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- Preface

In writing this book I have tried to keep mathematical prerequisites to a mini-
mum. The reader who is essentially innocent of mathematical knowledge be-
yond that taught in high school should be able to read at least halfway through
Chapter VIII plus parts of the rest of the book, though such a reader will
need to skip the occasional formula. That is enough of the book for all of
the major ideas to be presented. The Introduction may seem daunting since
it refers to ideas that are not explained until later—trust me, they are ex-
plained. A reader who learned freshman calculus once, but perhaps does not
remember it very well, and who has had a logic course that included a proof
of the completeness theorem will be in fine shape throughout the book, ex-
cept for various “technical remarks,” an appendix to Chapter VI, and a few
parts of Chapter IX. Those few technical discussions require varying degrees
of mathematical sophistication and knowledge of general mathematical logic
plus occasional knowledge of elementary recursion theory, model theory, or
modal logic.

Thanks are due Bonnie Kent, Vann McGee, Sidney Morgenbesser, and
Sarah Stebbins for their infinite patience in listening to my many half-baked
ideas and for their substantial help in culling and completing them while I
was writing this book. As they learned, I cannot think without the give and
take of conversation. Thanks also to Ti-Grace Atkinson, Jeff Barrett, William
Boos, Hartry Field, Alan Gabbey, Haim Gaifman, Alexander George, Allen
Hazen, Gregory Landini, Penelope H&ma&u Robert- Miller, Edward Nelson,
Ahmet Omurtag, David Owen, Charles Parsons, Thomas Pogge, Vincent
Renzi, Scott Shapiro, Mark Steiner, and Robert Vaught for their thoughtful
comments on an early version of the book. Those comments have led to sig-
nificant improvements. And thanks to Thomas Pogge for his substantial help




vi PREFACE

in correcting my translations from German. Any remaining mistakes are, of
course, my own. .

Thanks are also due my parents, Dorothy and Leroy Lavine, not only for
their moral support, which I very much appreciated, but also for their gener-
ous financial support, without which the preparation of this book would not
have been possible. My wife, Caroline, and daughter, Caila, deserve the most
* special thanks of all, for tolerating with such understanding my absences and
the stresses on our family life that the writing of a book inevitably required.
This book is dedicated to them. -
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Introduction
In the latter half of the nineteenth. century Georg Cantor introduced the infi-

nite into mathematics. The Cantorian infinite has been one of the main nu-
trients for the spectacular flowering of mathematics in the twentieth century,

- and yet it remains mysterious and ill understood.

At some point during the 1870s Cantor realized that sets—that is, collec-
tions in a familiar sense that had always been a part of mathematics—were
worthy of study in their own right. He developed a theory of the sizes of infi-
nite collections and an infinite arithmetic to serve as a generalization of ordi-
nary arithmetic. He generalized his theory of sets so that it could encompass
all of mathematics. The theory has become crucial for both mathematics and
the philosophy of mathematics as a result. Unfortunately, Cantor had been

‘naive, as Cantor himself and Cesare Burali-Forti realized late in the nine-

teenth century and as Bertrand Russell realized early in the twentieth. His
simple and elegant set theory was inconsistent—it was subject to paradoxes.

The history of set theory ever since the discovery of the paradoxes has been
one of attempting to salvage as much as possible of Cantor’s naive theory.
Formal axiom systems have been developed in order to codify a somewhat
arbitrarily restricted part of Cantor’s simple theory, formal systems that have
two virtues: they permit a reconstruction of much of Cantor’s positive work,
and they are, we hope, consistent.’ At least the axiomatic theories have been
formulated to avoid all of the known pitfalls. Nonetheless, they involve cer-
tain undesirable features: First, the Axiom of Choice is a part of the theories
not so much because it seems true—it is at best controversial—but because
it seems to be required to get the desired results. Second, since present-day
set theory is ad hoc, the result of retreat from disaster, we cannot expect it to
correspond in any very simple way to our uneducated intuitions about collec-
tions. Those are what got Cantor into trouble in the first place. .

i




2 I. INTRODUCTION

We can never rely on our intuitions again. The fundamental axioms of
mathematics—those of the set theory that is its modern basis—are to a large
extent arbitrary and historically determined. They are the remote and imper-
fectly inferred remnants of Cantor’s beautiful but tragically flawed paradise.

The story I have just told is a common one, widely believed. Not one word
of it is true. That is important, not just for the history of matherpatics but

- for the philosophy of mathematics and many other parts of philosophy as
well. The story has influenced our ideas about the mathematical infinite, and
hence our ideas about EmEmBmﬁom and about abstract knowledge in general,
in many deep ways.

Both elementary number theory and the geometry of the Greeks, for all
that they are abstract, have clear ties to experience. They are, in fact, often

thought to result from idealizing that experience. Modern mathematics, in- -

cluding much of the mathematics of physics, is frequently thought to be ab-
stract in a much more thoroughgoing sense. As 1 shall put it, modern math-
ematics is not only abstract but also remote, because it is mmvﬁmonm.QH The
story tells us that medern axiomatic set theory is the product not of idealiza-
tion but of the failure of an attempted idealization.

Since science and often mathematics are thought of as quintessential exam-
ples of human knowledge, modern epistemology tries to come to grips with
scientific and mathematical knowledge, to see it as knowledge of a typical or
core kind. That poses a serious problem for epistemology, since mathematical
knowledge and the scientific knowledge that incorporates it is thought to be
50 remote. -

The whole picture of mathematical knowledge that drives the epistemol-
ogy is wrong. As this book will demonstrate, set theory, as Cantor and Ernst
Zermelo developed it, is connected to a kind of idealization from human ex-
perience much like that connected to the numbers or to Euclidean geometry,

Cantor studied the theory of trigonometric series during the 1870s. He
became interested in arbitrary sets of real numbers in the process of making

1. When I say that modern mathematics is man.EooHomP.H am not referring to the so-
called set-theoretic foundations of mathematics, which play little role in this book. What
I have in mind is the ubiquitous use of set-theoretic concepts in mathematics, concepts
like open set, closed set, ooEﬁmEo set, abstract structure, and so on and on. The concepts
mentioned were, as we shall see in Chapter I, introduced by Cantor in the course of

[
the same investigations in which he introduced his theory of infinite numbers and their

arithmetic. |
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that theory apply to more general classes of functions. His work was part ofa
long historical development that had in his day culminated in the idea that a
function from the real numbers to the real numbers is just any association—

however arbitrary—from each real number to a single other real number, the

value of the function. The term arbitrary is to make it clear that no rule or
method of computation need be involved. That notion of a function is the one
we use today.

Cantor’s study of the theory of EmoH_oEmHo series led him to this wnomnom-
sion of transfinite “indexes”:

owH....,oo.oo+roo+w,..;oo.w,..:oo..m,..:

o) co®
002, ...,00%,...,00%,...,00% .

Cantor’s set theory began as, and always remained, an attempt to work out
the consequences of the progression, especially the consequences for sets of
real numbers. Despite the usual story, Cantor’s set theory was a theory not
of collections in some familiar sense but of collections that can be counted
using the indexes—the finite and transfinite ordinal numbers, as he came to
call them. Though Cantor came to realize the general utility of his theory for
codifying a large part of mathematics, that was never his main goal.

Cantor’s original set theory was neither naive nor subject to paradoxes. It
grew seamlessly out of a single coherent idea: sets are collections that can be
counted. He treated infinite collections as if they were finite to such an extent
that the most sensitive historian of Cantor’s work, Michael Hallett, wrote of
Cantor’s “finitism.” Cantor’s theory is a part of the one we use today.

Russell was the inventor of the naive set theory so often attributed to Can-
tor. Russell was building on work of Giuseppe Peano. Russell was also the
one to discover paradoxes in the naive set theory he had invented. Cantor,
when he learned of the paradoxes, simply observed that they did not apply to
his own theory. He never worried about them, since they had nothing to do
with him. Burali-Forti didn’t discover any paradoxes either, though his work
suggested a paradox to Russell.

Cantor’s theory had other problems. It did not, in its original form, include
the real numbers as a set. Cantor had, for good reason, believed until the
1890s—very late in his career—that it would include them. (Most everything
else I am saying here is known to one or another historian or mathematician,
but the claim that Cantor had a smooth theory that broke down in the 1890s is
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new here. It is argued in detail in §1V.2.)? Cantor grafted a new assumption on
to his theory as soon as he realized he needed it, an assumption that allowed
him to incorporate the real numbers, but the assumption caused big trouble.

The new assumption was his version of what is today the Power Set Axiom.
The trouble it caused was that his theory was supposed to be a theory of
collections that can be counted, but he did not know how to count the new
collections to which the Power Set Axiom gave rise. The whole theory was
therefore thrown into doubt, but not, let me emphasize, into contradiction and
paradox. It seemed that counting could no longer serve as the key idea. Cantor
did not know how to replace it.

Zermelo came to the rescue of Cantor’s theory of sets in 1904. He isolated
a principle inherent in the notion of an arbitrary function, a principle that had
been used without special note by many mathematicians, including Cantor,
in the study of functions and that had also been used by Cantor in his study
of the ordinal numbers. Zermelo named that principle the Axiom of Choice.
Though the principle had been used before Zermelo without special notice, no
oversight had been involved: the principle really is inherent in the notion of an
arbitrary function. What Zermelo noted was that the principle could be used
to “count,” in the Cantorian sense, those collections that had given Cantor so
much trouble, which restored a certain unity to set theory.

The Axiom of Choice was never, despite the usual story, a source of contro-
versy. Everyone agreed that it is a part of the notion of an arbitrary function.
The brouhaha that attended Zermelo’s introduction of Choice was a dispute
about whether the notion of an arbitrary function was the appropriate one to
use in mathematics (and indeed about whether it was a coherent notion). The
rival idea was that functions should be taken to be %Swﬂ only by rules, an
idea that would put Choice in doubt. The controversy was between advocates
of taking mathematics to be about arbitrary functions and advocates of taking
mathematics to be about functions given by rules—not about Choice per se,
but about the correct notion of function. Arbitrary functions have won, and
Choice comes with them. There is, therefore, no longer any reason to think of
the Axiom of Choice as in any way questionable.

Zermelo’s work was widely criticized. One important criticism was that
he had used principles that, like Russell’s, led to known contradictions. He
hadn’t. In order to defend his theorem that the real numbers can be “counted,”

2. The reference is to Chapter IV, Section 2. A reference to §2 would be a reference
to Section 2 of the present chapter,
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Zermelo gave an axiomatic presentation of set.theory and a new proof of the
theorem on the basis of his axjoms. The axioms were to help make it clear that
he had been working on the basis of a straightforwardly consistent picture all
along. That is a far cry from the common view that he axiomatized set theory
to provide a consistent theory in the absence of any apparent way out of the
paradoxes. .

There was a theory developed as a retreat from the disastrous Russellian
theory and its precursor in Gottlob Frege, namely, the theory of types. But
it never had much to do with Cantorian set theory. I discuss it only in so far
as that is necessary to distinguish it from Cantorian set theory. In the process
of discussing it, I introduce a distinctive use Russell suggested for something
like schemas,? a use that shows that schemas have useful properties deserving
of more serious study. Such a study is a running subtheme of this book.

It did not take long for Thoralf Skolem and Abraham Fraenkel to note that
Zermelo’s axioms, while they served Zermelo’s purpose of defending his the-
orem, were missing an impertant principle of Cantorian set theory—what
is now the Replacement Axiom. The: universal agreement about the truth of
the Replacement Axiom that followed is remarkable, since the axiom wasn’t
good for anything. That is, at a time when Replacement was not known to
have any consequences about anything except the properties of the higher
reaches of the Cantorian infinite, it was nonetheless immediately and univer-
sally accepted as a correct principle about Cantorian sets.

Chapters II-V establish in considerable detail that it is the historical sketch
just given that is correct, not the usual one I parodied above, and they include
other details of the development of set theory. Just one more sample—the
iterative conception of set, which is today often taken to be the conception
that motivated the development of set theory and to be the one that justifies
the axioms, was not so much as suggested, let alone m%oo&m& by anyone,
until 1947.

There are three main philosophical purposes for telling the story just
sketched. The first is to counteract the baneful influence of the standard ac-
count, which seems to have convinced many philosophers of mathematics
that our intuitions are seriously defective and not to be relied on and that the
axioms of mathematics are therefore to a large extent arbitrary, historically

3. A schema is a statement form used to suggest a list of statements. For example,
X = X, where the substitution class for X is numerals, is a schema that has as instances,
among others,0=0,1=1,and 2 =2. -




6 I.INTRODUCTION

determined, conventional, and so forth. .H_Um details vary, but the pejoratives
* multiply.

On the contrary, set theory is not riddled with paradoxes. It was never in
such dire straits. It developed in a fairly direct way as the unfolding of a
more or less coherent conception. (Actually, I think there have been two main
strands in the development of the theory, symbolized above by the notion of
counting and by Power Set. As I discuss in §V.5, it could be clearer how
they fit together. One symptom of our lack of clarity on the issue is the
independence of the Continuum mﬁuo&mmym. But that is a far cry from the
usual tale of woe.)

The second purpose is to show what as a matter of historical fact we know
about the Cantorian infinite on the basis of clear and universal intuitions that
distinctively concemn the infinite. The two most striking cases of things we
know about the Cantorian infinite on the basis of intuition are codified as
Choice and Replacement. How we could know such things? It seems com-
pletely mysterious. The verdict has often been that we do not—our use of

~ Chioice and Replacement is to a large extent arbitrary, historically determined,
conventional, and so forth. But that is not true to the historical facts of math-
" ematical practice, facts that any adequate philosophy of mathematics must
confront. (Allow me to take the liberty of ignoring constructivist skepticism
about such matters in the Introduction. I shall confront it in the text.)

The third purpose is to make clearer the nature of intuition—the basis on

which we know what we do. I have been using the term inzuition because it is -

so familiar, but I do not mean the sort of armchair contemplation of a Platonic
heaven or the occult form of perception that the term conjures up for many.
Whatever intuition is, it is very important to mathematics:

In mathematics, as in any scientific research, we find two tendencies
present. On the one hand, the tendency toward abstraction . . . On the
other hand, the tendency toward intuitive understanding fosters a more
immediate grasp of the objects one studies, a live rapport with them, so
to speak, which stresses the concrete meaning of their relations.

.. Tt is still as true today as it ever was that intuitive understanding
plays a major role in geometry. And such concrete intuition is of great '
value not only for the research worker, but also for anyone who wishes
to study and appreciate the results of research in geometry. (Page iii of

. David Hilbert’s preface to' [HCV52].)

The quotation is from a book about geometry, but the mow:. is far more gen-
eral.
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TJust as one scientific theory can displace another because of its superior
ability to systematize, one mathematical theory can displace another. Unex-
pected developments can spawn new theories, which can in turn lead to fruit-
ful developments in old theories and become so intertwined with them that
the new and the old become indistinguishable. We shall see examples of those
things: The modern notion of a function evolved gradually out of the desire
to see what curves can be represented as trigonometric series. The study of
arbitrary functions, in the modern sense, led Cantor to the ordinal numbers,
which led to set theory. And set theory became so intertwined with the the-
ories of functions and of the real nambers as to transform them completely.
That is all a part of the story told in Chapters II and II1. Mathematics does not
have the same ties to experiment as science, but the way mathematics evolves
is nonetheless very similar to the way that science evolves.

The view of mathematics just outlined is usually thought to be antitheti-
cal to the possibility of any distinctive sort of mathematical intuition. New
mathematics has been thought to evolve out of old without any further con-
straint than what can be proved. But that cannot have been right for most

of the history of modern mathematics: from, say, the first half of the seven-

teenth century until the second half of the nineteenth there was no coherent
systematization or axiomatization for much of mathematics and certainly no

"adequate notion of proof.

Mathematicians necessarily saw themselves as Son.Em on the basis of an
intuitive conception, relying to some extent on what was obvious, to some
extent on connections with physics, and to some extent—but only to some
extent, since proof was not a completely reliable procedure—on proof. (See
Chapter I1.) I believe that most mathematicians today still see themselves
as working in much the same conceptually based and quasi-intuitive way,
though that is much harder to show, since rigorous standards of proof and
precise axiomatizations are now available. The intuitive conceptions that un-
derlie mathematical theories evolve, as do the theories, but the intuitions both
constrain the theories and suggest new developments in them in unexpected
ways.

The development of set theory is an excellent example of the positive and
necessary role intuition plays in mathematics. Because set theory is in so’
many respects unlike the mathematics that had gone before, it is clear that
prior training was far from an adequate guide for Cantor. Besides, the pro-
gression that he found does, in some sense, have clear intuitive content. There
is a great and mysterious puzzle in the suggestiveness of Cantor’s progres-
sion that can hardly be overstated. The progression is infinite, and we have
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absolutely no experience of any kind of the infinite. So what method are we
using—what method did Cantor use—to make sense of the progression? The
question is another version of the one raised above about Choice and Re-
placement.

It is difficult to understand how we can know any mathematical truths at

all, since the subject matter of mathematics is so abstract. But the problem is
particularly acute for truths about the infinite. There is no doubt that we know
that 2 + 2 = 4 in some sense or other, and that that knowledge is somehow
connected to our experience that disjoint pairs combine to form a quadruple.
The facts are indisputable and have multifarious connections to human ex-
perience. But there is genuine doubt about the truth of, say, Ko 4 R = R,
because, for example, there is doubt about whether there could be 9 @:.bmm.a
Everyone agrees we must in some sense accept that 2 + 2 =4, but it is rea-
sonable to be altogether skeptical about the infinite, Worse still, it is not clear
what connections to human experience truths about the infinite might have. A
modern philosopher of mathematics put it this way:

The human mind is finite and the set theoretic hierarchy is infinite. Pre-
sumably any contact between my mind and the iterative hierarchy can
involve at most finitely much of the latter structure. But in that case, I
might just as well be related to any one of a host of other structures that
agree with the standard hierarchy only on the minuscule finite portion
I've managed to grasp. [Mad90, p. 79]

There is a general philosophical problem about knowledge of abstract ob-

- jects, mathematical objects in particular. But the special case of knowledge
of infinite mathematical objects is a distinctive problem for which distinctive
solutions have been suggested. Chapters VI and VII are concerned with that
problem of the infinite. In Chapter VI, I survey various accounts of mathe-
matical knowledge of the infinite that attempt to show how it can come out
of experience. They begin with a theory of knowledge and try to fit math-
ematics to it. Intuitionism, various forms of formalism, and one version of
David Hilbert’s program are discussed. I use a Russellian picture of schemas
to clarify how Hilbert’s finitary mathematics could avoid any commitment to

the infinite. It is a consequence of each of the philosophies surveyed that we
could not know what we in fact do.

4. The symbol is a capital Hebrew aleph. Ry (pronounced “aleph two"”) stands for
one of Cantor’s infinite ‘numbers.
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In Chapter VI, I survey various accounts of mathematical knowledge of
the infinite that go in the opposite direction. They begin with mathematics
and try to fit a theory of knowledge to it. Kurt Godel’s views and those of
Willard Van Orman Quine and Hilary Putnam are discussed. Each fails to
account for the higher reaches of set theory. I also discuss Skolem’s skeptical
challenge to mathematical knowledge of the infinite—a history of which is
a part of Chapter V—and the attempt to use second-order logic to block it.
‘While I conclude that the Skolemite criticism of second-order logic has merit,
I propose a related solution to the mWa@nn& problem, one mmmwumwﬁ on the use

" of schemas, that I believe succeeds.

None of the philosophies discussed in Chapters VI and VII could solve the
problem of the infinite because none of them faced up to the main issue—
What is the source of our intuitions concerning the Cantorian infinite? In
more prosaic and somewhat over-simple terms, what do the ellipses, the
triples of dots, in the written form of Cantor’s transfinite progression suggest
to us? Whatever that is is a large part of what led Cantor to his theory.

Finding an answer is important for many reasons. Our set theory is incom-
plete—it is inadequate for resolving many of the problems to which it gives
rise. Anything that helps to clarify the sources of our axioms may help to sug-

_gest more axioms or help to adjudicate between the additional ones that have

already been proposed. That is important both for mathematical reasons and
because the apparent hopelessness of finding new axioms has itself become a
source of skepticism about the mathematical theory of the infinite.

The apparent problem in accounting for the mathematical infinite led to the
split between the philosophers discussed in Chapter VI and those discussed in
Chapter VII. Each side seems today to be a council of despair. The resulting
impasse has had repercussions far beyond the philosophy of mathematics. It
has affected all modern epistemological theories.

In Chapter VIII, I propose that the source of our intuitions concerning the
Cantorian infinite is experience of the indefinitely large. That is, our image of
what the ellipses represent arises from our idea of going on for much longer
than we have so far—going on indefinitely long. The proposal may gain some
plausibility from the fact that children go through a stage at which they think
the infinite literally is nothing more than the indefinitely large.

The proposal is nothing new, but I give a substantial new argument for it,
making use of a mathematical theory of the indefinitely large developed by
Jan Mycielski. In order to show that the theory can serve as a codification
of the actual historical and psychological source of our intuitions concerning
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the infinite, it is necessary to show four things: (1) that the theory does not
presuppose the infinite and is therefore suited in principle to be a source of
intuitions concerning the infinite in that it does not presuppose what it is to
explain; (2) that the theory formalizes ordinary experience of the indefinitely
large and is therefore a reconstruction of intuitions that we have, as a matter
of actual psychological fact; (3) that it does lead to set theory, and that it is
 therefore rich enough to explain what we have set out to explain; and (4) that
it coheres well with the actual development of set theory, and thus that it can
be taken to capture the intuitions that played an actual historical role.

To show the first, that the infinite is not presupposed, it is necessary to
present the theory in such a way that it involves no commitment to the infi-
nite. That is done using schemas. As a bonus this presentation shows, using
mathematical work of Mycielski, that the theory enables us to provide a coun-
terpart for ordinary set-theoretic mathematics that involves no commitment to
the infinite.

To argue for the second, that the theory is a reasonable codification of our
experience of the indefinitely large, I show how it can be applied to make
some parts of the calculis more obvious—connected with daily experience—
than they are when given the usual presentation involving limits. That—in
addition to the plausibility of the theory in itself—shows how natural and
intuitive the theory is, and, as you will see for yourself, how close to your
pre-theoretic intuitions.

I show the third, that the theory does lead to set theory, by showing that
set theory, including Choice and Replacement, arises by axnm@owm&ou, ina
precise mathematical sense, from the theory of the indefinitely large.

The chief argument for the fourth, that the theory coheres well with the
actual development of set theory, is that the theory of the indefinitely large
helps us to make sense of Cantor’s “finitism.” Cantor saw himself as making
an analogy between the finite and the infinite. We can now make precise sense
of that: his procedure, analyzed and reconstructed, was that of extrapolating
from the mnmmmiﬁa@ large to the infinijtely large.

The process of idealization that connects the finite to the infinite will be
shown not to be very different in principle from the one that connects pencil

. dots to geometrical points. Points are, more or less, idealized dots, while in-
finite sets are, more or less, idealized indefinitely large collections. Thus, set
theory is of a piece with arithmetic and geometry: all three have a close asso-
ciation with familiar types of experience. The apparently mysterious charac-
ter of knowledge of the infinite is dissolved.

IT

Infinity, Mathematics’ Persistent Suitor

. . . But, from the very nature of an irrational number, it would seem
to be necessary to understand the mathematical infinite thoroughly be-
fore an adequate theory of irrationals is possible. The appeal to infinite
classes is obvious in Dedekind’s definition of a cut. Such classes lead to
serious logical difficulties. .

It depends upon the individual mathematician’s level of sophistication
whether he regards these difficulties as relevant or of no consequence
for the consistent development of mathematics. The courageous analyst

~ goes boldly ahead, piling one Babel on top of another and trusting that

no outraged god of reason will confound him and all his works, while
the critical logician, peering cynically at the foundations of his brother’s
imposing skyscraper, makes a rapid mental calculation predicting the
date of collapse. In the meantime all are busy and all seem to be en-
joying themselves. But one conclusion appears to be inescapable: with-
out a consistent theory of the mathematical infinite there is no theory
of irrationals; without a theory of irrationals there is no mathematical
analysis in any form even remotely resembling what we now have; and
finally, without analysis the major part of mathematics—including ge-
ometry and most of applied mathematics—as it now exists would cease -
to exist.

The most important task confronting mathematicians would therefore

‘seem to be the construction of a satisfactory theory of the infinite . ... If

the reader will glance back at Eudoxus’ definition of “same ratio” . . .
he will see that “infinite difficulties” occur there too . . . Nevertheless
some progress has been made since Eudoxus wrote; we are at least
beginning to understand the nature of our difficulties.

[Bel37, pp. 521-522)
11 A
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With this chapter, I hope to make better known a few aspects of the history
of the mathematical infinite that are known at least in outline to H.EE%. math-
ematicians. The chapter is a work of exposition, not of scholarship. ﬁﬂ&w of
what I shall say is controversial.! If I succeed in making the story m.oow\m,ﬁ@o
without introducing detailed knowledge of Fourier series or of .Em distinction
between convergence and uniform convergence, the chapter will have served
:m%MMmHMM@mmB-Qm% theory of the infinite did not begin with an effort to pro-
duce a theory of the infinite, and it did not build on a long history of attempts
at mathematical theories of the infinite. It began instead with an attempt .8
clarify the foundations of analysis and specifically of the calculus—that is,
it grew out of the development of our theory of rates of owmﬁmm mEa of areas
under curves. The infinite has entered present-day mathematics in large part
as the result of attempts to make sense of the notion of an arbitrary curve or
function. . o

The story of the hugely successful m@@ﬁomﬂgp of analysis to physics is oﬁm
that is too well known to bear retelling here. Let me simply note that analysis
could not in Newton’s time and cannot today be regarded as just one .mBoum
many branches of mathematics: it is the one whose application, ammnoﬁE\. to
physics, has been the most fruitful. It is Ewanmozw the branch ﬁ.vm EwEmanOm
through which mathematics makes its most intimate contact with physics, the
sciences, and the natural world.

§1. Incommensurable Lengths, Irrational Z_EGQ.m

Most of us have been taught at one time or another that Pythagoras discovered

that the square root of two is irrational. That is very likely not true, though

our historical information concerning the Pythagoreans is sparse. First of
all, many of the discoveries of the Pythagoreans are attributed to Pythagoras
himself, and it is very likely that some other member of the Pythagorean
school made the discovery. Indeed, the discovery is attributed to Hippasus of

1. T have relied heavily on Morris Kline’s Mathematical Thought from Ancient to
Modern Times [K1i72] and the articles in From the Calculus to Set Theory [GG80b], a&ﬁ.na
by I. Grattan-Guiness. My analysis of the development of the calculus wmm been heavily
influenced by Philip Kitcher’s The Nature of Mathematical Knowledge [Kit83]. 1 r.%w also
made some use of Florian Cajori’s History of Mathematics [Caj85)-and Dirk J. mu.Ew,.m A
Concise History of Mathematics [Sir87). Various more specialized historical works, cited
in the text when necessary, have served as useful correctives.

§1. Incommensurable Lengths, Irrational Numbers 13

Metapontium (fifth century B.C.E.) among others. Legend has it that he made
the discovery while at sea with the other Pythagoreans and that he was tossed
overboard for his trouble. (See [Hea81, vol. 1, pp. 154-157] and [Hea56,
vol. 1, pp. 411-414].)

Second, and much more important, the only numbers the Pythagoreans had
anything to do with were whole numbers—no rational numbers, and certainly
no irrational ones. They knew many things about geometrical proportions
between geometrical magnitudes. For example, they knew that two strings
of the same type and tension whose lengths were in the ratio of three to
two would, when plucked, produce notes a musical interval of a fifth apart.
The ratio of three to two meant approximately that the two lengths could be
measured by a common unit so that one was three times the length of that
‘unit, while the other was twice that length. That was in no way associated
with the fractions or rational numbers 3/2 or 2/3.

The lengths of the two strings in our example were commensurable—
measurable by whole-number multiples of a common unit. What the Pythag-
oreans had discovered was not that the square root of two is irrational but
that the side and the diagonal of a square are not commensurable, That made
it impossible to continue the Pythagorean program of identifying geometry
with the theory of the numbers, which were, for the Greeks, just the whole
numbers.

Sometime in the century following the work of Hippasus of Metapontium,
Eudoxus gave an ingenious theory of incommensurable ratios, a theory that
remains the basis of our understanding today. Incommensurable ratios arose
within geometry, and his theory was entirely geometric. Indeed, Eudoxus
contrasted geometric magnitudes with numbers, which increase a unit at a
time. The main idea of his theory of incommensurable ratios is more or less
this: g is in the same ratio to b that c is to d if for any whole numbers # and m,
na is less than, equal to, or greater than mb if and only if nc is, respectively,
less than, equal to, or greater than md.

Less than a century later, the Eudoxian theory was codified in Book V of
Euclid’s Elements. Book II showed how to do what algebra there was geo-
metrically: Numbers are represented or, probably more accurately, replaced
by lengths, angles, areas, and volumes. The product of two lengths is an area;
the product of three, a volume. One can add and subtract lengths from lengths,
areas from areas, and so forth. Numbers and algebra have in effect been elim-
inated in favor of geometry, and the foundations of the geometrical theory of
ratios or proportions are those of Eudoxus.

The ratios of magnitudes, commensurable and incommensurable, are not




’ T SUITOR
14 1I. INFINITY, MATHEMATICS PERSISTEN

stand-ins for numbers, rational and irrational. No procedure is given, for
i iplyi ios of magnitudes.

example, for adding or multiplying ratios o . .

ZMEQ. are the magnitudes themselves—lengths and the like mﬁwbmﬁEw
for rational and irrational numbers. One can add them, but &w.wao zoEo
lengths, for example, is an area. Euclid was careful to state @amEﬁ.Bb 3) that
aratio mmn only relate magnitudes of the same kind. That 1s, in @mHnoEwh omm
cannot relate lengths and areas in a ratio. Unlike the mﬁomao.ﬂ of numbers,

i i i kind.
duct of lengths is an entity of a &mﬁmﬁ. . .

@Hmbcwoow X Buclid investigated and classified ratios between lines that we

would represent as having lengths of the form Ja=x »\w »MM Mwsﬂoﬂwwo

rable a and b. Ratios between lines that cannot be expressed in that 1o
iscussed in the Elements. . .

boWWMMMao of Pisa (Fibonacci) was educated in Africa, and wwr qgmwm

widely. He reintroduced Euclid’s Elements mu.a other Greek Mbm Mwnwwm v

works to Europe. He also disseminated >Hm.go .HEBmH&m and me e

calculation. In 1220, Hnoﬁmao published his discovery that the roo

%3 + 2x2 + 10x = 20 are not expressible in the form +/ ;.\m H /b. The %H,MMM
worked freely with irrational numbers, and Hk‘mowmao 8 &m.ooéQ m. NE <
that not every number could be constructed within E.o Euclidean siric e
of compass and straightedge. But no adequate foundation had been prov.
irrational numbers. . .

moHHMWMMMMmMMMM Mmﬂﬂﬁmm the use of irrational HEH.EUQ..m became Hﬁoﬁ@wwlﬁ
ingly common among European BmEoBmm&mum. but it was not o.HoMH H% M\mm&
sense they were numbers. In his Arithmetica Integra (1544) Michae

wrote,

Since, in proving geometrical figures, . . . irrational numbers . . . prove
exactly those things which rational numbers could not prove . . . We are
moved and compelled to assert that they truly are numbers . . . On the

other hand, other considerations ooE@aH. us to deny EB irrational HEHM
bers are numbers at all. To wit, when we seek [to give them a decim: :
representation] . . . we find that they flee wﬁm& perpetually, so that no
one of them can be apprehended precisely in :mwﬁ.. .. Zo.i that can-
not be called a true number which is of such a nature that it lacks pre-
cision . . . Therefore, just as an infinite number is boﬁ. a u@p,cmﬁ SO an
irrational number is not a true number, but lies hidden in a kind of cloud
of infinity.  [Kli72, p. 251]

§2. Newton and Leibniz 15

As we shall see, Stifel’s remarks were prescient: the basis of the irrational
numbers was not adequately clarified until infinite numbers were allowed into
mathematics.

The ties to geometry remained .quum. Stifel said that “going beyond the
cube just as if there were more than three dimensions . . . is against nature”
(K172, p. 279]. René Descartes, around 1628 (in Regulae ad Directionem
Ingenii), explicitly allowed irrational numbers for continuous magnitudes.
In 1637 Descartes took the product of lengths to be a length, not an area,
and viewed polynomials as determining curves [Des54]. (See also [Gro80]
and [Mah73].) Newton introduced number as “the abstracted ratio of any
quantity, to another quantity of the same kind,” including incommensurable
ratios, and introduced multiplication, division, and roots in terms of ratios in
his university lectures, published in 1707 as Arithmetica universalis sive de
compositione et resolutione arithmetica liber [Whi67, vol. 2, p-71.

Until now we have been considering the geometry of straight lines (and
rectangles, and so forth) and their magnitudes. We shall now turn to the
geometry of curves and the areas they bound. Once more, Eudoxus did basic¢
work that Euclid incorporated in the Elements, in Book XII. Archimedes

~ went even further in developing what is called the method of exhaustion. The
method remained the only fully worked out and thoroughly justified one for

.ooBHuEEm areas and volumes until the nineteenth century, but the details are
not central to our story.

§2. Newton and Leibniz

In the first half of the seventeenth century various curves were introduced
or described by 'means of motion. That was not new, but this method of de-
scription came to play an increasingly central role. In 1615 Marin Mersenne -
defined the cycloid as the path traced out by a point on the edge of a rolling
circle. The cycloid was not new; the definition was. Galileo Galilei showed
in Discorsi e dimostrazione matematiche intorno a due nuove scienze (1638)
.that the path of a cannonball was a parabola, and he regarded the curve as the
path of a moving point.

Many techniques were devised for computing various properties of curves,
in part building on the method of exhaustion; techniques for computing max-
ima and minima, locating tangent lines, and computing areas and volumes.
The mathematicians involved included Pierre Fermat, Descartes, Isaac Bar-
row, Johann Kepler, Bonaventura Cavalieri, Gilles Personne de Roberval,
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Evangelista Torricelli, Blaise Pascal, John Wallis, Sir Christopher Wren,
William Neile, Gregory of St. Vincent, James Gregory, and Christiaan Huy-
gens. But Isaac Newton and Gottfried Wilhelm Leibniz soon systematized the
techniques into the calculus, and so we shall only briefly look at the work of
the others.

The new study of curves and motion led to a new definition of the line
tangent to a curve (Roberval, Brieves Observation sur la composition des
mouvemens et sur le moyen de trouver les Touchantes des Ligne Courbes, ca.
1636, published 1693). The Greek definition of a line tangent to a curve is a
line touching the curve at a point. Roberval defined a tangent to a curve as the
direction of the velocity of 2 moving point tracing the curve.

In his Arithmetica Infinitorum (1655), Wallis studied infinite sums and
products. He also gave a correct general definition of the limit of an infi-
nite sequence of numbers, a definition that did not surface again until around
1820. (For example, the limit of the sequence 1, w, wt ...is 0. See §5.) New-
ton studied the Arithmetica Infinitorum and used its techniques to convince
himself that the binomial theorem—which gives the coefficients of the expan-
sion of (a + b)" for arbitrary n—also held when » was negative or fractional.
In those cases, there are infinitely many coefficients—one obtains an expan-
sion of (a + b)™/" as an infinite sum or series. (As an example of a series—
though not one derived from the binomial theorem—the limit of the series
14 w + w + ...1is 2.) Such series were crucial for Newton’s development of
the calculus, to which we now turn.

In De Analysi per Aequationes Numero Terminorum Infinitas (circulated
in 1669, published 1711), Newton gave a considerably more general version
of the following derivation: Suppose that the area z under a curve is given
by z = x2. (See Figure 1, which is not drawn to scale.) Suppose x increases
by a “moment” o, that is, in our present-day Leibnizian terminology, by an
infinitesimal.? (The term moment was presumably suggested by thinking of
x as time.) Then the area under the curve increases by ov, and so z + ov =

(x -+ 0)2, where the tight-hand side is obtained by using z = x2, which we-

have assumed true, at the point at which the x coordinate has value (x -+ 0).
Mnultiplying out, z + ov = x2 + 20x + 02, and since z = x2, it follows that

9. The history of analysis from this point on depends heavily on present-day ideas
about infinitesimals, on which see §VIL3. Those ideas are used to adjudicate what argu-
ments have a reasonable reconstruction in modem terms, and hence are to be viewed as
correct, and which do not.

§2. Newton and Leibniz 17

oc.H 20x + 0. We now divide through by o to obtain v = 2x + 0. At thi
point, Newton took o “infinitely small” to obtain y = 2x, since @.85 Ew
figure) v is equal to y when o is infinitely small. , . ’
As Newton himself admitted, the method is “shortly explained rather than
mwoﬁmﬁ&% demonstrated.” The derivation accomplishes two things at once:
First, it shows that the rate of change of x? is 2x (on the right-hand mEm
we computed the change (x + 0)? — x2 divided by the “time” o in which the
change occurs to obtain the rate of change). Second, it shows that the rate of
change of the area z is the curve y bounding that area (on the left-hand side
we computed the rate of change of z and obtained y). The equation y = 2 |
thus asserts that the rate of change (2x) of the area (z = x2) Uosbamvhwu_w a
curve (y) is the curve itself. That is Newton’s version of the fundamental ﬁww.
orem of the calculus®—for z = x2. Newton did not use that example. He made

‘ 3. Hereis all you bmn@ to know about the fundamental theorem of the caleulus. I h
omitted ._uoi to handle negative values since the details don’t matter for our sto .H wmﬁw
also oHEnom. important restrictions on the applicability of the theorem They énnm. b.mﬁw
Monw& outin Ea.amﬁ of Newton and Leibniz. Differentiation is E.mnu.\ much the owm%.m%“
&Mn Swgm a ?uoE.uu fto Fa function g that graphs the slope or, equivalently, the rate of

ge of f (thatis, g(x) is the slope of f at x or the rate of change of f at x if we think

. of x as representing time). Integration is pretty much the operation that takes a function f

WMHM& function g that graphs the area under f (that is, g(x) is the area under the graph of
A etween 0 and x). The fundamental theorem of the calculus states that W.Emmammou and

[

o

Figure 1. Newton’s derivation.
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it clear that one could use z = ax™, where m could be negative or fractional, 1 following sequences of numbers. Each sequence on a line below another se-
expanding the right-hand side not by multiplying it out but by using the bi- T quence comsists of the differences between the terms in the sequence above it:
nomial theorem. He thus obtained the result that the rate of change of ax™ is 3 .

max™"!. He then expanded other equations involving x as infinite series of M . 0, 1, 2, 3, .

terms of the form ax™ and applied the result term by term to compute other L, 1, 1,

rates of change. . 0, 0,

In a subsequent work (Methodus F Tuxionum et Serierum Infinitarum, writ-
% “ten in 1671, published 1736), Newton called a variable quantity a “fluent” and
its rate of change a “fluxion.” He computed rates of change by computing the
fluxion of a fluent, and he found areas by finding the fluent of a fluxion. He
' now regarded fluents as generated by continuous motions instead of as being
built up as static assemblages of moments. The moment o is now conveniently
thought of as “an infinitely small interval of time.” The idea of taking a curve
to be the path of a moving point thereby became fundamental. Newton had
introduced an early form of the idea of functional dependence—with tire as
an auxiliary independent variable. .
In a third paper (Tractatus de Quadratura, written 1676, published 1704),
Newton attempted to eliminate the moments, or infinitesimals. He said,
“[ ines are described . . . not by the apposition of parts, but by the continued
i motion of points,” and “Fluxions are, as near as. we please, as the FQ@B@HM i
.vof fluents generated in times, equal and as small as possible, and to speak
“accurately, they are in the prime ratio of nascent increments.” His computa-
tions were much as before, but the new excuse for dropping terms involving
o at the end was “Let now the increments vanish and their last proportion will
be . . . ” To the modern ear, that phrase suggests the beginnings of the theory
of limits that eventually became a crucial part of the foundations of analysis.
In contrast to his concern about the increment o, Newton did little to provide
a basis for his use of series—infinite sums [Kit83, p. 234].

125,

Leibniz noted that the sécond differences for the sequence of natural numbers, -
the third differences for the sequence of squares, and so forth, all vanish. mm
Emﬁ.u recognized that each sequence could be recovered as the successive sums
of its first member and the members of the sequence below it—that is by
putting the differences back together. In 1673, during the time between Z,mi-
ton’s second paper and his third, Leibniz connected those facts to the study
of curves by thinking of a curve as a sequence of successive points. He later
. came to think of the successive points as differing by infinitesimals. When
the succession of points is such that their x coordinates differ by a constant
amount, the successive, infinitesimally close x values are thought of as giving
the order of the terms in the sequence, while the y values may constitute the
terms themselves. Thus, a curve is conceived of in terms of a sequence of val-
ues much like the sequences Leibniz had investigated earlier. At this stage, dx
(a notation Leibniz introduced a couple of years later) is 1 since the SHEm, are
Em first, second, third, m.hm so forth, while dy is the actual difference between
adjacent terms. He thus saw that if the unit is infinitely small, then the sum
o.m the ys gives the area under the curve and the differences dy (dy = dy/dx
since dx = 1) are the slopes of the tangent lines. He recognized that (in a E§H

Let us now turn to Leibniz’s independent discovery of the calculus. ‘Whereas
Newton relied heavily on temporal ideas and infinite series, Leibniz assimi-
lated curves to sequences of numbers. In 1666, while Newton was complet-
ing the main part of his development of the calculus, Leibniz published a
work, De Arte Combinatoria, on what seems a different subject. Consider the

differentiation are inverse operations, which means that if g is the integral of f, then fis
the derivative of g.

or
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: . : ] . ften as they occur with quantities EwonB.mE% greater. Thus if we
. . =y differences is H as o : :
. familiar notation he quaﬁwnwm FH@ / &Wwﬂm mewmvwa%w HMM_MMQQMMEE the- : have x + dx, dx is rejected. But it is different if we seek the difference
iginal series. That is the beginning o . : betw d dx. [Kli72, . 385 o
Hmhn%mb the calculus—the integral ([') of the differential (dy) of y is y. The ”_ cweenx +axandx. | P !

integral is Leibniz’s—and our—term for pretty much what Newton had omﬂom
a fluent, and the differential played pretty much the role of Zﬂﬁon s fluxion.
Leibniz also made use of the “characteristic triangle,” which he adopted

e e nascent quantites, Walls was ficly cloar sbout the nature of the number
simultaneously a straight line and part of the curve.

Sht fine and ‘ ranele abe is similar to the line. He accepted Ewm.oH_&m as numbers, mb.m he thought of the .m.cmouamu the-.
viewed as a polygon with infinitesimal sides. .Hrm triangle abe Ag is tangent : ory of ratios of magnitudes, as presented in Book V of Euclid’s Elements,
triangle A Ba, which has sides of ordinary finite length. The line Aa is Anger ! as arithmetical. He identified rational numbers with repeating decimals. But'
to the curve. Those facts exemplify the main reasons why the characteristic the calculus became such a central part of mathematics that the unclarity of
triangle was useful. . hi its basic concepts infected virtually all of the work of mathematicians. Proof |
Using the above ideas, Leibniz had most of Eo. essential mownﬁom of his was almost completely abandoned,
n&oicm by 1675. The details took a couple om. years more. Unlike Newton, In 1673 Leibniz had taken a curve to be given by an equation, but he called
Leibniz preferred to avoid the use of infinite series. d dvs. In any quantity varying along the curve—for example, the length of the tangent
At first Leibniz had little to'say about the nature om. the dxs an Ewmwz line from the curve to the x axis—a function. The function is not, however, a
1680 he said that “these dx and dy are Swg. to be infinitely mH.umHF MHENM mum function of a variable but of the curve [Bos74, p. 9]. Newton, at least in prin-
points on the curve are gamﬁmﬁooa.ﬁo @m a distance apart that is omm: In 1684 ciple, did not give a curve any special status: he took fluxions of fluents and
given length.” The differential :Nv Isa EMWWMMMNM#H MWMMMMM%@ &o.m@, fluents of fluxions equally. What Newton considered were quantities obtained
Leibniz defined a tangent as a line joining two )

In 1690 he said (in a letter to Wallis):

The infinitesimals are on occasion taken to be vanishing or incipient quanti-
ties, or indefinitely small quantities smaller than any finite quantity.
While Newton and Leibniz were struggling with infinitely small and

from others by means of (possibly infinite) algebraic combinations, primarily
H.mmu:o‘ sums of finite combinations—what today would be called series:

When one considers infinite series it is necessary to consider convergence
if one wishes to avoid absurd results. For example, the series

It is useful to consider quantities infinitely small such that s&g. their
ratio is sought, they may not be considered zero but which are rejected

x+.km+km+...
diverges when x = 2, and so does not have a value, but for x = wu it becomes

1 1 1

5 + 7 + 3 +ee,
which converges to 1. The terms convergent and divergent appeared in the
work of James Gregory while Newton was developing the calculus. In that
period, Lord Brouncker showed some series to be convergent.

Newton did not show as much facility with the distinction between con-
vergent and divergent series as Gregory and Brouncker. He noted that some
series (like the one of our example) should be used only for small values of
x, while others should be used only for large values of x. He noted that some

v

N

A B

Figure 2. The characteristic triangle.
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series become infinite at some values of x and that they are useless for those
values. :

In 1713 Leibniz devised a test for the convergence of some series, but by
and large Newton and Leibniz and their successors simply treated series as on
a par with finite sums. Indeed, at around 1800 J oseph-Louis Lagrange tried to
provide an &mmﬁaﬁo basis for analysis that used infinite series without regard
for whether or not they converged.

Léibniz and Newton showed at least occasional concern for the conver-
gence of series. In contrast, the Bernoulli brothers, who studied Leibniz’s

4 work and corresponded with him often, did extensive work concerning se-

ries, and they showed almost no awareness of any need for caution. ‘Wrong
results were described as paradoxes. The Bernoullis also made substantial
positive contributions, but those are irrelevant to our concerns here, with a
few exceptions. From 1697 on, Johann Bernculli employed the notion of any
“quantity” formed from a variable and constants using algebraic and tran-
scendental expressions. He called such a quantity a “function” beginning in
1698, adopting the term that Leibniz had used earlier. I shall refer to such
functions as “analytic mxwamm%oum,: a term used by Leonhard Eulér [Bos74,
p. 10], to emphasize the difference between such expressions and functions in
the modern sense.* Johann’s work marked the beginning of a transition from
a focus on the study of geometrical curves to a focus on the study of analytic
expressions; wcrmi._ also deemphasized the geometrical basis of the notion
of an Eﬁmﬁ&.ww an area by simply defining the integral to be the inverse of

~ et

the differential. The fundamental theorem of the calculus was thus absorbed
mﬁo the definition. That style of defining the integral was dominant into the
nineteenth century. Euler solidified the change away from geometry in a se-
ries of influential textbooks published from 1748 to 1770. He adopted and
generalized Johann Bermoulli’s definition of a function. (See [Bos80, pp. 73—
79].) Johann also did some work on the vibrating-string problem, a problem
that we shall be discussing in detail later.

§3. Go Forward, and Faith Will Come to You

Euler investigated infinite sums in the 1730s. I shall give two examples he
ased to illustrate the difficulties that such series cause. Formal long division

4, Analytic expressions bear only the most remote of relations to “analytic functions”
in the modern technical sense, which are certainly not what I mean.

§3. Go Forward, and Faith Will Come to You

of polynomials—the process you were taught in high school—yields

1
c.|.._|k|vN““_..INH+mRNI.L.Hw|_I...
and
1 2
= ltr e
Pluggi =—1i i
ugging x = —1 into the first series, one obtains (because 1/0 is o0)?

c0o=1+2+344+....

Plugging x = 2 into the second mnnom‘, one obtains

—1=1+42+4+8+....

23

The series for —1 i
. MMMH.ﬁ .H 1s term by term greater than or equal to the series just abov:
) it is term by term greater after the first two terms. Hence, Eul e
. . , Euler

9 H > an. HHH%.
Wmm ecn Em HU UMH_“H.m m_HHQ bmmm: € HH—.HB_umHm. HHW m_.U—WD MH—. mmmﬂ. x H EHD Em

series for 1/(1 — x) to obtain

=1—-14+1—1+-.-,

N o=

as Leibni i
Homﬁow“wo %MmeouﬂM. He considered and rejected the idea that one should
o enor wmmoﬁm MHEH_m of oou<wamouﬂ series [Kit83, pp. 242-244].

i oo 10 1 &. M was very interested in computing the sums of in-

volved &<m.umoﬁ mommwmﬂﬂﬂwmwmwwmwﬂw #.Hnm MMM o ot o o o

vor ries not get him i

Euwcwmmwm MM“M Mmzmum check E.m results, at least m@mwxgmﬁawwovw MMMW

A whatever series he was considering, The divergent se-
cause problems also led to too many successes to mwwm@mm.w@

M. UH(HQE .Uw O as in ﬁr@ OQCNQOD ﬁ..:&OH &mﬁﬁwm_.o: can _ONQ. to DCZ._U e nce
m Y 3 H m~
O " O - O * Hu one HEWHHﬁ OOH_.O.,—EQO H.Em.n O = H. wﬁﬁ using co as a U.OHNH#OD. ﬁOH n O HOH n> O
W ? ?
1S not THOUHOHmeHMO. Hwﬂ@ HHE.mnWWQ Uﬁ S \
e HHO n EHO use OM QHcOHWWH—ﬁ Series, not in @Hﬂ &cu—muOD
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&om.vma [Kit83, p. 2501, though he did things with them that later mathemati-
cians would view with horror [Kit83, p. 323n].

Besides his work on series, Euler solidified the separation of analysis from
geometry, introduced functions (analytic expressions) of more than one vari-
able, and gave differential coefficients, essentially derivatives, & crucial role.
In 1734 Euler considered 2 notion of function considerably broader than the
analytic expressions we have seen before: he allowed 2 function to be formed
by putting together parts of curves, and even allowed curves freely drawn. He
also introduced the now familiar notation f (x) fora function of x.

In that same year George Mwmaw&m% the Anglican bishop of Cloyne, pub-
lished The Analyst, a devastating onmpdo of the foundations of mﬂm&\mwm.m Like
Newton, WQ.W&Q had doubts about matters related to infinitesimals, not infi-
nite series. His criticisms in large part sound exactly right to the modern ear.
He understood the value of the methods: «The Method of Fluxions is the gen-
eral key by help whereof the modern mathematicians unlock the secrets of
- Geometry, and consequently of Nature” [Ber34, p. 66]. Nonetheless, he said
that the mathematicians of his age took more pains to apply their principles
than to understand them [Ber34, p. 991. He pointed out that derivations like
the one by Newton described above are incoherent, since one divides through
by o and later assumes 0 equal to zero [Ber34, p. 72]. That criticism may be &

bit unfair to Newton, who can, as we have seen, be read as having some idea
of using something like limits to replace.the procedure of setting o equal to
zero [Kit83, p. 239n}. 4

Berkeley criticized Newton’s theory of fluxions as ultimate ratios of evan-
escent increments in a familiar passage: .

And what are these fuxions? The velocities of evanescent increments?
And what are these evanescent increments? They are neither finite quan-
tities, nor quantities infinitely small, nor yet nothing. May we not call
them the ghosts of departed quantities? [Ber34, p. 88]

ﬁm.wcawqm infinitesimals fared no better:

[Our modemn analysts] consider quantities infinitely less than the least
discernible quantity; and others infinitely less than those infinitely small
ones; and still others infinitely less than the preceding infinitesimals, and
so on without end or limit. [Ber34, p. 63]

6. Bernard Nieuwentijdt made similar criticisms of the calculus forty years earlier.
He was widely read and provoked a reply from Leibniz. See §VIIL3 for a discussion. See
[Mang9] for information on other early criticisms of the calculus.

[
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§3. Go Forward, and Faith Will Come to You

He continued:

Nothine i . .
EM@WM% Hﬁm n.mmMH EM: to devise expressions or notations, for fluxions
nitesimals of the first, second, third, fourth. ,
ders . . . But if we remo i an docments, £ Tt acine
ve the veil and look und i i i
the expressions, we set our: i e g ool
, selves attentively to consider the thi
: e things them-
MNM% which Mﬁo supposed to be expressed or marked thereby, M& mMM~
over much emptiness, darkness, and ¢ i i o
i . b emy s . onfusion; nay, if I mi
direct impossibilities and contradictions. [Ber34, p Mcw ke net
And finally,

In all this the ultimate drift
Rt of the author [N ; .
principles are obscure.  [Ber34, p. oﬁu ewton] is very clear, but his

In A inking i
Defence of Free-thinking in Mathematics (1735, a reply to a reply

to The Analyst), Berkele .
» y summarized i
foundations of analysis: the various contemporary attempts at

WMHM HMW MM%MMMB%H between nothings. Some reject quantities be-
cause infinlesima . o ers allow only finite quantities and reject them
with (ot of exhtoons 0 st g ne s, Some mtts
. ) a0 g new therein. Some maintai

mwwsmm@mw MMMHHMMMHH A.UMHmEnoum. Others hold they can amBoumquMHM
oy e nw nwmmmw m..woBm SoEm prove the algorithm of fluxions
oy reductio ad HmES. :EW .oEme a priori. Some hold the evanescent in-
crements mcm.banmm, some to be nothings, some to be limits. As

y men, so many minds . . . Some insist the conclusions are true, and

therefore the princi
. ples . . . Lastly several . . . frankl j
tions to be unanswerable. [Ber35a, p. 133] . Y ovmedthe obfec

That i
seems a pretty fair summary of the state of affairs. Euler, by the way

s {3 :
) as one who endorsed “proportions between nothings”: .

There i .

Emmﬂ is nn doubt that every quantity can be diminished to such an extent

o i <§HMMM8 completely and disappears. But an infinitely small uan

e ouo& g other ﬁ._umb a vanishing quantity and therefore E@MEH_-
quals 0. (Institutiones, 1755; see [K1i72, p. 429].) ®

He then we i
o w:&uc”a MM M MMWHME how dy/dx, which was 0/0, could have a definite
e sach was the M w of the art. The above quote is from one of Euler’s
i ww_”o : ooraHoH had a ﬁ@Eww.aosm positive influence in organizing
o ent mn&w of analytical expressions [Bos80, pp. 53, 76
complete lack of rigor came to be considered a virtue: e
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But the tables have turned. All reasoning concerned with what common
sense knows in advance, serves only to conceal the truth and to weary
the reader and is today disregarded. (Alexis Claude Clairaut, Eléments
de géométrie, 1741, see [Kl1i72, p. 619].)

The attitude of Clairaut was widespread. Nonetheless, there were a number
of attempts to give a more adequate development of the calculus. Those at-
tempts were motivated by particular mathematical problems—not by any de-
sire to prove the obvious more carefully. Euler’s texts emphasized “differen-
tial coefficients,” which are the derivatives that ultimately replaced differen-
tials in the foundations of analysis [Bos80, p. 74]. Jean Le Rond d’ Alembert
and Benjamin Robins, like Wallis about a century earlier, emphasized limits
[Bos80, p. 91]. D’ Alembert said, “The theory of limits is the true metaphysics
of the calculus.” But he never actually worked out a presentation of the cal-
culus on that basis; indeed it is likely that he could not have done so, since
he, like Robins, considered the limits of variables (variable quantities) not of
functions with a specified independent variable [Bos80, p. 92]. In the absence

of a correct presentation, he also is said to have said, “Allez en avant, et la foi-

vous viendra” (Go forward, and faith will come to you).

§4. Vibrating mn.m:mm

D’ Alembert made significant progress on the vibrating-string problem: given
the tension in a string and its initial position, figure out how the string moves
‘when it is released. The problem had been studied by Brook Taylor in 1713
[Kli72, p. 52 and by Johann Bernoulli in 1727 [K1i72, p. 479]. Johann’s son,
Daniel Bernoulli, did related work in 1732 [K1i72, p. 489]. But in 1746 (work
published 1747 and 1749) @’ Alembert wrote down essentially the modern
partial differential equation involved and gave a general solution.
¥ I am discussing the vibrating-string problem for good reason. The vibra-
tions of a string can always be represented as an infinite sum or series of sine
i_waves.” Since the initial position of a string can in a sense be arbitrary—we
can stretch the string into any shape-—it apparently follows that any curve,
that is, any function, can be represented as a-sum or series of sine waves,
briefly, a trigonometric series. The modern definition of function—of an ar-
bitrary function—evolved as part of the attempt to formulate that conclusion

7. We add functions or curves by adding them at each point. Thus, the sum F = f +-
g reduces to an ordinary sum of values at each point: for example, F(3) = f(3) -+ g(3).
Similarly, an infinite sum or series of functions reduces to an ordinary series at each point.
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as a theorem, and set theory evolved more or less as part of the attempt to
prove the theorem. The details are an important part of the history I wish to
present. In the end it has turned out that the “theorem” is mot quite true—
there are functions that cannot be represented using EmoonmHo series—but
the ones that can be so represented include functions far stranger than anyone
had thought possible.

D’ Alembert’s general solution to the vibrating-string problem Ho@EHnm that
the initial curve of the string be periodic, that is, that it repeat the same
shape it had on one length of string over and over. He therefore required
that the initial position of the string be a periodic analytic expression. That
was a substantial restriction on the allowed initial positions of the string: one
couldn’t start with a string in just any arbitrary configuration, but only one
given by a periodic analytic expression. A

Shortly after seeing d’Alembert’s work, Euler wrote a paper, published
in 1748 [K1i72, p. 505], in which he allowed the initial function describing
the position of the string to be any function (meeting some other constraints
that T omit here) on an interval. He ensured that the function was periodic
by simply duplicating its values outside that interval. The function had to
be zero at its endpoints since the string was fixed at its endpoints. Thus the

_duplications matched up at the ends. The function also had to be free om

jumps since the string was in one piece. But, and this is the key point, there
was no requirement that the function be given by a single (periodic) analytic W
expression. Euler’s broad notion of function from 1734 was now being put
to an important mathematical use. In the paper of 1748 he also saw that the
motion of the string is periodic in time (the string resumes its initial shape

at regular intervals) and that at least some solutions to the problem can be

written as sums of sines and cosines.

By 1755 Euler defined a function thus [K1i72, p. 506]: “If some quanti- A

ties depend on others in such a way as to undergo variation when the latter -
are varied, then the former are called functions of the latter”” He m@oo&om&%
intended to allow functions that are not given by a single equation on the en-
tire domain. In 1763 he wrote to d’ Alembert that allowing this more general
notion of a function “opens to us a wholly new range of analysis” [K1i72,
p. 5071.

Daniel Bernoulli, in his work of 1732-1733, was the first to Tecognize
that a string could vibrate at many frequencies—the fundamental frequency
that had been studied by Taylor and Daniel’s father Johann, and the harmon-
ics (multiples) of that frequency [K1i72, p. 480]. In the early 1740s, Daniel
Bernoulli said that a vibrating bar can vibrate at two harmonic frequencies
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at once. The statement is based on physical understanding, not mathematical
derivation. In 1753 he went further: after seeing the work of d’ Alembert and
Euler, he said that “all the new curves given by d’ Alembert and Euler are only
combinations of . . . [sinusoidal] vibrations” [K1i72, p. 509]. He was still re-
lying on physics, not mathematics. His claim was that all the new curves can
be represented by trigonometric series.
Euler and d’ Alembert objected at once to Daniel Bernoulli’s claim [K1i72,
,, pp. 509-510]. Euler believed that the functions he had allowed, functions that
iare defined by different equations in different intervals, could not be a sum
' of sine functions. A function could not simultaneously be “discontinuous”
(given by different expressions in different intervals) and “continuous” (given
by a single expression—a sum of sine functions). Moreover, despite his lib-
eral notion of function, a notion that made it possible to piece together a pe-
riodic function from nonperiodic ones, Euler argued that since every trigono-
metric series must be periodic, no nonperiodic function (analytic expression)
could be equal to a trigonometric series [GGR72, pp. 245-247]. Euler’s at-
tention was now on the analytic expressions themselves. Bemoulli held his
ground, and the three continued to disagree with each other through the 1770s
[K1i72, p. 513]. Lagrange and the Marquis Pierre Simon de Laplace eventu-
ally entered the fray. That all seems a bit bizarre when one sees that Euler
(in 1750-1751), d’Alembert (in 1754), and Clairaut (in 1757) had all dis-
covered general methods of representing arbitrary functions by trigonometric

" series [K1i72, pp. 456-459]. They applied those methods only when they had

some (usually physical) reason to believe that a trigonometric-series repre-

. ~ sentation ought to exist. The mathematics did not stand on its own. Indeed,

.

“ geveral of the derivations were not correct by our standards. Since nothing
could be proved i a reliable way, one tried to confirm the results of a math-
ematical derivation on some independent grounds. If a result was contrary to
expectations, it was often dismissed.

The disagreement about trigonometric series, the paradoxes arising from

_ the use of infinite series, and other disputes created a real internal mathe-

_w,..w matical need for clarification of the foundations of analysis. The fundamen-

tal concepts of function, derivative, and integral had no adequate definition.

" They had been used in a manner suggested by their applications to simple

functions—especially polynomials. As the notion of function was broadened,

mainly as a result of work on the vibrating-string problem, that analogical
procedure became less and less adequate.
The problem became even more acute with the work of the Baron Jean

Baptiste Joseph de Fourier on heat conduction, which involved him in the
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Eo.EoE of trigonometric series. The reception of his work gives some indi
cation of the controversy that surrounded it. In 1807 he submitted a pa Mu M )
the Academy of Science of Paris. It was rejected by Adrien Marie H.M MEMH :
Laplace, and Lagrange. But, to encourage Fourier, the problems he WE&M
were made the subject of an 1812 prize. Fourier’s 1811 paper won the "
but was not published. In 1822 Fourier published his great Théorie n:&wMMMM

de la chaleur. It included part of the 1811 paper. Fourier became secretary of

Fourier came to see, b i
. , by 2 complicated process that we shall i
that if for some coefficients by ot consider

o0
\AHVHchmEcH for0<x <,

v=1

that is, if the function f could b ,
that is, e represented by a trigonometric seriesS i
interval from 0 to 7, then for every value of v : e inhe

N m
w:”l.\. f(s)sinvsds.
T Jo

M.Hm S.ow that to mean that the coefficients &, of the sum would have to be
/7 times the area under the curve F(s)sinvs betweens =0 and s = 7.2 As
MM 5<% MM@F formally EE.H.EH results had been obtained by others, EoE.&bm
am%oww p MHMWMH..H. and QEHB.:. But Fourier departed from the practice of his
ol s o HHMMMHQ the Eﬁmﬂ& as an inverse differential but geometri-
mn_mbuna n e oﬂ ﬁm,. QOa, w Hod.. He observed that the area involved is well
bratng st Mﬂp&w wide variety of fs. Fourier had not been studying vi-
oot 7 Ham M.o u mmm flow, Eo.:.mw Em. mathematics is much the same. His
il g %b MMHMME H.Hﬁmﬁwau MM_H.._QMH woMEow of a vibrating string but the ini-
! ‘ ar, A string must be in one pi
MW@QMER in a bar can jump: to wao.azoa a bar with a jump E@MMM%MM“o
e a hot bar and a cold bar and join them together. (See [Haw80, p. 152] vu

8. T shall use the term #7{ ;
trigonometric series to mean a i o di
. sum of sines, as indi i
text. Though a general trigonometric series would allow cosine ! cated n the

that fact. i is gai
act, The details of what is gained by allowing cosines are irrelevant for our purposes

9. Actually, Fourier wasn’t quite ri
] A quite right. Cantor straightened out th i
1870s, and that work led him to set EnoQImmSnww&_mmw,u&oé " probiems n the

s as well, I shall just ignore
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Certainly no single analytic expression need be available for Fourier’s tem-
perature function f. The function f might be “freely drawn,” and it could
even jump about in value The existence of an inverse differential was of no
particular concern, and so Fourier was freed from a restriction to analytic ex-
pressions. He concluded that every function was representable by a special
trigonometric series on the interval from O to =, the trigonometric series de-
termined by the formula for the b,s. Such a seriés is called a Fourier series.
Fourier tested his opinion by computing the first few b, for many fs and
plotting the sums of the first few terms of the corresponding sequences. The
results looked good. ,

Summing the trigonometric series above yields a function that is odd and
periodic: the values between —z and 0 are just the opposites of the values be-
tween 0 and 7, and the values between —r and 7 are repeated over and over.
Thus, the trigonometric series for an arbitrary function f, while it may yield
the same values as the function between 0 and &, will not yield the same val-
ues as the function elsewhere if the function is not odd and periodic. For ex-
ample, the trigonometric series for the absolute value function (see Figure 3a)
has for its sum the “sawtoothed” function in Figure 3b. Fourier stated with-
out fanfare that functions that agree on an interval need not agree elsewhere.
That is obviously true on his conception of functions, and it shows how big
a change that conception was. For Fourier, in contrast to Euler and Lagrange,
functions consist of their values, not the expression used to compute them,
and hence may be considered on arbifrarily restricted intervals.

Fourier used his techniques to greatly advance the art of solving partial dif-
ferential equations. They were too successful to be ignored. Indeed, Siméon-
Denis Poisson thought the techniques could be extended to yield general
methods to solve all partial differential equations. That did not turn out to
be the case, but Poisson did greatly expand their domain of application,

and they remain essentially the only available techniques for obtaining ex-

act solutions to partial differential equations subject to'boundary conditions
[Str87, p. 150]. Since such equations are at the heart of mathematical phys-
ics, Fourier’s peculiar functions—functions that need not be defined by closed
expressions, that could jump about, that did not have the same analytic ex-
* pression everywhere—became part of the repertoire of every mathematician.
In his book, Fourier said [Stz87, p. 150], “In general the function f(x) rep-
resents a succession of values or ordinates each of which is arbitrary . . . We
do not suppose these ordinates to be subject to a common-law; they succeed
each other in any manner whatsoever.” The functions he actually employed
were considerably less general. The old basis for analysis had relied on analo-
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gies between polynomials and other analytic expressions. It was no longer
adequate. .

The trigonometric series with coefficients b, developed by Fourier—the
Fourier series—are infinite discrete series of sine waves. It was natural for the
analysts of the day to seek a corresponding integral—to represent a function
not as a sum of sines of discrete harmonic Woepau&am but as a sum of sines

. of continuously varying frequencies. Results concerning such Fourier inte-

grals were obtained by Fourier (1811), Poisson (1816), and Augustin Louis

Cauchy (1816), each of whom was aware of the work of the other two [K1i72,
pp. 679-681].
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Figure 3. The functions graphed in (a) and (b) agree between x = 0 and
x =m. The graph in (b) is obtained by reflecting that piece to obtain
the values between x = 0 and x = —z, and then duplicating the graph
between x = —x and x = 7 for the other values of x. I have given the
correct value of the trigonometric series, 0, at the jumps, but Fourier
drew vertical lines. (See [GGS80a, p. 107] and Eowmm, P- QS.\V
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§5. Infinity Spurned

It was Cauchy, surely in part stimulated by his work on Fourier integrals, who
brought rigor into analysis. His rigor was not rigor for its own sake. Rigor
rarely is, as Philip Kitcher has emphasized [Kit83, pp. 213-217].

Cauchy needed a more rigorous development of analysis to continue his
research. Euler, who had been interested in series of numbers, could discard
the anomalous results divergent series sometimes caused: It was easy enough
to test his results by summing a few terms. That procedure is not adequate in
the problem context of concern to Cauchy—series of functions, not series of
numbers. One would have to sum many terms of a series at many points to
. show anything, and even then there was the distinct possibility of not trying
the right points. Cauchy was prepared to reject some of Euler’s techniques to
make progress on problems of his own. (See [Kit83, pp. 249-250].) Note that
Cauchy’s foundational worries primarily concerned series, not infinitesimals.
His work was not motivated by the worries of Newton and Berkeley.

The rigor of Bernard Bolzano’s Rein analytischer Beweis des Lehrsaizes,
dass zwischen je zwei Werthen, die ein entgegengesetztses Resuliar gewdhren,
wenigstens eine reele Wurzel der Gleichung liege of 1817 anticipated Cauchy
by about four years and in some respects surpassed him. But Bolzano’s work
was neglected for fifty years. Perhaps that is in part because it came out of
a simple desire for rigor, without any subsequent mathematical application
[Kit83, p. 264].

Cauchy defined a limit thus:

When the successive values attributed to a variable approach indefi-
nitely a fixed value so as to end by differing from it by as little as one
wishes, this last is called the limit of all the others. (Cours d’analyse
algébrique, 1821, [Kli72, p. 9511.)

He gave essentially the modern definition of what it is for a function to be
continuous,'° not the one current in his day (which was, “defined by a single
analytic expression”). He defined the derivative as a limit, and employed only
differentials defined in terms of the derivative. He defined convergence and
divergence of series and stated baldly that divergent series have no sum. He

10. The modern definition of continuity states, roughly, that a continuous function is
one with a graph that is free of jumps and wild oscillations, and more precisely that the
value of the function at each value of x is the limit of the values of the function at nearby
values of x. .
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developed many useful tests for convergence, and, perhaps most important,
he made no use of divergent series. He gave what is now called the Cauchy
convergence criterion for a sequence: the sequence Sg, Si, ... has a limit if
|Sn+r — Sn| is less than any given quantity for every value of r and sufficiently
large values of n. He proved the condition necessary but could only assert that
it is sufficient on a geometric basis. He found that basis sufficient. A proof
of sufficiency had to await the need for one—and a theory of real numbers
[Kit83, p. 262]. .

In his Résumé des legcons sur le calcul infinitésimal (1823), Cauchy de-
fined the integral as the limit of a sum of rectangles. That made it possible
to make rigorous sense of Fourier’s use of integrals of functions that did not
have simple analytic expressions, functions for which the integral could not
just be defined—in the way that had become usual—as the inverse differen-

-

tial [Haw80, p. 154]. Cauchy gave the first proof of the fundamental theorem

of the calculus—that the derivative of the integral of a function is the func-
tion itself, when the function is continuous. He also discussed the situation in
which the function is not continuous. He defined length, area, and volume as
the values of certain integrals. The old geometric foundation of analysis was
turned on its head, and infinitesimals were demoted to a secondary, dispens-
able role.

.szogmm definition of the integral is, by modern standards, not very gen-
eral, and he made false claims. His rigor was apparently adequate for his
mathematical purposes, and so he did not pursue rigor further. Many of
Cauchy’s errors had a single source—Cauchy spoke of the limit of a variable,
not the limit of a function, and he did not display the dependence of a variable
on the independent variable. He thought of a variable that approached zero as
an infinitesimal. His notation was therefore vague with respect to crucial fur-
ther dependencies. (See [GG80a, p. 121] and [Kit83, Pp. 254-255].) Some
examples of the false claims: (1) He assumed that a continuous function had
a derivative except possibly at a few points. (2) He said that if the sum of
a sequence uo, i1, . . . Of continuous functions converges everywhere on an
interval to a function F then the function F is continuous on that interval.
(3) Moreover, he said that under those circumstances one could integrate the
function F by summing the integrals of the u;s. The last had been assumed
by Fourier in deriving the coefficients b, of the Fourier series of a func-
tion from the assumption that a trigonometric series for the function exists.
For claims (2) and (3) a stronger condition—not convergence but uniform
convergence—is required. Nevertheless, Cauchy eliminated the use of diver-
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gent series, and he launched the effort to give general criteria for the range of
applicability of various notions of analysis. .
In a letter of 1826, Niels Henrik Abel complained about

the q@E@bm.omm. obscurity which one :b@ﬁmmmoﬂm&q finds in analysis.
Tt lacks so completely all plan and system that it is peculiar that so
many . . . could have studied it. The worst of it is, it had never @wm.d
treated stringently. There are very few theorems in advanced analysis
which have been demonstrated in a logically tenable manner. Every-
. where one finds this miserable way of concluding from the special to
" the general and it is extremely peculiar that such a procedure has led to
" so few of the so-called paradoxes. [Kli72, p. 947]

In the same year, in a paper on the convergence of binomial series [K1i72,
p. 947}, Abel praised Cauchy and corrected his claim that the sum of a con-
vergent series of continuous functions is continuous. E.m gave asa counterex-
ample essentially the sawtoothed function of Figure 3: it is discontinuous, and
yet it is the sum of continuous sine curves. He also made some progress to-
ward the required concept of uniform convergence.

Gustav Lejeune Dirichlet, who would be the first to apply the techniques

of analysis to obtain results about the natural numbers [Ste88, p. 242], met
Fourier in Paris during the years 1822-1825. In 1829 he proved that the
Fourier series of any function f meeting a certain condition would always
converge to the function. The condition was sufficient but not uooommﬁ. It
allowed f to have finitely many eﬂnm@mo:& points, such as bounded discon-
tinuities (for example, jumps). (See [K1i72, p. 966].) Moreover, his proof that
the condition was sufficient did not really use the restriction to only finitely
many discontinuities. That restriction was only used to ensure that the inte-
grals defining the bys were well defined. (See [Haw80, p. 156].)

In the same article Dirichlet concocted the function f(x) that has the value
¢ for rational x and the value d for irrational x [GG80a, p. 126]. It was in-
tended to be an example of a function that could not be integrated and which
would therefore not have a well-defined Fourier series—since the coefficients
b, would not be defined. By 1837, in an article on Fourier mmnmm,.ﬁﬁo.EQ
gave a precursor of the modern definition of 4 function. That definition is as
follows: A function f associates a single value f(x) with each member x
of its domain. The association may be perfectly arbitrary—no rule, descrip-
tion, method of computation, or the like is required.}! Dirichlet said that y

11. It is a matter of some dispute how much credit Dirichlet deserves for .Eo modemn
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is a continuous function of x on an interval if there is a single value of y as-
sociated with every value of x on the interval in a continuous manner. Both
in the definition of his attempted example of a nonintegrable function and in
the definition of a continuous function, Dirichlet clearly viewed a function as
being given by its graph alone—by its values—without the need for any as-
sociated law. He also extended his sufficient conditions for a function to have
a Fourier series to allow more kinds of exceptional points, though still only
finitely many. His work posed a problem that is important for our story: can
one allow infinitely many exceptional points and §till obtain sufficient condi-
tions for the conveigence of Fourier series? (See [GG80a, pp. 126-127] and
[Bot86, p. 1971.)

Dirichlet’s standard of rigor exceeded Cauchy’s. That is to be expected. As
Abel’s example showed, Cauchy’s techniques were not reliable for deriving
general results about the convergence of arbitrary Fourier series. Dirichlet
was aware, for example, that the result of taking two limits is sensitive to the
order in which they are taken.

Dirichlet’s student Georg Friedrich Bernhard Riemann in his Habilitations-
schrift of 1854 (published posthumously in 1866 by Richard Dedekind) took
up Dirichlet’s problem. Instead of following Cauchy in showing that certain
nice (in today’s terminology, piecewise uniformly continuous) functions have

- well-defined integrals, he gave a definition of an integral more or less like

that of Cauchy, but then he sought general conditions, based on an analy-
sis of that definition, under which a function would have an integral. His
approach—the chief novelty of which lay in finding general conditions un-

der which functions would be integrable instead of j just showing that familiar -

functions were—was thought for many years to be the most general possible.

In particular, he gave an example of a function with infinitely many discon-"~

tinuities in every interval that could still be Eﬁomnmﬁoa in his extended sense.
(See [Haw80, pp. 157, 159] and [Haw75].) That work was instrumental in
showing that the sort of general definition of an arbitrary ?coﬁon that Dirich-

definition of a function, in part because he restricted his definition to continuous functions.
See [You76, pp. 78-79], [Bot86, p- 197], [Vol86, pp. 200-201, 207-209], and [Med91,
Chapter 2]. See [You76, pp. 77-80] on the issue of who first actually gave the modern
definition of function suggested by Dirichlet’s work. I believe Dirichlet defined the notion
of a continuous function to make it clear that no rule or law is required even in the
special case of continuous functions, not just in general. That would have deserved special
emphasis because of Buler’s definition of a continuous function as one given by single
expression—or law. But I also doubt that there is sufficient evidence to settle the dispute.

e
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© let's ideas suggested has a genuine mathematical point: one could prove inter-
esting things about classes of arbitrary functions that included “pathological”
_ones. Riemann raised many problems concerning Fourier series, including the
" one studied by Cantor that led to set theory. (See below.) Some of the prob-
lems are still unsolved and of great interest. (See [GG80a, pp. 132, 138].) -

It was Karl Weierstrass whe developed the methods needed to attack Rie-
mann’s wHoEmBm.,H_SOmH of analysis in the latter part of the nineteenth century
consisted of applying émwmaﬂmmmum methods to Riemann’s @HoEwEm. (See
[GG80a, p. 132].) .

‘Weierstrass did important research on the representation of functions via
power series. In the process, he put analysis into its modern rigorous form
during the years 1841-1856, when he was a high-school teacher. That work
did not become known until the late 1850s, when he finally obtained a pro-
fessorship. Thus, for example, though Weierstrass understood the uniform
convergence of series by 1842 (that was necessary for his work on power se-
ries), the concept actually became known through the work of George Gabriel
Stokes and Ludwig Philipp Seidel, who in 1847 and 1848 independently ar-
rived at formulations of closely related notions that are not quite as generally
useful. Seidel was a student of Dirichlet. Dirichlet was aware that a conver-
‘gent sum of continuous functions (sines) could be discontinuous, contrary to
Cauchy’s stated result. That is what got Seidel started. (See [GG80a, pp. 127-
128] and [Med91, pp. 88-91].) Cauchy corrected himself in 1853. But he did
not pursue the matter even to the extent of seeing where else he had illicitly
assumed uniform convergence earlier. (See [Bot86, pp. 207-208].)

Weierstrass was one of the many mathematicians who corrected Cauchy’s
belief that continuous functions have derivatives except possibly at a few
points by giving examples of functions that are continuous but fail to have
derivatives at many points. Weierstrass’s example was continuous everywhere
but differentiable nowhere.

ﬁ\..mwoamﬁwm replaced Cauchy’s definition of a limit that involved such no-
tions as “approach indefinitely” and “differ by as little as one wishes” by the

A mouoﬁnm definition, in which “as little as one wishes” has become ¢: a func-
tion f(x) has limit L at x = xp if for every.¢ > 0 there is a § such that if
L ilx — xol < 8 and x 5 xg, then | f(x) — L| < €. The “variable,” that is the func-
tion, in Cauchy’s terminology “ends™ in the interval defined by |x — xg| < 8
by differing from the “fixed value” L by “as little as one wishes,” that is,
by less than €. The replacement enabled Weierstrass to distinguish conver-
gence from uniform convergence and to make allied distinctions, cleanly and
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naturally. That was at least part of the motivation for the new rigor [Kit83, ¥/

p. 2571.

Weierstrass also gave a theory of irrational numbers around 1860 [K1i72,
p- 979]. Dedekind had developed a theory in 1858 [Ded72, p- 2]. Their prede-
cessors for the most part, when they defined irrational numbers at all, had de-
fined them as certain limits of sequences of rational numbers, That procedure,
as Weierstrass’s precise definition of a limit makes clear, does not suffice: As
‘Cantor pointed out in 1883, the number L must already exist for it to be the
limit of a sequence. If we start with only rational numbers, a sequence that
“converges to an irrational number” will not have a limit L.

In the early 1830s, William Rowan Hamilton gave a different treatment
of the irrationals, taking time as a basis [K1i72, p. 983]. Weierstrass would
not have approved. Weierstrass defined a variable simply as a letter that may
be assigned various values. He banished the old idea of a variable quantity,
which often in some metaphorical sense varied with time.

As Hilbert put it in 1925,

As a result of his penetrating critique, Weierstrass has provided a solid
foundation for mathematical analysis. By elucidating many-notions, . . .
he removed the defects which were still found in the infinitesimal cal-
culus . . . If in analysis today there is complete agreement and certitude
in employing the deductive methods which are based on the concepts of
irrational number and limit, and if in even the most complex questions
of the theory of differential and integral equations . , . there . . . is una-
nimity with respect to the results obtained, then this happy state of affairs
is due primarily to Weierstrass’s scientific work. [Hil26, p. 183]

Cauchy and Weierstrass had eliminated time, infinitesimals, and infinite”};

quantities from the foundations of analysis, and by so doing they made possi-

ble a standard of rigor surpassing that of the Greeks. ~
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In 1817 Bolzano tried to prove that a continuous function that is both negative
and positive in an interval takes on the value zero in that interval. He made
use of the fact, which he also tried to prove, that every bounded set of values
has a least upper bound. An adequate proof had to await an adequate theory
of the real numbers. Weierstrass used his own theory of the irrationals and
techniques suggested by those of Bolzano to prove in the 1860s that every

I
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bounded infinite set of points has a limit point—that is, a point such that
every interval around it contains Emu:m@ BEQ members of the set. (For
example, 1 is a limit point of the set 8 % m, ...}. Intuitively one sees
that the members of the set crowd mmmpbﬂ 1.) The result is now called the
Bolzano—Weierstrass theorem. (See [K1i72, p. 953].) .

In the years 1869-1872, Charles Meéray, Cantor, Heinrich Eduard Heine,
and Dedekind all published theories of the irrational numbers [K1i72; p. 9831.
Cantor’s was a modification of Weierstrass’s earlier theory [Joul5, P 26]:
Weierstrass defined real numbers in terms of series of rational numbers, while
Cantor used sequences. Dedekind published his theory in response to Can-
tor’s publication [Dau79, p. 48]. In 1886 mﬁoﬁ showed that one can identify
- the irrationals with the nonrepeating decitnals [K1i72, p. 987]. m<md~ single
. one of the theories of irrationals defines irrationals in terms of some actu-
NE\ EmEha sets or sequences. A nonrepeating decimal involves an infinite
sequence of digits. Dedekind’s theory of cuts defines V2, for oxﬁwwma in
terms of the infinite set of all positive rational numbers p such that p© > 2.
(That set and the set of remaining rational numbers—that is, those rational
numbers p that are negative or such that p? < 2—cut the rational numbers
into two parts, an initial segment and a final segment, hence the name “cut.”’)
ONESH s theory om Cauchy sequences defines a real number to be associated
Wwith an infinite set of infinite sequences of rational numbers. And so forth.

Dedekind’s theory closely resembles that of Eudoxus for incommensurable
ratios. Roughly speaking, the upper and lower parts of the cut correspond to
the commensurable ratios greater than and less than a given incommensurable
ratio. Indeed, Dedekind gave credit to Book V of Euclid’s Elements. Cantor
felt his own theory to be superior to that of Dedekind because it makes use of
sequences of rational numbers—objects familiar to analysts—instead of the
unfamiliar “cuts” [K1i72, p. 986]. o

The definitions of the irrational numbers provide one of the great ironies in

.} the history of mathematics: Cauchy and Weierstrass had eliminated infinitely
+\ small and infinitely great numbers from analysis and replaced them by limits.
‘i But the theory of limits that thereby became so central required a clearer

! theory of the real line, that is to say, a theory of the irrational numbers. And
i that theory promptly reintroduced the infinite into analysis. The old infinity
M,_ of infinitesimal and infinite ucB,cmHm was simply replaced by the new infinity

'} of infinitely large collections.}?

12. See Russell’s w:.:&wwmh of Mathematics [Rus03, p. 304] for a related sentiment.

stk
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In 1831 Carl Friedrich Gauss said [K1i72, p. 994], “I protest against the use
of an infinite quantity as an actual entity; this is never allowed in mathemat-

- ics. The infinite is only a manner of speaking, in which one properly speaks

of limits to which certain ratios can come as near as desired, while others
are permitted to increase without bound.” But only 52 years later, we find
this in Cantor’s Grundlagen [Can76, p. 75]: “The idea of considering the in-
finitely large not only in the form of the unlimitedly increasing magnitude and
in the closely related form of convergent infinite series . . . but to also fix it

mathematically by numbers in the definite form of the completed infinite was -

logically forced upon me, almost against my will since it was contrary to tra-
ditions which I had come to cherish in the course of many years of scientific ,

H

effort and investigations.”

Fourier, among others, had given a proof that if a function is representable
by a trigonometric series, then the series is unique, that is, that any two
trigonometric series that converge to the function are the same. We exhibited
the main parts of such a proof above: If there is a series, its coefficients
must be the bys we gave, and the series is therefore unique. The proof does
not work, because the formula for the b,s was obtained by integrating the
series term by term. As noted earlier, even Cauchy believed such a procedure

. legitimate, but it works only if the series is uniformly convergent.

Weierstrass emphasized the importance of uniform convergence, and Heine
became interested. He may have learned about it from Cantor, who had stud-
ied with Weierstrass before becoming Heine’s colleague at Halle. In a paper
of 1870, Heine noted the gap in the proof of the uniqueness of a trigono-
metric expansion. What had actually been proved was that if a function has
a uniformly convergent trigonometric series, then that series is the Fourier
series and it is the only uniformly convergent trigonometric series that sums
to the function. But it was known that even Fourier series need not be uni-
formly convergent. The Fourier series for the sawtoothed function discussed
earlier provides an example. Heine gave some positive Homcwm concerning
uniqueness.

Influenced by Heine, ONESH proved that the trigonometric-series represen-
tation of a function is unique. Uniform convergence is not required. That re-

sult applies to a trigonometric series that converges everywhere.

Cantor began to extend his result to allow exceptional points. In 1871
he showed, verifying a belief of Riemann, that if two trigonometric series
converge to the same function everywhere except possibly at finitely many
points, then that is enough to ensure that they are the same series.

In 1872 Cantor obtained results that allowed infinitely many exceptional




[

40 1I. INFINITY, MATHEMATICS’ PERSISTENT SUITOR

~points, answering a question of Riemann: He defined the derived set S’ of a

set S of real numbers t0 be the set of limit points of S. For examnple, if S is
the set {0, ,HM. w, wu ...}, then <’ is the set {1} whose only member is 1. One
can form the derived set of a derived set, that is, a second derived set, and
so forth. Cantor proved a generalization of his earlier result:- Suppose 2 set S
of real numbers is such that for some n the nth derived set is finite. If two
trigonometric series CONVEIrge to the same function except possibly at points
in S, then they are the same. Cantor gave his definition of the real numbers
in the paper in which the generalization appeared. He needed it to show that
for every n there is a set S whose nth derived setis finite and nonempty while
the n — 1st derived set is infinite. That is, he needed it to show that allowing
the iteration of his derived-set operation actually led to new possible sets S of
exceptional points.

Cantor’s paper was one of the first in which infinite sets of points received
careful, explicit consideration. Dirichlet, in 1829, had proposed 2 condition
for a function to be integrable that was a condition on the set of points of
discontinuity of the function, a condition that was clearly concerned with
infinite sets of points of discontinuity. The condition is worth stating, since
it will come up again later. 1t is that the set of points of discontinuity be

nowhere dense—that is, that within every interval there is contained an in-

terval that includes no points of discontinuity. The intuition is supposed to be
that nowhere-dense sets are in some Sense small. But Dirichlet published no
results [Haw80, p. 156]. In his doctoral thesis of 1864, Rudolph Lipschitz de-
veloped a condition under which a function would have a convergent Fourier
series even when it had infinitely many points of oscillation. But the proof
made substantial use of the structure of trigonometric series [GG80a, p. 137].
In 1870 Hermann Hankel, who had mE&am under Riemann, developed a con-
dition under which a function would be integrable (in Riemann’s sense) that
involved sets of points of discontinuity. But his primary focus was on integra-
bility [Haw80, p. 1661. .

Cantor’s theorem of 1872, unlike the other results just mentioned that had
involved infinite sets of points, was proved using nothing new other than a
careful study of the structure of the relevant sets of points. The only other
ingredient was an absolutely straightforward application of his earlier results
concerning trigonometric series. Moreover, though Cantor used only finite
iterations of the derived-set operation in 1872, he was already aware of the
possibility of infinite iterations: Given a set P,let P/ beits derived set, and in

I

" Cantorian set theory—evolves out of old mathematics [Kit83, Kit88].
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general let P*+1) be the derived set of P& We so far have the sequence
pO — P, PO = P, p@ — pyy — p7 p®

Now let P be the set of points that are in P*? for every finite k—the points
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(See [Dan71, pp. 211-213].) Cantor discovered the sequence in attempting
to analyze the structure of complicated sets of real numbers, not, as is some-

times said, by attempting to generalize the natural numbers. That is not to say ,

that he did not come to view the sequence as a generalization of the natural
numbers. He did. But the sequence arose from attempts to consider compli-
o.mmoa functions on the real numbers (those with complicated sets of mxoﬂ -
tional points), not from a study of the infinite or um.ﬁoEE to generalize HMo
natural numbers. The modemn theory of the infinite evolved in a contiguous
Mz@ out of the mathematics that preceded it. Though I disagree with W,Mo:m
m aoﬁﬁ about the origins of Cantorian set theory [Kit83, p. 207], I full mnw
dorse his main thesis that new mathematics by and large—and mﬂ meMEE
. Q..EOH had obtained mathematical results by focusing on the structure om..‘,...
EmEﬁ m.mﬁm of points, and he knew that there were sets of points with more
Muﬁmw@romﬁwa .mﬁdoEHmw. (His theorem, recall, concerned only sets P such that
18»%% émuwnwuwwwwoﬂw WHMMMN MM«MM m:Mo .Smm made of mm.ﬁm such that, say,

, . nite.) Understanding more compli-
omﬁoa. sets was connected with understanding more complicated and arbitr
functions—ones with more complicated sets of exceptional points. Ombm_MM
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§1. Infinite Sizes

Cantor began by studying the two most obviously interesting sets of points:
the set of rational numbers and the set of real numbers. He looked for differ-
ences between the two that are relevant to the fact that the real numbers are
continuous while the rational numbers are not. In 1874 he published a paper
in which he demonstrated the remarkable result that the algebraic numbers
(and hence their subset, the rational numbers) can be placed into one-to-one
correspondence with the natural numbers, while the real numbers cannot. The
set of rational numbers is thus shown to have the same size as the set of nat-
ural numbers—they can be paired off—but the set of real numbers is shown
to be bigger than the set of rational numbers. The proof that Cantor gave that

the real numbers cannot be placed into one-to-one correspondence with the

natural numbers is not the one that is most familiar today. In particular, it did
not show that there were any other infinite sets that were of other sizes, and
Cantor knew of nothing larger than the set of real numbers. It follows from
Cantor’s results that one cannot define the real numbers in terms of finite sets
of rational numbers: there aren’t enough finite sets of rational numbers. The
use of actual infinity in the various definitions of the irrational numbers had
been no accident.

Cantor began to investigate whether he could put the points on a plane
into one-to-one correspondence with the points on a line, perhaps as part of
a search for larger infinite sizes. In 1878 he published the unexpected result
that one can indeed put the points on a plane, that is, a two-dimensional space,
or indeed any n-dimensional space, into one-to-one correspondence with the

. points on a line. The techniques he used suffice to show that the points of

: an co-dimensional space can be put into one-to-one correspondence with the

42

- of his claim, known today as the continuum hypothesis,!
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points on a line. Cantor also stated that he could show that every infinite set
of points on the line could be placed into one-to-one correspondence with
either the natural numbers or the real numbers—that there are no intermediate
possibilities [Joul5, p. 45]. His proof turned out to be incorrect, and a proof
continued to elude
Cantor, though much of his work was apparently motivated by attempts to
prove it. The problem is still open today. It has been shown that the truth
or falsehood of the continuum hypothesis cannot be settled on the basis of

_the set-theoretic principles we accept today (assuming they are consistent): In

1938, Kurt Godel showed that.the continuum hypothesis cannot be disproved
on that basis [G&d90, p. 26]. In 1963, Paul J. Cohen showed it ombboﬁ._um
proved on that basis (see [Jec78, p. 176]). It therefore could not have been

-settled on the basis of the similar principles that Cantor employed.

Since spaces of different dimensions can be placed into one-to-one corre-
spondence, Cantor’s work posed the problem of seeing how spaces of differ-
ent dimensions differ. Dedekind observed that spaces of different dimensions
cannot be placed into one-to-one correspondence by a continuous function—
Cantor’s correspondences were discontinuous. Luitzen Egbertus Jan Brouwer
was the first to provide a satisfactory proof of Dedekind’s observation, in
1911 [Dau80, p. 188].

ﬁm.ocoE Kronecker, Cantor’s former teacher, was an editor of the journal
to which Cantor submitted his paper on dimension. Kronecker believed that
all of mathematics should be based on the natural numbers. That is an early
version of a view that we shall refer to as finitism. He also believed that every
definition of a property should give a method for determining whether or not
an object has the property. That is an early version of a view that we shall re-
fer to as constructivism. Note that, although Kronecker was both a finitist and
a constructivist, there is no logically necessary association between the two:
one can be a finitist without being a constructivist, or vice versa. That point
requires emphasis since finitism and constructivism are so frequently associ-
ated that they are often not clearly distinguished. When Cantor’s paper did
not appear immediately, Cantor suspected Kronecker of delaying it ([Dau80,
pp- 188-189], but see also [Edw88]). v

In 1879 Cantor published the first of a series of papers about subsets of
the real line. In that series and in related papers he defined many notions still

1. The source of the name is mn:x ngmnmﬁ s Ph.D. dissertation, which &mncmmmu

'the “continuum problem.” See Eo%m @ m&
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in'use today cencerning subsets of the real line and other spaces. Though I
have modernized the notation, the following definitions are Cantor’s: A set P
is everywhere dense in the interval (a, b)—that is, in the mmﬁ of real E.E;.uwa.m
greater than a and less than b—if (a, b) € P’, where P’ is ﬁ.wo set opw limit
points of P. A set P is perfect if P = P’. A set P is isolated if Nu.D P =g.
A set P is closed if PN P'=P.1 give the definitions to emphasize that the
papers are very much concerned with the HomH. line, since H am—somewhat
misleadingly so far as historical summary is concerned—going to oonooEHmmm
on the aspects of them that led to set theory in a more abstract form. Cantor’s

& research centered around two ideas—that of the derived set and that of the

! transfinite symbols. T am going to concentrate on the work connected to the
transfinite symbols. For more details of the other aspect of Cantor’s work, and
references, see [Dau79].

82. Infinite Orders

In 1879 Cantor defined two sets to be of the same power if they can be placed
into one-to-one correspondence. He noted that the concept generalizes that
of whole number, and that power “can be regarded as an attribute of any
well-defined collection, whatever may be the character of its @Hmﬁaua.: In
1880 Cantor published his transfinite symbols for iteration of derived mm,rf.l
oonx.vm + 1, and so forth—for the first time. He said, “we see here a dialectic
generation of concepts which always continues further and thus is free of any
arbitrariness.” . o

W% 1882 the “symbols” were an object of m\E&\ in their own right in Grund-
lagen einer allgemeinen gnzimwwﬁmwﬁ.ﬁksm (Foundations ﬁ.vm a mmzmw&
theory of manifolds, published in 1883 [Can83]). To separate his nmbmm.ES
ordinal numbers from the notion of increasing without bound symbolized
by oo in analysis, he began to use w instead of co. The use of the symbol?
o has been standard ever since. Cantor introduced what was to become the
distinction between cardinal and ordinal numbers: The sets (ai, gz, ...) and
(b2, b3, ..., by) have the same power, or cardinality, but their numberings,
their orders, are different. The first one has the order w, while the second

2. The symbol o, a lower-case omega, is the last letter of the Greek alphabet.

3. The notation used to indicate orders does not meet modern standards of rigor. It is
nonetheless clear enough what is meant. T use it here and below in this chapter since it is
indicative of the way in which Cantor thought about orders.
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has the order w + 1. Indeed, the very same set can be numbered or counted
in more than one way: consider (a1, ap, ...) and (a2,a3,...,a1). If a set is
finite, there is only one order to give it even though one can vary which el-
ement of the set occurs at which point in the order, and so finite ordinal and
cardinal numbers coincide. Cantor defined operations of addition and mmulti-
plication on the ordinal numbers, which is part of what justified thinking of
them as numbers [Kit83, p. 174].

In the Grundlagen Cantor declared for the first time that there are many in-
finite sizes: He showed how to produce a set of power greater than the natural
numbers, namely, the set of all ordinal numbers of the power of the natural
numbers. (As illustrated above, w and w + 1 are such ordinal numbers.) The
proof he offered is a straightforward generalization of the one he used to show
that there are more real numbers than rational numbers. (The two proofs are
given and then compared in detail in §IV.2.) He called the power of the natu-
ral numbers (I), the new power, (II). The power (III) is the power of the set of
all ordinal numbers of power (IT). And so forth. He said that for every ordinal
number y there is a new power (y). He did not have full control of all of the
details, but with hindsight we can see that the proof was essentially correct.
The construction starts with the natural numbers. It is an iteration of much
the same sort that led to the “symbols” for successive derived sets. Indeed,
as Philip E. B. Jourdain said, it may have been the primary reason for Cantor
to have considered the “symbols” on their own, separately from derived sets
[Jouls, p. 51].

The proof that the powers are distinct provides no way to make contact
with the power of the real numbers. For all Cantor knew, the powers he had
constructed were all smaller than that of the real numbers, or even all incom-
parable with that of the real numbers. Cantor made an additional assumption.
in the Grundlagen that guaranteed that the new powers were comparable with
that of the real numbers: he assumed that the real numbers form a set and that
they can therefore be well ordered.* That enstres that the power of the real
numbers is less than, equal to, or greater than each of the new powers, but it
gives no information about which. Cantor felt less than certain about the new

4. As we shall discuss in detail below, in §IV.2, Cantor had good reason for thinking
he would eventually be able to prove that. The formulation in the text here is in one respect
a bit misleading: as we also discuss in §IV,2, for Cantor being well-orderable was in effect
constitutive of being a set, and so the right way to put the point would be, “He assumed
that the real numbers can be well ordered and that they therefore form a set.”

1
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assumption. Indeed, at one point Cantor worried briefly that the power of the
continuum was not comparable with any of the infinite powers (y) [Halg4,
pp. 42,73, 76-77]. . .
During. the period in which Cantor was working out the theory of ordi-
nal numbers, many mathematicians, including Cantor himself, came up with
examples of nowhere-dense (§I1.6) subsets of an interval of real numbers
that are not small in an important sense: They cannot be covered by finite
unions of intervals of arbitrarily small total length. That is, for example, there
-is a nowhere-dense set P such that for any nif P is contained in a union
[a1, b1]U---Ulan, byl ofn intervals, then the sum lag — b1l + -+ -+ |an — bl
of the lengths of the intervals is greater than 1.)It seems reasonable in some
sense to say that P has length at least 1, and that it is therefore not small
despite the fact that it is nowhere dense. The appropriate sense is called outer
content. Outer content was introduced by Cantor and, independently, by Stolz
_in 1884 [Haw80, p. 168]. As we shall see in §3, outer content was to be im-
_portant in devising a notion of integral sufficiently general for the purpose
of studying Fourier series. Thus, set theory was not only the product of prob-
lems within analysis; it also gave rise early on to fruitful new ideas for solving
swwwmocymam within analysis.

In 1885 Cantor prepared a paper in which he studied general linear or-
ders, defined independently of the rational numbers or the real numbers.> The
paper was not published in Cantor’s lifetime, but it is worth mentioning from
our perspective, since it was probably the earliest study of abstract structure
independent of some familiar intended mathematical model. Another likely
candidate is Dedekind’s work that led to [Ded88]. Since Cantor and Dedekind
were frequent correspondents, it would be worthwhile to know more about
their discussions related to the present topic.

In the 1885 paper Cantor said that pure mathematics is just set theory, in the
sense that all of mathematics can be understood in purely set-theoretic terms
[Dau80, p. 202]. The year before Gottlob Frege had published Die Grund-
lagen der Arithmetik, deriving arithmetic from logical principles. The later
development of Fregean foundations of arithmetic, along with Dedekind’s

5. A linear order is a set M with a binary relation < on it such that no m in M is
such that m < m (irreflexive); for all [, m, and ninM,ifl<mandm<n, theni<n
(transitive); and forallm and n in M, m <n,orm=n,orn <m (connected), Examples
include the natural numbers, the rational numbers, the real numbers, the ordinal numbers,
or any subset of any of those, in each case with the obvious order relation.
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&SHF was part of what led to the eventual widespread acceptance of Cantor’s
insight.

.H have been describing in detail the extent to which set theory is intertwined
..,SE analysis, particularly with the theory of trigonometric series, but there
is another sense in which set theory has become important to mathematics:
Mathematics is today thought of as-the study of abstract structiwe, not the <

mﬁaf&wom quantity. That point of view arose directly out of the development of |
the set-theoretic notion of abstract structure. Sk

Hwa motives of Dedekind and Frege were rather different from those of T
.Ombﬁon H,ummm«mba was seeking to give a foundation of mb.m:bmmo “entirely o, J
an@@mWWW m.ﬁ.ﬂw.noﬂmmm or intuitions of space and time” [Deds88, p. 31] uﬁ?a
mwom@ was studying logic as pait 6f & philossphically motivated program ow
giving an explicit foundation for arithmetic—the development of logic was

needed to ensure that no assumptions were going ==uomoomﬁww;_\5 wished to

provide a moﬁamnou for analysis. It is arguable that each is an mxomm.mg to

eyt e b S e e b an

the usual rile that rigorization is not undertaken £
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for its own sike. Even if
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En%. are exceptions, they are not harmful ones: they had ample motivation
for .Eomnmwma rigor in the recent great success of the rigor of Cauchy and
ﬁ@owm.qmmm, and in their perception that the program of arithmetization of
mum_wmum advocated by Dirichlet [Ded88, p- 35] and Weierstrass had not been
completed. A
.Hﬁ is important to realize that though rigor and the systematization of mb&..
Mﬁm were the motives of Dedekind and Frege, they were not Cantor’s mo- W,_,M
tives, despite the usual account. Cantor was studying sets of real numbers for -
@‘W&mmﬁnnﬁ reasons that grew out of ‘the study of the Fourier series of in-
creasingly arbitrary functions. He did not éoHWBnoBmﬂoE@ He believed in
Ea.anmmg of his ordinal numbers and .Ammm_xmua he saw himself m._m discovering
m.ﬁ: properties. Therefore, no axioms were necessary. The fact that Cantor
&a not work axiomatically shows that, in contrast to Dedekind and Frege, he
did not see his project as that of working out the consequences of a m%mmaB
of assumptions or as that of systematizing a body of knowledge. When a fact
.wmoBma obvious or elementary, Cantor just stated it without proof.
In Cantor’s Grundlagen, powers were not associated with cardinal num-
bers. In 1883 Cantor made such an association for the first time, In 1886 Wo.

1
i

‘introduced a notation for cardinal numbers, and in 1887 he gave definitions of

operations of addition and multiplication for cardinal numbers. The ordinal

numbers came first, and they were always more important than the cardinal /
numbers for Cantor. (See [Dau79, pp. 179-181].) . a
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n 1888, Dedekind published his theory of the natural numbers [Ded88]. A
year later, Peano, with reference to Dedekind’s work, gave a semiformal ver-
sion of what has become the standard axiomatization of the natural numbers 5
Peano’s paper gave the first staternent of the need to distinguish between the
relation of set membership (for which Peano introduced the symbol €) and
set inclusion [Pea89, p. 86]. Peano also introduced what has become known
as a comprehension principle ([Peag9, p. 901, see also [Ken80, p. 261): every
“condition” (that is, every “proposition containing the indeterminate x”) de-
termines a class, namely the «“class composed of the individuals that satisfy
[the] condition” Peano also gave foundations for the rational and irrational
numbers, and even discussed Cantor’s set theory. In 1890, Peano defined a
continuous curve that hits every point in the unit square at least once. He also
introduced the distinction between an individual and the class composed of
that individual alone, and denied that one can select members from infinitely
many classes without a determinate rule. (See (K172, pp. 988, 10181, [Ken80,

p- 331, and [Moo82, p. 761.)

In 1891, Cantor published his diagonal Ech@E.q It yielded a new proof
that there are more real numbers than natural aumbers, and, much more im-
portant, it was the first completely worked out argument that showed that
there are infinitely many infinite powets. Indeed, it shows more: it shows that
given any set, there is another of greater pOwer. By applying that fact to the
set of real numbers, Cantor showed for the first time that there is an infinite

In 1892 Frege published 2 review of Cantor’s 1887 paper, the paper that
had introduced cardinal arithmetic. He fully endorsed Cantor’s acceptance of
the actual infinite and saw that Cantor’s work had important consequences for
analysis. Nonetheless, he devoted the bulk of the review to castigating Cantor

6. Peano arithmetic, PA, will be a useful example in later chapters. I shall therefore
describe a convenient version. It is not exactly the ‘one given by Peano. Here it is: Every
number has a successor. The number 0 is no number’s successor. Numbers with the same
successor are equal. The sum of any number x and 0 is x. For any number X, the sum of
its successor and any number y is the successor of the sum of x and y.

The product of any pumber x and 1 (the successor of 0) is x. For any number x, the
product of its successor and any number y is the sum of the product of x and y with y. Any
property that holds of 0 and that is such that if it holds for any number x then it holds for
the successor of x, holds for every number. The last axiom listed is known as the induction
axiom.

7. The paper is transiated as Appendix B t0 Chapter IV.

I
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for his reliance on intuition and an ill-d i
o : : d -defined notion of “abstraction.”
OmEoH.ﬁm AHMMMMM Mw mmﬂwmwm explicit m.nmE.nou. He had, however, no M%Mu.ﬁ HNM
the first volume of W@Mo.mma%wwwwwwmwmwmw mmmMﬁoQ ok begre
! er . . . 3 . ’
MWNNQNMMM NMBM mz%mmw&.. Init rw began to carry MHMMNMMSMN M\HMMMNMMNRW
e o Hoowm No mMM&oMuEm mbm.Euomo within a formal system, giving ?%
e Proofs i« QEM& at nothing Sm.m being smuggled in on the basis ow
st it manNﬁ mnwmm introduced a theory that brought his
et Fraa s MMH Cantor’s theory of sets. Presumably that theo
o et Irege U m ém.m the appropriate background in which to aa<wr”‘%
ovortan set Iy in a d.m...z,.ocm manner. We shall be discussing that M
s in some detail in the next chapter. The second <oEmEm of mﬁwm

Grundgesetze (published i
in 1903) contains i :
D73, pp. 220.225] snd [Darosony a theory of cardinal numbers. (See

§3. Integration

In 1892 Camille Jordan gave a definitive f i
o . ormulation of the -Ri
smmmH_?Mn% nmwﬁomg:ow a function in two dimensions—a WMWMMM%EMMMDM&M
et Eﬁoumﬂm y defined o/.\oﬁ the region bounded by a closed curve

ovee bty o mwﬂ oMmm womnmm in waBm of limiting values of sums Sw@m
o oy et mao &m plane into rectangles. There was an obvious
Fhonld Toctonglon o %_ 0 with Hmo.ﬁmu.mwmm on the boundary of the region—
et B M amH wholly within nor wholly outside of the region of
e by el mw Mﬁ %H excluded from the sums? That problem was fi-
e oy clatmr mmmHEﬁ oamcE o.Hn the areas of the rectangles on the boundary
foeon e e an .Emﬁ it therefore didn’t matter whether the rectan-
bt overy s EmMW S.oam included or excluded. But Peano’s curve—which
e egion on the boundary—suggested that the clai i

. m was in
Jordan solv i v
e EMM Gm problem by moving from rectangles to subsets of th
rian sense. The Cantor-Stolz notion of outer content mﬁ@ﬁ&m

8. See [Ha: : .

ing Cantor's m.wumww MMH a detailed chronicle of the modern theory of integration, i
theory, The Kistory of n EE. the strong impact of set theory on the develo BM el
. ry of integration presented here is abbreviated and &E@&ﬂ&ﬂ: e
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respects, since my only aim i .
: Y alm is to give an exampl
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the subsequent development of analysis ple of how Cantor’s set theory infiuenced
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in an obvious way from the line to the plane: just use rectangles instead of
intervals. Jordan introduced a notion of inner content suggested by that of
outer content. The outer content of a set is defined using the areas of finite
sets of rectangles that contain the set. It is the greatest lower bound of such
areas. The inner content of a set is the least upper bound of the areas of finite
sets of pairwise disjoint rectangles that are contained within the set. Jordan
said that a subset of the plane is measurable if it has outer content equal to
its inner content. Naturally the measure of a measurable set is its outer, or,
indifferently, its inner content. One easily sees that the measures of familiar
sets of points on the plane are just their areas.

Now any measurable set has a-well-defined “area” or measure, and so one
no longer needs to have rectangles play a special role. Jordan defined the in-
tegral in terms of limiting values of sums over arbitrary partitions of the plane
into measurable sets instead of over partitions into rectangles. It was then
natural to allow the region of integration to be an arbitrary measurable set,
instead of just the interior of a curve. Jordan showed that a set is measurable
if and only if the outer content of its boundary is zero. That is what he needed
to show that the sum of the areas on the boundary went to zero in the limit,
and that the integral was therefore well defined. In 1893 Jordan incorporated
his approach into his text, the Cours d’analyse. The next generation of French
mathematicians leamned Jordan’s set-theoretic formulation of analysis. (See
[Haw80, pp. 169-1711.) .

In 1895 Cantor defined cardinal exponentiation and observed that the

power of the set of real numbers is 2%, He could then have given the algebraic

- formulation of the continuum hypothesis that is standard today: 2% = &;. In

fact he did not. (The symbol R, aleph naught, denotes the cardinal number
of the set of natural numbers—T) in the old notation. The symbol R&; denotes
the next larger cardinal number, (I). And so forth. In particular, ¥, denotes
the wth cardinal number.) ,

In 1902 Henri Lebesgue, building on important intermediate work of Emile

" Borel and others, built set theory into the very foundations of analysis. He

changed the definition of outer content of subsets of the unit interval to al-
low actually infinite denumerable sets of intervals instead of just finite ones.
(I have switched from the plane to the unit interval for simplicity—his defi-
nitions on other domains are based on the one sketched here.) That is, he al-
lowed [a1, 1], .. ., [an, bn], . . . in addition to [ay, b1], ... . , [an, bn].2 He then

. 9. As exemplified in the text, a denumerable set is one that can be indexed by the

" natural numbers.
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defined the inner content of a subset E of the unit interval to be 1 minus the
outer content of the complement of E. The corresponding notion of measura-
bility is known as Lebesgue measurability.

The Lebesgue integral may be defined in Just the same-way that Jordan de-
fined the Cauchy-Riemann integral, except using Lebesgue measure instead
of Jordan measure. The Lebesgue integral has many convenient properties

“that the Cauchy-Riemann integral does not. For example, if a sequence of

Lebesgue integrable functions on a set of finite measure is uniformly bounded
(which just means that there is a B such that all of the values of all of the
functions are less than B) and converges to a function, then that function is
Lebesgue integrable and the value of the integral is the limit of the sequence
of values of the integrals of the functions:

w w
\Zﬁo;@v&n%ﬁ \b@&.
The Lebesgue integral has many applications in the theory of Fourier series.
For example, Lebesgue showed in 1903 that if a bounded function is repre-
sented by a trigonometric series, then the series must be the Fourier series
(where, of course, the Fourier coefficients are now defined using Lebesgue
integration). (See [K1i72, Pp- 1044-1048] and [Haw80, pp- 172-1791)°

In 1915 Jourdain translated Cantor’s Beitrige zur Begriindung der trans-
finiten Mengenlehre into English (published as-Contributions to the Founding
of the Theory of Transfinite Numbers). He replaced sets E\.\mzwgu in the title
by numbers, “since these memoirs are chiefly occupied with the F<mmmmmmou

of the various transfinite cardinal and ordinal numbers and not with investiga- -

tions belonging to what is usually described as . . . ‘the theory of sets’ . . .
—the elements of sets being real or complex numbers which are imaged

as geometrical ‘points’ in space of one or more dimensions” [Canl5, p. v,
preface]. .

§4. Absolute vs. Transfinite

Cantor’s study of sets began with his work on arbitrary functions and the
discovery of the transfinite symbols, and it always remained.tied to that be-
ginning. Cantor believed he had discovered that between the finite and the
:ZumoEH,.: which is “incomprehensible to the human understanding,” .Eﬂ.m
is a third category, which he called the transfinite. Cantor’s initial reasons for

postulating the Absolute were primarily theological, and theology continued

i an— mme <

1
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to play an important part in his notion of the Absolute throughout his life.
‘We shall discuss some of his mathematical ideas about the Absolute below,
but our primary focus will be on Cantor’s understanding of the transfinite.
The Absolute enters into the discussion largely so that we can see how Can-
. tor contrasted it with the transfinite. In the Grundlagen of 1883 he said that
- A “the Absolute can only be acknowledged and admitted, never known, not
: .+ even approximately,” and that he was convinced “that the domain of definable
quantities is not closed off with the finite quantities, and that the limits of our
knowledge may be extended accordingly without this necessarily doing vio-
lence to our nature.” In 1887 he characterized the transfinite as “in itself con-
stant, and larger than any finite, but nevertheless unrestricted, increasable, and
in this respect thus bounded.” Cantor, from the beginning, devoted his efforts
to understanding only the increasable infinite. (See [Hal84, pp. 13, 14].)10
“In'fact, Cantor’s notion of the transfinite is even more specific, as he makes

clear in the Grundlagen:

The assumption that, besides the Absolute, which is unreachable by
.any determination, and the finite, there are no modifications which.
I call actually-infinite, that is to say which are determinable through
numbers—this assumption I find to be quite unjustified . . . What I as-
sert and believe to have demonstrated in this and earlier works is that
following the finite there is a transfinite (which one could also call the
supra-finite), that is an unbounded ascending ladder of definite modes,
which by their nature are not finite but infinite, but which just like the
finite can be determined by definite well-defined and distinguishable
[Halg4, p. 39] : -

Cantor defined ordinal but not cardinal numbers in the Grundlagen (cardinal
numbers came later in the same year), and so it is ordinal numbers that Cantor
takes to be basic in this passage. o

Since ordinal numbers play such a central role for Cantorian set theory, it
is worthwhile to see how Cantor conceived of them. The ordinal numbers are,

numbers.

B N e

according to Cantor, generated by tw @ns@mom“ each ordinal number has
an immediate successor, and: each unending sequence of increasing ordinal
numbers has an ordinal number as its limit (that is, there is an ordinal that is

e

10. In this section, I have relied heavily on Michael Hallett’s illuminating work
[Hal84], from which most of the translations of Cantor’s words are taken. My own analysis
of Cantor’s work, which in many respects takes Hallett’s as a starting point, is presented in

§IV.2.

T
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the next after such a sequence). He made this precise using the notion of a

well-ordered collection: a collection M is well-ordered by a relation < if <

linearly oamﬂm. NS with a least element and every subset of M that has an up-

Mpmﬂ bound not Inithas an immediate successor.!! Two well-ordered sets are Mm

e MmE@ type if they “can be related to one another one to one and uniquely in

M.MOA ! M SMWV that Mﬁ sequence of elements is reciprocally preserved.” Finally,

rdinal) number is defined to be “the s . ,
ymbol or concept i

of Sm.w:-o&mawa set.” (See [Halg4, Pp. 49-521.) cepiora defnie e

. Hﬂnwm reasonably clear that, on the one hand, the two principles represent

I aitempt to characterize the process that

generated Cantor’s transfinj

: : sfinite sym-

ols, and that, on the other, the notion of g well-ordering isolates key mwmﬁwwom

Hm Ha%maan E@ process ow bringing a set into the form of a well-ordered set
credy specifying a definite succession of the elements of the set, as mu.&nw,

a4

a way ﬁozzm@w the members of the set [Hal84, p. 146]. It is not hard to |

see why,

wﬂmaﬁonm.w .Eoﬁ-o_ﬂonbm.om .%..E_._ Oon,\.m_wwwg if one has a €o=-oamﬁumom a
Mwo, one can count :. by ».oﬁoﬁb%ﬁ&émﬂ-oﬂoﬂbm“ one counts off the first
ment of the set Q.u the sense of the well-ordering) first, the successor of

each element after that element, and if 2 sequence of members of the set has

one counts the immediate successor of the sequence next

u O&Mow clearly m.ﬂ._Han his commitment to the equivalence between count-
g and well-ordering when he said (in the Grundiagen) A

Ewm definite countings can be effected both on finite and on infinite
. . . .
wo S, assuming that one gives a definite law according to which they
ccome well-ordered sets. That without such a lawlike succession of the
_
11. i
aty e m& EME@Q. m of M is an upper bound of a subset N of M if m is not less than
er of N. A member m of M is a least upper bound of N if m is an upper bound

. . : ,Eouamﬁnmmmﬁi».

o pper ¢ - A member m of M
- Immediate successor of N if m is an upper bound of N not in N such that if / i

other upper bound of N thatis notin N, then m is less ENEN , o

12, i ’s Vi
. M mB uo.n r.Q.m endorsing Cantor’s view that one can make sense of a notion of
g for infinite sets, merely describing how it seems to me the view must go

dqw\_u\ Cantor did not, so far as T know, explain in detail: When one ‘,

L
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elements of a set no counting with it can be effected lies in the nature of

the concept counting. [Hal84, p. 146]

basid is now easily stated:

The transfinite sets are those that can be counted, o, equivalently given Can-

e

The sense in which the ordinal numbers are ;

e S St Y

tor’s analysis of counting, those that can be numbered by an o_ﬁﬂﬂ.‘o.ﬂ me-
ordered. The extent to which that idea is central to Cantor’s thinking is indi-.

I

e

cated by the fact that in the Grundlagen he refers to all sets as :oowamEn
[Hal84, p. 150].1® The sets are the well-orderable, increasable manifolds or

classes. Unincreasable manifolds are not sets.

Technical Remark. Cantor was well aware that the same infinite mmm can
be counted in various ways. Indeed, as Hallett said [Hal84, w 151],“Can-
tor remarks [in the Grundlagen] that the only essential difference be-
tween finite and infinite sets is that the latter can be mucBQmea ﬁoogﬁoﬁw
in various ways while the former can be enumerated in E.mﬁ one way.

Cantor associated a number class with each infinite (ordinal) number

Pttt B

y: the class of all numbers of the same power as y. He then used the

RS L T

number classes to represent the various powers, which did umx_ become
associated with a new sort of HEBGQ,.. a cardinal number, until later. As
discussed in §2, he knew that each number class has a power greater than
that of any of its members. That formed part of an argument that mmmw
power “is coordinated” with a number [Halg4, U 41]. Thus Cantor’s
theory of powers was based on his theory of ordinal numbers [Halg4,
pp. 62, 65]. We shall have no need to discuss Cantor’s theory of powers.

The interested reader would do well to consult [Hal84].

Cantor’s heuristic Eo&aam an immediate ¢ounterexample to the idea that -

his theory can be a theory offall ¢lasses: the class of ordinal H.EB_U.QM obvi-

' ously cannot be counted, that is, assigned an ordinal number, mw.:.“o any WHE-
f ,.w..mm number has Hmmbw successors by Cantor’s principles of generation. Briefly,
1

the class of all numbers cannot be numbered. As Cantor himself put it in the

Grundlagen, .

1. .. now consider the only problem to be to investigate the relations of
these supra-finite numbers, not just mathematically but also-quite gener-
ally in tracking down and demonstrating where they appear in nature. I

13. “Countable” has come to mean finite or denumerable. I avoid that usage because

of the clash with the terminology of the Grundlagen.
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have no doubt at all that in this way we extend ever further, never reach-
ing an insuperable barrier, but also never reaching any even approximate
comprehension of the Absolute. The Absolute can only be recognized,
never known, not even approximately. For just as . . . given any finite
number, no matter how large, the power of the finite numbers following
it is ahways the same, so following each supra-finite number . . . there
is a totality of numbers . . . which has lost nothing as regards power
with respect to the whole of the absolutely infinite totality of numbers
beginning with 1 . . . The absolutely infinite sequence of numbers there- |
fore seems to me in a certain sense a suitable symbol of the Abso-

lute. [Hal84, p. 42) G s

ed.

{

Gantor’s procedure was the reverse of what one might expect, and that is
the source of much of his success, as Hallett convincingly argued [Hal84]. To
obtain a theory of number that applies to both the finite and the infinite, Can-
tor restricted himself to those infinites that are like the finite in that they can
be counted. Of course, we cannot Mo.,mpmzw oosa infinite sets. Frege pointed
out that we can’t even count sufficiently large finite sets, and so Cantor was
using an idealization or extension of the usual notion of counting. Most at-
tempts at giving a rationale for Cantorian set theory run head-on into the prob-
lem of Justifying a suitable idealization. That was not a problem for Cantor,
whose position was straightforwardly theological: for him “countable” meant
countable by God [Hal84, pp. 15, 35-36, 44]. " o

P

@# :in contrast, took the expected approach: since infinite collections

St e G e

carinot be counted, he sought a theory of number that is m#@mmmnmnmgﬂ_ of
counting. He therefore took Qne-to-one correspondences to be basic, not well-
orderings. That resulted in a theory in which .EoomHQE& ,,@Evﬂ.m are basic,
not the ordinal numbers. (See [Hal84, pp. 151-153] for a detailed discussion.)
No restriction seems necessary: a Fregean theory will not obviously need to
exclude “the Absolute.” :

Cantor’s argument that “the absolutely infinite sequence of numbers” is “a

e

suitable symbol of the Absolute” can be turned into a mathematically Eoowmm\&

proof that the class of all ordinal numbers is not a set. Cantor gave such a |

proof in a letter to Dedekind dated 3 >cm=..mﬁ 1899 [Can32a].14 According to
a letter he ‘wrote to Jourdain (dated 4 November 1903, see [GGT1, p. 117)),
Cantor knew Emﬁ proof by 1895. Since he could now obtain a contradiction

14. See [GG74, pp. 127-128] for the reason the letter is dated incorrectly in [VH67].

L
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from the assumption that the system of all numbers is a set, he began to call it
an inconsistent absolutely infinite multiplicity.

Technical Remark. Here is the proof. (I have departed inessentially
from Cantor’s version.) As we have seen, to every well-ordered set

F corresponds an ordinal number, F. Thus, to use .ccH lom_..mon oxEmm.
ples, F = (a1, aa,...) has ordinal number w, that Hm, F = w, while
G = (by, b3, ..., b1) has ordinal number w 4 1. There is a natural sense
in which w is less than @ + 1: there is an initial segment of G, namely the
part of G that comes Acomoﬁ;wr that has order type w, as the one-to-one
correspondence that pairs off a; with b;41 shows.

As Cantor had proved, the ordinal numbers are imzéﬁwﬁma by the
mo_:oSEm natural order, which generalizes what was just Eamnmﬂwa for
w and @ + 1: If ¢ and 8 are both ordinal EHBUmm.m.. we say that « is less
than g if there is a well-ordered set F such that ¥ = 8 and a member a
of F such that the initial segment of F determined by a has order type
«, where the initial segment of F determined by a is just the subset of F
that consists of members of F less than g, with the same order they had
in F. . .

The natural order on the ordinal numbers has the following convenient
property: For any ordinal «, the set of ordinal numbers less than « or-
dered by the natural order form a well-ordered set of order Q.@w a. Thus,
for example, the set of ordinal numbers less than 3 ordered in the usual .
way, that is, (0, 1, 2), is a well-ordered set of order type 3. o

Let © be the class of all ordinal numbers, and suppose that §2 is a
set. Then Q is a set well ordered by the natural order, and so it has a
corresponding ordinal number, say Q = 8. Thus, Q is a well-ordered set
of type §. But, by the definition of £2, the ordinal number § Emmw dm a
member of Q2. By the convenient property mentioned above, the @ﬂ&
momanﬁ of Q determined by é has order type 8, and so, by the awmﬂno.w
of the natural order, § is less than . That is, & is less than 8, which Wm
impossible. The contradiction shows that our initial assumption that €2 is

a set must be false. As Cantor put it [Can32a, p. 115], “The system €2 of
all numbers is an inconsistent, absolutely infinite multiplicity.”

Since Cantor had already argued that to every ordinal number corresponds
a distinct cardinal number,?” it followed from the fact that the system of all

15. The number classes inherit their ordering from the ordinal numbers, and Env.
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ordinal numbers is an inconsistent, absolutely infinite multiplicity that the
system of all the cardinal numbers that correspond fo ordinal numbers is also
an inconsistent, absolutely infinite multiplicity.'® Cantor went on to employ
those results to prove certain theorems he had been working on for a long

- time. The details belong in §IV.2.

§5. Paradoxes

In 1895, the year in which Cantor discovered the arguments just presented,
Bertrand Russell wrote his fellowship dissertation, which was to become
An Essay on the Foundations of Geomerry (1897). It was a neo-Hegelian
work: Russell believed that every science (except the universal science, meta-
physics) necessarily contains contradictions that require a dialectical transi-
tion to another science for their resolution. For example, geometry is the sci-
ence of pure spatial relations. But relations need something to relate. Thus ge-
ometry must postulate something beyond pure spatial relations: spatial points.
The contradiction is transcended by moving toward physics. (See [Gri88,
pp. 20, 24-26].) . .

In 1896, Russell learned of Cantor’s work., Russell later said [Rus67a,
p- 200], “At that time I falsely supposed all his arguments to be fallacious,
but I nevertheless went through them all in the minutest detail, This stood
me in good stead when later on I discovered that all the fallacies were mine.”
At the mﬂn, Russell believed that [Grig8, P- 32] “the continuum as an ob-
ject of thought is self-contradictory.” In 1897, Russell reaffirmed his doubts
about the mathematical infinite, but in 1898 he tentatively accepted it, in an
early draft of what was to become Principles of Mathematics [Rus03] (see
[Mo088b, pp. 49, 507). .

Russell’s acceptance of the infinite did not last long. In 1899, around the

‘time Cantor was writing the letter to Dedekind discussed in the previous

section, Russell was lecturing and writing about Leibniz. Leibniz accepted

‘the actual infinite but argued against infinite number. In the second draft of

what was to become the Principles, written in 1899, Russell accepted that
infinite number is confradictory but worried that a class, the extension of
a concept (that is, the collection of things to which the concept applies),

are therefore well-ordered. Since every sequence of cardinal numbers has an upper bound,
they are absolutely limitless, and so they must form a well-ordered class similar to .

Hm.ﬂrammchoEcomamoBmH&mmosﬂoEmHmﬂmH iochWoEwnmEomnEn Hmumn
of a function on a set is a set. See §Vv.2. -

1
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is a totality, which should therefore have a number. The simplest version
of the contradiction arises, he observed, when one considers the totality of
numbers. He quoted Leibniz as saying, “the number of all numbers implies a
contradiction,” and he wrote: “There is, and is not, a number of numbers.”
(See [Moo88b, p. 50] and [MG81, p. 325].) The problem whether infinite
collections have infinite number or no number continued to dog him in the
subsequent draft, which he worked on into the next year. ]

In the summer of 1900, Russell met Peano at a conference and was favor-
ably impressed. He began to study Peano’s work. He later said,

The time was one of intellectual intoxication. My sensations resembled
those one has after climbing a mountain in a mist, when, on reaching the
summit, the mist suddenly clears, and the country becomes visible for
forty miles in every direction. For years I had been endeavouring to anal-
yse the fundamental notions of mathematics, such as order and cardinal
numbers. Suddenly, in the space of a few weeks, I discovered what ap-
peared to be definitive answers to the problems which had baffled me for
years . . . Intellectually, the month of September 1900 was the highest
point of my life.  [Rus67a, pp. 232-233]

As a result of studying Peano’s work, apparently in September, Russell
came to accept that every collection has a cardinal number. By November, he
had found an “error” [Cof79, p. 33] in Cantor: Cantor’s diagonal argument
proved that theré is no largest cardinal number. But the number of individuals
is the largest number, since every class is included in the class of individuals.
(Russell counted classes and numbers as individuals.) At around the same
time he also noted that if the ordinal numbers are, as Cantor claimed, well
ordered, then there is a maximum ordinal number, namely, the order type of
the class of all ordinal numbers. He also described the error as involving the
class of classes instead of the class of individuals.l? (See [Moo88b, pp. 52—
531.) :

17. I do not know why Russell shifted from the class of individuals to the class of
classes. It is not hard to argue that the two classes have the same cardinal number, and
¢onclude that if the cardinal number of one of them is the largest cardinal number, then
so is the cardinal number of the other. One argument, which Russell definitely gave later
[Rus03, p. 367], goes like this: The class of classes is contained in the class of E&Sma&m.
and so it is no larger. Conversely, the class of classes with exactly one member is the same
size as the class of individuals (since each individual corresponds with the class that has
it and nothing else as a member), and the class of classes with exactly one member is
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Russell did not yet suspect any paradox, Eomm& he had found a contra-
diction. He believed that Cantor’s conclusions were not quite so general as
they seemed. In detail, he doubted Cantor’s assertion that the ordinal num-
bers are well ordered, and he supposed that Cantor’s diagonal argument,
which he took to show that the class of all subclasses of a class is of strictly

- greater power (cardinal number) than the class is not quite so general as it
_seemed—it does not apply to the class of all individuals. The last supposi-

tion is one Cantor later endorsed:'® Cantor viewed his results as applying
only to “countable” sets—a notion we shall discuss in detail in §IV.2—not
to arbitrary collections. Russell’s work concerned classes, the notion intro-
duced here and discussed in more detail in §IV.1. But during the period under
discussion—and usually even later—Russell just interpreted Cantor’s work as
if it concerned Russellian classes. When Cantor saw Russell’s later work, he
concluded that the class of all individuals was not a set at all but an inconsis-
tent, absolutely infinite multiplicity.

Russell’s suspicion that Cantor’s argument did not apply to the class of
classes was based on the following, quite reasonable grounds. The class of
classes has as members all classes, including those that have individuals other
than classes as members. The class of all subclasses of the class of classes, in
contrast, is composed entirely of classes that have only classes as members. It
must therefore be a proper part of the class of classes, and so it cannot be of

- larger power than the class of classes. (See [Cof 79, p- 341)

Russell took Cantor’s argument to show that the class of all subclasses

of a class has greater power than the class, and he recast the argument in
essentially the following way:1°

(1) He first showed for any function k from a class x to the class of all
“ subclasses of the class u, that the class of all members x of u such that
x is not in k; is a subclass of u not in the range of the function %.

(2) He then observed that the class of subclasses of a' given class has power
at least as great as that of the class, since the function that takes each
member x of the given class to the class whose only member is x is
a one-to-one correspondence between the given class and some of its

nouﬁau.oa in the class of classes, and so it is no larger. Neither class is larger than the other,
and so they have the same cardinal number, as required.

18. In a letter translated in part as Appendix A to Chapter IV,

19. Cantor’s point of view was different. His i i
. His paper is translated as A
Chapter IV. prendix B o

I
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subclasses. To show that the class of subclasses of 2 class has greater
power than the class, it therefore suffices to show that the two do not
have equal power.

(3) Finally, he supposed for the sake of contradiction that a class and the
class of its subclasses have equal power. Then there is a function from
the class to the class of its subclasses that establishes a one-to-one
correspondence between them. But that contradicts item 1: a one-to-one
correspondence cannot omit a member of the range.

Russell thought the argument was in error when the “class” was the class of
classes. Following Russell, let class be the class of classes. We can, it seems,
define a function k from class to the class of subclasses of class that includes
every subclass of class in its range as follows: when x_ is in class and x is
a class of classes, let k; be x, and when x is in class and x is not a class of
classes, let k, be the class whose only member is x. But that violates item 1 of
the Cantorian proof: According to the proof of item 1, the class u’ of classes x
such that x is not a member of k, should not be in the range of k. But, Russell
observed, ' is ks (presumably since k is the identity function on classes of
classes), and so, contrary to the Cantorian argument, u' is in the range of k.
Thus, Russell concluded, item 1 of Cantor’s argument is incorrect when the
class involved is class and the function is k, and so Cantor had not shown that
there is no largest cardinal number. Russell gave this analysis by November
of 1900. He added, seemingly as an afterthought, that “in fact, the procedure
is, in this case, impossible; for if we apply it to ' itself, we find that wisa
ks, and therefore not a »’; but from the definition, u’ should be a u’.” (See
[Cof 79, pp. 35-36].)

Russell seems to have maintained the view that Cantor’s argument is defec-
tive and that there is a largest cardinal number at least through the middle of
January 1901 [Cof 79, p. 33]. But the ' of the above argument is readily seen
to be the class of classes that do not belong to themselves, and the above af-
terthought just shows that «’ both is and is not a member of itself. That is, the
definition of %’ leads to a contradiction. There is no class of all classes that
do not belong to themselves.2® Russell discovered that?! by May [Moo88b,

20. Zermelo discovered the paradox independently, but little is known about the
details. See [RT81].

21. Actually, so far as I know, he did not at the time discuss the class of all classes
that are not members of themselves, but only the class of all predicates that cannot be
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p. 53]. There is no class «’, and so Russell had not produced a counterexam-

ple to Cantor’s argument. In October 1901, Russell wrote to Louis Couturat
that Cantor is irrefutable [Cof 79, p. 37].

Wcmmmz did not know what to make of his contradiction:

It seemed unworthy of a grown man to spend his time on such trivialities
_u._: what was I to do? There was something wrong, since such oou_ﬁ_&oH
tions were =nm<oam2m. on ordinary premisses. Trivial or not, the matter
was a challenge. Throughout the latter half of 1901 I supposed the so-

lution 40&& be easy, but by the end of that time I had concluded that it
was a big job. [Rus67a, p. 236]

Russell finally wrote to Peano about “the matter” and to Frege in June 1902
The letter to Frege [Rus67b] introduced the argument with some aﬁmmgoo”

« . . .
There is just one point where I have encountered a difficulty.” But Frege’s ;

maﬁ.:an was clear. He replied [Fre67], “not only the foundations of my arith:
metic, but also the sole possible foundations of arithmetic, seem to vanish.”

ber, the paradox was a central problem for Russell. (See [MG81 p- 328].)
Russell had uncovered two more paradoxes by the time nww .Noz.mn..N. les

mww.m.maomnmm the paradox of the largest ordinal and the paradox of the ymawoﬁ

cardinal. The paradox of the largest ordinal is this: The class of all oawb&

numbers is apparently well ordered, and so it has an ordinal numbe r as order

type, which mnzmﬂ be the largest ordinal. But there cannot be a largest ordi- |:
nal number since every ordinal number can be increased by 1. (See [Rus03 i

p. 323].) The similarity between that argument and the one Cantor used to
show that the ordinal numbers form an inconsistent multiplicity should be
&omw The paradox of the largest ordinal has come to be known as Burali-
‘mowm s wwmmmoﬁ since Russell attributed it to Cesare Burali-Forti. In fact. the
@mnm.aox is due to Russell, though it was apparently suggested to him b : hi

reading of a paper by Burali-Forti [MG81]. , an

The paradox of the largest cardinal is this: The class of classes can be no

-predicated of themselves. The class version appears in his letter to Frege [Rus67b], which

be wrote a year later.

. mww. M&\ Bn%oa of counting paradoxes is sornewhat arbitrary, For example, T am

nting the paradoxes of the class of classes that are : |
: not members of themselves and of

the class of predicates that are not predicable of themselves as one, because of their evident

_ similarity.

i
©

That is how Russell’s “conundrum” became Russell’s paradox. By Septem- :

I
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larger than the class of individuals, since it is contained in the class of in-
dividuals. But the class of classes is the class of all subclasses of the oEmm
of individuals, and so Cantor’s diagonal argument shows it to be larger than
the class of individnals. Russell introduced that paradox as follows Eﬂnmo.P
pp. 366-367]: “[Cantor’s] argument, it must be confessed, appears to o.oE.mE
no dubitable assumption. Yet there are certain cases in which the conclusion
seems plainly false.”” The paradox is often called Cantor’s paradox, presum-
ably because it is based on Cantor’s argument. It may be rephrased as follows:
Cantor’s argument shows that there is no largest cardinal number. But the car-
dinality of the class of all individuals must be the largest cardinal number,
since every other class is included in that one. .

Russell’s paradox seems the most important, because it is so much more di-
rect than the others. The paradox of the largest cardinal in some sense already
involves Russell’s paradox, as we have seen from the manner in which Rus-
sell discovered his paradox. The paradox of the largest ordinal involves the
BmoEb@Q of well-ordered sets and ordinal numbers, and so Russell thought
it might be dissolved in some technical way.

v
What >Hn Sets?

§1. Wz,mmm__

- Why did Russell find paradoxes where Cantor found none? Because Russell

S e i

B kA1 et TR T A s

accepted a principle that Cantor did not, one that conflicted with principles on
which they agreed. The extra principle, which seems to have originated with
Peano, was the Comprehension Principle. In Russell’s words [Rus03, p- 201,

Mt R A e Y i et

" “a class may be defined as all the terms satisfying some propositional func-

tion.” In that and most other respects concerning the notion of class Russell
followed Peano, as he said quite clearly. In particular, for Russell, a class is
“composed of terms.”

The Peano—Russell notion of class is essentially what Penelope Maddy has
called the logical notion of collection, The characteristic mark of the notion is
that according to it each collection is associated with some kind of a definition
or rule that characterizes the members of the collection.

Frege had a notion in the Grundgesetze der Arithmetik that is formally

- equivalent to that of a class, and a principle analogous to the Comprehension

Principle—a principle that subjects his system to the paradoxes. Nonetheless,
as Russell noted: [Rus03, p. 513], Frege did not countenance classes in the
now famiiliar form that comes down to us from Peano via Russell.2

1. The term is Maddy’s, but she used it slightly differently [Mad90, pp. 103, 121]:
“The logical notion . . . takes a number of different forms depending on exactly what sort
of entity provides the principle of selection, but all these have in common the idea of
dividing absolutely everything into two groups according to some sort of rule.” Compare
[G&d47, p. 475].

m.m.ﬁonﬁoowoouoowﬁmScncmmmo.mmsmwgﬁmamﬁma Emmm&oﬁm&wgwonmhﬁ
s - T > .
equivalence relation between concepts, that of extensional equivalence: two concepts are

extensionally equivalent if they hold of the same objects. He postulated that to each con-
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Russell was at least dimly aware that Cantor’s conception of a set was
different from his own:

when mathematicians deal with what they call a manifold, aggregate,
Menge [Cantor’s term], ensemble, or some equivalent name, it is com-
mon, especially where the number of terms involved is finite, to regard
the object in question (which is in fact a class) as defined by the enu-
meration of its terms . . . Here it is not predicates and denoting that are
relevant, but terms connected by the word and, in the sense in which this
word stands for a numerical conjunction. [Rus03, p. 67]

Cantor’s conception, which is discussed in detail in the next section, forms

m/vx.% " the basis for the one almost universally used by mathematicians. The main

-

evidence for that claim is presented in §V.1. After that point, we give a de-
tailed history of the Cantorian conception with practically no need to refer to

cept corresponds a logical object, the extension of the concept, in such a way that exten-
sionally equivalent concepts comrespond to the same object, while concepts that are not
equivalent do not.

Frege did not have much more to say about the nature of his logical objects-—his “exten-
sions” They are often confused with Peano’s classes because propositional functions that
are satisfied by the same objects determine the same class—a property formally analogous
to the one postulated by Frege. They are not the same: classes are composed of terms, and
so the membership relation was basic for Peano, but Frege’s logical objects were defined
without reference to membership. To be sure, Frege later defined a notion formally equiv-
alent to membership as follows: x is a “member” of the logical abject y if there is some
concept F such that y is the logical object that corresponds to F and x falls under the con-
cept F. But that was clearly not the basis for his logical objects. Indeed, Frege said [Fre95,
p. 228], “the concept is logically prior to its extension; and I regard as futile the atternpt to
take the extension of a concept as a class, and make it rest, not on the concept, but on sin-

7 gle things.” He summed up: “The extension of a concept does not consist of objects falling

under the concept, in the way, e.g., that a wood consists of trees; it attaches to the concept
and to this alone. The concept thus takes logical precedence of its extension.”

Moreover, Frege wanted everything in his system to be one of his logical objects, so
he just arbitrarily stipulated that the object that is the extension of the concept “x is the
true” is the true, not the class of truths, and, similarly, that the object that is the extension
of another concept is the false. That would not have been possible if he had intended the
Peano—Russell notion of a class composed of members. (See [Rus03, pp. 510-512] and
[Res80, pp. 204-220].)

1 am under the impression that as late as 1903 Frege did not fully understand the
Peano—Russell notion: Frege atternpted to “avoid the contradiction” (Russell’s paradox)
by permitting two concepts to correspond to the same object even though that object “falls
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the Peano—Russell conception. That in itself will help to show that the Can-
torian conception is dominant. But one can also find an explicit statement of
that dominance in an article by Skolem to be discussed in detail in §V.3:

Until now, so far as I know, only ore such m%mﬁoﬂ of axioms [for set
theory] has found rather general acceptance, namely, that constructed
by Zermelo [ZerO8b]. Russell and Whitehead, too, constructed a system

however, mathematicians have taken but little interest in it.
p- 291]

{Sko23b,

As we shall see in §V.1, Zermelo’s system is an outgrowth of Cantor’s. I do
not wish to leave the impression that Frege and Russell are or were unim-
portant, It is only that their mathematical work was for the most part con-
cerned with logic, formalization, axiomatization, and related issues, not with

e

Ga&mpﬁmow,mmﬂmF@EdoﬁmmEmwmﬁmaoxmmmHmE%onmEmoHﬁumﬁ Ea%
tell us about our oowoawﬁocw of properties and of truth, but they are not HB.
portant for the theory, of sets, as Gdel had already observed in 1947 EumHmm
p- 105].

It is necessary to discuss Russell’s conception of classes as it developed
in response to-the paradoxes before turning to Cantor’s conception of sets,
if only to make sure that the two are clearly distinguished. Russell was a
mw.m\.ym,w@m_vmo wished to show that mathematics and logic are one by showing

iow to develop all of mathematics within a framework free of any special

under the one and not under the other” (See [Fre80, p. 150].) (Frege called that object
the extension and Russell used the term range of values, which was his translation of a
term of Frege’s that includes but is more general than Frege’s extension. Since what is
at issue is whether their use of the terms is similar to ours, I have been avoiding those
terms.) Russell queried [Fre80, p. 155], “Do you believe that the range of values remains
unchanged if some subclass of the class is assigned to it as a new member?” Frege replied
[Fre80, p. 1571, “I do not believe that a class remains in general unchanged when a
particular subclass is added to it. All I mean is that two concepts have the same extension
(the same class) when the only difference between them is that this class falls under the
first concept but not under the second.” Whatever Frege’s extensions are, their members
are not constitutive of them. The fact that he identified them with classes in the passage
shows that he had not understood the notion of class. According to Charles Parsons, Frege

always took classes to be either (Fregean) extensions or aggregates made up of parts, that
is, mereological sums [Par76, p. 268].

of logic that provides a foundation for set theory; if I am not mistaken, D
i
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conditions or empirical and psychological assumptions. That is a program
substantially similar to Frege’s for arithmetic and analysis.3

Frege and Russell faced a common problem: mathematics is mwwm..ﬂgm%
abou @ Qﬁu@ﬂm and so forth), an @ roxmmﬂwmawuon that objects
of oné&EeF or mbo_,.rm@wwmﬁﬂq mmmm,_uwwo_u ;mclHM ic. They arrived
at formally analogous solutions, which I axEEu.,ﬂmEsmB “example. Defin-
able relations are within the province of logic, including definable one-to-one
correspondences, and so, without going beyond logic, one can use Cantor’s

method to define equinumerosity: two systems®* are equinumerous if there is

a one-to-one correspondence between them. Suppose one postulates as a log- -

ical principle that every equivalence relation (equinumerosity in the example)
determines Ho%oﬂ objects and a logical relation such EH entities in the field
of the equivalence bear the relation to the same logical object if and only if
they are equivalent. Then the Homwnmp %Eanﬁm .w.,S: be suitable to play the role
of Bm&aﬁuﬂo&. objects. Russell zma%&mmmmﬂm@ﬁm logical objects and mem-
bership as ﬁmm,mo%omH relation (see [Rus03; pp. 166-167]), as was suggested
by the Son of Wmmbo Burali-Forti, and Mario Pieri (see [Con87]). Thus, for
Russell a EE&Q. wasac %Cbﬂﬁm ,ommEc.EmHocm to mEvN member of

A .
the class. m Tt mxmh%rw on Russell’s account, the number 2 is the class of all

mwmrmww Thus, to be a system of two ohjects is just to be a member of the num-
ber 2, that is, a member of the class of all pairs. In general, the number of a
system was simply the number of which the system was a member, For Frege,
the number of a system was the extension of the concept “being equinumer-
ous with that system.”

The OoE@H@Wodeon Principle was what provided the mathematical objects

R IO Y it e

on Russell’s early logicist account of mathematics. It played a central role.
But the Comprehension w.mwﬂﬁm was the source of the paradoxes. Russell

SRR,

therefore had two_options: restrict the Eomo&ﬁou& functions to which the

principle m%:m&) or} restrict the Eomoﬂﬁouq&. ?uonoum themselves, so that
the principle still UoE ocnmmE Whatever restrictions he adopted had to be
purely logical in character. He tried both options, and gave many variants on
the second one. I shall only discuss one of his theories, which is of the second

kind: his 1908 theory of aﬂom as presented in [Rus08]. I have focused on on that

e metia,

3. Russell’s motivation .Smm rather different from that of Frege. See [Hyl90].

4.1 am using system here as a neutral word for whatever has an associated nurmber.
Frege and Russell disagreed.

& oy
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theory since I understand it the best, and mEno it raises some points that will
be useful in subsequent chapters.’

In the 1908 theory of types, individuals and @Homoﬂnoam are B.w@u to be
basic,® and sentences that apparently mention propositional functions and
classes are analyzed as involving only basic entities. In that sense, the E@o&N
is a no-class theory—propositional functions and classes are not taken to be
“part of the ultimate furniture of the world”

I shall discuss propositional functions in some detail before getting to
classes, since most of the work is done by the theory of propositional func-
tions. The propositional function “x is mortal.” for example, can be repre-
sented by the pair of the proposition “Socrates is mortal” and the individ-
ual Socrates. Russell took mm@o the @zmﬁalﬂmiﬁ relation exemplified
by: the result of substituting Plato for annﬁmw in :.won;mm.m.. is mortal” is
“Plato is mortal.” That has the following ma<m=8mm If we take @Howoﬂnou&
fUACTons as basic, we run straight into paradoxes, as is seen by substitut-
ing the propositional function “x is not self-predicable” into itself. However,
if we adopt Russell’s stratagem, then “x is not self-predicabie” must seem-
ingly be represented by some pair like “Socrates is not self-predicable” and
Socrates pr “ “Socrates is mortal’ is not self- E@&SE@: and “Socrates is mor-
tal,” depending on whether we take the variable in “x is self-predicable” to

range over individuals or propositions. Clearly, neither captures our intent—

the variable was supposed to range over propositional functions. The one
variable must therefore become two: “(p, a) is self-predicable,” where now
‘self-predicable’ must mean something concerning a pair. But *( D, a) is self-
predicable” is a propositional function that is to be represented (since there
are two free variables) by a triple: “(‘Socrates is mortal,’ Socrates) is self-
predicable,” “Socrates is mortal,” Socrates. We needn’t worry about how to
make sense of mom.wﬁo&omzo because there is a different kind of trouble—
‘self-predicable’ was to be defined for propositional functions represented by
pairs, but the @Howoﬁﬁon& function we Eﬁumma to substitute to obtain a para-

5. The article [Urq88] provides a useful brief history of Russell’s mnmEEm to solve ,\

.Em paradoxes. The articles [Lan87] and [Lan89] are very helpful in understanding the

development of Russell’s theory of types, and I have relied on them heavily. )
6. According to Peter Hylton [Hyl90, pp. 151, 155], Russell had just postulated .

classes, but he had an argument for the existence of individuals and propositions, namely
that they are Herda for logic.
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dox is represented by a triple, and so it cannot be substituted. The paradox is

blocked! 4 4 .
The analysis of propositional functions into propositions and individuals

creates in effect a hierarchy of types, wi propositions and individuals at the

bottom, with single variables ranging over them; /.M@miawmm functions of

propositions or individuals next, with pairs of variables H.mnmw_m over them;

3 @Howo&mmwﬂ ,?uomoum of {propositional functiong of mﬁowo&mowm or individ-
vals next and so forth. (The types are not in strict linear order: there can
be propositional functions of both individuals and propositional functions of
individuals, and so forth. See fRus08] or [Lan87] for details.) According to
Henri Poincaré, a vicious circle of definitions is the source of the paradoxes.
Here, no propositional function can have itself in its own range, and an anal-
¥ ogous circle is blocked. .
Note the great ingenuity of Russell’s device. It falls out of Russell’s system
of representation that the old notion of propositional function was incoher-
ently wide. Eliminating the incoherence, of course, has the effect of restrict-
ing which propositional functions are allowed. But the restriction, while it
suffices to block the paradoxes, allows one to retain the air of perfect gener-
ality: eliminating the use of incoherent propositions, while it is the required
restriction on what came before, is not a defect in Io gical purity, and when one
begins with the new system of representations, it need not be presented as a
restriction. All the usual devices of logic can be allowed, and the types. arise
without any special pleading. The theory can still lay claim to being a part of
pure logic, and so mathematics might still be one with logic, if no additional
modifications were required. A .
Unfortunately, the typed system just described is still subject to paradox, as
Russell had realized by 1906 [Lan89, p. 371.7 The present theory allows quan-
tification over all propositions and individuals, and hence, derivatively, over
all propositional functions of a single type, including propositional functions
-of a type that are specified using quantification over propositional functions
of that very same type.

Technical Remark. The paradox Russell discovered involved proposi-
tional functions of propositions. He worked directly in his basic sys-

7.1 am simplifying the story somewhat. In 1906, Russell was working with a type
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tem, in which quantification over pairs of propositions: stands in stead
of quantification over such propositional functions. I shall use quantifi-
cation over propositional functions instead, since the argument becomes
easier to follow in that notation, but such quantification is just an abbre-
viation for something more complicated in the base notation. The sim-
plification is one Russell had adopted by 1908. All of my Latin variables
will range over propositions and Latin constant symbols stand for propo-
sitions, while my Greek variables Tange over propositional functions and
Greek constant symbels stand for propositional functions. Since we shall
explicitly consider only propositional functions of one variable, we can
use, for example, ¢ to indicate a propositional function and @(x) to indi-
cate the value of that function at x. Let ¥ be the propositional function ¥
(of y)

WY = @O =16®)=q1 A -p()).

T'have respected modern scruples about use and mention to the extent of
forming a name for a proposition by enclosing the proposition in square
brackets. Russell had no such scruples.® Now consider the proposition
Y ([¥ () = q]), which reads as follows:

GOV ) =q1'=[$ () = g1 A ~p (¥ (b) = g])). -

The equality [ () =4g] =[¢(b) = q] is between propositions, which
are intensional. Thus, when the equality holds, it follows that Vy)
(¥ ()1=1[¢ ()] and hence that (vy) () « ¢(»)). We can there-
fore derive the contradiction Y () =¢g]) <« =Y ([¥ () =q]).

Once more we have a circle of substitutions—/ has been substituted
into itself. .

To block the new paradox, Russell introduced “orders” of propositions.

At the bottom, there are the first-order propositions: “elementary” proposi-
tions and those that involve Quantification only over individuals, Next come

8. Since Russell was happy to allow truth predicates in his base notation, it is _.BW-

theory of complexity intermediate between that of the one described in the text and the
1908 version toward which I am working. :
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second-order propositions, which may also involve quantification -over first-

. S order propositions. And so forth. Quantification is not permitted over all

i

propositions, but only over propositions of a given order.

We have now described Russell’s “ramified” hierarchy. Propositional func-
tions of any given type may be defined by propositional functions of various
orders. The system, while less natural than before, is still motivated exclu-
sively by logical concerns. After all, paradoxes cannot be permitted, and so
the argument above might be taken to show that orders of propositions (or of
whatever may serve as a surrogate for propositions) are logically necessary.
The ramified hierarchy is indeed Russell’s proposed logical system, though he
modified it in various ways subsequent to 1908. Unfortunately, additional as-
sumptions are required to do mathematics, I shall explain after showing how
Russell handled classes.

Propositional functions may be intensional. For example, someone (call
her Caila) might believe that all humans are mortal without. believing that
all featherless bipeds are, despite the fact that “x is human” and “x is a
featherless biped” are coextensive.? Thus, the propositional function “Caila
believes that for all x if @ (x) then x is mortal” depends for its truth value on
the particular function ¢, not just on what satisfies ¢. Say that a propositional
function @ is extensional if . )

(VoY) (V%) (6 () > ¥ (x)) — (©(9) < ),

that is, if its truth value is the same on coextensive propositional functions ]

and .19 For extensional propositional functions used only within extensional

propositional functions, which are all we need for mathematical purposes, we
can simply identify each function with the class of things that satisfy it and

then define, for example, ¢ € © to be @(¢), ¢ N ¥ tobe ¢ A ¥, and so forth.

We make analogous definitions for propositional functions of individuals, and

also for relations and functions as well as classes. . :
But now we are in trouble, because relations, classes, and functions, since

after all they are just certain propositional functions, have orders. Thus, for

example, a finite class is one such that there is no function whatsoever that
maps it one-to-one to a proper subclass, but we cannot use that fact to define

9. I shall follow tradition in ignoring the existence of plucked chickens and other
counterexamples to the supposed coextensiveness.

10. All of the lower-case Greek variables here range over propositional mcuommnw of

some fixed order, though it makes no difference which order. Similar remarks apply below.

m cie. P 223
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Hmnr:m.nm_ Remark. Recall that 5 propositional function is analyzed as 3
.@Ho@mumﬁou (the prototype) plus one or more propositions or individuals
that in effect indicate the argument Places. Let the order of a Eowoﬁ-.

from that of [Rus08, p. 164]. It makes, for example, (©(¢), @), where

1
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§

v 36) (Yx) (@1(x) < ¥ (x)),

where ¥ is a schematic letter that may be replaced by any propositional
function of any type and order with one free variable, and x is a variable
of the appropriate type and order. The axioms for two or more free
variables are analogous. Russell also refers to the axiom for one free
variable as the Axiom of Classes and to the axiom for two free variables
as the Axiom of (Binary) Relations.

We are not quite out of the woods yet: we cannot take the class asso-
ciated with a propositional function to be the corresponding coextensive
predicative propositional function, since there may be many coextensive
predicative propositional functions. We therefore give a contextual defi-
nition that shows how to reinterpret formulas involving classes as formu-
las without them. They are to be eliminated from our official vocabulary
much as propositional functions have already been eliminated.

With any propositional function ® of a predicative argument ¢!, we
associate a schematic formula ® ({z : ¥ (z)}) that is defined as follows:

E)((Vx)(9!(x) © ¥ (x)) A O (1)),

where ¥ is a schematic letter that may be replaced by any proposi-
tional function of a variable x appropriate to ¢!. For example, we define
x € {z: ¥(2)} to be the formula that arises from our scheme using the
propositional function ® defined by ©(¢!) = ¢ (x). Then x € {7: ¥ (2)}
is an abbreviation for

FP)((Vx)(9!(x) © ¥ (x)) A §1(x)).

But they also claimed that it is possible to restrict quantification to predicative—that is,
quantifier-free—propositional functions. The reason they offered is not correct, and so I
have offered a definition of predicative here that makes their claim correct. In a special
case, their reason amounts to this: The formula (¥x)¢ (x), where ¢ (x) is (V9)¥!(x, y), is
Just (Vx)(¥y)¥r!(x, y). (In this note the exclamation point indicates that ¥ is quantifier-
free.) We can therefore replace (V¢) (Vx)¢(x) by (Y¢)(¥x) (Vy)vr!(x, y). But that doesn’t

work, since (¥¢) includes in its range (Vy)v¥!(x, y1), (Vy1) (Yy) ¥ !(x, y1, y2), (¥y1)

(Vy2)(¥y3)¥!(x, 1, y2, y3), and so on, while the quantifier (V) that is mchom.na to re-
place it accommodates only a fixed number of y;s. Since the orders play no role in math-
ematical considerations after the introduction of the Axiom of Reducibility, the rest of
[WR357] is unaffected. £ =
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B) RTT v ergesle? Qui.n\p 3%, Lor Uzen (951, Tebulle ¢ o5 2)
. As a side effect of the contextual elimination of classes, every proposi-
tional function gets associated with one that is extensional, and so we .
*.can drop the previous restriction to extensional propositional functions , ..,a.
-and contexts. VAL R e

With the Axiom of Reducibility, it becomes possible to develop mathemsat-
ics within the theory of types (with two notable exceptions, to be discussed

- Jjust below). However, as Russell himself put it,

Viewed from this strictly logical point of view, I do not see any reason

to believe that the axiom of reducibility is logically necessary, which is
what would be meant by saying that it is true in all possible worlds. The
admission of this axiom into a system of logic is therefore a defect, even
if the axiom is empirically true.!? . . . There is need of further work on §
the theory of types, in the hope of arriving at a doctrine of classes which
does not require such a dubious assumption. [Rus19, p. 193]

The earlier verdict is correct after all: Russell’s logicist program failed as a
result of the paradoxes. :

Even if we allow the Axiom of Reducibility, there are still two gaps in
the development of mathematics within the ramified theory of types: it is
impossible to prove the Axiom of Infinity, which says that there is a-class with
infinitely many members,!3 and it is impossible to prove the Axiom of Choice
(an assumption we shall be discussing in detail in §V.1). Moreover, as Russell
recognized [Moo82, p. 131], the Axiom of Choice seems dubious when it is
construed as an axiom concerning classes with membership specified via a
rule. Those problems are serious since, for example, the Axiom of Infinity is
invoked even to show that the sum of two real numbers is a real number, but
they are less serious than the fundamental problem posed by the Axiom of
Reducibility, since the Axioms of Infinity and Choice can simply be taken
as hypotheses of every theorem in whose proof they are employed.!* The
Axiom of Reducibility must be used so universally that even the theory of the

12. For Russell, it is an empirical matter what classes there are. Only the ones that
are definable in a suitable sense exist (to the extent that classes exist at all) necessarily.
13. Russell’s axiom of infinity is that there are infinitely many individuals. It follows

ﬂwl [
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14. Since truths about the real numbers, for example, were supposed to turn out to Qedue ¢, h.

n_mmmoinﬁﬁgﬁm,EamoEmw&oEom Emaﬂwgmsrmﬂéoﬂa calling the Axiom of
Infinity as a consequence. :
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natural numbers—Iet alone the rest of mathematics—would depend on it as
a hypothesis, since it is required to give an adequate definition of finiteness.
Indeed, since all mathematical objects turn out to be classes, and Reducibility
is needed for the definition of class, not even a single mathematical object can
be defined as it 'was defined by Whitehead and Russell without an appeal to
the Axiom. To put it as starkly as possible, even the definition of the number
1 depends on the Axiom of Reducibility. That, of course, poses no problem
from a technical point of view, but it hardly suffices to establish the Russellian
thesis that logic and mathematics are one.

mo much for the logical notion of collection. As far as the primary purpose

of this section is concerned, our discussion should end forthwith. But Russell
introduced a distinction that will play an important role in some of our later
considerations, a distinction intimately related to the theory of types, and so
we go on to present it here.

Every variable permitted in the ramified theory of types is restricted by type
and order. Nonetheless, definitions, axioms, and thedrems must be available
at all types and orders, and so it is necessary to have devices that permit

* generalization of some sort across types and orders.

The first device has been much discussed. It is that of “systematic ambi-
guity” In actual practice we never care about the absolute types and orders
of variables, but only the relative types and orders. Anything we assert about
orders 1 and n holds equally about orders 1 +m and n 4 m, and analogously
for types. Thus, we can use ambiguous symbols whose relative orders and
types are fixed by the context of use, and which can be applied at any abso-

lute type and order. We normally read the variables of lowest type in a context .

as ranging over individuals, but, when convenient, we can reinterpret them
as ranging over some higher type. Systematic ambiguity has been exploited
above when we allowed Greek variables to “range over propositional func-
tions of some fixed order, though it makes no difference which order,” and
when in stating the Axiom of Reducibility we took v to be “a schematic let-
ter that may be replaced by any propositional function of any type and order
with one free variable,” and x to be “a variable of the appropriate type and

be logical truths, not conditional truths Tequiring an assumption—Infinity, Choice—that
might be false, the procedure of taking such assumptions as hypotheses was not adequate
to Russell’s task. We take up the question whether such a procedure can be mmﬁ of an
adequate philosophy of mathematics of a different sort in §VI.3.
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order”!3 In effect the device of systematic ambiguity lets us specify mow@,ﬁmm
in which the base types and orders may take on any permissible values. For
example, the theorem (Y¢)¢ = ¢ is actually infinitely many distinct theorems
Ao:n for each type and order of the variable ¢) involving infinitely many dis-
tinct equality relations. )

Systematic ambiguity makes it possible to express certain general facts
about the formalism of ramified type theory, facts that cut across types and
orders, but it does not permit us to express those facts within the formalism.
After all, every quantified variable must be of a particular type and order,
and so, despite appearances, (V¢)¢ = ¢ is not a sentence expressible within
ramified type theory—it is a host of separate, unconnected sentences. The
trick of taking the lowest order within a formula to be that of individuals and
allowing the possibility of adding m to all the orders is no help, since it is not
expressible within the formalism.,

To make it possible to express general facts within ramified type theory,
Russell introduced the distinction between “all” and :NE%,: which he dis-
cussed in detail in Section 2 of [Rus08]. “Given a statement containing a
variable x, say ‘x = x’, we may affirm that this holds in all instances, or we
may affirm any one of the instances without deciding as to which instance we
are affirming” (p. 156). The affirmation of x = x for @il values of x is repre-
sented - (Vx)x = x, and the fact that x is quantified forces us to use a variable
x of fixed type and order. But the affirmation of x = x for any value of x is
represented by - x = x. No quantifier is involved, and so we may allow a
new type of variable that is free of type and order restrictions, a new type of

. variable that cannot be quantified over. It then becomes possible to QGH@mm

mmuoamrq across types and orders. As Russell remarked,

we may mmuﬁ “any value” of a variable in cases where “all values”
would lead to reflexive fallacies . . . the fundamental laws of logic can

be stated concerning any wwowoﬁnou though we cannot significantly say
that they hold of all propositions. [Rus08, p. 158]

15. Whitehead and Russell use the term systematic ambiguity only for cases in which
all of the types and orders are determined by the choice of the base—that is, by the
reinterpretation of the individual variables, It seems they may have regarded the use of
a variable like y in the Axiom of Reducibility, which does not have its order determined

by the surrounding context, as a new device. (See [WRS7, p. 165].) But my extension of
their terminology seems to me to be a natural and harmless one,
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Russell’s idea that we affirm an instance without deciding which, which
he calls an ambiguous assertion, is not very clear, but it suggests taking the
new variables as schematic variables that admit of mscmmﬁmou by variables
mm.oommm::m of any St

,. .,wm»mmm.bmmmmamoamoermHWcmmmcme suggests that
reading: “We omurou,_,% RE.% assert a propositional function if, whatever value
we choose, that value is true; similarly we can only truly deny it if, whatever
value we choose, that value is false” (p. 157).16

In the first edition of the Principia Mathematica more or less the same dis-

tinction between “any” and “all” appeared, but at some points what I have dis-

'+ tinguished as schematic variables are allowed and exploited [WR57, pp. 128—

129], while at others, even “any” is allowed only with variables of fixed type
and order [WR57, pp. 17-18]. There is no point to using “any” with variables
of fixed type and order. By the second edition, the use of “any” had been re-
pudiated [WRS57, p. xiii] on the grounds that any free variable used to express
generality can simply be universally quantified, replacing the “any” by “all”
As we have seen, that is not exactly correct, since it leaves no way of express-
ing certain facts that cut across types and orders within the formalism.!”

§2. Cantor

The paradoxes posed no problem for Cantor’s theory of sets—transfinite ob-
jects that can be counted. Indeed, in 1904 Cantor queried Jourdain about the
availability of the second volume of Russell’s Principles. Jourdain replied
that it would not be available for some time, since Russell wished to present
a “solution” of his “contradiction” in it, and he had not yet found one. Cantor
replied with a discussion of the “difficulty” that Russell had described: Rus-
sell slightly extended Cantor’s proof that 2% = ¥ to show that 2% > g when
a is the cardinality of any ser 90T. The extended proof shows, given a set 91,
how to form a fotality & of greater power. But Russell tried to apply the proof

16. Hylton has argued [Hyl190, Pp. 152-154] that Russell could not have employed
schematic letters, because his conception of logic as universal blocked anything like an
ascent to a Emﬁ&mum:mmm. Perhaps that is why Russell’s pronouncements on “any” were
confusing.

17. Hylton has argued that the inability of the formalism of the Principia to express
its own formulation is yet another fatal blow to Russell’s logicism, given Russell’s concep-
tion of logic as universal [Hyl90, pp. 159-1611. Even if the notion of “any” turns out to be
compatible with Russell’s conception of logic, T do not know whether it is strong enough
to enable the formalism to be used to formulate itself.
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with an inconsistent multiplicity or totality in place of 9. But since this 9t
is not a set, a totality corresponding to & cannot be formed, and no contra-
diction arises.'® Thus, in Cantor’s eyes, the difficulty is avoided. Russell had
said [Rus03, p. 368] that “the application of Cantor’s argument to the doubtful
cases yields contradictions.” Cantor had never accepted those cases.

Cantor’s notion of a set is that of a collection “defined by the enumeration

of its terms,” as Russell said (see 81). I shall refer to that as the combinatorial
notion of a collection, 19 : . AL A
A||)|I\J.v[¢||‘|.l » > . . » . mﬁ
Cantor started Investigating combinatorial collections of @Momwmouwp points
in order to extend the results of Fourier analysis to as many functions as pos-

sible, building on the general definition of a function usually attributed to

Dirichlet. The ,m\mmw Wwas part of a program of freeing analysis of the restric-
nom.mw..?uonoum given by analytic expressions—that is, to functions given by -

rules,

The values of a function are determined by the collection of points that
form the graph of the function. The logical notion of a collection, that is, the
notion of a collection determined by a rule, therefore goes hand in hand with
that of a function determined by a rule or analytic expression; a function is
determined by a rule, an analytic expression, if and only if its graph is given
bya corresponding rule, and the graph is therefore a logical collection.

We see that Cantor’s work that led to his set theory and to the notion

to the attempt to free mathematics of the Testriction to logical, rule-based

e —_— .

I have just presented combinatorial collections as ﬁm.h.mm.mmnnﬂﬁ than logical

LU s

oomnoMnmm. There are two main marks of the addition 1%&9%? Firsi on
any fixed infinite domain there aremore combinatorial collections than logi-

fgﬁﬁ@mu?mﬁ bald assertion Presupposes mw;BOm:.mmmquo clarification of
what a permissible rule is for forming a logical collection. After all, given any

/l .
18. The full correspondence I have just described is published in [GG71, pp. 118-
119]. T have translated the relevant passage from Cantor’s letter as Appendix A,

- 19. The term is suggested by [Ber35b, Pp. 259-260], compare [Mad90, pp. 102

m
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combinatorial collection C, one could consider the instruction to collect the
members of C to be a permissible rule. In that case, 9@‘% combinatorial col-

lection is trivially a logical one.(Byt for any specification of allowable rules

of which I am aware that does no? presuppose combinatorial collections, the

e o

» e I i

assertion holds. Second, combinatorial collections obviously obey the Axiom
M of Choice, while it is at best dubious whether logical collections do. I shall,
however, postpone a discussion to §V.1. ,
There is a different sense in which things go the other way: combinato-
rial collections are restricted, %Ho logical collections are not. Since combi-

. i A e g s,s
natorial collections arélefifi&rated, some multiplicities may be too large to

be gathered into a combinatorial collection. We have already seen Cantor’s
example—the multiplicity of all ordinal numbers. In contrast, the size of a
multiplicity seems absolutely irrelevant to whether it forms a logical collec-
tion. Since there is a property characterizing the ordinal numbers-—just that
of being ordinal numbers—it seems that they do form a logical collection.

That is part of why Russell’s theory of logical collections led to paradox while

Ay

M Cantor’s theory of combinatorial collections did not. Any restriction on log-

i} ical collections motivated by the notion of a logical collection would have
to be a restriction on allowable rules, a restriction like that imposed by the
_ramified theory of me.m.wwg a simple restriction on size.
Hwoamr Cantor’s theory was free of contradictions, it had ﬁrﬁwﬁ. mmW;EmEm.
In order to make it clear what those problems were, I shall give an axiomatic
reconstruction of what I take to have been Cantor’s mathematical Ezm,muu% in the
period from somewhere around the time he arrived at the ideas in the Grund-
lagen of 1883 to the time he realized that the ideas of [Can91], the paper in
which he first published his “diagonal argument” (translated as Appendix B
to this chapter), could be used to show that the continuum of real numbers had
cardinality 2. That period encompassed the main part of the development of
his theory. It began with his acceptance of the ordinal numbers as objects of
study in their own right, and it ended at a time when he was to publish only
two more works on set theory, albeit important ones. Those last two works
show some awareness of the problems with the theory as developed earlier.
Note that that period of development came before the diagonal argument that
led to Russell’s paradox. .
As we have seen, Cantor did not work ‘axiomatically. He was working
out the facts on the basis of 4. mmoammemmsmwmmmmmouu not on the basis of
stipulated assumptions. Nonetheless, he did take each of the principles I take

as Cantorian axioms to be, in one or another sense, basic.

£
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I shall engage in some simplification. For example, Cantor did not SH.S :
0 to be an ordinal number; he started with 1. I shall start with O anyhow.
Cantor identified things other than sets (and sometimes, it mmaBm.. perhaps
sets as well) with their sinigletons.?C It is not clear whether Cantor took either .
ordinal numbers or cardinal numbers to themselves be sets. I shall remain
neutral about whether ordinal numbers are sets in the way that I reconstruct
Cantor’s view. I shall leave cardinal numbers out of account altogether. They
do uo.ﬁ play a central role in Cantor’s ﬁ.o? and so adding them on is not
: .@m.w.mﬂ.mbw illuminating. Besides, later developments have made it clear that
initial ordinal numbers will serve perfectly well as cardinal numbers.2! I shall
give a definition of the least infinite ordinal number, w, that does not rely
on a prior knowledge of the natural numbers. Cantor tended to rely on such
knowledge. I have also modified Cantor’s notation for number classes.

Technical Remark. Cantor worked in QE.BWP. not in a mo_,.B& lan-
guage, and he worked years before anyone-had distinguished between
mmmn- and second-order logic. (See §V.3.) He made free use of the no-
tions of ?u,on.ob and relation, taking them to be part of an antecedently
given background.

Russell (and Frege before him) could not have adopted Cantor’s pro-
‘cedure: Russell’s notion of a class is so intimately connected to that of a
relation that to introduce it without carefully specifying what is meant by
a relation would have begged the question, and an analogous comment
applies to Frege. But Cantor’s notion of a set is a quite different one
as I have emphasized beginning in §IIL.4, and his notion is mcmmﬁanmu“
far mSE. those of relation and function that the present procedure is a
reasonable one. It is true that one of the principal reasons that Cantor in-
troduced set theory was to understand real-valued functions. But he did
not regard the general notion of a function as problematic—his problems
concerned special aspects of real-valued functions. Cantor’s background
theory of ?bonoum could not have led him into paradoxes in the way -

20. A singleton is a set with one member. Given an object @ we can form the single-
ton {g}, a set that has a as its only member. Since a feed i

ton { not be a set, it is clear that ¢ and
its singleton need not be the same, and we shall, in general, take them to be distinct .

21. An ordinal number « is an initigl ordinal number if « is no greater than any

ordinal number B such that the set of
predecessors of 8 has the s
recueessons ot B ame power as the set of
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that Russell’s and Frege’s theories led them into paradoxes, since Cantor
only considered functions on specified domains, and he never considered
domains that consisted of functions of any very general sort. The prob-
lems of circular reference and self-application were therefore far from
anything he considered.

When I claim that something or other follows from Cantor’s axioms,
it becomes necessary to specify what the assumptions of the background
second-order logic are. All that is assumed is the usual quantifier rules

» plus the axiom scheme of comprehension for first-order formulas with
parameters—which says that such formulas define legitimate relations
A and functions, not sets! (See, for example, [Sha9l, p. 66].)

Here are the Cantorian axioms: 22

Ax10M 2.1. The ordinal numbers are linearly ordered by <.

Axi0M 2.2. There is a least ordinal number, 0.3

Ax1oM 2.3. Every ordinal number o has an immediate successor
a+1.24

AXIOM 2.4. There is an ordinal number w such that 0 < w; for
every ordinal number o, if @ < o, then o + 1 < w; and for every
nonzero ordinal number o < w there is an ordinal number B such that
a=8-+1L

22. The less mathematically sophisticated reader may wish to skip directly to the
discussion of the axioms. Axioms, definitions, theorems, and lemmas will be numbered
in a single numbering system within each section of the book. Thus, the number 2.1 in
Axiom 2.1 is the first numbered item of § 2 of the present chapter. A reference to, for
example, Axiom 1, is always a reference to the first numbered item in the present section;
a reference to Axiom 2.1 will be a reference (made outside of § 2) to the first item of
§ 2 of the present chapter; and a reference to Axiom IV.2.1 (made outside of Chapter IV)
is a reference to the first numbered item of § 2 of Chapter IV. The system has the virtue
that it is easy to locate items to which reference has been made. It has the defect that the
numbering does not always reflect the logical grouping of the numbered itemns.

23, More precisely, every ordinal aumber o other than 0 is such that 0 < a.

24. More precisely, the axiom says that for every ordinal number e, there is an
ordinal number B such that « < § and for any ordinal mumber y, if & <y, then B=<vy.
Tt is easily seen that the ordinal number 8 is unique. Call it o +- 1.
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That 18, @ is a nonzero ordinal number whose predecessors are closed
under successor and whose nonzero predecessors all have predecessors.

DEFINITION 2.5. A set is the range of a one-to-one function with
domain a proper initial segment of the ordinal numbers.

The definition says that a set is whatever can be counted. Note that it

——

follows from the definition that the predecessors of any ordinal number form

a set. v

AXIOM 2.6 (EXTENSIONALITY). Sets with the same members are
equal.

AX10M 2.7. Every set of ordinals has a least upper bound.

. Note that it follows from the axiom (and Definition 5) that every proper
initial segment of the ordinal numbers is the set of predecessors of an ordinal.
Using Definition 5 and Axiom 7 we see that w is the least nonzero ordinal
number with predecessors that are closed under successor.

AX10M 2.8. For every ordinal number o there is an associated set
(@), the number class of «, such that 8 is in (&) if and only if B is
an ordinal number EEW@R set of predecessors of Qu% the range of a
one-to-one function with domain the predecessors ow mv .

A set can be counted by « if and only if it can be counted by any member
of (@) and only by members of («).

- The above axioms serve to emphasize the primacy of ordinals in Cantor’s
conception of set theory: the only set-existence principles are Axiom 8, which
postulates a set of ordinals, and the definition of set, which ties each set to an
ﬂ&u& that counts it. The two set-existence principles cohere well: mEmw (cr)
18 w set of ordinals, it has a least upper bound, say 8, by Axiom 7. But when
« is infinite, it is not. hard to prove that («) is the range of a function with
domain the predecessors of 8, and hence that (e) is a set in the sense of the
definition. In fact, one can clean things up a bit by replacing Axiom 8 by

AX10M 2.9. For every ordinal number w, there is an ordinal number

- B > a such that the set of predecessors of B is not the range of a
one-to-one function with domain o.

1
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The resulting set of axioms is equivalent to the one above, but it has only
one set-existence principle, Definition 5. .

Either set of axioms requires supplementation by another principle m.gmﬁ
Cantor often in effect made use of, though he nowhere made anything like
it explicit. Say that a one-to-one function F with moEEHb the set of whommo%l
sors of an ordinal and with range S witnesses that S is a set. According to
Definition 5, every set has a function witnessing that it is a set.

AxioM 2.10. Let S be a set of sets, and let F be a function with
domain the predecessors of some ordinal number o witnessing that S
is a set, that is, such that every member of S is F(y) for some y <a.
Then there is a binary function H such that for every y < o, the unary
function H (y, ) that remains after y is ﬁEm_mmm into H has &9:.5.: the

_ set of predecessors of an initial Qx&zﬁ and witnesses that F(y) is a set.

Axiom 10 is based on the rather natural principle that since every member

of the set S has a function witnessing that it is a set, there is a set of such

witnesses. Perhaps Cantor did not make anything like it explicit because w”ﬁ is
a principle concerning functions, not sets, and he took himself to be working
_ with an antecedently given notion of function.

Technical Remark. The mathematically sophisticated reader may be a
bit bemused at this point, since Definition 5 and Axiom 10 are both
closely related to the Axiom of Choice. But each seems to be indepen-
dent of the other in the present setting, since the Axioms of Union and
Power Set are absent. On the basis of what I have taken to be Cantor’s
axioms, Axiom 10 entails the Axiom of Union, as is not hard to check.
If we supplement my Cantorian axioms with the assumption that the
ordinals are sets, for example by using the von Neumann ordinals, and
assume (for simplicity) that there are no urelements, then the resulting
second-order axioms are equivalent to second-order ZF minus the Foun-
dation and Power Set Axioms plus the axiom that for every cardinal (ini-
tial ordinal) «, a next cardinal «* exists and the following axiom: for
every set S there is a set T such that for every member s of S there is
exactly one member of T that is a well-ordering of s with order type
an initial ordinal. The final axiom entails the Axiom of Choice but does
. not follow from it on the basis of the first-order version of the theory

§2. Cantor 83

‘just described, that is, in the absence of the Power Set Axiom. %> Andrzej

Zarach has investigated theories closely related to the one just outlined
[Zar82].

The axiomatization given here relies heavily on the notion of a witnessing

. function, which does not appear in Cantor’s work. It is my way of expressing

that a set can be “counted,” in Cantor’s own terms. Of course, it is immedi-
ate from Definition 5 that every set can be well-ordered, and Cantor relied on
the notion of well-ordering instead of on the witnessing functions used here.
But that involved him in the following detour: He had both well-order types
[Anzahlen] and ordinal numbers [Zahlen]. Each well-ordered set is associated
with the ordinal number such that the predecessors of that ordinal number in
the natural order (<) have the same well-order type as the well-ordered set.
(See [Can83, p. 168] or [Can76, p. 72]. The English translation does not al-
ways distinguish between Anzahl and Zahl.) There was some point.- to that
added complexity, since the existence of well-ordered sets of one or another
order type was part of Cantor’s argument for the reality of the corresponding
ordinal numbers. For example, the ordinal number o is introduced in terms of
the order type of the sequence of natural numbers. I have simplified Cantor’s
theory by making the association between ordinal numbers and well-ordered
sets directly via witnessing functions, avoiding the mathematically superflu-
ous detour through well-order types.

Let me briefly document that each of the proposed axioms is in fact a @nh..
ciple that Cantor accepted. Each pair of page numbers here is a reference to
the Grundlagen, the first to [Can83] and the second to the English translation
[Can76].26

Axiom 1. The numbers are in a “natural succession” [168, 72], and they are
“comparable to each other” [177, 77].

Axiom 2. Actually, as mentioned above, Cantor started with 1. He spoke of
the ordinal numbers as “an extension or rather a continnation of the sequence
of real*’ whole numbers [1,2,3,..., v, .. -] beyond the infinite” [165, 70)].

25. Zbigniew Szczepaniak has shown that the Well-Ordering Principle does not fol-
low from ZFC minus Power Set (ZFC™) if ZFC~ is consistent [Zar82, p. 339]. His proof
establishes the claim in the text.

26. All but the briefest of the nmuﬂmm.o:.m are, except as noted, my own.

27, Cantor distinguished between “reellen” mumbers—the continnum—and “realen”
numbers—genuine ones—which include not only the real and complex numbers but also
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Axiom 3. Cantor’s “first principle of generation” is “the principle of .Ew
addition of a unit to an existing, already formed number” [195, 87, translation
from {Can76]].

Axiom 4. Cantor held that there is

nothing objectionable in conceiving of a new HEBcnmlém shall call
it w—which is to be the expression for this: that the whole domain
[Inbegriff ] () [of the positive real whole numbers 1,2,3,...,v,...] _wm
given in its natural succession according to law. (Similar to the way in
which v is an expression for this: that a certain finite type Tm:Nn.EU_ of
units is unified into a whole.) [195, 871

Definition 5. First, I shall discuss the reason for oﬁ,&\ allowing proper ini-
tial segments of the ordinal numbers. In investigating the suprafinite numbers,
Cantor said that “we will get ever farther ahead, never reaching an unsur-
,EoE:mEm limit, but also attaining not even an approximate grasp of the abso-
lute. The absolute can only be acknowledged, but never known,” and that “the
absolutely infinite sequence of numbers . . . seems to me in a certain sense a
suitable symbol of the absolute” [205, 94, the first translation is essentially
that of [Can76]]. ,

Now on to the central point of the definition.

The concept of a well-ordered set shows itself to be fundamental for the
whole theory of sets. That it is always possible to bring any weli-defined
set into the form of a well-ordered set seems to me to be basic and rich in
consequences and through its general validity an especially remarkable
law of thought . ... [169, 72] i

Though that quote provides convincing evidence, I must discuss a certain
@m.mmmmw in the Grundlagen that is often taken to be evidence that Cantor’s set
theory is so-called naive set theory,?® a contradictory theory that is chiefly
distinguished by the fact that it has as a postulate a Comprehension Principle
much like that of Russell. The passage is in an endnote for Section 1 of

the transfinite ordinals. I have not preserved Cantor’s distinction in the translations. The
reader will have no trouble sorting things out.

28. As I leamned from [Moo82, p. 260], the term is due to John von Neumann,
who, following Ernst Zermelo, attributed the theory to Cantor. See, for example, [Zer08b
p- 200] and [vN25, p. 394].
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the Grundlagen, not in the text, so it would be curious if it had the og,ﬁ.&
importance often claimed.2® The Passage opens as follows:

By “set” [“Mannigfaltigkeit” oder “Menge”] I understand in general
every many that can be thought of as one, i.e., any domain of definite

elements which by means of a law can be bound up into a whole . . .
[204, 93]

K one takes a “law” to be something like Peano’s “condition,” Frege’s “con-
cept,” or Russell’s “propositional function,” then the passage is a classic state-
ment of a Comprehension Principle, and that is how it is usually taken. That
reading is, perhaps, encouraged by the fact that the passage continues3® “and
I believe that in this I am defining something which is related to the Platonjc
elfog or l6écr . . . " But Cantor’s typical use of the word law in the Grundla-
gen is “natural succession according to law,” which suggests quite. a different
picture: a “law” is, for Cantor, a well-ordering or “counting,” and so the pas-
sage suggests Definition 5, not a Comprehension Principle. That reading is
strongly supported by the fact that the passage continues

as well as to that which Plato in his dialogue “Philebus or the Highest
Good” calls uiktév. He counterposes this to the @weipov, i.e., the un-
limited, indeterminate, which I call the non-genuine-infinite, as well as

to the wépag, i.e., the limit, and explains it as an ordered “mixture” of
the two latter, :

Let me just string together some relevant quotations from the Philebus.3! The
“utkTov” is the subject of the third quote. What is at issue here is Cantor’s
understanding, not Plato’s. It is not clear what Plato meant or what Cantor
made of it, but there is no question that numbering, not conditions, ,ooun&:mu
or propositional functions, is the central idea. .

29. A similar passage is the opening of Cantor’s Beitriige of 1895 {Can95, p. 481],
but, as I shall argue below, Cantor had modified his theory by that time. The passage there
is ambiguous in much the same way the one described here is. For a discussion of that
passage and an explicit statement that Russell, not
theory, see [Halg4, p- 38].

30. Y am here and below using the translation in [Can76].

31. It is interesting to note that the Philebus was likely written in response to Eu-
doxus, both his ethics and, what is relevant to the passages here cited, his theory of in-

commensurable ratios [Gos75, pp. 166181, 196-206]. The translations are taken from
[Gos75].

Cantor, is the originator of naive set

I
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But one should not attribute the character of indeterminate to Ew plural-
ity until one can see the complete ,chGmH between the EamuﬁnEamﬁ and
the one. Then one can consign every one of them to the EaﬁoﬂEaﬁo
with a clear conscience. [16D] . .

If a person grasps any one, then, as I say, he must not turn gw&.&o@
to its indeterminate character but rather look for some number. mEEmHH.%
the other way round, when oune is forced to start with what is EQQQE.?
um:.w, one should not immediately look to the unitary aspect, but again
note some number embracing every plurality, and from all these end up
at the one. [18A] . .

That of equal and double, and whatever puts an end to opposites being
at odds with each other, and by the introduction of number makes them
commensurate and harmonious. [25E]

Axiom 6. The Axiom of Extensionality, which is often taken to be oo.nmm-
tutive of the notion of set, is curiously difficult to locate in Cantor’s Saﬁumm.
mﬁmumwo_u.&#% is present in the beginning of the passage discussed gmﬂm&.
.mﬁo@ above, in the idea that a set is a “domain of definite &oﬂmam. Hro
clearest statement is perhaps, as Hallett suggests, to be found in an E.n.&w
published in 1887 [Can87, p. 387] in which Cantor writes of a set \:ooumpmn,
ing of clearly differentiated, conceptually separated elements m, m’, ... and
which is thereby determined and delimited” [Hal84, p- 341.

Axiom 7. Cantor defined [196, 87] the “second principle of generation of
whole real numbers” to be that “if any definite succession of defined s&oH.a
real numbers is given, of which no greatest exists, then on the ,um.mwm of this
second principle of generation a new number is created, which is thought
of as a limit of those numbers,. i.e., which is defined as the =Edco.a next
greater than all of them.” As Cantor’s application of the second principle of
mmcmHmROb.E the Grundlagen makes clear, a “succession” is Eﬂwna.ma to be an
initial segment of the ordinal numbers. It is not clear what ,.domEﬁa: means,
but the m@@ﬁom&oum make it fairly clear that the principle is intended to apply

initial segments that are sets.

° m:@mOmommrwﬁ given any set of ordinals one can form the moﬁ.om all onE.ﬁm
less than or equal to any member of the set. The set formed will be mu initial
segment, and so the second principle of generation guarantees Ewﬁ .: has a
least upper bound, which is therefore a least upper bound of the onmE.a mm.ﬁ.
The axiom then follows from the second principle of generation. The axiom is
frequently more convenient to apply than the second principle of .mmnmm&o:
since it does not require forming an initial segment as an intermediate step.
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The argument I just gave for Axiom .7 rested on assuming that given a
set of ordinals one can form the set of all ordinals less than or equal to any
member of the set, or, what is the same thing, that one can form the union
of the members of the set of sets of predecessors of members of the first
set. Cantor expressed no such idea in the period under discussion, but it—or
something like it—seems to be required in order to make sense of Cantor’s
assertions about number classes and powers. Cantor rarely mentioned any
number class beyond the first three explicitly. Though he explicitly declared
that for every ordinal number y there is a yth power [205, 94], he did not
even make explicit mention of the wth power in print until 1895 [Can95,
P- 495], when he promised to prove its existence. He never did so in print. In
1899, in the letter to Dedekind in which he proved that the ordinal numbers
form an inconsistent multiplicity [Can32a], he introduced Ry, the wth power,
as the cardinality of the set of predecessors of the least ordinal number that
does not have R, predecessors for any finite v and, what is essentially the
same, also as the cardinality of the union of the first, second,-third, and so

_forth, number classes. Thus, he allowed forming the union of a set of sets of

ordinals when the result is an initia] segment of the ordinals.3? Such a union is
just what is needed to Justify my assumption. A more cautious reconstruction
might replace Axiom 7 with “Every initial segment of the ordinals thatis a
set has a least upper bound.” But, by a lemma of Azriel Levy [Lev68, p. 763],
the resulting system has the full Axiom 7 as a consequence. I have used the
apparently stronger version lazgely for perspicuity, but also because, as I just-
argued, Cantor seemed to use something like it, and he almost certainly did
not know Levy’s derivation of it.

+ Axiom 8. Along with the two principles of generation, Cantor stated a third
principle, which he called a “stopping or confining principle” [Hemmungs-
oder Beschrinkungsprinzip]. He said that the principle or condition satisfied
by all the ordinal numbers defined to that point in the Grundlagen is that
their predecessors can be placed in one-to-one correspondence with the nat-
ural numbers, that is, that they are of the first infinite power. He went on to

32. He used a denumerable disjoint union, while my proposed analysis allows an
arbitrary union. He characteristically preferred disjoint unions, but he did consider nondis-
joint unions from time to time [Can82, p. 152; Cang4, P- 226], and so I think there can be
1o objection to allowing that in my reconstruction. Similarly, though he usually employed
only finite or denumerable unions, he did make use of unions that cannot always be fi-

aﬁoaansmBonmEoSmmmum BEn@mommonamoEE&EpEcaa EP.\E and of cardinal
numbers [Can87, p. 414]. .

Il
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define the second number class, which I have called (w), as “the domain of
all numbers o that can be formed with the help of the two principles of gener-
ation” such that the set of predecessors of « is of the first infinite power. (See
[197, 88].) Now all that only gives the second number class, but he said earlier
[167, 71], “In the same fashion the third number-class yields the definition of
the third power, or the power of the third class, and so on.”3® Moreover, he
referred to the third number class at a couple of other points in the paper.

Axiom 10. Axiom 10 is the hardest to defend, since Cantor nowhere stated

‘anything Iike it. Various alternative formulations may be just as appropriate
as the one I have given. But something like the proposed axiom is needed
to prove the theorems Cantor does. In modern set theory, the counterparts of
Definition 5 and Axiom 10 are equivalent—they are variants of the Axiom of
Choice. But even when Cantor came to have doubts about Definition 5 (see
below), he continued to use something like Axiom 10 unhesitatingly, which
provides evidence that there was a principle at work that Cantor thought of as
independént of Definition 5.

The first published theorem that cannot be rigorously proved without some
form of the Axiom of Choice seems to have been a theorem of analysis proved
by Cantor, published by his colleagne Heine in 1872 [Mo0082, p. 14].3* There
was no apparent recognition that a new principle was involved in the proof.
Many theorems of set theory that Cantor subsequently published require some
form or other of the Axiom of Choice. Virtually all are stated without proof,
usually as elementary lemmas involved in the proof of other theorems. (See
[Moo82] for a thorough survey.) Many of those theorems are immediate con-
sequences of Definition 5. The theorem that every infinite set S has a denu-
merable subset provides an example: Let F witness that S is a set, and say
the domain of F is the predecessors of «. Then « > w, since § is infinite. Let
F'be F with domain restricted to the predecessors of w. Then the range of
F' is a denumerable subset of S. Cantor did not publish that theorem until

. 1895. But he did state earlier that the powers are well ordered, that a set is
finite if it has no proper subset equal in power to itself, and other immediate
consequences of Definition 5.

In addition to the results just outlined that flow from Definition 5, Cantor
also made use of the following results in the years indicated, which he re-

33. The translation is taken from [Can76].
34. Here is the theorem: A function f from the real numbers to the real numbers is
- continuous at a point p if and only if it is sequentially continuous. at p.
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garded as too elementary to require explicit proof.3% I have written them in
modern notation, using ~ for equivalence in power, N for intersection, and | J

for indexed union. (Thus, for example, Ui <o A is the set of a such that for
some i < aisin A;)

THEOREM 2.11 (1878, 1880). Suppose that A; ~ B; and A; N Aj=
BiNBj=a foralli < j <w. Then|J,_, A ~ i<y Bi-

TaEOREM 2.12 (1878, 1882, 1883, 1884, 1885). A finite or denumer-
able union of finite or denumerable sets is Jinite or denumerable.

HmmOWmEM.HwA.memv.k»gmﬁ.umow&mszmSwKE.:.o: &nmwa&a
cardinality Ry, has cardinality R,,. :

THEOREM 2.14 (1887). Suppose that Joralli#jeS, Ai~ B; and
AN Aj=B;N Bj =g. Then Cmmul?. ~ Cmmhwm.
My argument for attributing to Cantor a commitment to Axiom 10 is sim-

ply that those results do not, so far as I can see, follow without it and that they
have natural direct proofs with it.

Technical Remark. I shall prove Theorem 12 as an example: Let Sbea
finite or denumerable set of finite or denumerable sets. If any of the sets
involved is finite, without loss of generality add more members to make
it denumerable, By Axiom 10 there is a function H of two <w.ﬂm€nm,
each of which ranges over the natural numbers, such that the range of
H is the union of the members of S. Let f and g be functions such that
every pair of natural numbers (m, #) is of the form (f(x), g(x)) for ex-
actly one natural number x. (In 1874 Cantor in effect showed that such
functions exist, in the paper in which he proved that the algebraic num-
bers are denumerable.) The function H (f(x), g(x)) witnesses that the
- union of the members of § is a finite or denumerable set, as required, if
the members of § were pairwise disjoint. Otherwise, one must delete du-
plications from the range of the function to obtain the Homﬁmma witness.

The proof simultaneously shows that the union is a set and that it is finite
or denumerable.

35. See [Moo82, Pp. 30-37] for references and a detailed discussion.
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I have now introduced my reconstruction of Cantor’s theory and argued
for it. It is therefore time to admit that it does not suffice for formalizing

e ustonierimmie i S ey

Cantor’s work during the period indicated. Such a formalization requires the

additional assumption that the real ugﬁmmm form a set and also, perhaps, the

+ e e i b e ettt e

additional assumption that the .?mmmmum fr B_&m real numbers to the real
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HEBd@Hmmoﬁ,pam,moﬁ,Qmmwwonuw@m @momcmoﬁawmnﬂ m.mmmm%mow w,mw.maom@
onmmmwnmﬂmBmHWm that occur in endnotes and the like.) Cantor can be argued
to have derived the additional assumptions from a guiding principle that is
not a part of my reconstruction, perhaps one that says something like “every
domain of a mathematical variable is a set” I shall call that the Domain
Principle.?® Indeed, some such assumption forms part of Cantor’s argument
for the existence of w, as is indicated by the quote used to justify Axiom 4
above. The Domain Principle is not suitable for axiomatic moﬂﬂ&mﬁou. but
that is not why I have omitted it from account,

During the period under discussion, Cantor believed that he would be able
to prove on the basis of his theory, essentially as I have reconstructed it above,
that every mathematical domain is a set. Thus, the Domain Principle, or
anything like it, was superfluous as an additional mathematical assumption.
In particular, Cantor believed that he would be able to prove that the real
numbers and the functions from the real numbers to the real numbers form
sets within a framework like the one I have outlined, even though .rm could not
yet-even prove that the real numbers were not an absolutely infinite totality.
Let us see, following [Hal84, pp. 74-81], why he thought so.

Cantor first showed that there are more real numbers than natural numbers
or algebraic numbers in 1874. In 1891 he proved that Rg < 280, (See Appen-
dix B.) Thus, ib,ou he noted in 1895 that the real numbers have cardinality
280 [Can95, p. 488], the result of 1891 yielded a new proof that there are more
real numbers than natural numbers. The later proof is the one in common use
today. In fact; the earlier proof is no longer well known to mathematicians.3’
It was the earlier proof that shaped Cantor’s thinking in the period under con-
sideration.

36. Hallett formulated what he calls the “domain principle” or “principle (a)” in
much the same spirit, though his principle is not identical to mine. He argued along more
or less the indicated lines in some detail.

37, The basic technique of the earlier proof (1884) is still the one used to prove Can-
tor’s theorem that no denumerable set is perfect [Can84, p. 215]. Since the real numbers
form a perfect set, it follows that the real numbers are nondenumerable.
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Here is the earlier proof: It suffices to show that given any sequence
U, 3, ... of real numbers there is a number that is not in the sequence in any
interval of real numbers (a, b)—that amounts to showing that any sequence
U1, U, ... that supposedly lists all of the real numbers, thereby showing them
denumerable, must omit at least one in every interval. Let a’ and &' be the
first two members of the sequence ui, ua, ... that are in the interval (g, b),
with a’ < b'; let a” and b” be the first two members of the sequence that are
in (a’, b"), with a” < &"; and so forth. If the sequence of nested intervals only
goes on for finitely many steps, then there is at most one member of the last
interval that appears in the sequence w1, U2, .... Any other member of that
interval is omitted from the sequence, as required. If the sequence of nested
intervals is infinite, then the left endpoints converge to a point a*® and the
right endpoints to 5%, If g® = p*, then that point is as required. Moreover,
as Cantor noted, if u;, U3, ... is an enumeration’ of all the algebraic num-
bers, then that will be the case, and so a® will not be algebraic. Finally,
if @*° < b* then any member of [a®, b*] (including the endpoints) is as
required. That completes the proof. :

Next, I shall present Cantor’s proof in the Grundlagen that there are more
HE.Bdon in the second number class, (), than there are natural numbers, or,
as Cantor actually put it, that the second number class is of greater power
than the first number class. Note how similar this proof is to the proof that
there are more real numbers than natural numbers. (I have changed Cantor’s -
notation to emphasize the parallelism between the two proofs.)

It suffices to show that given any sequence uq, us, ... of members of (w)
there is a member of (w) that is not in the sequence. Let a be the first member
of the sequence, let o’ be the first member of the mm.@mnuom that is greater
than a, let a” be the first member of the sequence that is greater than g’ ,
and so forth. If the increasing sequence g, a’, a”, . . . only goes on for finitely
many steps, then its last member is the greatest number that occurs in the
sequence uy, us, . ... Its successor is as required. If the increasing sequence
a,a’,a”, ... is infinite, there is a least ordinal number greater then all its
members, call it a®, which is in (w) (since its predecessors have in effect
been specified as a denumerable union of finite or moHEEonEm sets). Thus,
the oHEu& number a® is as required. That completes the proof. (Actually,
Cantor went on to show that the ordinal number I have called ¢ is the least
upper bound of ug, uy, .. ..) A

Each of the two proofs shows that a set does not have the power of the
natural numbers by showing how, given a sequence of members of the set,
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to find a member of the set that is not in the sequence. Moreover, that is -

done in each proof by considering appropriate subsequences, and in the main
cases the number that is outside the sequence is obtained as a “limit” of the
subsequence. Given the strong parallels between Cantor’s analysis of the real
numbers and his analysis of the second number class, it is small wonder that
Cantor believed that the real numbers and the second number class (w) were
intimately connected and that he would eventually be able to prove a strong
form of the Continuum Hypothesis: the real numbers have the power of the
second number class. Note that a proof that the real numbers have the power
of the second number class would show that they form a set, according to
Definition 5, and so obviate the need to apply a domain principle. That was,
I believe, the chief importance of the Continunm Hypothesis for Cantor—
it would show that the real numbers form a set, and hence that they were
encompassed by his theory.

Cantor repeatedly thought that he had proved that the real numbers have
the power of the second number class, and he announced countless times that
he hoped to publish such a proof.3® He also announced that the functions
from the real numbers to the real numbers have the power of the third number
class [207, 95]. That would once more make an appeal to a Domain Principle
unnecessary by showing that the functions from the real numbers to the real
numbers moHE a set. . o

Cantor took the analogy between the real numbers and the second num-
ber class very seriously. In §9 of the Grundlagen he outlined three meth-
ods of introducing the real numbers: Weierstrass’s method relying on se-
ries, Dedekind’s method relying on cuts, and his own method relying on se-
quences. He gave various reasons to prefer his own over the others, including
this one: his, unlike the others, generalizes to the case of transfinite numbers
[190, 84]. What he had in mind is that just as irrationals are introduced to play

 the role of limits of Cauchy sequences of rational numbers, new ordinal num-
bers are introduced to play the role of limits of sequences of ordinals. That is
strikingly clear in this passage:

Indeed w can in a certain way be viewed as the limit that the variable
finite whole number v aims at, though only in the sense that w is the
smallest transfinite ordinal number, ie., the smallest fixed number that

38. See, for example, [192, 86]. Detailed histories may be found in [Hal84], [Dau79],
and [Moo82], among others.
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is greater than il finite numbers v; in the same way +/2 is the Limit of
certain variable, increasing, rational numbers, though here in addition
the difference between +/2 and these approaching fractions becomes
arbitrarily small, whereas @ — v always equals w; this difference does
not alter that  is to be recognized as just as definite and complete as
+/2, nor does it alter that e has in it some traces of the numbers v that
aim at it, just as +/2 does of the approaching rational fractions. .

The transfinite numbers are in a certain sense themselves new irrg-
Honalities and in fact in my opinion the best method of defining the finize
irrational numbers is wholly similar to, and I might even say in principle
the same as, my method described above of introducing transfinite num-
bers. One can say unconditionally: the transfinite numbers stand or fall
with the finite irrational numbers; they are like each other in their inner-
most being; for the former like the latter are definite delimited forms or
modifications (d¢wpic uévar) of the actual infinite. ([Can87, pp. 395~
396], my translation, but see also [Hal84, p- 80D ,

Cantor had produced a simple but powerful theory in which he could for-
mulate a lot of new and interesting mathematics, but a proof that the real
numbers have the power of the second number class—a proof that they form
a set—continued to elude him. In 1891 he published a new proof that there
are infinite powers other than that of the natural numbers, a proof that did not
“depend on considering the irrational numbers 39 What he had in fact shown
is that for any set Z and some fixed pair of distinct elements, the set of func-
tions from L to that pair has power strictly greater than that of L. Thus, the
infinite powers have no maximum, a result he had shown quite differently in
the Grundlagen. First, he stated and proved the theorem in the case in which
L is the'set of natural numbers, Next, he stated the fully general form of the
theorem that I just did, but he did not give a proof. Instead, he illustrated the
method by showing that the theorem holds in the case in which L is the set of
real numbers between 0 and 1. To avoid misunderstandings, let me state ex-
plicitly that there is no mention in the article of any set of subsets of a set, and
that there is no proof in the article that there are more real numbers than nat-
ural numbers (though Cantor does mention that that was Proved in an earlier

_article).

Cantor had reason for wishing to avoid any use of the irrational H.zmucoa in

39. See Appendix B for a full translation of his article,

1
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proving the theorem that there is an infinite power other than that of the natu-
ral numbers, but one should notice that he already had a proof that avoided the
irrational numbers: the proof in the Grundlagen. I can only think that, since

he thought of the transfinite numbers as “new irrationalities,” he thought of

that proof as involving irrational numbers in an extended sense. Thus, what
is important is that the new proof avoids both the irrational and the transfinite
numbers.

As Joseph Warren Dauben noted, the irrational numbers were controversial
[Dau79, p. 165], and 80, of course, were the transfinite numbers. Kronecker
in particular was an influential figure who denied the existence of irrational
numbers. (See, for example, [Dau79, p. 69].) It was therefore worthwhile, for
polemical purposes, to avoid their use in proving that there is more than one
infinite power. The two earlier proofs of that showed that sets defined in a
similar way were large—sets defined by introducing limits to sequences or
successions. But Cantor had no mathematical proof with which to confront
his opponents that one could legitimately introduce such limits either in the
case of the real numbers or in the case of the second number class. In the case
of the irrational numbers he seems only to have had the argument that in anal-
ysis numbers present themselves in the form of limits of sequences.*® In the
case of the transfinite numbers he used the second principle of generation dis-
cussed above. Whatever the justification for those assumptions that suitable
sequences have limits—and Cantor clearly believed them to be justified—
a proof that there are infinitely many infinite sizes that is independent of
them would clearly be more convincing than one that did depend on them.

Moreover, an independent proof of that result could serve to bolster those

assumptions. ,

The new proof js independent of any uomou. of limit or of transfinite num-
ber. It does, however, require a new set-existence principle: if L is a set, then
so is the domain of all functions from L into an arbitrarily fixed pair. That
principle can clearly be justified using the Domain Principle, but unlike the
Domain Principle it is mathematically precise and provides a basis suitable
for proving theorems. .

As Russell had realized by 1900 (see [Cof 79, p. 33] and [Rus03, p. 366)]),

40. Cantor didn’t actually say that. What he did do is take it as an argument against
Dedekind’s definition of irrational real numbers in terms of “cuts” and as an argument in
favor of his own definition in terms of sequences that numbers do nor present themselves
in the form of cuts [185, 81].

§2. Cantor 95

any function from a set L to a pair is fully determined by the subset of 1.

 that is taken by the function to a fixed member of the pair: in effect, we

think of the two members of the pair as meaning “yes, this element is in the
subset” and “no, this element is not in the subset.”” The affinity with Russellian
propositional functions is obvious. Thus, the domain of all functions from 7,
into some fixed pair is canonically identifiable with the domain of subsets of
L. It follows that the new principle is equivalent to the Power Set Axiom in
common use today: the subsets of a set form a set. I shall therefore, at the cost
of a slight anachronism, refer to the Cantorian principle above as the Power
Set Axiom. .

By 1895 [Can9s, P. 488], Cantor had realized that the Power Set Axiom
had another important consequence: he could show that the power of the set
of real numbers (the continuum) was that of the set of functions from the
natural numbers to a pair or, as he now wrote, that ¢ = 2%, The proof of
that fact is sufficiently easy, given what Cantor knew, that it would .mcgnmm
me if he had not already discovered it in 1891, but the exact date doesn’t
atter, i :

The point is nor that the new consequence that ¢ = 2™ provided a new
proof of the nondenumerability of the set of real numbers when combined
with the 1891 result that, in the 1895 notation, reads Rg < 20, Though that
is the Cantorian proof familiar today, Cantor never actually gave it. Rather,
the point is that the new Power Set Axiom enabled Cantor to prove for the
first time that the real numbers form a set, instead of just Bﬁ,um that as an
additional assumption. Cantor may well have seen that as a victory of con-

vital for Cantor,

The Power Set Axiom, however, was not easily integrated with the con-
ception of a set as anything that can be counted. For the first time, Cantor
needed to allow for the existence of a set that he did not know how to intro-
duce explicitly via a counting, or, more precisely, that he did not know how to
well-order in 4 definable way. (I am excepting Cantor’s earlier use of the real
numbers—though he did not know how to count them, he had good reason to
think that he would eventually be able to do so.)41

41. As mentioned in 8112, as a result of considering the real numbers Om.bnon did
very briefly doubt that every set can be well ordered. That supports the point that Cantor’s

M
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Technical Remark. Since I am talking here as if Cantor were only in-
terested in definable Sw:.o&mnummu let me point out an ambiguity in
Cantor’s theory. The axioms are second order, and I have so farjust been
acting as if “function” meant arbitrary function in the sense of today’s
standard second-order logic, and so forth. But given the lack of clar-
ity of Cantor and his contemporaries about definability, it would not be
terribly implausible to reinterpret what Cantor had in mind as involving
not arbitrary functions in the modern sense but instead a-recursive func-
tions for some . (See, for example, [Hin78, p. 377] for a definition and
discussion.) In that case, Cantor’s theory becomes the theory of «-finite
sets for an infinite, recursively regular (that is, admissible), recursively
inaccessible ordjnal «.*? This idea has its attractions for Cantor exege-
‘sis. For example, his “unconscious” use of a principle like Axiom 10—a
choice principle—no longer involves an additional assumption, and his
great interest in notations for ordinals (“normal forms” for denumerable
ordinals and the like) becomes better motivated. Moreover, in the Grund-
lagen and elsewhere, Cantor gave a number of recursive definitions of
larger and larger initial segments of the recursive ordinals and seemed
to define the second number class as consisting of the set of those.
That is, of course, easily explained away, since he could hardly have
given nonrecursive examples, but-it does cohere well with the present
proposal.

Cantor always intended his theory of sets to be, in some none-too-
clear sense, as comprehensive as possible. That strongly militates against
the kind of interpretation of his work given in this Remark. His extra-
mathematical intentions went beyond this interpretation and in that sense

* rule it out. The point is rather that up until 1891 nothing in his mathemat-
ical work even suggested that there might be any possibility of a set that
did not have a definable well-ordering on it.

At some wow: after 1891 Cantor’s mathematical thinking began to include .

the set of all functions from a set to two elements as an important example
of a set, and so it was no longer part of his conception of sets that every set

doubts about well-ordering and related topics were induced by the need to allow power
sets—which are not canonically well ordered.

42. The only remaining vestige of full second-order logic in this interpretation of
Cantor’s theory is that one must interpret the notion of a proper initial segment of the
ordinals in a standard way, to guarantee that < is a well-ordering.
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is born well-ordered. In Cantor’s subsequent and final two publicationis on
set theory, his Beitrdge [Can95, Can97], the Power Set Axiom entess in in
§4 [Can95, p. 487], when the exponentiation of cardinal numbers is defined,
but many of the principles he had earlier taken to be obvious had become
conjectures in need of proof [Moo82, pp. 44-46]. In particular, he no longer
assumed that the powers are linearly ordered [Can95, p. 484]—that is “by
no means self-evident and can hardly be proved at this stage.” He announced
in 1895 that he would show that the powers are even well-ordered [Can95,
p. 495], presumably in the second (1897) article, but he did not. Since those
results would easily follow from the principle that every set can be well-
ordered, presumably he had come to doubt that too. Indeed, ordinal numbers
and well-orderings had lost their primacy: in the Grundiagen, ordinal num-
bers were mentioned in the very first sentence, and well-ordered sets were
defined in the second section, immediately after the introduction, but in the
Beitriige well-ordered sets are not defined until §12, which is the beginning of
the second article, and ordinal numbers not until §14. Cantor’s theory was in
trouble, but it was not trouble caused by the paradoxes. It was trouble caused
by trying to fit the Power Set Axiom into a theory that took well-orderings to
be primary.

In the letter to Dedekind that was discussed in §I11.4, Cantor used his
result that the ordinal numbers form an inconsistent multiplicity to show that
the cardinal numbers are S%.o&ﬂd? indeed to show that every cardinal
number is an R, that is, the power of the set of predecessors of an ordinal
number: Suppose a multiplicity does not have any R as its cardinality. Then,
Cantor wrote, the whole system of all ordinal numbers is projectible into that
multiplicity. But then the multiplicity is inconsistent, and hence not a set.

Cantor must have had mixed feelings about the above proof. Jourdain dis-
covered a similar one about which he wrote to Cantor. Cantor put his ownin a
letter to Jourdain, but subsequently refused Jourdain permission to publish the
letter [GG71, pp. 115-118]. Of course, the proof would not have been neces-
sary in Cantor’s earlier theory. There one could just argue as follows: every
set can be counted and hence has the same power as the set of predecessors of
some ordinal number—indeed any ordinal number that can be used to count
it. But the power of the set of predecessors of an ordinal is an X.

A variant of the proof does show something about Cantor’s earlier concep-
tion of sets that was to be important later. Namely, it shows that if a multiplic-
ity is not a set, then it is larger than every set: Begin counting the EEEEQQ
off. If you succeed at some ordinal stage, then the multiplicity is a set. But if
you do not succeed, then all the ordinals will have been used without exhaust-
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ing the set, that is, the multiplicity has a part that is the size of all the ordinals.
Thus, the multiplicity is larger than every set. That is the origin of the later
“limitation-of-size hypothesis™: a collection forms a set just if it is not too
large. Note that the limitation-of-size hypothesis arose within a theory that is
free of all known paradoxes. It did not arise as a solution to paradoxes.*3 In-
deed, on the logical conception of collection, which is the source of the para-
doxes, it is not at all clear how size could be relevant to the question whether
a BEG@SQQ forms a set—the elements are, after all, not gathered, they sim-
ply obey a rule. That suggests that on the logical conception, one would
have to limit not the size of collections but the structure of the rules, just as
Russell did.
Once Cantor
principle nger had a unitary conception of set. He could therefore
"o longer say which multiplicities were sets: the only Wway he had to show
that some were not sets was by arriving at contradictions. In the absence of
a positive account, that policy seemed ad hoc. It is a corollary of the result
that the cardinality of every set is an R that every set can be well-ordered
. or counted. But that no longer serves as a criterion for what things are sets,
because one can now show, for example, that the set of real numbers can be
well-ordered only after the fact—by showing that it is a set. One cannot show
that it is a set by showing that it can be well-ordered. The elegant theory of
the Grundlagen was lost, and it was not clear what could replace it.

cepted the Power Set Axiom as a second set-existence
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§3. Appendix A: Letter from Cantor to Jourdain, 9 July 1904*

Today I want to reply to only one point in your kind letter, that is the diffi-
culty, which Mr. Russell describes in his work The Principles of Mathematics
Pp. 365-368. .

He starts out from my proof of the theorem

43. The term limitation of size was, it must be admitted, introduced by Russell in
1906 to name a theory considered by him as one possible way of mgiam the paradoxes
concerning logical collections. As he said [Rus03, p- 152], however, “This theory naturally
becomes particularised into the theory that a proper class [that is, an allowable collection]
must always be capable of being arranged in a well-ordered series ordinally similar to a
segment of the series of ordinals in order of magnitude.” That is, as we have seen, Cantor’s
theory developed before the paradoxes were known, and before Cantor had proved the
existence of absolutely infinite collections.

44, T have based my translation on the text as published in [GG71, p. 119].
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280 5 S 94)
which can easily be extended to the case where ¥ is replaced by some trans-
finite cardinal a. : .
One assumes here some set (that is, a consistent multiplicity) 9t with the

\

.cardinal number a and imagines the totality & of all coverings of 90t with two

mutually exclusive symbols, perhaps with 0 and 1. :

The elements of & are therefore definite coverings of 9, each therefore an
individual set of the same cardinal number q.

Were we now, as Mr. Russell proposes, to replace 97 by an inconsistent
multiplicity (perhaps by the totality of all transfinite ordinal numbers, which
you call 20), then a totality corresponding to & could by rio means be Jormed.

. The impossibility rests upon this; an inconsistent multiplicity because it can-

not be understood as a whole, thus as o thing, cannot be used as an element of
a multiplicity. .

Only complete things can be taken as elements of a multiplicity, only sets,
but not inconsistent multiplicities, in whose nature it lies, that they can never
be conceived as complete and actually mﬁ.&msw.. . .

§4. Appendix B: On an Elementary Question of Set Theory*

In the article “Uber eine Eigenschaft des Inbegriffs aller reellen algebraischen

Zahlen” (Journ. Math. 77, 258) [(1874), see [Can32b, pp. 115-118]] one
finds, probably for the first time, a proof of the theorem that there are infinite
sets that cannot be placed into one-to-one correspondence with the totality
of all finite whole numbers-1,2,3,...,v,..., or, as I like to put it, ..Emﬁ do

- not have the power of the number sequence 1,2,3,...,v,.... From what has

been proved in §2 it follows without further argument that, for example, the

" totality of all real numbers within any interval (. .. 8) are not representable -

in the form of a sequence

SHuer...uSCu.

It is possible, however, to produce a much simpler proof of that theorem

 that does not depend on considering the irrational numbers.

Take any two symbols 7 and-w that are distinct from one another. Now we
consider a domain [Inbegriff] M of elements .

E=(nx,...,x,..),

45. My translation of [Can91] as based on the reprinting [Can32b, pp. 278-280].
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which depend on infinitely many coordinates xi, x2,..., %y, ..., such that
each of these coordinates is either m or w. M is the totality of all ele-
ments E.

Among the elements of M belong, for example, the following three:

mHHo?wFE.S,...V_

mHHH (w,w,w,w,...),
m_H_HH m,w,m,w,...).
I claim that such a set M is not of the power of the mmmzou.oo 1,2,3,...,v,.

That is shown by the following theorem: “If Ej, Eq, ..., E,,... is any
-simply infinite sequence of elements of the set M, then there is always an
element Eg of M that corresponds to no E,.”

To prove this, let
E1=(a@1,1,a12,--.,a1v,..),
E;=(az1,a22,...,82,0,...).
m: - AﬁNt..Hu hN\kJNu cray Qt..tu .- .v.

Here the a,, , are m or w in a definite manner. Produce now-a sequence
bi,by, ..., by, ...,
so defined that b, is different from a, , but is also either m or w.

Thus if @,,, = m, then by, = w, and if a, , = w, then b, =
If we now consider the elemént

Ey= @T w,m, ba,...)
of M, we see at once that the equality
Eq=E,

can be satisfied for no éuoﬁ-uzn&oﬂ value for p. Otherwise, for the L in
question and for all whole-number values of v

§4. >Eum=m§ B 101
by=ay,,
therefore in particular
bu=auu

would hold, which is ruled out by the definition of b,,. It follows immediately
from this theorem that the totality of all elements of M cannot be brought

-into the form of a sequence E1, E3, ..., .ms ...; we would otherwise be faced

with the contradiction that a thing Eg both is and is not an element of M.

This proof seems remarkable not only because of its great simplicity, but
especially also because the principle that is employed in it can easily be
extended to the general theorem, that the powers of well-defined sets have
no maximum or, what is the same, that for any given set L another M can be
placed beside it that is of greater power than L.

" For example let L be a linear continuum, perhaps the domain of all real
numerical quantities z that are = 0 and = 1. _

Let M be understood as the domain of all single-valued functions f (x) that
take on only the two values O or 1, while x runs through all real values that
are = 0and = 1.
~ That M does not have smaller power than L follows from this: subsets

- of M can be specified that have the same power as L, e.g., the subset that

consists of all functions of x that have the value 1 for a single value xq of x
and the value O for all other values of x.
But then M does not have the same power as L either. For otherwise M

‘could be put into one-to-one correspondence to the variable z [of L], and thus

M could be thought of in the form of a single-valued function

é(x,2)

of the two variables x and z, in such a way that through every specification of
z one would obtain an element f(x) = ¢ (x, z) of M and also conversely each
element f(x) of M could be generated from ¢ (x, z) through a single definite
specification of z. This however leads to a contradiction. For if we understand
by g(x) that single-valued function of x which takes only values 0 or 1 and
which for every value of x is different from ¢ (x, x), then on the one hand
g(x) is an element of M, and on the other it cannot be generated from ¢(x,2)
by any specification z = zg, because ¢ (zg, zo) is different from g(zo).

Since the power of M is neither less than uoﬁ.o@c& to that of L, it follows
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that it is larger than the power of L. (Cf. Crelle’s Journal 84, 242) [(1878)
[Can32b, pp. 119-1337]. .

I have already shown by entirely other means in my Grundlagen einer
allgemeinen Mannigfaltigkeitslehre (Leipzig, 1883; Math. Ann. 21) [Can83]
that the powers have no maximum. There it was even proved that the domain
of all powers, when we imagine them ordered according to size, forms a
“well-ordered set” so that in nature for each power there is a next greater,
and that for each endlessly increasing set of powers there is a next greater one
that follows.

The “powers” represent the only and necessary generalization of the finite
“cardinal numbers”; they are nothing other than the actually infinitely large
“cardinal numbers,” and they possess the same reality and definiteness as the
finite cardinal numbers; the only difference being that the law-like relations
among them, their respective “number theory;” is partly different in kind from
that in the region of the finite.

The further exploration of this field is a job for the future.

v
The Axiomatization of Set Theory .

§1. The Axiom of Choice

It was crucial for, indeed constitutive of, Cantor’s early theory that the Well-
Ordering Principle hold, that is, that every set can be well ordered. (The term
“the Well-Ordering Principle” is taken from [Moo082].) That principle had,
with the advent of the Power Set Axiom, become questionable, a conjecture
that it was critical to prove in order to rescue Cantor’s theory of powers.
At the very least, it was necessary to prove that the power set of a well-
orderable set is well-orderable. The following test case, which is also the

central case, suggests itself: Prove that the set of subsets of the natural num-

bers can be well-ordered, or, equivalently, prove that the real numbers can
be well-ordered. That problem, together with the apparently closely related
continnum problem, was the first on Hilbert’s tremendously influential list
of problems presented to the Second International Congress of Mathemati-
cians in 1900. Since the Cantorian theory had proved inadequate, there was
the closely related problem of arriving at a workable notion of set with which
to formulate set theory. The ordinal numbers could not, it seemed, play the
defining role Cantor had assigned them. ,

In 1904, Julius K&nig gave a purported proof that the continuum cannot
be well ordered, a result that would have put Cantor’s theory in doubt. Zer-
melo found an error in the proof: Konig had relied on a theorem of Felix
wmgmnﬂu_, and Bernstein’s proof is incomplete in the relevant case. (See, for
example, [Mo0082, Pp. 86-88] for an exceéllent account of that often-told tale.)
Within a month, in conversations with Erhard Schmidt, Zermelo had solved
the problem of well-ordering the continuum to his own wmmwmmonoc and that

of present-day set theorists [Zer04]. Zermelo’s contemporaries were not so
sure,

103
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Zermelo’s work presumed familiarity with Cantorian set theory. He used
cardinal numbers and their products, functions from sets to their members,
well-ordered sets, and the Power Set Axiom without discussion. He intro-
duced the “assumption,” which he later called the Axiom of Choice,! that
for every set of nonempty sets there is a function that takes each of the
nonempty sets to one of its elements and used that assumption to ?96 the
Well-Ordering Principle. : 7

.Llr&t.\.!\l(

It is [cha monmdmno of ooBvEmﬁoan collections that they obey the Well-

Ry i e S — i,

- Ordering Principle and the Axiom of Choice. They o.om% dswz,O&mHEm be-

cause combinatorial collections are gathered by enumerating their elements,
and they obey Choice because ooE_uEmﬁoﬂE nommoﬁoa are gathered by pick-
ing their elements in an arbitrary way, not necessarily in virtue of a rule. That
makes it possible to pick one member out of each set in a set of nonempty
sets. Such Eow_bm does not give rise to a single rule that selects exactly one
member from each set in the set of nonempty sets: it may be done in an ar-
bitrary way. Thus, Choice is dubious for logical collections, which require a
rule. : .

Given a set M Zermelo applied his assumption to the set of its nonempty
subsets to obtain a function y. When m is any nonempty subset of M, he
called y (m) the distinguished member of m. He defined a y-set to be a well-
ordered subset S of M such that each member g of S is the distinguished
member of the set of elements of S that do not come before a. He then defined

a y-element to be a member of any y-set, and showed that (i) the set L,

of y-elements is a y-set, and thus well-ordered, and (ii) that L,=M, and
hence that M is well-ordered. In support of his assumption, he said only that

. it is a “logical principle” that is “applied without hesitation everywhere in

mathematical deduction.” As an example, he noted that it is used to prove that

 if'a set is decomposed into parts then there are not more parts than members
of the set.

Zermelo’s article provoked a storm of criticisms. Bemnstein and Arthur
morog?am oEooﬁmm to the proof that L,=M. Poincaré objected to the def-
inition of L, Jourdain claimed to have proved the result earlier, in a simpler
way. wombo, Borel, Lebesgue, and René Baire objected to the assumption. I
have just listed the published criticisms that had come to Zermelo’s attention
by 1908 [Zer08a]. There were other published criticisms [Moo78, p. 320].

1. See [Moo82] for a thorough and omHm?M discussion of precursors of the Axiom
of Choice, equivalents of the axiom, early EmoREm whose proofs require the axiom,

Teactions to the axiom, and practically everything else about it.
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Zermelo responded to his critics in a pair of papers [Zer08a, Zer08b], written
within sixteen days of each other, that were virtually a single paper [Moo78,
p- 319]. One of the papers [Zer08a] contains a new proof that every set can -
be well ordered, a detailed argument for the Axiom of Choice, and replies to
critics. The other contains the first axiomatization of a Cantorian set theory.

Bernstein and Schoenflies were concerned, in somewhat different ways,
with the “set” W ofall ordinals and with Burali-Forti’s paradox. Each wished
to accept W as a set, and so they restricted set-theoretic principles in various
ways in an attempt to block the paradox. In @m&o&mﬁ they denied that, given
any well-ordered set and an object not in the set, there is always a well-
ordered set consisting of the members of the original one plus the new object
ordered so that the new object comes after all the others. They pretty much
had to do that, since the paradox ‘arises immediately once one continues W
with another object. They therefore criticized Zermelo for assuming that one
could always extend a well-ordered set by a new element.

..N%.m,ﬁﬂo s main reply was three pronged, though roxmwo criticized the
details of the theories of Bernstein and Schoenflies. Firsty he argued that
any attemnpt to save W is pointless, since Russell’s @mHma,oN shows that the
EoEoBm that give rise to the Burali-Forti wmﬁmaox go mmmwma Emb the theory
of 1 Smc-caoama sets Eﬁ require “a suitable restriction of the notion of moﬁu :

e ey

mNoHOmm P GB not merely a modification. of the EmoQ of well-ordered

et

mmﬁmmmmmémanwgoaﬁmﬁmo:wmommmEmﬂm&b: S\mmmmoﬂgzygmﬁﬁ
its “inconsistent character” and that they are 9@3&9@ doomed to failure. As
evidence he cited Gerhard Hessenberg, who had noted that while Bernstein
had used W to show that there are sets that cannot be well-ordered, Jourdain
had used it to show the opposite. gafﬁ%& and most important, he proved
his result in a systemn in which W does not appear. The main point of giving

AR e s,

his new proof is that that is even clearer than it was for the old proof:

Already in my 1904 proof, having such reservations in mind, I avoided
not only all notions that were in any way dubious but also the use of
ordinals in general; I clearly restricted myself to principles and devices

. that have not yet by themselves given rise to any antinomy . . . Now I
succeeded in completing my new proof without even the device of rank-
ordering, and I hope thereby to have definitively cut off every possibility
of introducing W. [Zer08a, p. 192]

We have just seen Zermelo’s Jnain motive both for his new proof and for his
axiomatization of set theory. It was’ :S to secure set Eon from paradoxes.

il
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(See [Moo78] and [Moo82, pp. 155-160].) Paradoxes were a side issue. It
was to secure his theorem from the criticism that the methods he had em-
ployed in its proof led to paradoxes.

The old proof used, in addition to sets, the separate notion of orders that
are imposed on sets. Today we just take such an order, or indeed any binary
relation on a set S, to be the set of oao.nnm pairs of members of § between

which the relation holds. (Indeed, we take an n-ary relation to be a set of

. n-tuples for any », and in particular we take a unary relation to be a set of

members of S.) Since we know today how to reduce ordered pairs to sets,
that device reduces talk of orders to talk of sets and so avoids postulating
two sorts of objects. That avoidance is a serious convenience when trying to
analyze what principles are being used. The device of ordered pairs was not
available to Zermelo. What he therefore did in the second proof was reduce
well-orderings on sets to particular sets by using an ad hoc device in order
to avoid the need to postulate two sorts of objects, sets and orders. That is
what made it possible for Zermelo to derive the Well-Ordering Principle from
principles that concern only sets.

Zermelo was not attempting to present a theory of ‘what sets are. He em-
@cmmﬁoa that he had mosz out “the @HEQE% required for establishing the
foundations of” set theory as it was historically given and that he would not

discuss their origin in his article [Zer08b, p. 200].2 It is not in fact quite cor-

rect that his principles are adequate for set theory as it was historically given,

as we shall see below. What is true is that they are the principles required to

. prove Zermelo’s theorem. Every single one of the axioms, with the exception

of the last one, the Axiom of Infinity, is used in Zermelo’s new Eoom and
of course the theorem depends on the Axiom-of Infinity for its interest.3 Zer-
melo’s wommm@oamo of axioms extracted opportunistically from a proof forms

S

the basis Sis of the axioms of present-day set theory. The method of obtaining the

e

axioms was appropriate to Zermelo’s limited purpose, but it should hardly be

2. Zermelo took “Cantor’s original definition of a set” to lead to .wmamaoxwmu appar-
ently mistaking it for a statement of Comprehension in the manner discussed in §IV.2. He
thus took Cantor’s conception to be naive. But Zermelo ignored what he took to be Can-
tor’s definition and took his principles from Cantorian proofs. Zermelo's theory is thus
extremely Cantorian despite his lack of recognition of that fact.

3. The Union Axiom is used only to derive the Axiom of Choice—every set of
nonempty sets has a choice function—from the Multiplicative Axiom-—see the text below.
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[

on some distinctive conception of what a set is.
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Poincaré tejected the actual infinite.'He viewed the mathematics that is
apparently concemed with the actual infinite as actually concerning the fi-
nite linguistic definitions that putatively describe actually infinite objects. He
therefore thought of definitions of such objects as giving them existence,
rather than pointing them out or otherwise distinguishing them from other ob-
jects. The set L., which, recall, is a y-set, is defined as the set of y-elements,
that is, all members of y-sets. But then, since L, is a y-set, an object could -
be a y-element, and hence a member of L, in virtue of its membership in
L. Thus, Poincaré viewed th definition of L, as viciously circular because

el .

it is, in his terminology, 5689896 and Eoﬂnmoam incoherent.

© Zermelo’s reply was simple, but in the end decisive. He noted that im-

Predicative anmEanm are common in analysis. They are E&%gmm@_@ to
the practice of ordinary mathematics. Moreover, they are unobjectionable on
Zermelo’s view, since they do not create the objects they define, but merely

g &mHEmEmw them from other objects. Thus, L, is indeed a y-set, and so some-

thing can be shown to be a member of L, in virtue of its BmEUonEw in L,
without circularity. Showing that something is in L, from the fact that it is
in P\ is not very informative, unless we have somehow identified L, using a
different description. But there is nothing contradictory or Soﬂo:m@ circular,
about Zermelo’s definition if it picks out L, from a collection of previously
existing objects, instead of creating L. To summarize, impredicative defini-
tions are necessary for ordinary mathematics, and they are unproblematic if
one adopts a realist attitude about the objects defined, realist in just the sense
that the objects exist in advance of the definitions, that they are picked out by
the definitions, not created by them. That i imposes a substantial constraint on
any acceptable philosophy of mathematics.

Jourdain claimed that his proof that every set has an R as its power, outlined
in §IV.2, accomplished all that Zermelo’s did, but more simply. Zermelo
pointed out that Jourdain’s principles, which allow W, did not permit him
to show that the continuum is a set. Thus, Zermelo’s theorem entails that the
continuum is well-orderable, while Jourdain’s did not.

Zermelo went on to discuss Jourdain’s proof. That proof made ‘use of an
arbitrary succession of choices—as Zermelo put it [Zer08a, p. 193], “after an
arbitrary finite or infinite number of elements take an arbitrary element of the
remainder as the next one; and continue in this way until the QEHw set is ex-
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hausted” Though Zermelo had emphasized earlier in his article (p. 186) that
the Axiom of Choice involved simultaneous choices, here he accepted Jour-
dain’s use of a temporal succession of choices. Perhaps be found simultane-
ous “choices” just as dubious as Jourdain’s successive ones, since he replaced
the axiom that “a simultaneous choice of distinguished elements is in princi-
ple always possible for an arbitrary set of sets” with an equivalent that is less
“tainted with subjectivity and liable to misinterpretation” [Zer08a, p- 1861,
namely what is now known as the Multiplicative Axiom: for every set T of
pairwise disjoint nonempty sets, there is a subset S of | J T that has exactly
one member in common with each membes of T'. The Multiplicative Axiom
is, as Zermelo showed, equivalent to the Axiom of Choice. It was also stated,
apparently iridependently, by Russell, who gave it its.-name. (I shall not dis-
cuss Russell’s independent discovery of the Axiom of Choice in any detail.
He was working within the theory of types—based on the logical notion of
collection—when he discovered that he needed 2 new assumption—the Mul-
tiplicative Axiom—to fill in gaps in certain proofs. He used it reluctantly
since he thought it to be complicated and dubious—as indeed it is as a princi-
ple concerning logical collections. See [Moo82, pp. 121-132].)

Zermelo objected not to successive choices but to Jourdain’s assumption
that the entire set will be exhausted, that is, the assumption that the set of
well-orderings of subsets of the set has a maximal element. He said that that
requires proof. The assumption is essentially a special case of Hausdorff’s
Maximal Principle,* which is equivalent to the Axiom of Choice, though Zer-
melo does not seem to have recognized that fact. Zermelo was certainly right
that Jourdain had used an unidentified additional assumption. With that as-
sumption, Jourdain’s proof is still vitiated by its use of W. There is, however,
a proof of the Well-Ordering Principle from Hausdorff’s Maximal Principle
that is simpler than Zermelo’s proof of the principle from the Multiplicative
Axiom. In 1932, in his editorial comments to Cantor’s letter to Dedekind dis-
cussed in §§I1.4 and IV.2, in which Cantor gave the same proof as Jourdain,
Zermelo criticized the use of successive choices [Can32a, p. 117]: “the intu-
ition of time is applied here to a process that goes beyond all intuition, and
a fictitious entity is posited of which it is assumed that it could make succes-

4. Hausdorff’s Maximal Principle says that every partially ordered set has a linearly
ordered subset that is C-maximal among such subsets. (It might seem more natural to
invoke Zorn’s Lemma here, but Jourdain would not have viewed well-orderings simply

. as sets.) _
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sive arbitrary choices.” Zermelo went on to say that one would have to use
simultaneous choices. :

H.uamuo, Borel, Lebesgue, and Baire all doubted the assumption, that is, the
Axiom of Choice. Peano essentially rested content with noting that the axiom
&a not wouoé from the laws of logic. Borel admitted that a version of the ax-
iom that was restricted in its application to denumerable sets of nonempty sets

-might be acceptable. Lebesgue rejected any form of the axiom. Baire rejected
any form of the axiom, and he rejected the Power Set Axiom (for infinite sets)
as well. (See [Moo82, pp. 92-96].) Borel explicitly accepted Zermelo’s @.Hoom
but he viewed it as demonstrating (the difficult direction of) the o@:?&muom,
,.cmgonu the Axiom of Choice and the Well-Ordering Principle. Zermelo had
in Borel’s eyes, shown two problems equivalent without solving either oEuH
[Moo78, p. 312].

N.Q.E&o. began his reply by carefully noting that he could not prove the
.>.ucoﬁ.n of Choice, and that in accusing him of failing to provide a proof for it,
his od.mnm endorsed his own view of the matter. But mNmHOmmw p- 187] “every
proof in turn presupposes unproved principles.” He said that to “reject such a
fundamental principle” one would have to show it false or contradictory, and
none of his critics had attempted to do so. u

Zermelo mentioned two sorts of support for the axiom, or indeed any math- .
mn.ummo& principle. The first is intrinsic support—that the axiom is “intuitively
evident”—the second is extrinsic support—that it is “necessary for.science.”
That is in apparent contrast to his immediately preceding claim that his oppo-
u.mEm could not reject a principle unless it were shown to be false or contra-
&oﬁQ. I take it the point is this: A principle cannot be definitively rejected
and it may therefore be used, unless it is shown to be false or oounm&oﬁoam

- But a principle must be accepted, and it must therefore be used, if it is “in-

tuitively evident and necessary for science.” Zermelo argued [Zer08a p. 187]
that Peano had selected his fundamental principles by analyzing SH,SH. ones
.ﬂmEanﬁﬁmbm have used “and by pointing out that the principles are intu-
itively m&aoﬁ and necessary for science.” He noted that he could marshal the
mmEo.Eum of arguments for his axiom. The fact that it did not happen to ap-
pear in Peano’s list is not an argument against it. Zermelo also pointed out
that while his proof can be carried out in a system that is free of all known
paradoxes, Peano’s system is subject to paradoxes and hence inconsistent. It

M. HNHO _.HWWMEH terms intrinsic Ewﬁ extrinsic are ﬁm..—ﬂﬂmw WOB Hgm.amw. MQO gm&.wou

T
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is simultaneously too narrow, in omitting the axiom, and too wide, in permit-
ting paradoxes.

To show that the axiom is intrinsically motivated, indeed “self-evident,
Zermelo noted [Zer08a, p. 187] that it had been, in effect, used by many math-
ematicians with a-great deal of success “even though it was never formulated
in textbook style.” If a principle, possibly in variant forms, is independently
and unquestioningly applied by many mathematicians, surely that shows that
the principle is self-evident. Self-evidence is a psychological or perhaps soci-
- ological phenomenon, but, as Zermelo said,

2

No matter if this self-evidence is to a certain degree subjective—it is
surely a necessary source of mathematical principles, even if it is not
a tool of mathematical proofs, and Peano’s assertion that it has nothing
to do with mathematics fails to do justice to manifest facts. [Zer08a,
p. 187]

The reader will surely object that the axiom was not self-evident to, for ex-
ample, Peano, Borel, Lebesgue, and Baire, but of that, more below.

Another objection that may occur to the reader is that while the Axiom of
Choice is indeed self-evident for finite sets of nonempty sets, the extension to
infinite sets is not self-evident. The appearance of self-evidence could there-
fore turn out to be simply a case of unwarranted generalization.®

The Axiom of Choice certainly is evident in the finite case. But it is not new

in that case: the Axiom of Choice restricted to finite sets of nonempty sets is a-

theorem of, for example, Peano’s System, as Zermelo noted [Zer08a, p. 187].
Zermelo noted that fact immediately before arguing for the seif-evidence of
the axiom. It is precisely the version that applies to infinite sets of nonempty
sets that was at issue, and it was the earlier uses of that version that provided
the basis for Zermelo’s argument. Thus, the axiom provides an example of a
positive principle, distinctively about the infinite, that is self-evident.
Because the importance of claims of self-evidence is often dismissed on
the basis of an overly simple account of their function, it is worthwhile to
emphasize the sophisticated nature of Zermelo’s claim that Choice is self-
evident. He did not at any time claim that the truth of Choice was revealed
to him through some mysterious faculty or that it could be revealed to others

6. See [Lav92, pp. 325-326] for a discussion of why the generalization would be
unwarranted on the basis of a theory of what warrants generalizations that was advanced
by Maddy [Mad90], a theory that is based on the notion of a natural kind.
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in that way. As Kitcher has emphasized [Kit88, p. 297], that is just not how
mathematics grows. Zermelo did not ask us to accept the axiom on the basis
of some armchair introspection. Nor did he treat self-evidence as a sufficient
condition for acceptance. Zermelo’s evidence for the self-evidence of Choice
was that many mathematicians had used principles or techniques equivalent
to applications of Choice (1) with a great deal of success and (2) without any
awareness that a new wmbﬁﬁw was being applied.

There is a tendency to view the lack of awareness that a new principle is

_ being applied as an oversight on the part of the mathematicians applying it.

Zermelo did not have that tendency, and I believe that it is one that should be
resisted. Those who employed Choice-like principles were not working in a
late-twentieth-century axiomatic setting. They saw themselves as discovering
truths, mostly about the real numbers, on the basis of what they already knew
about the real numbers. A proof technique or principle, whether new or old,
was fully appropriate to their task just if it is a correct principle. A correct
principle is, more or less, a principle that was true to their conception of the
real numbers.

There would indeed have been an oversight if the Choice-like principles
used had not been true to the conception of the real numbers. If the principles
had been inconsistent with that conception, we would appropriately identify

-~ their use as a mistake. If the principles had been compatible with the con-
- ception though not derivative of it, we would appropriately identify the use

of the principles without explicit mention as an oversight. But as a matter of
 fact we appropriately regard the theorems that we now prove using Choice,
-~ reconstructing the old proofs, as true of the real numbers—the very same real

numbers that were under investigation all along. Choice is licensed by the
idea of arbitrarily picking the members of a set. Its eventual use was therefore

' perhaps inevitable given the notion that a function is an arbitrary succession

of values not subject to a common law. ‘The subject matter was not changed
by the use of Choice principles—it had already been changed by Fourier, who

- gave that characterization of a function.

The leading role, I take it, of the claim of moﬁ.nﬁambnmlﬁo:mw admit-
tedly I cannot show that this is what Zermelo had in mind—was to establish
that to use Choice is to go on with the exploration of the same old real num-
bers and the same old mathematical subject—analysis—as before. It is not to
take up the investigation of something new or more special.

The role of self-evidence is not, or at least not always, to ensure a pri-
ori truth, and it is not independent of the goal of systematization. Historical

i
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explanations involving self-evidence are compatible with, and indeed an im-
portant part of, an understanding of the growth of mathematical knowledge,
which takes place along the lines characterized by Kitcher’s mathematical
naturalism [Kit88, p. 295]. Taking the phenomenon of self-evidence seriously
is compatible with the idea that mathematical knowledge evolves in a manner
much like that in which scientific knowledge evolves—through the refine-
ment and extension of theories, in a broad sense of the term.

To show that the axiom is extrinsically required, “necessary for science,”
Zermelo provided a list of important results that are intimately bound up with
it, a list that included the basic results of cardinal arithmetic and also results
important to analysis and algebra. Since Zermelo’s time, that list has become
far longer.” :

Zermelo did not reply in any further detail to Borel, Lebesgue, and Baire,
who had argued against the axiom and therefore had stated why they did not
find it self-evident. One defense available to him was that Borel, Lebesgue,
and Baire did am.mﬁwm their protestations find the axiom self-evident: each of
them had used it—or rather various equivalent principles or consequences of
it—in their work without question [Moo82, §1.7]. That work formed part of
Zermelo’s positive argument for the self-evidence of the axiom.

Perhaps Zermelo thought it unnecessary to reply to Borel, Lebesgue, and
Baire: their objections to his work had given rise to a correspondence with
Jacques Hadamard [BBHL05], who had ably defended Zermelo’s axiom.,
Why did Borel, Lebesgue, and Baire doubt the axiom? Borel [BBHLO0S,
P. 273] required that a theorem, to be “completely irreproachable,” be “a pre-

cise result expressible in a finite number of words,” and he said that the para- '

doxes arise “because sets that are not really defined are introduced.” Lebes gue
said “that to define a set M is to name a property P which is possessed by
certain elements of a previously defined set N and which characterizes, by
definition, the elements of M and that

The question comes down to this, which is hardly new: Can one prove
the existence of a mathematical object without defining it?

This is ociocﬂw a matter of convention. Nevertheless, I believe that
we can only build solidly by granting that.it is impossible to demonstrate
the existence of an object without defining it. [BBHLO5 » P. 265].

7. Por a detailed history and discussion of the many theorems proved before and after
Zermelo’s work that entail some form of the axiom, see [Moo82].
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And Baire expressed the opinion [BBHLOS, pp. 263-264] that the infinite
is “in the realm of potentiality” and so infinite objects are merely given_or
defined by convention. To go further “the meaning of these words [set, well-
ordered set] must be extended in an extraordinary way and, I would add, a
fallacious one.” In each case, and indeed in the case of every mathematician
of whom I am aware who has expressed reasons for doubting the axiom in
print, the objection presupposes that every set is somehow associated with
a definition of some kind. The objection is then simply that the axiom pro-
vides no means of defining a choice function. The great difficulty in defining
such functions in standard cases, like the set of all nonempty subsets of the
real numbers, suggested that supplying a definition would not be possible in
general.

Hadamard’s reply was straightforward:

What is certain is that Zermelo provides no method to carry out effec-
tively the operation which he mentions, and it remains doubtful that any-
one will be able to supply such a method in the future. Undoubtedly, it
would have been more interesting to resolve the problem in this man-
ner. But the question posed in this way (the effective determination of
the desired correspondence) is nonetheless completely distinct from the
one that we are examining (does such a correspondence exist?). Between
them lies all the difference, and it is fundamental, separating what Tan-
nery calls a correspondence that can be defined from a correspondence
that can be described. [BBHLO3, p. 262]

Whatever notion of set Zermelo and Hadamard were employing, it was ex-
pressly not one that required that every set be associated with a definition,
We may now briefly characterize the situation, following Maddy [Mad90,
pp. 121-123] in important respects, in these terms: The opponents of the Ax-
iom of Choice were employing the logical notion of collection. The Axiom
of Choice is, at best, dubious for logical collections, and it is certainly not

Mowomoﬁawﬂ or otherwise suitable for adoption as a basic principle concern-

ing such collections. The Supporters of the Axiom of Choice were employing
a quite different nomobdwddﬁm\ﬁwmoca a combinatorial notion of the sort that

Sz

oﬁ%bmﬁ&ﬁ@ﬂmmﬁov@mimﬂo say a nom.om.mﬁ.ommmmmm to which collections

consist of members enumerated in a perfectly arbitrary way. Such collec-

tionsg exist wuaww.oﬂmamnw of our ability to m<oaM.Mm ing principle, and the

e e

gﬁ@-\ﬂWo,...om,,ﬂm._,me.& self-evident for them, even though it is dubious

for logical collections. Cantor had even taken a close cousin of Choice, the
e C e

I
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Well-Ordering Principle, to be the basic principle for combinatorial collec-
tions. The real disagreement was about whether mathematicians should ém-
ploy logical collections or combinatorial collections, not about Choice. The
verdict of history has been that mathematicians should employ combinatorial
omwamnmwmwmwgm hence Choice—for reasons we discuss later in this section.

Cantor’s early theory ran into difficulties because it is not clear that the
collection of subcollections of a well-ordered collection can be well-ordered.
As a result Cantor was not sure whether the power set of a combinatorial
collection is itself a combinatorial collection.

Zermelo’s substantial contribution was that he succeeded in making it plau-

e i ot L oo s o o

sible that the Power Set EGQH is compatible with the combinatorial notion

of collection, and that it is in fact an illuminating supplement to that notion.
First of all, as Zermelo’s theorem shows, in the presence of Power Set (and

other simple Cantorian @HESE@@ Well-Ordering and Choice—apparently

two distinct characteristics of combinatorial collections—become provably
m@E<&oE That is, they merge to become a single characteristic. Second,
Zermelo’s theorem provides some reason to believe the Well-Ordering Princi-
ple for the power sets of enumerative collections: We already believe Choice
for at least one such collection, and ﬁmc.-OHaoabm follows. That argument is
based on the fact that the Axiom of Choice is self-evident for the set of real
numbers, which is essentially the set of all subsets of the natural numbers and
is thus a power set of an enumerative set. For the set of real numbers, Choice
is part of the program of. WomEm the notion of a function from that of a rule.
There is«a third notion, of collection: the collections actually employed in

R

o e

mathematics, the matheridiica nadsn:o:w,m I am not sure that deserves to

et e Srewsem Sae ..\.\.Ial..lydmu.nm Sasm— e

be called a notion, since it is defined Emﬁono&@. but no matter. As Cantor
basically discovered late in his career, the infinite mathematical collections
can all be generated starting from the set of natural numbers using the power
set operation and a few simple methods of combination. By showing that the
Power Set Axiom is a plausible supplement to the Cantorian notion of a com-
binatorial collection, Zermelo made it possible. to identify the Bm%oﬁmno&

Py e

oounonoum with the ooEdEmﬁoﬂE ones.”
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8. Maddy used the term mathematical collection for pretty much what I have called
combinatorial collections, and she associated such collections with the modern iterative
oonomwnou of sets, often attributed to Zermelo, which is discussed in mm Em%o pp. 102-
103, 121].

9. Zermelo’s collections are of a different sort from Cantor’s. I see the one sort as a
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In Cantor’s early theory the Well-Ordering Principle had, in effect, served
as the only criterion of sethood. That gave a clear characterization of what
sets are. The Axiom of Choice is not suitable to serve as a criterion for set-
hood, and so Zermelo had to supplement it with an ad hoc list of supple-
mentary principles. Each of his axioms is true to the combinatorial notion of
collection—they all derive from the Cantorian theory. But Zermelo’s arbitrar-
ily selected list of axioms is not suitable for characterizing the notion of a
combinatorial set.

The two sides of the debate about the Axiom of Choice were really dis-
agreeing about which type of collection, logical or combinatorial, mathemati-
cal collections are. There was little disagreement that the Axiom of Choice is
not self-evident, and indeed likely false, of logical collections or that the ax-
iom is indeed self-evident of ooEEumﬁom& collections. As Zermelo argued,
and as subsequent mathematical developments have shown, the Axiom of
Choice plays an important role in mathematics, and therefore the right notion
is the combinatorial one.1?

Zermelo had shown that the combinatorial notion of collection could be
identified with the mathematical one, but that does not show that the logical
notion cannot be identified with the mathematical one in some different ,_zm%.
One would lose the Axiom of Choice in so doing, but in the first decade of
the century that was perhaps not yet decisive. Indeed, that seems to have been
essentially the attitude of Russell in developing the theory of types (letter to
uoﬁa.&b, 1905 [GG77, p. 55]): “I don’t think the continuum of real numbers
is upset by the multiplicative class difficulty. Also I have hopes that much
will be discovered to circumscribe the difficulty; for all we have at present is
amere absence of proofs of propositions which are very likely to be true” But
there are other substantial difficulties with identifying the logical collections
with the mathematical collections, as the earlier description of the theory of
types made clear. Logical collections are intimately connected with the incon-

- natural outgrowth of the other, and so I have used the same H.Q.B. The issue is, so far as I

can see, merely a terminological one.

10. The opponerits of the Axiom of Choice, all supporters of the logical conception
of collection, did not just argue that the axiom is false of logical collections. Many also
argued that the very idea of a combinatorial collection is incoherent—since infinite collec-
tions can only be introduced by means of definitions. I have omitted those arguments here.
As we have mentioned, Poincaré had ideas along those lines. The most fully worked out
position is that of Brouwer. Both Poincaré and Brouwer are discussed in Chapter VI.
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sistent Comprehension Principle, and so one must confront the paradoxes in
any successful attempt to identify logical with mathematical collections. But
natural ways to handle the paradoxes also rule out impredicative definitions,
as we saw in the case of the theory of types, where the need to allow such
definitions led to the ad hoc Axiom of Reducibility. Since ordinary mathe-
matics is impredicative, the use of logical collections is apparently blocked.
Much progress had been made in this century in reconstructing parts of math-
- ematics within one or another more or less predicative framework, but the
fact remains that the ordinary practice of mathematicians cannot be captured

-~ in that way and many theorems cannot be reconstructed.!! The mathematics

of today, and of Zermelo’s day, allows impredicative definitions and requires
the Axiom of Choice. For those extrinsic reasons, we have come to recog-
nize that ordinary mathematical collections are combinatorial collections. No
B.mEmEmm.o& theory of logical collections adequate to encompass the mathe-

i ... mnatical collections isas yet available.!?

For various extrinsic reasons, the theory of ‘mathematical collections is seen
to be the theory of combinatorial collections, and the Axiom of Choice is self-

phwes e R R s e
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evident for such collections. The controversy that surrounded the Axiom of
Choice is usually assumed to cast doubt on the self-evidence of the axiom.
But there was never a controversy about the axiom itself, which is in fact an
uncontroversially self-evident principle about combinatorial collections. The
controversy was over two notions of collection, logical and combinatorial,
and the combinatorial notion has apparently won. As a modern set theorist,
Donald A. Martin, put it,

much of the traditional concern about the axiom of choice is probably
based on a confusion between sets and definable properties . . . Once
this kind of confusion is avoided, the axiom of choice appears as one
of the least problematic of the set theoretic axioms. [Mad90, p. 124]

The Axiom of Choice is not, as it is often taken to be, an example that shows
that mathematicians disagree about “self-evidence,” an example that casts

11. For more information, see, for example, [Fef 771.

12. Since the extensions of properties are logical collections, to the extent that they

are taken to be collections constituted of members at all and not something more Fregean,
the considerations in the text cast doubt on their mathematical utility and even their co-

gency. At the very least, the support that the use of such extensions is often thought to gain

from the successful mathematical theory of sets is in fact strikingly absent.
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doubt on that notion. On the contrary, the axiom is just one more example
of the surprisingly broad agreement among mathematicians about what is
.mba what is not, self-evident, and of the real role such considerations Emu“.
in mathematics.

. >m. we have seen, the notion of combinatorial collection is in need of clar-
ification. Logical collections need only be considered in an incidental way
henceforth, since logical collections have never played more than an inciden-
tal role in mathematics in mmumn& and in set Emo@ in A@B.mo:{._mh. The .me.m.
mﬁ.wwmmu which have often mmgﬁo:mw_ﬁmo @o.mm the central wHo,Em.B in Ewnmum
sense of the theory of sets, are, along with the logical collections for which

s

9@ . ... .,. ./. ...I... ... .
% N.Emwu a m.Hmwnmmc@.Hwo_om:mmcHm,wm%..m_.mﬂmo.noﬁ@.oaoumomb_uwﬁw
combinatorial properties. Cantaf a

in ertie vate answer, that God can manipulate
Emu.p wucow as we manipulate finite collections, may not seem very helpful
but it is our historical starting point. u
To see how set theory and our understanding of it have developed since
.Gomu itis necessary to look at Zermelo’s axioms. Much of what has happened
was in reaction to them. Here they are: .
. The first is Axiom IV.2.6, the Axiom of Extensionality. The second axiom
is closely related to the Cantorian axioms IV.2.2 and IV.2.3. ‘

»VNHOE 1.1 (ELEMENTARY ‘SETS). There is an empty set. For any
object-a, there is a set {a} with a as its only member. For any two objects
a and b, there is a set {a, b} that contains them and nothing m.b&.

>MWO.Z 1.2 (SEPARATION). “Whenever the propositional function
€(x)* is definite for all elements of a set M, M possesses a subset Me

waﬁ&.:i% as elements precisely those elements x of M for which &(x)
istrue.” [Zer0O8b, p. 202]

The Separation Axiom relies on the following definition [Zer08b, p. wo:“

\w question or assertion & is said to be definite if the fundamental rela-
tions of the domain, by means of the axioms and the universally valid
Hm.ém of logic, determine without arbitrariness whether it holds or not
Likewise, a ‘propositional function’ &(x), in which the variable term H

13. The symbol is 2 German capital E.

i
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ranges over all individuals of a class £,!* is said to be definite if it is
definite for each single individual x of the class &.

The Separation Axiom is immediate from Cantorian Definition IV.2.5. At
least, that is true for a suitable clarification of “definiteness.” The notion
of definiteness was the main source of controversy concerning Zermelo’s
axioms, and we shall discuss it in detail in §3.

Axi1oM 1.3 (POWER SET). Every set T has a power set, that is, a set
that contains exactly the subsets of T.

As we have discussed above, the Power Set Axiom does not follow from
the Cantorian Axioms. It was, in fact, Eﬂa downfall.

- AxiomM 1.4 (UNION). Every set T has a union set, that is a set that
contains exactly the members of members of T.

The dﬁg Axiom follows from Cantorian Definition IV.2.5 and Ax-
ioms IV.2.7 and IV.2.10. . .

AxtoM 1.5 (CHOICE). If T is a set of pairwise disjoint nonempty sets,
then there is a subset of the union of T that has exactly one member in
common with each member of T. ’

The Axiom of Choice follows from Cantorian Axiom IV.2.10,

AX10M 1.6 (INFINITY). There is a set that contains the empty set and
the set {a} for each of its members a.

The Axiom of Infinity follows from Cantorian Axiom IV.2.4 and Defini-
tion IV.2.5. ‘

I have mentioned how most of Zermelo’s axioms can be obtained from
the Cantorian axioms. The other direction is more subtle, since Cantorian
Definition IV.2.5 does not follow from Zermelo’s axioms. That is partially
why I said that Zermelo’s axioms were not, as he claimed, “the principles
required for establishing the foundations of” set theory. That is the story of
the next section. .

14, The symbol is a German capital K.
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V §2. The Axiom of Replacement

Fraenkel [Fra21, p. 97] and Skolem [Sko23b, p. 296] discovered that, in
mwwﬁﬁu,m words (Fraenkel’s are similar), “Zermelo’s axiom system is not suf-
ficient to provide a complete foundation for the usual theory of sets.” Each

. had noted that, if Zy is Zermelo’s official counterpart for the natural numbers

within his theory of sets and P is the power set operation, which takes each

* set to the set of all of its subsets, then one cannot prove in Zermelo’s sys-

tem that the set {Zp, P(Zg), P(P(Zp)), ...} exists. Skolem gave a proof.l3
Without that set, as Fraenkel observed [Fra21, p. 97], one cannot prove the
existence of ¥,,. .

Fraenkel [Fra22b, p. 231] and Skolem [Sko23b, p. 297] independently pro-
posed the same remedy for the inadequacy in Zermelo’s system, namely, in-
troducing a new axiom, which Fraenkel named the Axiom of Replacement: 16

>NHOZN.HAmeh>omEmzav.ﬂwmxn:wN &na?:anggnw&_w?&q
17
a set. .

Fraenkel observed [Fra21, p. 97] that it would have sufficed for the prob-
lem at hand to introduce an extended axiom of infinity, one that asserted that

{Zo, P(Zo), P(P(Z0)), .. ]

exists. But if Zermelo’s system were to be extended in that way, the resulting
system could be shown inadequate in much the same way as before, and so a
more general principle was required [Fra22b, p. 231]. .

. The axiom solves the problem of ensuring the existence of

{Zo, P(Z0), P(P(Zp)), ...}

- since there is a function that takes any natural number n (actually, its coun-
- terpart in Zp) to the result P™(Zp) of applying the power set operation

to Zy n times. The range of that function on Zg is the required set. That

- 15. He observed that Vertw is @ model of Zermelo’s axioms that does not contain the
set. See §4 for the definition of V1.,

16. Both [Mo0082] and especially [Hal84] provide useful histories of the Axiom of
Replacement.

17. Skolem allowed partial functions. The two versions are o@&«&nnﬁ. .
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proof mimics our intuitive reason for believing that if Zg exists then wo does
{Zo, P(Zp), P(P(Zp)), . . .}: we just replace each member of Zj, that is, wmor,
natural number #, with the corresponding member of the set, P"(Zp). Neither
Fraenkel nor Skolem doubted the existence of the set, and they independently
arrived at the same method of showing that it exists.

The axiom as stated is ambiguous since it is not clear what functions are
to be allowed. Fraenkel did not publish an answer to that question until later,
and so his version of Replacement was, initially, ambiguous. Skolem gave a
precise answer. For both Fraenkel and Skolem the functions to be allowed are
the “definite” functions. An answer to the question is thus a solution to the
problem of making sense of Zermelo’s notion of “definite.” That is the topic
of the next section. . .

Replacement is self-evident for combinatorial collections and an HEBm.&-
ate ,mowm.ae..,_mzom of Cantor’s theory: If we form one collection by replacing
the members of another, a well-ordering of the new collection is determined
by a ﬁoz-o.&anbm of the original one. More formally, if we enumerate the
members of § using F, and if we pick the members of a new collection by

‘using f on S, then f o F (with any duplications deleted) enumerates the H.ﬁs
collection, which is the range of f on S, showing that range to be a combina-
torial collection. _

Replacement has various precursors. Cantor did not give any argument for
Replacement, but he did state something like it [Can32a, p. 114], though as
a truth not a postulate: “Two equivalent multiplicities are both ‘sets’ or are
both inconsistent.” That has as an immediate consequence that the range of
a one-to-one function on a set is a set, which .mm a version of Replacement.
(Though it is a special case, full Replacement follows from it using Zermelo’s
axioms.) Dimitry Mirimanoff [Mir17a, p. 49] stated the Axiom as a :Huoﬂ_.p,
late,” apparently because it was required to develop his theory of set-theoretic
representatives of ordinal numbers.!® That motivation does not have the clear
intuitive character of the motivation of Fraenkel and Skolem, and the postu-
late was not part of a complete axiomatization of set theory.

Neither Fraenkel nor Skolem advocated adding the Axiom of Replacement
to Zermelo’s system. Neither investigated its consequences. Skolem just said

18. His representatives are essentially what are today generally known as “von Neu-

mann ordinals,” which will be described later in this section, The only difference is that
Mirimanoff allowed urelements but apparently not an empty set and so he identified the
number 0 with an arbitrary fixed urelement e instead of with the empty set.
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that “we could introduce” the axiom [Sko23b, p. 297]. But Skolem had gen-
eral doubts about the utility of axiomatic set theory. (See §3.)

Fraenkel in some ways opposed the Axiom of Replacement. (See [Hal34,
Pp- 296-297] for a suminidry.) The sefs produced using Replacement are, ac-
cording to Hummonw&,. very large, while those that lead to Pparadoxes are _too
large. That suggested to Hallett that Fraenkel was “suspicious” of the ax.
aﬁﬁmﬁ P. 296], presumably suspicious that it might lead to contradic-
tions. But I do not think so, and to the best of my knowledge Fraenkel never
said so. . .

Fraenkel’s doubts seem to me to lie in another direction, since he said
forthrightly that Zermelo’s axioms “are not sufficient for the foundation of le-

gitimate set theory” ([Fra21l, p. 97], translation [Halg84, p. 2801), and he never

- seemed to doubt the existence of {Zo, P(Zp), P(P(Zp)),...}). Moreover, he

acknowledged, after the work of John von Neumann to be described next,
that the axiom is necessary for the theory of ordinal numbers [Fra25, p. 251].
As Hallett put it, “What he seems to challenge is that any of this extra con-
tent which the axiom furnishes is set-theoretically important” [Hal84, p. 297].
(See, for example, [Fra25 » PP. 251-252] or [Fra28, p. 3101)

Fraenkel believed that “general set theory” does not need the Axiom of
Replacement, although some mwmow& results, including the theory of ordi-
nal numbers, require it. That belief was entirely reasonable in the 1920s:
Ordinary mathematics, including Fraenkel’s general set theory, is as a mat-

S e e IR S T A .

ter of mmmm.mmnonﬂmm. nxoycm?&vniﬁ.o&moﬁm that have counterparts in the

set | J{Zo, %AN&%A%AM%Y .. ..w. That set contains oo.:.uﬂﬂ.wmﬁm of the real

. and complex numbers, functions from real numbers to real numbers, func-

tion spaces, and so forth. All of those sets can therefore be proved to exist

in Zermelo’s theory. No consequence of the Axiom of Replacement that is

a part of ordinary mathematics—that is, no consequence that could even be

stated without making use of sets going beyond those—was discovered until

w.oqw B To be sure, other theorems may have been proved using Replacement,
ut.they could perfectly well have been proved without it 20

19. The first such result is that every Borel game is determined. See [Mar75] for

the relevant definitions and the proof of the result, and see [Fri71} for the proof that
?Emonamnﬁ is required and the claim, made prior to 1975, that Replacement plays no
role in ordinary mathematics. Further theorems of ordinary mathematics that cannot be
proved without Replacement may be found in [HMSS85]. A

20. Though modern mathematics is permeated with set theory, and set theory orig-
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Fraenkel’s hesitation to add Replacement to Zermelo’s system had to do
with doubts about the utility of Replacement, not with doubts about its truth.
The fact that Replacement had no known applications outside of the the-
ory of infinite ordinal and cardinal numbers but was nonetheless accepted
as true shows that, whatever the basis on which Replacement was seen
to be true, that basis must have been one distinctively concerned with.the
infinite.

In 1923 von Neumann worked out important consequences of Replacement
[vIN23], an axiom that he said [vN23, p. 347] “fills a substantial gap in Zer-
melo’s axiomatization.” When W isa well-ordered set, he defined a numera-
tion of W to be a function f such that forall win W f(w) = {f(u) 1 u < w},
that is, such that f(w) is the range of f on the predecessors of w. The need
to rely on the Axiom of Replacement to show that well-ordered sets have nu-
merations is clear. He defined the range of f on W to be an ordinal number
of the well-ordered set W. He then showed, still making strong use of the Ax-
iom of Replacement, that every well-ordered set has a unique oH&w&...me@ﬂ
and that wwﬁm&foﬂé&mﬂoa sets have the same ordinal number, which shows
that the use of the term ordinal number is legitimate; he characterized the or-

dinal numbers in several different ways; he showed that the ordinal numbers .

are well-ordered by the membership relation; and he justified definition by
induction on the ordinal numbers, which made it possible to introduce addi-
tion, BE&@ES&QP and ox@ononmmncu. of ordinal numbers directly, without
the use of auxiliary set-theoretic notions like that of ordered sets.

Once definition by induction on the ordinal numbers has been justified, it
becomes possible to describe the von Neumann ordinal numbers by saying

that each one is the set of its Emamommmmwm Thus 0is @ ,.H. is{@},2is {@, {D}}
and so forth. Cantor had treated the ordinal numbers as separate objects that
were obtained from well-ordered sets by “abstraction.” Zermelo had axioma-
tized set theory without ordinal numbers. But von Neumann had shown how
to introduce ordinal numbers as sets, making it possible to use them without

leaving the domain of sets. The Axiom of Replacement is crucial. It is used

inated with the ordinal numbers, thie ordinal numbers are rarely required outside of set
theory, as just discussed in the text. Theorems concerning, for example, Cantor’s derived
sets seem to involve the ordinal numbers and hence Replacement, but they are a part of
ordinary mathematics. The most convenient and natural formulations of such theorems
do make use of the ordinal numbers, but they can be reformulated to avoid them and
WmEmntmE. . ,‘
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to show that every well-ordered set has an ordinal number and to justify defi-
nitions by induction on the ordinal numbers.

Though von Neumann apparently did not know it, Mirimanoff had already
shown using Replacement that to every ordinal, and hence to every well-
ordered set, there corresponds a unique von Neumann ordinal number and
that similar well-ordered sets have the same von Neumann ordinal number;
he had characterized the von Neumann ordinal numbers in several &m.oﬂwnm
ways; and he had shown that the von Neumann ordinal numbers are well-
ordered by the membership relation [Mirl7a, Mirl7b]. He therefore, it seems
to me, deserves some of the credit, and so I shall henceforth refer to the so-

. called von Neumann ordinal numbers as Mirimanoff—-von Neumann ordinal

numbers. But Mirimanoff did not propose identifying the ordinal numbers
with the Mirimanoff-von Neumann ordinal numbers. He did not justify in-
duction on the Mirimanoff-von Neumann ordinal numbers; indeed he made
implicit use of induction on well-ordered sets to introduce them [Mirl7a
p- 45]. He used Replacement to show that to every ordinal number—a uomom
taken to be antecedently understood—corresponds a Mirimanoff-von Neu-
mann ordinal number [Mir17a, p. 49], instead of showing what his techniques
sufficed to show, that to every well-ordered set corresponds a Mirimanoff—
von Neumann ordinal number. He therefore had not shown that one could
wﬁomcow Mirimanoff—von Neumann ordinal numbers initially as the sole no-
tion of ordinal number, He had only shown.that they could be used as a sub-

stitute for the ordinal numbers after the ordinal numbers had been used to
introduce them.

§3. Definiteness and Skolem’s Paradox

This section begins with a brief expository aside.

A first-order logic is one in which the quantifiers range only over the mem-
_u.mHm of a domain. A second-order logic is one in which there are also quan-
tifiers that range over things that determine relations and operations on a do-

'main. Leopold Léwenheim [Low15] usually receives credit for the distinc-

tion. See [Moo88a] for a careful history.

moo.ona.oﬁﬂ. quantifiers might, for example, range over relations on a
moBm:.r operations on a domain, propositional functions on a domain, or
collections of members of a domain. For simplicity, I shall just consider
second-order quantification over relations.

The distinctive feature of second-order logic is that it presupposes that,
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given a domain, there is a fact of the matter about what the relations on it
are, so that the range of the second-order quantifiers is fixed as soon as the
domain is fixed. I shall not, in the end, make any essential use of second-
order logic, and so I shall not endorse the presupposition. Nonetheless, it is
important to see that the presupposition is a part of the use of second-order
logic for many foundational purposes. There are a number of logical systems
in which there are quantifiers that are second-order in that they range over
something like relations over a domain, but in which the system is determined
in an additional way—by giving a set of relations in addition to a domain
or by axioms concerning the quantifiers. For present purposes—that is, with
respect to Skolem’s paradox—such systems may as well be first-order, and
we do not include them in second-order logic. See [Sha91, Chapter 4] for an
elementary exposition. .

Most authors call all of the systems of logic with quantifiers over relations
second-order—including those systems I just excluded. That is the natural
thing to do if, for example, you think that a logic should be specified by
the rules of its use rather than by truth conditions given in terms of domains
and relations on domains. You might think that a logic should be specified
by the rules of its use, for example, because it is not clear how domains and
relations can be specified short of by giving the rules of reasoning about them.
The logic that I am simply calling second-order is usually called “full” or
“standard” second-order logic.

I do not wish to take a stand on the issue of which is the appropriate way to
specify a logic. After all, I am arguing that logic has much less to do with set
theory than is ordinarily supposed, and so the issue is not important here. But
it is only full second-order logic that is relevant to Skolem’s paradox and to
Zermelo’s work, and it is therefore a terminological convenience not to have
to specify “full” or “standard” every time second-order logic is discussed.

Now, back to our history. Zermelo’s second proof of the Well-Ordering
Principle made use of a reduction of well-orderings to sets. That is what en-
"abled him to carry out the proof on the basis of an axiomatization of a theory
of sets and sets alone. But Zermelo’s 1908 axiomatization in fact involved an-
other sort of entity as well—definite propositional functions, which appeared
in the statement of the Separation Axiom. That notion was criticized for lack
of clarity by many. (See [Moo082, p. 260] for a list.)

In 1910 Hermann Weyl suggested that a property is definite if it can be.

obtained from =, €, and members of the domain using a finite number of def-
inition principles [Wey10, p. 304]. By 1917, he had arrived at a satisfactory

< §3. Definiteness and Skolem’s Paradox 125
:.mm. of awmimou w.mb&Eom“ negation, identification of variables, conjunction,
&&cﬂo_uo? substitution of constants, and existential quantification over Em
aonE %a.ﬁm., wﬁ” 4-6, 36]. In modern terms, his idea was that a prop-
Mn% is definite if 1t is definable in first-order logic with parameters.2! That
. a.m.Eng. opn. definite presupposes the notion of finite iteration (of the def-
MEOM principles) and hence the natural numbers. Thus Weyl thought that

e effort to found the natural numbers on set th ‘misgui
e eory was misguided [Wey18,
. The main purpose of Em book in which Weyl discussed definiteness was
m. Hnooumndoﬂon of a portion of analysis in a theory that permitted quantifi-
. anon only o<m.w the natural numbers. The motivation was to give a predica-
ve H.wooumndonou of a portion of analysis: since real numbers are defined as
sets of rational numbers, in effect as sets of natural numbers, a definition of
M HMM .HEEGQ that involves quantification over real numbers is essentially a
M tion of a set of natural numbers in terms of (quantification over) the set
of sets ow. bmﬂb..& numbers, and hence impredicative. To adopt a predicative
MBWSN 1s to give up on standard set-theoretic analysis, and hence to give up
n set theory. Perhaps that is why Weyl’s suggestion had little im act
development of set theory.?? pectonthe
mmHM wwamyw Skolem independently arrived at the same definition of definite
“ Em@ m%&m %mwnumum%,.%. 292-293]. The definite Ppropositional functions
aration Axiom were, according to Skolem, ;
parat , m, just formulas -

w&mw logic with parameters. The axiom became a schema. The o

in Skolem’s version of the Replacement Axiom corre. .

MMMM ammHMEo in first-order logic with parameters. Thus, the Replacement

m is also a schema. Let me just give the detai v
1o s als : ails for Replacement. Sepa-
ration is similar but simpler. When ¢ (x, Ys U1, ..., Uy)is a formula of the MMM.

guage of set theory, there i .
reads: 18 2 corresponding instance of Replacement, which

“functions”
spondingly were func- -

Fix sets a; a,,. For an .
1o B y set.S, if for evi i . .
y such that ¢ (x, y, a;, Ca) ery x in § there is a unique

(that is, if ¢ with parameter:
. , sap,...,
amm.:mm a function on §), then there is a set T such that for all W y is WM

21. According to [Moo88a, p. 135
first-order logic with a built-in predicate for the natural numbers

22. In 1946 Weyl i
gave a very readable brief ac i i is vi
how they relate to those of others [Wey46, pp. 268-27 . Solomon beturen o Views and

modern advocate of predicative mathematics [Fef 88}

1, what Weyl had in mind was closer to logic:

9]. Solomon Feferman is an eloquent
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T if and only if there is an x in S such that ¢ (x, y, a1, . .., a,). (That
is, T is the range on S of the function defined by ¢ with parameters
al, .., Q:.v

That statement, naturally, is intended only as a relatively readable rendering
of the official axiom, which is a sentence of first-order logic.

Like Weyl, Skolem [Sko23b, pp. 300-301] dismissed axiomatic set theory
as clearly “not a satisfactory ultimate foundation of mathematics”’?® But,
unlike Weyl, he dismissed it on the basis of a mathematical theorem about
Zermelo’s set theory, namely that if it is consistent, then it has a denumerable
model. That means, as Skolem emphasized, that Zermelo’s set theory has
a model in which all of the “sets,” even the supposedly nondenumerable
ones like P(Zy), are natural numbers. In fact the theorem, known as the
Lowenheim—Skolem theorem, first proved by Lowenheim and strengthened
and given a simpler proof by Skolem, shows that any finite or denumerable set
of sentences of first-order logic that has an infinite model has a denumerable
model. Thus it applies equally well to Zermelo’s axioms with or without
Replacement and also to every other first-order theory of sets.

There is no mystery about what has gone wrong: “Skolem’s paradox” is
not a formal contradiction. The natural number that is- “P(Zy)” in a model
of Zermelo’s axioms with domain the natural numbers has only maHEBm.BE%
many “members,” since there are only denumerably many natural numbers.
But the theorem “P(Z)) is nondenumerable” when applied in'the model says
only that there is no number in the model that within the model plays the
role of a one-to-one correspondence between the number “P(Zgy)” and the
number “Zp,” where I have used scare quotes to emphasize that we are not
- talking about the real P(Zp) and Zg—if there are any such things—but the
numbers that those descriptions pick out in our model with domain the natural
numbers. Whatever correspondence we might use to show that “P (Zp)” is
denumerable is just not in the model. If we allow (full) second-order logic, it
is trivial to block the paradox: By fiat a second-order quantifier VX includes
every relation on the domain in its range, and hence every set of natural

numbers if the natural numbers are in the domain. Thus, the second-order
axiom

(VXN X D) =y € Zo) > @x)(x € P(Zo) A (V)X () <> y € ))),

23. He later changed his mind. See [Ben85, Geo85].
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which says that if X holds only of numbers, then there is an x in P(Zp)
that is the set of numbers of which X holds, ensures that every set of natural
numbers is in P(Zp), hence in the domain, which is therefore uncountable.
Skolem’s paradox is blocked by stipulation. That is not much more helpful
than just insisting that we intend our first-order interpretation to be full in the
sense that its quantifiers range over all sets?* and that the membership relation
is the membership relation, which blocks the paradox directly.?

Skolem went on to point out that the notion “nondenumerable” is unavoid-
ably “relative” in that a set that is nondenumerable in one model (for ex-
ample, the P(Zp) of the denumerable model above, which is nondenumer-
able in that model) may turn out to be denumerable in another (the model
in which we carried out the construction of the denumerable model). He de-
clared that “finite” “infinite,” and other notions are similarly ﬂ&mﬂ?@.mm He
concluded [Sko23b, p. 296] that on any consistent axiomatic basis the theo-
rems of set theory “hold in a merely verbal sense.” However [Sko23b, p. 300],
“many mathematicians—indeed, I believe, most of them . . . do not have an
axiomatic conception of set theory at all. They think of sets as given by spec-
ification of arbitrary collections””?’ One could, Skolem noted, introduce ab-

24. In fact all we need require is that the quantifiers range over a union of Ves.
See §4. :

25. One might think it more natural to suppose that we know what the Telations on a
domain are given the domain than to suppose that we just know what sets there are, which
makes second-order logic seem a bit more natural than the “full first-order set theory” just
suggested in the text. But the point remains that the two block the paradox in essentially
the same way. ’

26. Both he and, as we shall discuss m&oﬁ von Neumann suspected that finitude
would be relative like the other notions, but that did not follow from Skolem’s results.
It does, however, follow from Kurt Gédel’s incompleteness theorem, announced in 1930
[G6d30] (using his 1929 completeness theorem too), as Godel essentially pointed out in
a review [G6d34] published in 1934 of [Sko33]. Skolem .Bm% not have recognized that,
since he claimed to have derived that relativity in [Sko34] using essentially the techniques
of [Sko33]. In fact, the result follows easily from Godel’s completeness theorem alone,
but that does not seem to have been noticed until 1947 ([Hen47], see also [K1e88, p. 49]).
Anatolii Ivanovich Maltsev gave arguments for the result similar to those based on the
completeness theorem in 1936 and 1941 ([Mal36, Mal41], compare Robert L. Vaught’s
remarks [Vau86, p. 3771.)

27. The quote is taken out of context—Skolem was making the point that the source
of doubt about the Axiom of Choice is the “demand that every set be definable.” But he
did intend the point I am using the quote to make in the text, even if it was only in passing.
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solutely nondenumerable collections on the basis of nondenumerably many
axioms or on the basis of an axiom that yields nondenumerably many first-
order consequences. But any such method would be circular.

Skolem raised two additional objections to the use of axiomatic set theory
as a foundation for mathematics [Sko23b, p. 299]. First, in order to show any
axiom system for set theory consistent, one must presuppose, outside of that
set theory, a notion of a proof based on the axioms. But such a proof consists
of “an arbitrary finite number of applications of the axioms.” Thus, “the idea
of the arbitrary finite is essential”; it must be presupposed, not introduced
from within the axiomatic set theory. Skolem might have added, though he
did not, that introducing the notion from within an axiomatic set theory to
prove that theory consistent is not only circular, but that it is inadequate be-
cause the notion of arbitrary finite within the axiomatic system is a relative
notion, while the one required of genuine proofs is not. In fact, as Gddel
showed in 1930 [G5d30], if Zermelo’s theory is consistent, then so is that
theory plus a new axiom that says essentially that that very theory is incon-
sistent. Once more, there is no paradox. Models of the strange theory with
the new axiom have a nonstandard notion of finite and hence a nonstandard
notion of proof. The “proofs” of “inconsistencies in Zermelo’s theory” that
appear in such a model are not proofs in the ordinary, absolute sense: assum-
ing Zermelo’s theory is consistent, they are either infinite or not well founded
(that is, they involve loops or infinite descending chains), as is easily seen
from outside the model.

Skolem’s remaining objection to taking axiomatic set theory as a founda-
tion for mathematics was that it is absurd to define the natural numbers and
then prove the induction principle on the basis of axiomatic set theory, since
the natural numbers and induction are so much simpler and less open to ques-
tion than any axiomatic set theory. That objection only shows that one cannot
use a set-theoretic basis to justify the natural numbers or to render our theory
of them more certain. It does not show that the theory of the natural numbers
cannot be absorbed into set theory in a more technical sense. Indeed it can:
the theory of the finite Mirimanoff-von Neumann ordinals, for example, pro-
vides a perfectly good mathematical substitute for the theory of the natural
numbers. Note (though Skolem did not do so explicitly) that any axiomatic
theory -of the natural numbers will be subject to the same kinds of objections
that axiomatic set theories are: the relativity of the notion of natural number,
the need to presuppose a notion of finite to prove anything about the axiom
system, and so forth. : ,
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We now turn to Fraenkel’s theory of definiteness, published in 1925 [Fra25,
p. 254]. Fraenkel simultaneously defined definite properties and a certain
class of functions from the domain of all sets to sets, the Fraenkel functions,
by induction.?® Here is a slightly cleaned up version of the definition:

The base Fraenkel functions are the power set operation, the union op-
eration, and the constant functions. The Fraenkel functions are closed
under ooHEuomwm,oF When f and g are Fraenkel functions then so is
the function of x that takes x to the set {f(x), g(x)}. When f and g
are Fraenkel functions, the propositional functions f(y) = g(¥), f(¥) #
g, f(3) € g(y), and f(y) & g(y) are definite. When ¢ is a definite
propositional function, the function that takes any x to {y € x : ()} is
a Fraenkel function. :

Fraenkel felt that his version of definiteness was superior to Skolem’s since
it did not require considerations of logic and stayed close to Zermelo’s ver-
sion [Fra25, p. 251]. There is, perhaps, some truth in that, since the Fraenkel
functions are precisely the ones licensed by Zermelo’s axioms. That is, Zer-
melo’s axioms are logically equivalent to Extensionality, Choice, and Infinity,
which do not assert that functions exist on the domain of all sets, plus the
claim that the domain is closed under the Fraenkel functions. Fraenkel’s ver-
sion of Separation says: if m is a set and ¢ is a definite propositional function,
then {y € m : ¢ (3)} (the set of y in m such that ¢ holds of y) is a set. Fraenkel
did not assume any. Replacement Axiom.?® Fraenkel showed [Fra25, Fra26,

28. The term Fraenkel function is due to Hallett [Hal84, p. 283].

29. One corresponding Replacement Axiom would now be: if m is a set and f is
a Fraenkel function, then {f(y):y € m} is a set. That version is suggested by [Fra26,
p. 134]. Von Neumann showed in 1928 that that version of Replacement is derivable
from Fraenkel’s other axioms [vIN28, p. 324]. It therefore does not do the required job.

“There is a different version of Replacement that is more in line with Fraenkel's procedure:

since the Replacement Axiom asserts the existence of a function, that function should be
added to the definition of Fraenkel functions. Define Fraenkel* functions by adding the
following condition to the definition of Fraenkel functions: If f is a Fraenkel* function,
then so is the function that takes x to {f(y) : y € x]. Fraenkel did at one time suggest
that adding Replacement would require widening the notion of Fraenkel function [Fra25,
p. 2711. Unfortunately, it is a consequence of von Neumann’s result that the new version
is no better than the old one. Indeed, it follows easily from von Neumann’s work that
the Fraenkel* and Fraenke] functions coincide. Von Neumann [vN28, p. 323] suggested
a different addition to the definition of Fraenkel function that does the job: Let ¢ (x, y) be
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Fra32] that his version of Zermelo’s system sufficed for the development of
much of set theory. As we noted in the previous section, he explicitly ad-
mitted [Fra25, p. 251] that von Neumann [vN23] had shown that the system
without Replacement does not suffice for the “special” theory of ordinals and
cardinals.

In 1925, von Neumann published an axiomatization of set theory [vN25].
He had actually developed it two or three years earlier [Hal84, p. 283]. He
credited Fraenkel with the Replacement Axiom [vN25, p. 398], ignoring
Skolem’s contribution, though he cited Skolem’s paper in which Replacement
appeared [Sko23b] concerning Skolem’s paradox.

Von Neumann axiomatized, in effect,30 a theory of what he called classes.
Among the classes, certain ones are members of other classes, Such classes
are sets. Thus, much like Cantor, he allowed the class of all sets, the class
of all Mirimanoff~von Neumann ordinal numbers, and so forth. As he knew,
such classes would lead to paradoxes if they were allowed to be members
of other classes—hence the distinction between sets and classes, which is
remarkably similar to Cantor’s distinction between sets and absolutely incon-
sistent multiplicities. .

Von Neumann’s new system included the following distinctive axiom:

»LQOS 3.1 (LIMITATION OF SIZE). A class.is of the same power as the
universe of sets if and only if it is not a set.

To say that a class S is of the same power as the universe of sets means
that there is a function from the class onto the universe of sets, that is, a
class F of ordered pairs such that each member of the class § is the first
component of exactly one pair in the class F and such that every set is the
second component of at least one pair in the class F. In effect, the axiom says
that the only way a class can fail to be a set is by being as large as possible—
as large as the class of all sets. Von Neumann argued for that by saying [VN25,

a definite propositional function. If for each x there is a set that has as members exactly

those y such that ¢ (x, y), then the function that takes each x to the set of y such that
¢ (x, y) is a Fraenkel function.

30. Von Neumann took functions to be primary, not sets. He introduced sets as
. characteristic functions, that is, as functions from the domain to two objects, functions
like the ones Cantor used in his diagonal argument. No one has followed von Neumann in
taking functions to be primary, and so I shall ignore that, acting as if he had taken sets to be
primary. In the transformed picture, von Neumann’s functions become classes of ordered
pairs such that every set is the first element of exactly one member of the class.
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p. 402] that it clarified existing confusion, is extraordinarily powerful, and
“enlarges rather than restricts the domain of set theory”” That limitation of -
size picture is extremely close to Cantor’s, discussed in §IV.2.3! The Axiom
of Replacement—the range of a function on a set is a set—is immediate from
von Neumann’s axiom, since the range can be no larger than the original set.
Cantor’s argument from the letter to Dedekind shows that the class of ordinal
numbers is not a set. Hence, it follows from von Neumann’s axiom that there
is a function from the class of ordinal numbers onto the class of all sets. Thus,
the class of sets can be well-ordered, and so Choice follows from the axiom
as well.

Technical Remark. In fact, a strong form of Choice follows from Lim-
itation of Size: it says that for every class S there is a class T such that
for every x, if there is an ordered pair in § whose first element is x,
then there is exactly one such pair in 7. Von Neumann showed [vN29,
pp. 506-508] that the system with Limitation of Size is consistent if
and only if the system with the strong form of Choice just introduced
plus Replacement is consistent. He also showed by assuming Founda-
tion (see §4) plus his other axioms that Limitation of Size is equivalent
to those two axioms. (The consistency result is immediate from the other
result plus his theorem [vN29, pp. 494-508] that the system obtained
from his by replacing Limitation of Size by Strong Choice and Replace-
ment is consistent without Foundation if and only if it is consistent when
Foundation is added.) Since we shall consider Limitation of Size without
Foundation in subsequent sections, let me mention that it is straightfor-
ward to check that all von Neumann’s proof requires is that there be a
function from the ordinals to sets such that every set is a member of
some member of the range. The equivalence therefore also holds in mod-
els of the Anti-Foundation Axiom (see §4).

In von Neumann’s system, the Separation Axiom is Just the fact that the in-
tersection of a set and a class is a set. Von Neumann thus, in effect, identified

31. Von Neumann believed that Cantor’s set theory was the “naive” set theory that
is in fact due to Russell. He attributed the basic limitation-of-size idea to Zermeio [vN25,
P- 3%97]. In so far as the Separation Axiom only introduces subsets of an already given set,
there is a kind of limitation-of-size principle to be found in Zermelo’s system—a limitation
to subsets—but it is not clear how it relates to von Neumann’s proposed limitation on the
cardinality of sets, a limitation that, as we have seen, results from Cantor’s conception.

-See §5.
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the definite propositional functions of Zermelo’s Separation Axiom with the
classes. To ensure that there are enough classes, von Neumann used axioms
that entailed that any collection of sets is a class if it is first-order definable
(with class parameters). Since first-order formulas are built up from atomic
formulas using, say, negation, disjunction, and existential quantification, it is
enough to ensure that the complement of any class is a class, that the union
of two classes is a class, that the domain of any binary relation is a class,?
and so forth. Von Neumann thus obtained a theory in which all of the rele-
vant notions are axiomatized as members of the domain. In contrast, Skolem
had required the auxiliary notion of a first-order formula, and Fraenkel had

- required that of a Fraenkel function. Von Neumann’s theory is finitely axiom-
atized. No schemas are required.

Von Neumann said [VN25, p- 395] his work was in what would today be
called a “formalistic” spirit: “one understands by ‘set’ nothing but an object
of which one knows no more and wants to know no more than what fol-
lows about it from the postulates.” Nonetheless, he carefully observed [VN25,
p- 403] that his axioms “are nothing but trivial facts of naive set theory.” That
observation was important to him because it showed that the axioms, in the
specific sense indicated, do not require too much [VN25, p. 403]. Thus, it
was important to von Neumann that the axioms be “evident and reasonable.”
a constraint that is not formalistic. (Elsewhere [VN25, p. 402] he qualified
his claim with respect to his main axiom, which he admitted is stronger than
“what was up to now regarded as evident and reasonable.”)

Von Neumann went on to sharpen some of Skolem’s arguments against
axiomatic set theory. He noted that probably no theory that has infinite models
is categorical—that is, is such that all of its models are isomorphic—and so
no theory of any infinite mathematical system can characterize that system.
He concluded [vIN25, p. 412], “This circumstance seems to me to be an
argument for intuitionism.”33 He noted that the notion of “well ordering” is
subject to Skolem’s relativity. About the relativity of the notion of finitude,
he said that it is difficult to say whether this militates more strongly -against
its intuitive character or its set-theoretic formalization. It counts against both,
since it shows [VN25, p. 413] that we lack “any foothold that would enable us
to make the definition of ‘finite’ determinate.”

32. A binary relation is a class of ordered pairs. The domain of a binary relation is
the class of all x for which there is a ¥ such that the ordered pair (x, y) is in the relation.

33. Intuitionism, a philosophy of mathematics that rejects set-theoretic foundations,
is discussed in §VIL2. ’
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When combined with Skolem’s arguments, those of von Neumann amount
to a devastating criticism of our present-day axiomatic foundations of mathe-
matics on the basis of set theory: Those foundations rely on a notion of proof,
which requires a notion of finitude for its definition. But, once we specify
the notion of definiteness, our axioms enable us to show that the definition of
finitude they provide is an inadequate foundation for the notion of proof. To
be sure, every theorem of mathematics has a counterpart within set theory—
including the whole theory of finitude, based on the “finite” Mirimanoff-von
Neumann ordinals. But that theory cannot serve as a basis for the notion of
proof, and hence set theory cannot serve as a basis for an axiomatic math-
ematics, even if concerns about the certainty of the basis, like consistency
or self-evidence, are not at issue. As Skolem said, we cannot make sense of
what we are doing without presupposing the notion of “arbitrary finite num-
ber.” (None of that provides an argument against a realist view of set-theoretic
mathematics, on which axioms and proofs play only an incidental role.) The
criticism is not directed at the practice of using proofs, a practice that we can
certainly acquire without having a theory of proofs or an adequate character-
ization of finitude. In practice all we need in the way of a theory of finitude
is the recognition that any proof we actually encounter in completed form is
finite, which is very far from a complete characterization of what it is to be
finite. The criticism is directed at a certain kind of attempt to characterize or
define what the practice allows in the way of proofs. The attemnpt fails.

In 1929 Zermelo clarified his own view of definiteness. He began by dis-
cussing the various attempts by others at defining definiteness. The difficulty,
he said, with eliminating the notion of definiteness in favor of general logic
is that there is no widely accepted general logic [Zer29, pp. 339-340]. He
clearly had in mind proposals like that of Weyl and Skolem. He criticized
Fraenkel for introducing the notion of what we have called Fraenkel functions
via a construction, since the construction depends on the notion of the finite
numbers, the clarification of which is an important job for set theory [Zer29,

" p- 340]. He therefore preferred von Neumann’s purely axiomatic approach,

though he thought that the use of functions made von Neumann’s foundation

. intricate and hard to understand [Zer29, P m#S.

Since we have avoided von Neumann’s use of functions, our version of von
Neumann’s system bears some resemblance to the kind of system Zermelo
seems to have had in mind. There are two differences worth emphasizing:
Zermelo allowed something like quantification over classes {Zer29, p. 343],
and he introduced a restrictive axiom, which said essentially that no proper
part of the collection of all classes satisfies the axioms for classes. That axiom
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was intended to have the effect of ensuring that there were no more classes
than those required by the axioms [Zer29, p. 344].

Skolem replied to Zermelo promptly. For Skolem, the question whether a
notion of definiteness is presented axiomatically or by means of a construc-
tion was merely a matter of formulation [Sko30, pp. 337-338]. He noted that
Zermelo’s proposal was quite similar to what his own would be, were it to be
presented axiomatically.

The main differences between the proposals of Zermelo and Skolem were
the restrictive axiom and the quantification over classes. About the restrictive
axiom, Skolem asked [Sko30, p. 338]: Since Zermelo did not want to use
the notion of finite number, why did he use the notion of proper part? Isn’t
that also a notion that is to be fixed by set theory? The quantification over
classes stood in need of further clarification. Did Zermelo intend to clarify
by means of a construction, or further axioms? Most important, if classes
were introduced initially without quantification over classes, then allowing
quantification over them does not make new sets or classes possible [Sko30,
Pp- 339-340] and is therefore superfluous. Finally, Skolem noted, much as
before, that axioms for set theory will not specify a single model, since they
will always have a denumerable model because om the Lowenheim-Skolem

- theorem [Sko30, p. 340-341].

Zermelo was implicitly relying on what we would today analyze as second-
order notions when he quantified over classes and employed parts of the do-
main. Skolem’s request for clarification was a request for a first-order version
of those notions, to be supplied by the use of a construction or axioms.

Any first-order theory (that is, any theory formulated in a first-order logic)
is subject to Skolem’s argument for relativism. Second-order theories are not,
but Skolem’s request for clarification seems legitimate. Thus, the stand-off
between Skolem and Zermelo.34

§4. Zermelo

,Hb Guo NNmﬂE&o proposed a new axiomatization of set theory [Zer30, p. 30]:

an >ﬁoﬁ of Pairing (any two oEooa compose a set) much like that of
Fraenkel [Fra25, p. 254] replaced his old Axiom of Elementary Sets. The Ax-
iom of Infinity was dropped, on the grounds that it does not belong to general

34. For a modern discussion, and access to the extensive modern literature on the
stand-off, see [Sha90]. We feturn to the subject in §VIL.4.
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set theory. The Axiom of Choice was not expressly part of the m%mﬂamr_ since

‘Zermelo thought of it as part of the background logic. The Axiom of Separa-
- tion took a quite m@bﬂ.& form: one can separate out of any given set the subset
- of elements for which a given propositional function holds, where the propo-
‘ sitional function can be any whatever, without restriction. As he also put it,
 any part of a set is itself a set. He mentioned his 1929 article summarized in

§3 and Skolem’s criticism of it, but simply reserved the right to add to that

- discussion. He added a strong version of the Axiom of Replacement analo-
 gous to his Axiom of Separation and kept the old Axioms of Extensionality,
. Power Set, and Union. Finally, he added a new axiom [Zer30, p. 31]:

Ax10M 4.1 (FOUNDATION). Every (descending) chain in which each
element is a member of the previous one is of finite length.

He claimed that that is equivalent to the following: every nonempty part
P -of the domain has a member that has no members in P.33 The Axiom
of Foundation forbids circles of membership and ungrounded sets [Zer30,
pp- 29, 31]. Foundation had a different status from the other axioms, as is

- indicated by the fact that Zermelo referred to the proposed system as sup-

EnEmEom ZF or ZF', where Foundation is the supplement. The difference is
-an important one—Zermelo did woﬁ believe that Foundation is true. He com-
mented that the axiom had been satisfied in all useful applications of set the-
ory up to that time, and thus it, provisionally, imposed no essential restriction
on the theory [Zer30, p. 311. He thus apparently believed that while there are
non-well-founded sets (that is, sets that are at the top of infinite descending
chains) they are of little importance in known applications of set theory. Zer-
melo used the restriction to well-founded sets to great effect to .5<mmnmm8 the
models of the supplemented theory.

Zermelo’s axiom system is much like so-called ZFC, the axiomatization

of set theory that is in most common use today. The two main differences
are these: First, he allowed what he called urelements, objects that are not

sets and have no members, in the domain, while it is conventional to ex-

- clude them today. Fraenkel was the first to propose excluding urelements

[Fra22b, p. 234], as part of an attempt to give categorical axioms. Skolem

mentioned [Sko23b, p. 298] that axioms that do not exclude urelements have

35. They are equivalent w?g a sufficiently strong form of Choice. Details are omit-
ted, since we never consider dropping Choice in this book.
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models both with urelements and without, and he sketched a proof. In much
the same way that Zermelo argued for Foundation, Fraenkel argued that ure-
lements serve no mathematical purpose and that eliminating them simplified
matters.3

Second, Zermelo’s Axioms of Separation, WmEmnoBmE and Foundation

are based on a strong second-order Epamnmﬁmu&um of the notion of définite-
ness: he considered al @B@Omﬁomﬂ functions, functions, chains, and parts
of the domain, while; today we allow only first-order definable (with param-

ll«.ll.l« e s s ————

eters) @HO@OmEouB functions and functions, and oE% chains and parts of the
domain that are themselves members of the domain. The system Zermelo

_proposed is essentially what we would today call second-order ZFC, though

without Infinity.3” The first to use a first-order system much like the one so
universally adopted today was yon Neumann “ in 1928 [vN28, pp. 321, 323],

who named it Zermelo-Fraenkel set theo ory.38

Though the Axiom of Foundation had several precursors, Zermelo did not
discuss them. Mirimanoff [Mir17a, p- 42] was the first to distinguish the well-
founded sets, which he called “ordinary sets,” from the non-well-founded,
“extraordinary” ones. Though Mirimanoff never considered the Axiom of
Foundation, which would in his terminology have been that all sets are ordi-
nary, he did the next best thing: he restricted his attention to the study exclu-
sively of ordinary sets [Mir17a, p. 39]. That is not far from Zermelo’s attitude.
After all, Zermelo %ﬁ/mmmnmﬁ .m.ﬁozuamnou asa moi RE& about sets, as he

had presented Choice. He used Foundation to restrict ‘his considerations to
well-founded sets, Just noting that the other sets Um<o no use. Mirimanoff de-

fined the 7ank of an ordinary set as follows [Mirl7a, p. 51]: The rank of an
urelement or the empty set is 0, while the rank of any other set is the least
ordinal number greater than the ranks of any of its members. He showed, us-

36. It is ironic that Fraenkel was the first advocate of excluding urelements, since he
was also the first to put them to serious mathematical use: in 1922, he proved that Choice
is not a consequence of the other axioms if one allows urelernents [Fra22a] (assuming
the other axioms are consistent). That was not shown 3_905 urelements until 1963, by
Cohen, see Emoqm p. 184].

37. Today one drops Separation, since it is a consequence of Replacement, and one
uses a first-order version of Foundation, since the second-order versions follow from that
version and second-order Replacement.

38. The system is Zermelo’s, using Fraenkel functions to specify what definiteness

means, supplemented by Replacement amended as discussed in a note to §3. Urelements
are allowed, and Foundation is not added.
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ing Replacement, that every ordinary set had, according to that definition, a
unique rank.

Skolem [Sko23b, p. 298] mentioned that for any domain that is a model of
Zermelo’s axioms, the elements of the domain that are not at the beginning
of an infinite descending chain also form a model. He was not advocating
a restriction, merely noting that Zermelo’s 1908 axioms apparently do not
determine whether such chains exist.

In 1925 von Neumann [vN25, pp. 404, 411-412] mentioned the possibility
of an axiom that there is no function f with domain the natural numbers such
that for all n, f(n + 1) € f(n), that is, that there is no infinite descending
chain. Zermelo [Zer30] cited that paper for another purpose: Von Neumann
did not have his version of Foundation in his basic system. He mentioned it in
the second part of the paper, “Investigation of the axioms,” primarily to note
that it probably did not help to ensure that the theory is categorical, because
of the relativity of the notion of descending chain. He did observe [VvN235,

' p. 412] that adding the Axiom of Foundation would not lead to contradictions
if there were none already (on the basis of his axioms) and that it would have
the “desirable” effect of excluding “superfluous” non-well-founded sets. He
published the proof that adding Foundation would not lead to contradictions
in 1929 ([vN29, pp. 494-508]; see [Vau85] for an elementary presentation)
ina paper in which he also gave (p. 498) the alternative form of the Axiom
mentioned by Zermelo and (p. 503) the definition of rank, apparently inde-
pendently of Mirimanoff,

Zermelo developed the use of rank to Jnderstand the structure of the well-

- founded sets. He went far @o%oua Mirimanoff. He observed that ranks strati-

fied the well-founded sets: at the zeroth layer is the set of all objects with no
members—the empty set*” and all the urelements. Every layer (indexed by
an ordinal)® is the set of all sets that are made up of objects that occur in
previous layers. Thus, if we let SXQV have as members the empty set plus
the members of U, where U is a omm%@ empty) set of urelements, and let
SAQQ otherwise be the chm.o C JB<a <m Aqv and its power set \Emn every
well-founded set Ao<@m the EonBoEm sin U) is a member of some 5@3 and
the rank of an object a is just the Wommﬁ 0\ uch that g is in Va(U).% “The he mem-

bers of o[mmw well- HonEma set roé E.@omaﬁm Hmuah& an omow 2&_ ~founded

B e

39. Zermelo took the empty set to be an arbitrarily selected urelement.

40. Zermelo distinguished between the ordinal numbers and their substitutes in his
domains, the Mirimanoff-von Neumann ordinals. I shall suppress the details.

41. Here and below, I have modernized Zermelo’s notation, and I have rephrased his

&,i [
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set serves as material for following ones [Zer30, pp. 29-30]. Zermelo did not

A7 L WIS e s
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emphasize that picture. After all, it did not apply to all of the sets, and he
, did not view the sets as being in any important sense constructed or built up.
He merely said that it helped with his investigation of models of the axioms,
and he introduced it as an aid on a par with that of using the Mirimanoff—von
Neumann ordinals. The layers are not even mentioned in the final, concluding
section of the paper. . ,

ﬁu Zermelo showed that his axioms serve to guarantee that every model is
. isomorphic to one of the form | J p<i V8(U). Zermelo called models of that

form ngrmal_domains. Normal domains are the subject of Zermelo’s inves-
tigation. The stratification of sets within each normal domain plays only an
auxiliary role. Since every model is isomorphic to a normal domain, we can
afford to ignore all other models—results about them will follow immediately
from the ones about the normal domains. Moreover, when we disallow urele-
ments and abbreviate Vg(2) (the Vp(U) with the empty set of urelements)
by Vg, if g, Vp is a normal domain—a model of Zermelo’s axioms—then
Vi is a model of von Neumann’s axioms—if we take the sets to be exactly
the members of | Jg_, V. Zermelo showed that a normal domain is charac-

terized up to isomorphism by just two numbers—the cardinality of the set of

urelements, which can be any cardinal number, and the least Mirimanoff—von
Neumann ordinal number « not in the model, which can be any strongly inac-
cessible initial ordinal.** Zermelo argued that if there is any normal domain
at all that contains infinite members, then strongly inaccessible initial ordi-
nals must certainly exist. Naturally one can assume otherwise, just as one can
assume that there are no urelements, but only at the cost of generality [Zer30,
pp. 44-45].

Distinct normal domains stack neatly. Suppose, for example, that two non-

isomorphic normal domains 21 (German capital V) and 20’ have sets of urele-

results to deal .oEw with the cumulative V,(U)s. He often considered the set of all sets of

rank o, that is, in our notation, the set V,(U) — Cué Vg(U), not V, (U).
42. A strongly inaccessible initial ordinal « is an ordinal x such that « is of greater
cardinality than any of its predecessors, « is not the least upper bound of a set of cardinality

less than that of « of ordinals that are less than «, and the power set of any ordinal less than.

i has cardinality less than that of . One usually requires in addition that « be greater than
@, but Zermelo allowed w as a strongly inaccessible initial ordinal since he omitted the
Axiom of Infinity from his set theory. With the definition I have given of V¥, (U}, not every
strongly inaccessible initial ordinal gives rise to a model when the set of urelements is
large. Zermelo showed that that can be patched up [Zer30, pp. 38-39]. I omit the details.
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ments of the same size. Then they are characterized by distinct ordinals, say
« and «’ with, say, « < k’. Zermelo showed that 9 is isomorphic to a sub-
structure of 20’ and indeed that « is in 0’ and that 9 is isomorphic to the set

. Vo (U) as defined within 2.3 That is, in particular, the smaller domain
<K @

is isomorphic to a set in the larger domain. A

The above results make strong use of the second-order character of Zer-
melo’s axioms: The use of all chains in the Foundation Axiom, instead of
just those in the domain, guarantees that the ordinals of a domain really are

- well-ordered, which a first-order version of the axiom could not have done,

and so the ordinals of any model are guaranteed to be (order) isomorphic to
genuine” ordinals. The use of all propositional functions in the Separation

. axiom guarantees that the V,(U)s of different normal domains with the same

U are the same when « is in both domains: Suppose not. Then there is a least

.« in-the aoB&bm at which the domains differ. Since they differ, one of them
- must include a set C in Ve(U) that the other omits. But every member of the

set C is in both domains, since « is minimal. Separation guarantees that that

- set is in the other domain, contrary to our assumption, since C is the sub-
¢ class of | p<a Vp(U) determined by the propositional function that holds of

the members of C and nothing else. The proof would not go through with

. Skolem’s first-order version of Separation, since the requisite propositional
- function (x is in C) might not be given by a formula.

Zermelo accepted that there are many normal domains. They are nested as

- described above. That enabled him to make sense of his use of all proposi-
- tional functions. Let me speak in terms of the collections that the proposi-

tional functions define, the parts of the domain, instead of in terms of the

-~ propositional functions themselves. That will serve to put Zermelo’s position
- in the terms of our present-day view, and it will make clear what Zermelo’s

implicit reply to Skolem was.* Zermelo’s Separation Axiom says that every

- part of a set is a set. Skolem’s question had been, Isn’t the notion of “part” to

be fixed by set theory? Zermelo could now reply that it is: A model of set the-

-ory is a set in a higher model (that is, a model containing all of the urelements
- of the first model that has a larger characteristic ordinal), and so the notion of

part of a given model can now be explained set theoretically: a part of the

43. None of the results requires the Axiom of Infinity. Withiout it, V,,(U), the set
f hereditarily finite sets, is a normal domain, and hence included in the analysis. That is
robably why Zermelo omitted Infinity.

44. Tt is no accident that putting things in terms more congenial to Skolem helps to
ake contact with today’s views. Today’s views are direct descendants of those of Skolem.
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model is nothing more than a subset of the model, where the term subset is
used in the sense of a higher model in which the original one is a set. Zer-
melo assumed that there always is a model higher than any given one [Zer30,
p. 46]. The parts of a normal domain, its proper classes, are ordinary sets in
a higher domain. Thus was the failure of the axiom system to be categorical
turned into a virtue.

Note that all that is required for Zermelo’s reply to Skolem is that every
model of the axioms is a set in a higher model. If one could show that a simi-
lar result held in some system without the Foundation Axiom, then Zermelo’s
basic philosophical attitude would go over to that system unchanged. That
is no idle speculation—it applies to a system of non-well-founded set theory
that has some advocates today, ZFC minus the Foundation Axiom plus the
“Anti-Foundation Axiom” (ZFC™+AFA). See [Acz88] for an exact statement
of the axiom.*’ Zermelo assumed that there are as many strongly inaccessible
initial ordinals as ordinals, and hence that there is a model of set theory for
each ordinal. The same result follows for ZEC™+AFA. Alfred Tarski made a
proposal a@ﬁ?&mﬁ to that of Zermelo but as an axiom of set theory instead
of an assumption about set theory, eight years later [Tar38]. The succession
of models also clears up the paradoxes: the proper classes of one model are

. sets in all higher models [Zer30, pp. 29, 47].

Zermelo went on [Zer32] to publish a strong attack on Skolem’s “assump- .

tion that all mathematical concepts and theorems must be representable by a
. fixed finite system of signs.” Zermelo thought the resulting relativity of set-
theoretic notions ought to convince anyone to abandon Skolem’s “prejudice.”
He went on to say that “our system of signs is always an incomplete device,
shifting from case to case. It reflects our finite understanding of the infinite,
which we cannot immediately and intuitively ‘survey’ or comprehend, though
_at least we can approach mastery step by step.” (See [Zer32, p. 85] as trans-
lated by Gregory H. Moore [Mo080, p. 126].) He went on to propose an in-
finitary logic, with conjunctions and disjunctions of any set of propositions
and well-founded infinitary proofs ([Zer32, pp. 86-88], see also [Zer35]).

. 45. The construction of a model of ZFC™+AFA given in [Acz88, Chapter 3] yields
a separate model of the axioms for each pure (that is, urelement-free) normal domain.
Those models of ZFC™+AFA are uniquely determined up to isomorphism by Zermelo’s
parameter (the least ordinal not in the model), and they are nested as required: each model
is a set in any higher model, and any higher model contains all the parts of the original
model.
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Within that logic, arbitrary propositional functions can be used to establish
Zermelo’s structure theory described above, and, moreover, Zermelo noted
that that logic is not subject to the Godel incompleteness results.

Zermelo summarized his view eloquently in an unpublished manuscript:

How must a ‘domain’ of ‘sets’ and ‘urelements’ be constituted, to satisfy
the ‘general’ axioms of set theory? Is our axiom system ‘categorical,’ or
does it give a multiplicity of essentially distinct ‘set-theoretic models’?
Is the idea of a ‘set’ in contrast to a pure ‘class’ absolute, determined
by logical characteristics or only relative, dependent on the set-theoretic
model suitable as a basis at a time? . .

Every ‘normal domain’ is a ‘closed domain’ and therefore can in a
higher one also be interpreted as a ‘set.” . . . No (closed) normal domain
can represent the whole of set theory . . . The whole of set theory is only
represented by the ‘open’ totality of all normal domains. (Moo8g0,
pp- 131-133], my translation) .

He also said that mathematics begins with the infinitary logical assimilation

* of intuitively given material; it cannot be based on intuition [Moo80, pp. 134,

135]. He did not explain much more. I mention that only because the state-
ment may seem to conflict with the kind of idea of self-evidence that I at-
tributed to Zermelo earlier. It does not. All he means to deny by denying that
mathematics is founded on intuition is that mathematics is about space, time,

or the like. The notion of assimilation of intuitively given material leaves am-

ple room for self-evidence.

§5. Go Forward, and Faith Will Come to You

H.UonmngmHE MB@mMmm.mﬂ . aspects of today’s approach to set theory that have

uoﬁ@oEo up in our historical account so far. Chief among them are the idea
that"axiomatic set theory concerns a single, infended domain consisting of all

Hwo\mnﬁm, the Iterative conception of sets, and’ the primacy of the first-order
versions of the axioms. ,

i 2T

Let me begin by briefly discussing the primacy of first-order versions of \\
- the axioms, since there is at least some reason for that in what has come be-~"
- fore, even though it has not been emphasized. The second-order quantifis

- in moooa-o.aoﬂ axiomatizations of set theory essentially range over o\d\

* in von Neumann’s sense of class—a collection of sets. Since von Ney”

axioms take the classes to actually be in the domain, they are first [l
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the classes in the domain, the temptation to use second-order mzmbmmnmmou
over them has been removed. Zermelo said (see §4) that he preferred ven
Neumann’s approach to definiteness since it is purely axiomatic, not relying
on a construction that is described-outside the set-theoretic axioms. He ap-
plied that criticism to Fraenkel’s proposal, but it applies equally well to the
proposal of Weyl and Skolem, which relies on a logic specified outside the
set-theoretic axioms. A preference for von Neumann’s axioms on whatever
grounds is ipso facto a preference for first-order axioms.*6
Skolem’s criticisms apparently led Zermelo to change the type of axiom
system he favored, but his old reasons for preferring von Neumann’s system
were adopted by others. In addition, Skolem’s insistence that second-order
systems required further explanation had the effect of discouraging their use.
See [Moo88a] for a discussion of how influences not particularly connected
to set theory led to a general preference for first-order logic. Now on to the
main business of this section.
Cantor thought of himself as studying sets, not some limited partial domain
of sets, and certainly not the formal consequences of axioms. Thus, it is not
uireasonable to say that Cantor believed that set theory concerns a single

intended model. Since Zermelo just presupposed Cantorian set theory in his_

1904 proof of the Well-Ordering Principle from the Axiom of Choice, he may
be thought to have taken a.similar view—his remarks are so abbreviated that
one cannot rule that out. .

By 1908, the situation had subtly changed: Since Zermelo argued for the
truth of Choice and his other axioms, he was certainly committed to the idea
that there are sets, and that they are what is being studied. That also be-
.comes clear in his argument [Zer08a, p. 191] that impredicative definitions
are acceptable—since, “after all, an object is not created through such a ‘de-
termination.’ ” On the other hand, in reply to those who had argued that the
1904 proof used principles that let to paradoxes, he said [Zer0O8a, p. 195], “it
is not permissible to treat the extension of every arbitrary notion as a set .
But if in set theory we confine ourselves to a number of established prin-
SEwm . . . —principles that enable us to form initial sets and to derive new
sets m.oE given ones—then all such contradictions can be avoided.” He was
proposing to abandon the general study of all sets, concentrating on those that
could be shown to exist by means of a few wﬂw&@wam. Since, as we have seen,

46, Zermelo proposed second-order E&mEm anyhow, but, as we have seen, Skolem
showed that allowing second-order quantification in a system like von Neumann’s did not
make it possible to define new classes.
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his principles were chosen in an ad koc way, there was no reason to suspect

that they were strong enough to generate all sets. Indeed they were not strong,

enough, as the later discovery of the need for Replacement showed.

As we have just seen, Zermelo proposed abandoning the general study
of sets when he introduced axioms for set theory in 1908. In the period we
have discussed after 1908 no one investigating the foundations of set theory
concerned themselves with a single intended model of all sets. Skolem and

vor Neumann argued against the mVOmmEEQ of maﬁnﬂEEbm such a model.
Fraenkel followed Zermelo’s hint: He abandoned the general study of sets,

“trying to see instead how few sets were needed to develop the needed the-

ory, rejecting Replacement, introducing an axiom of restriction (which said
that no sets existed other than those required by Zermelo’s axioms [Fra23,
p. 219]), and giving a first-order version of definiteness. He could therefore
avoid questions about all sets. Zermelo later (after 1929) did try to clarify
what sets are instead of restricting his investigations to those sets whose ex-
istence is guaranteed by some principles, but he denied that the sets mowB a
mEmHo domain.

Qoa& E_Hoazomm a very m&.mamﬁ point o». view in 1947 aoaﬁ vol. 2,
p.180]:

Tt might at first seem that the set-theoretical paradoxes would stand in
the way of such an undertaking, but closer examination shows that they
cause no trouble at all. They are a very serious problem, but not for Can-
tor’s set theory. As far as sets occur and are necessary in mathematics (at
least in the mathematics of today, including all of Cantor’s set theory),
they are sets of integers, or of rational numbers (i.e., of pairs of integers),
or of real numbers (i.e., of sets of rational numbers), or of functions of
real numbers (i.e., of sets of pairs of real numbers), etc.; when theorems
abont all sets (or the existence of sets) in general are asserted, Eo% can
always be interpreted without any difficulty to mean that they hold for
sets of integers as well as for sets of real numbers, etc. (respectively, that
there exist either sets of integers, or sets. of real numbers, or . . . etc.,
which have the asserted property). This concept of set, however, accord-
ing to which a set is anything obtainable from the integers (or some other
well-defined objects) by iterated application® of the operation “set of”, b

and not something obtained by dividing the SH&HQ of all existing EEmm
into two categories, has never led to any antinomy whatsoever; that is,
the perfectly “naive” and uncritical working with this oonom,vﬂ of set has
so far proved completely self-consistent.® :
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But, ?HE@HHOHP the axioms underlying the unrestricted use of this
concept of set, or, at least, a portion of them which suffices for all math-
ematical proofs ever produced up to now, have been so precisely formu-
lated in axiomatic set theory?

velopment of set theory up until at least 1930, at least not so far as Zermelo
knew. For otherwise he ‘would have introduced the Axiom of Foundation,
which is characteristic of the iterative conception, not merely as a provisional
restriction for mathematical convenience but as a provisional further specifi-
cation of what is meant by “set.” .

Gddel apparently knew of no precedent for the iterative conception either:
in the 1960s, when revising his article, he considered crediting Zermelo with
“substantially the same solution of the paradoxes,’#® citing MNQ..wB" the 1930
article discussed in §4. In the end, quite rightly, he did not. (See Moore’s
'discussion of Godel’s article [Moo86, p. 1671.) It was an extraordinarily bold
move on Godel’s part to introduce the iterative conception as fundamental s0
late in the development of set theory. .

- Someone will surely object that the iterative conception was already im-
plicitly present in Cantor’s definitions of a set as “bound up” or “collected.”
But, as we have seen, Cantor’s theory.can be spelled out without Foundation.
Cantor never, so far as I know, commented on whether a set can be a mem-
ber of itself. Given the impredicativity of Cantor’s theory, there seems to me
to be no reason why an enumeration of elements cannot, after the fact, turn
out to be such that its range is one of the elements, in which case a non-well-
founded set would be a Cantorian set.*? Moreover, none of Cantor’s succes-
sors saw such an idea in his work, at least not until after 1947.

Can there be a mathematical argument for the iterative conception? First
of all, there can be no proof that the Axiom of Foundation is either true or

a. This phrase is to be understood so as to include also transfinite iteration, the
totality of sets obtained by finite iteration forming again a set and a basis for a further
application of the operation “set of”.

b. The operation “set of x’s” cannot be defined satisfactorily (at least in the
present state of knowledge), but only be paraphrased by other expressions involving
again the concept of set, such as: “multitude of x’s”, “combination of any number of
x’s”, “part of the totality of x’s; but as opposed to the concept of set in general (if
considered as primitive) we have a clear notion of this operation.

c. It follows at once from this explanation of the term “set” that a set of all sets
or other sets of a similar extension cannot exist, since every set obtained in this way
immediately gives rise to further application of the operation “set of” and, therefore,
to the existence of larger sets.

d. [At this point, Godel referred in a note to the axiomatization of von Neumann
and to those of Paul Bemnays and himself, which are based on von Neumann’s. All
are first order.] .

In that brief wmmmmmm Godel introduced the idea that axiomatic set theory is

the study of a mEmHo intended domain of all sets. He introduced the itergtive

et o

ﬂ. n.u:rml .u:e:l#ﬁ Eom_&mﬁ moﬁmﬁmﬁogoouoo:\mamm Emﬁﬁoognoﬂmogﬁuma

M cww_:mamnob of the “set of” operation, in other words, the idea that sets are

« to be conceived as just the objects in the V,(U)s.#” And he gave his support
to the idea that the axioms of first-order axiomatic set theory “underlie” the
concept of set. Bach of those ideas is tremendously influential today.

The iterative conception gives the Axiom of Foundation nmuﬁwn stage: as
Zermelo showed, that axiom ensures wmmﬁmmq that each set is a “set of” sets
that occurred at previous “layers” or iterations of the “set of” operation. The
axiom guarantees that all sets are iterative sets, and the iterative conception
makes the axiom obvious.

The iterative conception of set was not, as we have seen, present in the de-

false. Von Neumann’s proof that Foundation cannot lead to contradictions ‘
(mentioned in §4) shows that in any model’® of any of the usual axioms for -
set theory (without Foundation) the well-founded sets form a model of those
axioms plus Foundation. Thus, even when we allow non-well-founded sets
it will remain possible to consistently add Foundation by restricting our at- .
tention to the well-founded sets. On the other side, results concerning Anti- '
Foundation mentioned in §4 in fact establish that for any given model®! of
any of the usual axioms plus Foundation, there is a model of Eﬁ,mozuamno_ﬂ

oﬁmbaEm it mna such that the given model is the well-founded part of the ex-

47. The term iterative was used earlier by Bernays in connection with set theory
in a passage that is in some ways very similar to the one just quoted [Ber35b, p. 260].
~ Godel briefly mentioned the iterative conception in print in 1944 [G&d44, p. 462). The
mathematical background for the iterative conception was, as we saw in §4, developed in
[Zer30]. wE the idea that it is constitutive of what sets are that each one is in some Ve (U),
which I take to be the essential component of the iterative conception, was rot in {Zer30],
as we have seen.

48. No solution of the paradoxes was in fact proposed by Godel. What was proposed
instead is that the paradoxes are not relevant to set theory.

49. A collection whose only member is itself provides a o:ow@ example: the function
that takes O to that object witnesses that it is a set.

50. The result even applies to class models, which will be introduced in §VIL4.

51. Once again, the result even applies to class models.
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tension. Thus, even if we exclude non-well-founded sets it will remain possi-
ble to consistently add Anti-Foundation by embedding the well-founded sets
into a model of it. The combined effect of these facts is to show that, so far
-as our present knowledge is concerned, non-well-founded sets aré perfectly
- good mathematical objects and that we should not expect to settle the ques-
tion whether or not there are non-well-founded sets by proving or disproving
Foundation on the basis of some new independently supported axioms.

The only other way to_settle the question whether Foundation is true on
internal mathematical grounds is in terms of its usefulness, but, as the histor-
ical development of set theory makes clear; Foundafion has no mathematical

use.52 As Azriel Levy noted in a work that adopted the iterative conception
.Wu_,wmqu. p. 87], each of the other axioms “was taken up because of its es-
sential role in developing set theory and mathematics in general; if any single
axiom were left out we would have to give up some important fields of set the-
ory and mathematics . . . The case of the axiom of foundation is, however,
different; its omission will not incapacitate any field of mathematics.? It
must be granted, however, that it is equally true that the inclusion of Founda-
tion will not incapacitate any field of mathematics: Every structure is isomor-
phic to a well-founded one, so that when one works only up to isomorphism,
as is usual in mathematics, there is no loss in excluding the non-weli-founded
sets. That provides an excellent justification for Zermelo’s policy of adopt-
ing Foundation as a simplifying assumption, but it provides only the weakest
kind of support for the iterative conception as a conception. The iterative con-
ception entails that it is part of the very idea of what a set is that all sets are
well founded. The fact that for many purposes we can live without the non-
well-founded sets hardly shows that the very idea of a non-well-founded set
is incoherent. (Indeed, it is coherent as the arguments mentioned above based
on Anti-Foundation show. That is already enough to show in a certain weak
sense that the iterative conception is false.)

52. It has sometimes been claimed that Foundation is needed to obtain an adequate
theory of cardinality. Levy’s theorem coricerning the definability of cardinal numbers is
cited [Lev69]. But what Levy showed is that either Foundation or Choice is required to
obtain an adequate theory of cardinality. Since for our purposes in this work Choice is
.always assumed, Foundation is not needed for an adequate theory of cardinality. The most
common theory of cardinality is in fact the one we rely on here, the one based on Choice,
not Foundation. See, for example, [Vau85] for an elementary treatmeunt.

. 53. Levy wﬁmiwwnombw expressed doubts about the necessity of the .EnoB of

mﬁmsmﬂonm._:w
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the éxtent that the conception integrates and provides a motivation for maowﬁ.
ing the axioms of set theory as true of all sets, it is worth adopting. If it
showed how to integrate the axioms into a coherent picture of what sets are,
the loss of generality occasioned by restricting our attention to well-founded
sets might be worth it. .

Because the critical issue is the extent to which the iterative conception in-
tegrates the theory of sets, I have characterized the iterative conception very

narrowly. Many advocates of the :Q.,mﬁﬁ conception include in it not only

the idea that the sets are built up E,\ Hmmamﬁou of the power-set operation, but

also some aspects of what has here been om:oammo combinatorial conception.

(As Maddy kindly pointed out to me, Gtdel may have been one of those who
advocated such a combined picture—that may be the force of “underlying” in
the opening sentence of the second paragraph of the passage quoted earlier.)
But advocates of the kind of mixed view just described cannot claim that it
provides an integrated theory of sets without telling a story about how the !
two aspects of their view come naturally together—a mere conjunction is not /
enough. No such story has been provided. I therefore adopt a narrow char- \_w
acterization of the iterative conception, which makes it possible to carefully ’
analyze how that conception fits in with ideas drawn from the combinatorial

conception.

So let us see how much the iterative conception helps us to integrate and
EoE\.H.@ the axioms of set theory.>* “Sets of” objects are certainly sets in
some antecedent sense. We must therefore adopt the Axiom of Extensionality,
not motivated by the iterative conception but prior to it. We are instructed
by the iterative conception to take all sets of sets obtained by iteration, but
the instruction “all sets” is of no help without some prior understanding of
what sets there may be, an understanding that requires, at least, the Axiom
of Separation. The Axiom of Separation does not follow from the iterative

- conception either. hmmm, Extensionality, it must be part of a prior concept

of set.
" The Axiom of Choice also depends on the prior concept of set. If Choice is

true of sets, then it will, ou the iterative conception, be true of sets obtained by
iterating the “set of” owmamno: Let S be a nonempty iterative set of pairwise
disjoint iterative sets. If the Axiom of Choice is true, then there will be a set T
that contains exactly one member of each member of S. Since each member

54. Many expositions of the iterative conception have appeared. For critical discus-

sions of some of the most important ones, see [Hal84, especially pp. 214-223] and [Par77].
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of a member of an iterative set is itself an iterative set, and since all of the
members of members of S appeared at some stage before S, the set T will be
an iterative set that appears by the stage at which S does. Thus, if the Axiom
of Choice is true of sets, it will also be true of iterative sets. But that is of no
help in determining whether or not the Axiom of Choice is true. To the extent
that the iterative conception is an autonomous conception, it fails to help in
settling whether or not Choice holds. Choice must be taken as-an additional
assumption, as some advocates of the iterative conception have noted. >

The :oﬂmﬁé conception does not tell us how far to iterate (see Godel’s note
b), mha mo 'we must also mﬁﬁ with an »bﬁoB oH, Infinity. In addition, for the
same reason, the iterative oonowwﬁon presupposes the notion of “transfinite
iteration.” In effect, the ordinal numbers are supposed given in advance. 36
One of the symptoms of the need to start with whatever ordinal numbers are
used is that the Axiom of Replacement, which, as we have seen, is intimately
associated with the ordinal numbers, is not a consequence of the iterative
conception.

The HmEmEEm axioms do follow from the noamw:\m conception:

Pairing. If s and t are two iterative sets, then the set of 5 and ¢ is an iterative
set formed at the first stage after both 5 and ¢ are.

Union. If § is an iterative set, then its members are all iterative sets formed
before § and their members are all iterative sets formed before they

55. Hao Wang [Wan74] called his concept of set the iterative conception. In my
terminology, he—like others—combined a combinatorial conception of set, the iterative
conception, and some elements of limitation of size to motivate the axioms of set theory,
including Choice and Separation. But Choice and Separation follow from the combinato-
rial aspect of his conception, not the, in my terms, iterative one. ‘Wang described intuitions
behind the axioms of set theory in a way that does capture, I believe, a lot of the picture
that goes with the present widespread acceptance of those axioms, but the iterative aspect
is not the crucial one.

56. George Boolos [Boo71] and Dana Scott [Sco74] have given variants of the it-
erative conception that avoid the need for that. Boolos assumed in his formal theory that
one can prove things about the stages by induction instead of explicitly assuming that the
stages are constructed in a sequence indexed by ordinal numbers. But the assumption about
induction is motivated, as Boolos clearly stated, by a “rough description” that does involve
the ordinals. Scott employed a reflection principle. While his axiomatization of set theory
is interesting in its own right, the use of reflection principles is not.a part of the notion
of “set of ” and so his axiomatization is not relevant to an evaluation of the basic iterative
conception.
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were, and hence before S. We can therefore form the set of members
of members of S at the same stage we form S.
Power Set. Any subset of an iterative set S will be formed by the stage at

which § is. We can therefore form the set of all of them at a stage after
S is formed.

The reader should by now be uncomfortable with my talk of “forming”
some sets “before” or “after” others. It is crucial to H&E&Eum the full im-
predicative forms of Separation and Replacement that sets be construed re-

. alistically, not as being constructed by us, as Zermelo essentially argued in

1908 (§1). So whatever notion of priority is being invoked by the iterative

- conception cannot be temporal, and whatever notion of formation is being

invoked cannot be construction. Moreover, as Charles Parsons pointed out
[Par77, p. 507], the temporal metaphor of a mind collecting objects already
constructed breaks down for nondenumerable iterations and collections: “It is
Fﬁa to see what the conception of an idealized mind is that would fit here;
it would differ not only from finite minds but also from the divine mind Pa”
conceived in philosophical theology, for the latter is thought of either as in
‘a.Ea . Or its eternity is interpreted as complete liberation from succes-
sion.” Even a Cantorian m@@w& to God’s powers proves to be inadequate here!

Without the: S@@.& doﬁou of constructing some sets after others the iter-
ative conception loses much of its appeal. Parsons has suggested that a modal
interpretation of the iterative oouomwnou be given to avoid the reliance on
time: a multiplicity of actual sets is a possible set ([Par77, pp- 509, 515},
[Par83c)). That is a fascinating suggestion well deserving of further explo-
ration. It is not yet, however, clear how to interpret the necessary notion of
possibility without relying on metaphors of time and construction.

At least at present the advantages of the iterative conception do not suffice
fo justify adopting it: It does not provide a conception that unifies the axioms
of set theory. It is based on a picture of construction that does not seem to
have a coherent interpretation. And, most damning of all, even though the
erative conception has been widely embraced inrecent times, it has had very”
ttle impact on what theorems can be proved—no essential mathematical use

-has been found for Foundation.5”

57. Given the widespread employment of Foundation today it remains @Omm.wﬁm that
me use will yet be found. In that case, I would reverse my position. Caution therefore
ctates that I not make my other arguments depend on a denial of the iterative conception
and indeed none of them do depend in any way on such a denial. ,
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There is a final advantage of the iterative conception that is best brought
oE by oowqmmabm it ,EE Em Eﬁmco?om.mﬁn oouoownou 1.26 rmﬁmcou-&.
: is a mwﬂ .Fmﬁ as Eo >ucoE of Foundation is obmamoﬁwnmco of Eo :onmgm\
ooaombcou the Axiom of Replacement is characteristic of limitation of size.
But note that limitation of size tells which among the collections are sets—
those that are small enough. Unless one just takes Replacement to express
the limitation-of-size idea, limitation of size suggests, on pain of vacuity, that
there are some collections that are not sets. Thus, for exarmple, it is immediate
from von Neumann’s Limitation of Size Axiom that the universe is a class
that is not a set. Though “set of” requires an antecedent notion of set, it
does not Hm@&Hw that there twn out to be collections that are not sets. If,
like Godel, one wants a domain of all sets, then one based on limitation of
size will plausibly involve collections that are not sets,’® while one based on
the iterative conception could be construed as a domain of all collections as
. well as all sets. That is, the iterative conception leaves open the possibility
of claiming that there is no collection of all sets mEa that every collection is
‘ a set.

If one is willing to give up on a single domain of all sets, as Zermelo was,
then limitation of size is compatible with the claim that all collections are
sets. It is just not compatible with the claim that all collections are sets in a

H

single domain. Zouoauﬂomm we can see immediately that limitation opq size -

will not Serve as an roverall _guiding ?.ESE@ for our set EmoQ mu,w more than

R F aeeatas

the :mamnd\w oouomwnou &omm limitation of size does’ boah_cmﬁ@ the Power Set

U

or GEoH_ Axioms. It is:not:clear that it justifies Q.Houom either: Given a sét

S of disjoint nonempty sets, a collection T consisting of exactly one object.

from each of them will be the same size as S and will therefore be a set—if it
exists. The truth of Choice depends on our antecedent theory of collections,
which is not given by limitation of size. There is, however, as we have seen

58. Given suitable background assumptions, one can formulate limitation of size
without classes. One version, suggested to me by Vann McGee, is that given a well-
ordering of the universe, limitation of size can be formulated as follows: If there is an x
such that every y such that ¢ () is less than x, then there is a set of all ys such that ¢(y).
(Naturally, I have in mind a schema in which formulas with no free occurrences of x may
be substituted for ¢.) I do not know of a proposal along such lines that seems sufficiently
natural to merit serious oomenSmoF and so in the text I have pretty much ignored the
possibility of formulating limitation of size without classes.
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in §3, an extensjon of limitation of size from which Choice does follow: von
Neumann’s Limitation of Size Axiom. )
There is another limitation E@oQ besides limnitation om size: Fraenkel’s the-

[ [ —

ory of limitation of comprehensiveness, suggested to him by Zermélo’s Sepa-
ration Axiom. Since it played norole in the development of the axioms, I have
not discussed it before. But Fraenkel used various versions of it to justify the
axioms from 1924 through at least 1958. See [Hal84, pp. 200~202]. The ba-
sic idea is that, starting with given sets, we only form sets from them that
mmwmmﬁmmroi connected ,ﬁ EwB (how is never exactly clear), so that the sets
formed are not mvmoEﬁmG oonnmvaum:\m like the sets of the paradoxes. Here
is a version—my own, not Fraenkel’s: One way to guarantee that a collection
is not too comprehensive is to require that its members already be bounded by
a set. That idea suggests the following axiom: every subcollection of a set is a
set. Given a reasonable notion of collection that yields the Separation Axiom. -

" But it doesn’t get us much else. However, it seems a reasonable extension of

the idea to allow that a collection is not too comprehensive, and hence forms
aset, if the members of its members are bounded by a set. That suggests the
axiom: a collection is a set if its union is included in a set. That, in combi-
nation with Separation, which we have just seen follows from limitation of
comprehensiveness, yields Power Set. It should be fairly clear from the above
that limitation of comprehensiveness shares some similarities with the jter-
ative conception. Gédel’s note ¢ in the quote above is, as Hallett suggested
[Hal84, p. 202], reminiscent of the limitation-of-comprehensiveness.

Just as in the case of limitation of size, assuming the converse of the
limitation of comprehensiveness seems like a reasonable extension: the sets
are exactly the collections that are not too comprehensive. The converse of
the limitation-of-comprehensiveness principle that yielded Power Set yields

. Union.

We can combine the two limitation Emonam to obtain an axiomatization
of set theory that is as well motivated as any. Since both theories start with
collections and delimit the sets among them, the theory will—like von Neu-
mann’s in the usnal presentation—be a SooQ of classes with axioms to tell
which classes are sets.

As in the modified von Neumann theory, a set, by definition, is a class that
is a member of a class. The first axiom is Extensionality for classes.

AX10M 5.1. Classes with the same members are equal.

We shall also need to gﬁ.w axioms to ensure that there are enough classes.
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Von Neumann’s axioms on classes would do, as would those of Bernays
[Ber76, p. 51 or Godel’s based on them [G5d40, p. 37], but those axioms all
assume the existence of ordered pairs of sets that are sets, and so I prefer the
following axiom schema, in which ¢ (x) is any definite formula:?

AX10M 5.2. There is a class with members exactly the sets x such that

& (x).

Tused the vague term definite because there are several ways of spelling it out.
There is the first-order version of the axiom in which a definite ¢ is simply
a first-order formula in the language of the theory with quantification only
over sets. That version is the “class theorem” of Bernays [Ber76, pp. 12-13].
There is Zermelo’s second-order version, in which the domain of a model
is a set in a higher model. There, the definite formulas will also include
ones of the form x € S, where S is an arbitrary subset (in the sense of a
higher model) of the domain. There will be a first-order version that allows
quantification over classes, a first-order version for any expanded language,
and there is at least one other version as well, to be discussed in §VIL4.
In any event, the axiom will serve to guarantee that the classes are closed
under simple operations. In particular, if S is a class, then so is its union, the
class of members of members of S. We need an Axiom of Infinity. I like this
one: .

AXI0M 5.3 There is a nonempty set on which the membership
relation is a discrete linear order with no last element.

Next, we have von Neumann’s Limitation of Size VﬁoE 3.1. Last of all,
we have the following:

AxioM 5.4 (LIMITATION OF Ooﬁmwmmmzw?mmemv. A class is a set if
and only if its union is a set.

Technical Remark. The above axiom system (in its first-order version)
is equivalent to von Neumann’s, reformulated as usual, as is easily seen:
Limitation of Comprehensiveness yields Union and Power Set, and con-
versely. The version of the axiom system along Zermelo’s lines has as

59. 1 have excluded urelements to simplify the axioms. A fully general version
should allow them. As usual, there is no essential problem in doing so, but some minor
increases in complexity result. I leave the needed changes to the reader.
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models those Zermelo noted were models of von Neumann’s system: do-
mains of the form V., where « is strongly inaccessible and the sets are
exactly the members of g<i VB .

The “only if” of Limitation of Comprehensiveness is redundant. That
direction is the Union Axiom; the remaining direction is what gave

Power Set. But Levy showed that Limitation of Size plus Power Set
yields Union [Lev68].

First order or second order? One intended domain or many? Are all ..uoHL
.Hmnmoum sets? Do the iterative conception, limitation of size, and limitation of
comprehensiveness fit into a coherent conception of sets? The last question is
the heir of Cantor’s quandary, How does Power Set fit into a combinatorial
conception of sets? Our understanding of the foundation: .
much better than d’Alembert’s understanding of the fo
was in the latter half of the eighteenth century.50

s of set theory is not
undations of analysis

60. Fraenkel expressed a similar sentiment in

1927 [Fra27, p. 61]. The situati
not changed all that much since. P- 61]. The situation has




