical 
entailment relation capturing classical logic 
need not be defined by designating T alone. 
Indeed, an entailment relation for any Ko~ 4 
defined by designating both T and t coincides 
exactly with that of C*. Hence Ko~4 languages 
are distinguished from the bulk of 2-dimension- 
al languages by the way in which like super- 
valuations they require logic to be reflected 
in T alone. 

I now proceed to the mapping of Ko~4 lan- 
guages into Ko~ 3 languages. 
Definition For any weW of a Ko~ 4 language 

<C*,W>, the collapse of w is that 
valuation cw on {T,F,N} such that 
cw(A)=T if w(A)=T, cw(A)=F if w(A)= 
F, and cw(A)=N otherwise. 

Derivatively, we shall speak of <C*,{cw: wcW}> 
as the collapse of a Ko~ language <C*,W>. -- 
Lemma If <C*,Ko~> is the Ko~ ~ language--based 

on F, a--T-amily of subsets of C*, and 
<C*TW> is the Ko~ 4 language likewise 
based on F, then Ko~={cw: weW} and the 
former is--the collapse of the latter. 

Proof. It is shown, assuming the antecedent, 
that KoZ = {cw: weW}. Part I. That Ko~ 
{cw: wcW}. Let veKo~ be defined relat~e to C'EF. 
It is sh--own by induction that v=cw, such that w 
is defined relative to C', some ceC' and some v 
projected from C' and c. To illustrate the 
atomic case consider the case in which w(p)=T. 
Then c(p)=v(p)=l. Hence C' either confirms or 
falsifies p, but the latter is ruled out be- 
cause c(p)=l. Hence v(p)=T. The molecular 
cases will be illustrated by the case of 
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conjunction, the various subcases of which will 
be presented in a table. 

Subcases 
w(A) w(B) 

T T 

T F 

T t 

T f 

F T 

F F 

F t 

F t 

w (A&B) 

T 

F 

t 

f 

F 

F 

F 

F 

By Hypo. B[ Matrix 
v (A) v (B) v (A&B)_ 

T T T 

T F F 

F N N 

T N N 

F T F 

F F F 

F N F 

F N f 

Subcases 
w (A) w (B) I 

t T 

t F 

t t 

t f 

f T 

By Hypo. By Matrix 
w (A&B) v(A) v(B) v (A&B) 

t N T N 

F N F F 

t,F N N N,F 

f,F N N N,F 

f N T N 

f F F N F F 

f t f,F N N N,F 

f f f,F N N I N,F 

It is clear that if w(A&B)=T, v(A&B)=T; if 
w(A&B)=F, v(A&B)=F; and (A&B)=N otherwise. 
Reasoning in like manner for the other opera- 
tors, it is concluded ve{cw: weW}. 
Part II, that {cw: wsW}~KoZ. I--t is clear that 
for any w defined relative to C~, cw meets the 
membership conditions for Ko Z first because cw 
assigns values toatomic sentences according to 
whether C' confirms, falsifies; or neutralizes 
them, and secondly because identifying t and f 
in the tables of KoZ4 yields those of Ko~3. 
QED 
Theorem Every collapse of a KoZ 4 language is 

a superlanguage. 
Proof. Let <C*,W> on F be a KoZ 4 language and 

<C*,{cw:-wsW}>-its collapse. Now de- 
fine the Ko~3 language <C*,KoZ> on F, 
which is also a superlanguage. By [he 
lemma {cw: weW}=Ko Z. 

Theorem Every superlanguage is the collapse of 
some KoZ4 language. 

Proof. Given a superlanguage <C*,S>=<C*,KoZ> 
on F, define the KoZ 4 language <C*,W> 
on F. By the lemma, <C*,S> is iden[i- 
cal--to the collapse <C*,{~w: weW}> of 
<C*,W>. 

VI. Herzberger's Representation 

In this section it is shown that Herz- 
berger's representation of superlanguages pre- 
sented in [4] is in fact co-extensive to that 
of section V. This result is somewhat inter- 
esting because it is not readily apparent that 
Herzberger's representation can be explained 
by a traditional motivation. It is shown, on 
the contrary, that Herzberger's representation 
can be used in conjunction with earlier re- 
sults to elaborate the manner in which Ko~4 
languages follow superlanguages in reflecting 
classical logic. 
Definition For any C*~C, family F of subsets 

of C*, C'e[, and ceC',--C' and c 
are said to establish v iff v is a 
valuation on {T,F,t,f} such that 

(i) v(A)=T if C' confirms A, 
(2) v(A)=F if C' falsifies A, 
(3) v(A)=t if C' neutralizes A and 

c (A) =i, 
(4) v(A)=f if C' neutralizes A and 

c (A)=0. 
Definition An H-expansi0n language for PCS is 

any <C*,H> such that C*iC and 
there exists a family F of subsets 
of C* such that H is the set of 
all valuations established by 
C'~F and ceC' 

Theorem The H-expansion language <C*,H> defined 
relative to F is identical to--the 

KoZ4 language <C*,W> defined relative 
to F. 

Proof. It is shown that H=W. 
Part I, that H ~W. Let ve--H? It is shown that 
v(A)=<c(A) ,~ (A)>--for some ceC*, some C'e[, and 
some ~ projected from C' and c. Since veH, v 
is established by some C'eF and ceC'. Now de- 
fine ~ as follows: 9(A)=x--iff there is a 
unique y, such that v(A)=<y,x>. It is claimed 
that 9 is the desired valuation projected from 
C' and c. That it meets the condition for 
atomic sentences by the case in which C' con- 
firms p. Then v(p)=<l,l> and ~(p)=l. Other 
cases are similar. That it meets the defining 
conditions for molecular sentences is shown by 
considering representative subcases for con- 
junction. (i) If v(A)=T and v(B)=t, then C' 
confirms A and neutralizes B, c(B)=l, c(A&B)=i, 
C' neutralizes A&B, and v(A&B)=t. (2) If 
v(A)=t and v(B)=f, then C' neutralizes A and B, 
c(A)=l, c(B)=0, c(A&B)=0, C' does not confirm 
A&B. If {A,B} is C'-satisfiable, then C' does 
not falsify A&B, C' neutralizes A&B, and 
v(A&B)=f. Otherwise, C' falsifies A&B and 
v(A&B)=F. In all other cases for conjunction 
and the other operators the reasoning is simi- 
lar, showing that v conforms to the KoZ4 pro- 
jection. Part II, that W~H. Let weW. Then 
there is a family [ of s~sets of C*~C, a C'e 
F, a ceC', and a 9 projected from C' and c. 
It is claimed that w is established by C' and 
c. Argument is by induction on length of A. 
The atomic case is straight forward. The 
argument for all operators will by illustrated 
by conjunction the subcases for which will be 
presented in a tabular form. Let 0 mean is 
falsified by C', 1 mean is confirmed, 2 mean 
is neutralized and assigned 1 by c, 3 mean is 
neutralized and assigned 0 by c. 
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Possible 
Cases 

A B A&B 

0 0 0 

0 1 0 

0 2 0 

0 3 0 

1 0 0 

1 1 1 

1 2 2 

1 i 3 3 

By By 
Hypo. Matrix 

w (A) w(B) ~ .w(A&B) ~. 

F F F 

F T F 

F t F 

F f F 

T F F 

T T T 

T t t 

T f f 

Possible 
Cases 

A_ B i A~B 

2 0 0 

2 °i 2 

2 2 2 

2 3 3,0 

3 0 0 

3 1 0 

3 2 3,0 

3 3 3,0 

By 
Hypo. 

w (A) w (B) 

t F 

t T 

t t 

t f 

f F 

f T 

f t 

f f 

By 
Matrix 
w (A&B) 

F 

t 

t 

f,F 

F 

f 

f,F 

f,F 

Clearly, if C' confirms A&B, w(A&B)=T; if C' 
falsifies A&B, w(A&B)=F; if C' neutralizes A&B 
and c(A&B)=i, w(A&B)=t; and if C' neutralizes 
A&B and c(A&B)=0, then w(A&B)=f. QED 

In conclusion, I would like to state how, 
like supervaluations, Ko~4 and H languages 
force T to reflect logical theory. 
Theorem If A classically entails B, then 

A~gB. 

Proof. Let A--classically entail B and let 
w(A)=T. Then C' confirms A and c(A)=l, for w 
defined relative to C' and c. Consider now the 
supervaluation s such that Cs=C' Clearly, 
s=cw. Also since s(A)=T and supervaluation 
entailment includes classical entailment, s(B)= 
T. Hence C s and C' confirm B and c(B)=l. 

Hence w (B)=T. QED 
Finally, I would like to close with some 

remarks applying the concept of classical com- 
pletion to a 4-valued language <C*,W> and its 
collapse into a superlanguage <C*,S~ both 
generated from a family F of subsets of C*. A 
classical completion of s, as we know, records 
one of the acceptable resolutions of indeter- 
minate values in s. But as is clear from the 
definition of H (in an H-expansion), a 4- 
valued w amounts to a recording of both the 
information of s plus that from one of its 
classical completions. Let W'~W be the set 
of all w established by C' and some c'eC' and 
let s be that supervaluation established by C' 
Then trivially, for weW', s=cw and w and s 

share the same classical values and are non- 
bivalent together. Further, by the distinc- 
tion between t and f, w records how c' resolves 
the indeterminateness of s. Thus, we might 
reasonably say that the classical completion 
of w has already been carried out in its con- 
struction, and that we may define the classical 
completion of w as that unique c' by which w 
was established. By hypothesis, both s and w 
are established by C'. Thus, the establishing 
class of s and the set of all classical com- 
pletions of elements of W' are the same. More 
importantly, if <C*,S> numbers among the super- 
languages that are perhaps the most intuitive 
in that all members of F are maximal establish- 
ing classes (all superlanguages defined in 
terms of partial models are such), then the 
set of classical completions of s coincided 
exactly with the set of all classical comple- 
tions of all elements of W'. Thus, if the 
set of classically possible worlds is viewed 
as the "primary" sense of possible world, both 
Herzberger's languages and the superlanguages 
they collapse into determine the same concept 
of possible world in the primary sense. Hence, 
though it is true as Herzberger remarks that 
many 4-valued valuations collapse into one 
supervaluation, there is a sense in which the 
two theories describe the same set of possible 
worlds. 
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