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P R A G M A T I C S  A N D  I N T E N S I O N A L  L O G I C  

The word 'pragmatics' was used in Morris [1] for that branch of philos- 
ophy of language which involves, besides linguistic expressions and the 
objects to which they refer, also the users of the expressions and the 
possible contexts of use. The other two branches, syntax and semantics, 
dealing respectively with expressions alone and expressions together with 
their reference, had already been extensively developed by the time at 
which Morris wrote, the former by a number of authors and the latter 
in Tarski [1]. 

Morris' conception of pragmatics, however, was programmatic and 
indefinite. A step towards precision was taken by Bar-Hillel, who sug- 
gested in Bar-HiUel [1] that pragmatics concern itself with what C. S. 
Peirce had in the last century called indexical expressions. 1 A n  indexical 
word or sentence is one of which the reference cannot be deter- 
mined without knowledge of the context of use; an example is the 
first person pronoun T.  Indexical sentences can be produced in vari- 
ous ways, for instance, by using tenses. Consider 'Caesar will die'. 
This sentence cannot be considered either true or false indepen- 
dently of the context of use; before a truth value can be determined, 
the time of utterance, which is one aspect of the context of use, must 
be specified. 

Though Bar-Hillel suggested that pragmatics concern itself with 
indexical expressions, he was not wholly explicit as to the form this 
concern should take. It seemed to me desirable that pragmatics should at 
least initially follow the lead of semantics - or its modern version, model 
theory2 _ which is primarily concerned with the notions of truth and 
satisfaction (in a model, or under an interpretation). Pragmatics, then, 
should employ similar notions, though here we should speak about truth 
and satisfaction with respect not only to an interpretation but also to a 
context of use. 

These notions I analyzed some years ago in connection with a number 
of special cases, for instance, those involving personal pronouns, de- 
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monstratives, modal operators, tenses, probability operators, contextual 
ambiguity, and direct self-reference. 8 An important feature of many of 
these analyses was a treatment of quantifiers due largely to my student 
Prof. Nino Cocchiarella, and persisting in the general development 
below. 4 

In each special case, however, truth and satisfaction had to be defined 
anew; in particular, no unified treatment of operators was seen. Intuitive 
similarities existed; but full formal unity was not achieved until 1965, 
and then it came about through joint work of Dr. Charles Howard and 
myself. 

Let me sketch the general treatment. By a pragmatic language is under- 
stood a language of which the symbols (atomic expressions) are drawn 
from the following categories: 

(1) the logical constants 7 ,  ^ ,  v ,  4 ,  ~--~, A, V, = ,  E (read respec- 
tively 'it is not the case that', 'and', 'or', 'if ... then', 'if and only if', 'for 
all', 'for some', 'is identical with', 'exists'), 

(2) parentheses, brackets, and commas, 
(3) the individual variables Vo,..., v k .. . .  , 

(4) individual constants, 
(5) n-place predicate constants, for each natural number (that is, 

nonnegative integer) n, and 
(6) operators. 
(The individuals to which such a language refers will be regarded as 

possible objects; accordingly, the symbol E will occur in such contexts as 
E [x], which is read 'x exists' or 'x is actual'. I consider under (6) only 
what might be called 1-place operators. These are symbols which, like the 
negation sign, generate a sentence when placed before another sentence; 
examples are the modal operators 'necessarily' and 'possibly', as well 
as the expressions 'it will be the case that', 'usually', and 'it is probable 
to at least the degree one-half that'. Purely for simplicity I have dis- 
allowed operation symbols, descriptive phrases, and many-place oper- 
ators; but an extension of'the present treatment to accommodate such 
expressions would be completely routine. Indeed, many-place operators 
can be expressed in both extended pragmatics and intensional logic, which 
are considered below; and a partial theory of descriptive phrases occurs 
within intensional logic.) 

The  formulas of a pragmatic language L are built up exactly as one 
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would expect. To be explicit, the set of  formulas of  L is the smallest set 
F such that (1) F contains all expressions 

E [q, 
,[ = r / ,  

P[~o,..., ~.-11, 

where each of  if, r/, ~o,-.., ~.-i is an individual constant of L or an indi- 
vidual variable and P is an n-place predicate constant of  L, (2) F is closed 
under the application of sentential connectives, (3) Auq~ and Vuq~ are in 
F whenever u is an individual variable and ~b is in F, and (4) Nff is in F 
whenever N is an operator of  L and q~ is in F. 

To interpret a pragmatic language L we must specify several things. 
In the first place, we must determine the set of all possible contexts of  
use - or rather, of  all complexes of  relevant aspects of possible contexts 
of  use; we may call such complexes indices, or to borrow Dana Scott's 
term, points of reference. For example, if the only indexical features of L 
were the presence of  tense operators and the first person pronoun T ,  
then a point of  reference might be an ordered pair consisting of a person 
and a real number, understood respectively as the utterer and the moment 
of  utterance. 

In the second place, we should have to specify, for each point of  refer- 
ence i, the set A s of  objects present or existing with respect to i. For  
example, if the points of  reference were moments of  time, As would be 
understood as the set of objects existing at i. 

In the third place, we should have to specify the meaning or intension 
of  each predicate and individual constant of  L. To do this for a constant 
c, we should have to determine, for each point of  reference i, the de- 
notation or extension of  c with respect to L For  example, if the points of  
reference were moments of  time and c were the predicate constant 'is 
green', we should have to specify for each moment i the set of  objects to 
be regarded as green at i. If, on the other hand, c were an individual 
constant, say 'the Pope', we should have to specify, for each moment i, 
the person regarded as Pope at i. 

The fourth thing we must provide is an interpretation of  the operators 
of  L. To do this we associate with each operator of  L a relation between 
points of  reference and sets of  points of  reference. The role played by 
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such relations, as well as the intuitive reasons for regarding them as 
interpreting operators, can best be discussed later. 

In order to be a bit more precise about interpretations, let us introduce 
a few auxiliary notions. Understand by a (Uo,..., U,_l)-relation a subset 
of Uo x-. .  x Un-1 (by which we intend the Cartesian product ~ < ,  Ui of 
the sets Uo .... .  U,-1), and by an (L  Uo, ..., U,-1)-predicate a function 
from the set I into the set of all (Uo, ..., U,_l)-relations. (I use the word 
'relation' for a possible candidate for the extension of a predicate con- 
stant, while 'predicate' is reserved for the intension of such a constant. 
Consider the special case in which n =  1. Then the (Uo)-relations will 
coincide with the sets of elements of U0, the (L  Uo)-predicates are what 
we might regard as properties (indexed b y / )  of elements of Uo, and both 
will correspond to 1-place predicate constants. In case n=0 ,  we should 
speak of A-relations (where A is the empty sequence, that is, the empty 
set); and these are the subsets of the empty Cartesian product, which is 
of course {A}. Thus the only A-relations will be the empty set A and its 
unit set {A}; let us think of these two objects as the truth-values F and T 
respectively. The corresponding predicates are (/)-predicates; and they 
will be functions from the set I to truth-values, that is, what we might 
regard as propositions 5 indexed by L) 

By a k-place relation among members of a set U and by a k-place 1- 
predicate of  members of  U are understood a (Uo, ..., Uk_l)-relation and 
an (L  U0 .... , Uk-1)-predicate respectively, where each Up (for p < k) is U. 

DnFI~TION I. A possible interpretation for a pragmatic language L is a 
triple (A, F, R)  such that (1) A is a function, (2) for each i in the domain 
of A, A~ is a set (I use the notations 'A~' and 'A(i)' indiscriminately for 
function value), (3) F is a function whose domain is the set of predicate 
and individual constants of L, (4) whenever c is an individual constant 
of L, Fc is a function whose domain is the domain of A and such that, for 
a l l j  in the domain of A, Fc(j) is a member of the union of the sets A i 
for i in the domain of A, (5) whenever P is an n-place predicate constant 
of L, Fp is an n-place DA-predicate of members of the union of the sets 
A~ (for i e DA), where DA is the domain of A, (6) R is a function whose 
domain is the set of operators of L, and (7) whenever N is in the domain 
of R, RN is a (DA, SDA)-relation, where SDA is the power set (set of 
all subsets) of DA. 

A few remarks are perhaps in order in connection with this definition. 
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Let 9~ be a possible interpretation for a pragmatic language L, and let 
have the form (A, F, R). We understand the domain of the function A 
to be the set of all points of reference according to 9.I. If i is a point of 
reference, A i is understood as the set of objects existing with respect to i 
(according to 92). The union of the sets A i for i in DA is thus what we 
might regard as the set of all possible individuals (according to 9~r). By 
the definition above, an individual constant denotes a possible individual, 
and a 1-place predicate constant a set of possible individuals, with respect 
to a given point of reference. To see that it would be overly restrictive to 
demand that the respective denotations be an individual that exists with 
respect to the given point of reference or a set of such individuals, suppose 
that the points of reference are instants of time, and consider the indi- 
vidual constant 'the previous Pope' and the predicate constant 'is re- 
membered by someone'. A similar point can be made in connection with 
predicate constants of more than one place. Consider, for instance, the 
2-place predicate constant 'thinks of' (as in 'Jones thinks of Jove'). 
Under a standard interpretation of which the points of reference are 
possible worlds, the extension of this constant with respect to a given 
world would be a relation between individuals existing in that world and 
possible individuals (that is, objects existing in some world), n 

The notions central to pragmatics, those of truth and satisfaction, are 
expressed by the phrases 'the sentence (that is, formula without free 
variables) ~ is true with respect to the point of reference i under the inter- 
pretation g[' and 'the possible individual x satisfies the formula 4) with 
respect to the point of reference i under the interpretation 92[', which we 
may abbreviate by '~b is tru%9~' and 'x sati,~q~' respectively. The follow- 
ing clauses do not constitute definitions of truth and satisfaction, but are 
rather to be regarded as true assertions exhibiting the salient features of 
those notions; the full definitions will be given later. 

CRITERIA OF PRAGMATIC TRUTH AND SATISFACTION. Let ~ be a possible 
interpretation, having the form (A, F, R), for a pragmatic language L; 
let i e DA; let x be a member of the union of the sets A i (forj e DA); let 
P be a 2-place predicate constant of L; and let u be an individual variable. 
Then: 

(1) P[c, d] is truei,~ if and only if (Fc(i), Fd(i)) ~ Fp(i); 
(2) x sah,~ P[c, u] if and only if (Fc(i), x )  ~ Fp(i); 
(3) x sat~,~ c=u  if and only if Fc(i) is identical with x; 
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(4) x sat~,~ E [u] if and only if x ~ Ai; 
(5) if q~ is a sentence of L, then -7 q~ is true~, ~ if and only if ~b is not 

true~,~; 
(6) if ~, ~ are sentences of L, then (~b ̂  ~) is true~,~ if and only if 

both q~ and ¢ are true~,~; 
(7) if ~b is a formula of L of  which the only free variable is u, then V uq~ 

is true~,~ if and only if there is an object y in the union of  the sets A~ 
(for j ~ DA) such that y sati, ~ ~b; 

(8) if ~b is a sentence of  L and N an operator of L, then N~ is true~,~ 
if and only if (i ,  { j : j  ~ D A  and q~ is truej,~}) ~ R~. 

According to (8), Nq~ is true at i (under 9~) if and only if i bears the 
relation RN to the set of  points of reference at which ~b is true (under 950. 
To see that (8) comprehends the proper treatment of, for example, the 
past tense operator, consider an interpretation 9~ in which DA is the set 
of  real numbers (that is, instants of time) and RN is the set of  pairs (i, J )  
such that i ~ DA, J ~DA,  and there exists j e J such that j <  i. Then, by 
(8), N¢  will be true at i (under 92) if and only if there exists j <  i such that 
q~ is true a t j  (under ~ ;  and therefore N will correctly express 'it has been 
the case that'. It is clear that the future tense, as well as the modal oper- 
ators (interpreted by relevance relations) of  Kripke [1], can be similarly 
accommodated. These examples, however, could all be treated within a 
simpler framework, in which RN is always a relation between two points 
of  reference (rather than having as its second relatum a set of points of  
reference). To see the necessity of  the more general approach, we could 
consider probability operators, conditional necessity, or, to invoke an 
especially perspicuous example of Dana Scott, the present progressive 
tense. To elaborate on the last, let the interpretation 9~ again have the 
real numbers as its points of reference; and let RN be the set of  pairs 
(i, J )  such that i e DA, J___ DA, and J is a neighborhood of i (that is, 
J includes an open interval of which i is a member). Then, by (8), N~b will 
be true at i (under 9~) if and only if there is an open interval containing 
i throughout which ~b is true (under 9~). Thus N might receive the awk- 
ward reading 'it is being the case that', in the sense in which 'it is being 
the case that Jones leaves' is synonymous with 'Jones is leaving'. 

According to (7), quantification is over possible (and not merely actual) 
individuals. The desirability of this can be seen by considering, within 
the special case of tense logic, the sentence 'there was a man whom no 
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one remembers'. One can of  course express quantification over actual 
individuals by combining quantifiers with the symbol E of existence. 

To be quite precise, the desiderata (1)-(8) can be achieved by the follow- 
ing sequence of  definitions; that is to say, (1)-(8) are simple consequences 
of  Definitions II-V below. We assume for these that 9~ is a possible inter- 
pretation for a pragmatic language L, ~ =  (A, F, R>, U is the union of  
the sets A~ for j ~ DA, U ~ is the set of all infinite sequences (of type co) 
of  members of  U, i e DA, and n is a natural number. 

D~rINITION II. If  ~ is an individual variable or individual constant of  
L, then by Exh,~( 0 ,  or the extension of ~ at i (with respect to 920 is 
understood that function H with domain U ~' which is determined as 
follows: 

(1) if ~ is the variable v, and x e U °', then H ( x ) = x , ;  

(2) if ( is an individual constant and x s U °, then H(x)=F~(i) .  
The extension of a formula of L at a point of  reference (and with respect 

to ~I) is introduced by the following recursive definition. 
DErINmON III. (1) If  ~ is an individual constant of  L or an individual 

variable, then Exh,~(E [~]) is { x : x  ~ U ~ and (Ext~,~(~)) (x) ~ A~}. 
(2) If  each of  (, t/is either an individual constant of L or an individual 

variable, then Exh,~(~=r/) is {x :x  ~ U °' and (Exti,ga(0) (x) is identical 
with (Exti,~(t/)) (x)}. 

(3) I f P  is an n-place predicate constant of L and each of ~o, ..., ( , -1  
is an individual constant of  L or an individual variable, then Ext,,~ 
(P[(o, ..., ( , -1]) is  { x : x  e U ~ and <(Exh,~(~o) ) (x), ..., (Exh,~(~.-1)) (x)> 
e Fp(i)}. 

(4) If  qS, ~ are formulas of  L, then Ex t , ,~ (~b)  is U~'-Exti,ga(q~), 
Ext , ,~((~A~)) is Ext,,,(~b)c~Ext,,~t(~k), and similarly for the other 
sentential connectives. 

(5) I f  q5 is a formula of  L, then Ext,,ga(Vv.~) is { x : x E  U °' and, for 
some y ~ U, the sequence <Xo,..., x.-1,  Y, x~+l, . . .)  ~ Exti,~(q~)}, and 
similarly for /~v,~. 

(6) If  ~b is a formula of  L and N an operator of  L, then Exh,~(Nq~ ) is 
{ x : x  ~ U °~ and <i, {j  : j  ~ DA and x ~ Extj , . (¢)}> ~ Rn}. 

DrrINITION IV. If  ~ is a sentence of  L, then ~ is true~,~ if and only if 
Exh,~(q~) = U% 

D~FIN~T~ON V. If  ~b is a formula of L of  which the only free variable is 
v., then y sat~,aq~ if and only if there exists x e Exh,~(~b) such that x. =y .  
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It is seen from the definitions above that the extension of  a formula 
(at a point of reference) is a set of sequences (indeed, the set of sequences 
'satisfying' that formula at that point of reference, in the sense in which 
sequences, rather than individuals satisfy) and that the extension of an 
individual constant or variable (again, at a given point of reference) is a 
function assigning a possible individual to each sequence in U ~. How 
does this construction accord with the fundamental discussion in Frege 
[1]? It  should be remembered that Frege considered explicitly the exten- 
sions only of expressions without free variables - thus, as far as our 
present language is concerned, only of sentences and individual constants. 
For  Frege the extension (or ordinary extension) of a sentence was a truth 
value; but it is easily seen that according to Definition I l l  the extension 
of a sentence of L will always be either U ~' or the empty set, which in this 
context can be appropriately identified with truth and falsehood respec- 
tively. For  Frege the extension (or ordinary extension) of  an individual 
constant was the object it denotes, while for us the extension is the con- 
stant function with that object as value (and with U ~ as domain). Apart 
from set-theoretic manipulations, then, Frege's extensions agree with ours 
in all common cases. 

I introduce for the sake of later discussion the intensions of  certain 
expressions with respect to 9~, as well as the notions of logical consequence, 
logical truth, and logical equivalence appropriate to pragmatics. 

DEFINITION VI. I f  q~ is an individual constant of L, a formula of L, or 
an individual variable, then Int~(qS) is that function H with domain DA 
such that, for each i ~ DA, H(i)= Exti,a(q~). 

DEFINITION VII. A sentence q5 is a logical consequence (in the sense of  
pragmatics) of  a set F of  sentences if and only if for every pragmatic 
language L and all 9.I, A, F, R, i, if ~ = <A, F, R>, 9~ is a possible inter- 
pretation for L, i e DA, F u {~b} is a set of  sentences of L, and for every 
~b ~ F, ~b is true,,~, then ~b is truei,~. A sentence is logically true if  and only 
if  it is a logical consequence of the empty set. A sentence ~b is logically 
equivalent to a sentence ~k if  and only if the sentence (4 ~ if) is logically 
true. 7 

I f  we understand the extension of a predicate constant P (at i and with 
respect to 92) to be Fe(i), then inspection of Definition III will show that 
Frege's functionality principle applies fully to our notion of  extension: 
the extension of a formula is a function of  the extensions (ordinary ex- 
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tensions) of those of its parts not standing within indirect contexts (that 
is, for the present language, not standing within the scope of an operator), 
together with the intensions (what Frege also called indirect extensions) 
of those parts that do stand within indirect contexts. It is clause (6) of 
Definition III which creates the dependence of certain extensions on in- 
tensions, and which consequently makes it impossible to regard Defini- 
tion III as a simple recursion on the length of formulas. Instead, the 
recursion is on a well-founded relation S between ordered pairs, charac- 
terized as follows: ( ( j ,  ~k), (i, ¢ ) )  ~ S if and only if i , j  ~ DA, ¢, ~ are 
formulas of L, and ~ is a proper part of ~b.8 

On the other hand, we could have adopted another order, introducing 
intensions first and defining extensions explicitly in terms of them. In 
that case, as is easily seen, we could have introduced intensions by a 
simple recursion on the length of formulas; in other words, the intension 
of a complex expression is a function purely of the intensions of its com- 
ponents. (We thus answer negatively, for pragmatic languages at least, a 
question raised by Frege, whether we need to consider indirect intensions 
as well as ordinary extensions and ordinary intensions. The answer 
remains negative even for the richer languages considered below.) 

The general treatment of operators, embodied in clause (6) of Defini- 
tion III and due to Charles Howard and me, has the advantage of com- 
prehending all known special cases but the drawback of a seemingly ad 
hoc and unintuitive character. This semblance can be removed, and at the 
same time a theoretical reduction accomplished, by the consideration of 
intensional logic. Attempts to construct intensional languages suitable for 
handling belief contexts and the like have been made previously, but 
without complete success; I report now my own efforts in this direction. 

By an intensional language is understood a language of which the sym- 
bols are drawn from the following categories: 

(1) the logical constants of pragmatic languages, 
(2) parentheses, brackets, and commas, 
(3) the individual variables Vo .... , v,,..., 
(4) individual constants, 
(5) the n-place predicate variables Go ...... , Gk ....... for each natural 

number n, 
(6) predicate constants of type s, for each finite sequence s of integers 

i> - 1 ,  
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(7) the operator []  (read 'necessarily'), 
(8) the descriptive symbol T (read 'the unique ... such that '  and 

regarded, along with the symbols under (1) and (7), as a logical 
constant). 

Under (6) we admit predicate constants taking predicate variables, 
as well as individual symbols, as arguments. The type of such a constant 
indicates the grammatical categories of a suitable sequence of arguments, 
- 1  indicating an individual symbol and a nonnegative integer n indi- 
cating an n-place predicate variable. Thus our previous n-place predicate 
constants are comprehended, and can be identified with predicate con- 
stants of type (So, ..., s , -1) ,  where each st (for i<n) is - 1. The descriptive 
symbol will be applied only to predicate variables; this is because it will 
be needed only in such contexts and because its use in connection with 
individual variables would require some small but extraneous attention 
to the choice of a 'null en t i t y?  The descriptive phrases we admit will be 
completely eliminable, and are introduced solely to facilitate certain later 
examples. 

The set of formulas of an intensional language L is the smallest set F 
such that (1) F contains the expressions 

E [~],  
,l' = ~/, 

G[~o,..., ~n-1], 

where each of ~, ~/, ~o .... , ~,-1 is an individual constant of L or an indi- 
vidual variable and G is an n-place predicate variable of L, as well as all 
expressions 

P[~o . . . . .  ~.-1], 

where P is a predicate constant of L having type (So, ..., S,_l> and, for 
each i<n, either s~>~0 and ~ is an srplace predicate variable, or s~= - 1  
and ~ is an individual constant of L or an individual variable, (2) F is 
closed under the application of sentential connectives, (3) Auq~ and Vu~b 
are in F whenever q~ is in F and u is either an individual variable or a 
predicate variable, (4) I--q~b is in F whenever ~b is in F, and (5) whenever 
qS, ~k are in F, and G is a predicate variable, then F also contains the 
result of replacing in q~ all occurrences of G which do not immediately 
follow A, V, or T by TG~. 
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By a term of L is understood either an individual constant of L, a 
variable, or an expression TG¢, where G is a predicate variable and ¢ a 
formula of  L. 

DEFINITION VIII. A possible interpretation for an intensional language 
L is a pair (A, F )  such that clauses (1)-(4) of Definition I hold, and in 
addition (5') whenever P is a predicate constant of L having type 
(So,..., s,_a), Fp is a <DA, Uo .... .  U,_l>-predicate, where, for each 
i<n, either si= - 1 and U s is the union of the sets As for i e  DA, or ss1>0 
and Us is the set of all srplace DA-predicates of members of the union of 
the sets A i for i ~ DA. 

Clause (5) of Definition I is a special case of the present (5'), taking 
S O = . . . = S n _  1 = - - 1 .  

Again we shall be primarily interested in notions of truth and satis- 
faction, expressed by the phrases 'the sentence t~ is true with respect to 
the point of reference i under the interpretation 9~', and 'x satisfies the 
formula ~b with respect to the point of reference i under the interpretation 
9~'. Since, however, our formulas may now contain free predicate vari- 
ables as well as free individual variables, we must understand 'x '  to refer 
either to a possible individual or to a predicate of individuals. The 
intuitions underlying the present development will become clear upon 
consideration of the following criteria. 

CRITERIA OF INTENSIONAL TRUTH AND SATISFACTION. Let 9~ be a possible 
interpretation, having the form <A, F>, for an intensional language L; 
let i E DA; let U be the union of the sets Aj ( for j  e DA); let x ~ U; let P 
be a predicate constant of L of type < - 1 ,  - 1 > ;  let e, d be individual 
constants of L; and let u be an individual variable. Then: 

(1)-(7) of the criteria of pragmatic truth and satisfaction. 
(8') I f  ~b is a formula of L of which the only free variable is the n-place 

predicate variable G, then V G¢ is truei,~ if  and only if there is an 
n-place DA-predicate X of members of U such that X sati,~q~. 

(9') I f  G is an n-place predicate variable, ~ a predicate constant of L 
of  type <n), and X an n-place DA-predicate of members of U, then X 
sats,~ ~[G] if and only if <X) ~ Fp(i). 

(10') I f  ~b is a sentence of  L, then []~b is trues, a if and only if  ~b is 
truej,9~ for all j ~ DA. 

(11') If  G is an n-place predicate variable, ~ a predicate constant of 
L of type <n>, and ~b a formula of L of which the only free variable is G, 
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then ~[TG¢]  is true~,~ if and only if either there is exactly one n-place 
DA-predicate X of members of U such that X sati. ~ ¢, and that predicate 
is in F~(i); or it is not the case that there is exactly one such predicate, 
and the empty predicate (that is, DA x {A}) is in Fe,(i). 

(12') If  G is a 0-place predicate variable and X a (DA>-predicate, then 
X sat~,ga G[ ] if and only if the empty sequence is a member of X(i) 
(hence, if and only if X(i) = {A}). 

In view of (8'), predicate variables range over predicates of possible 
individuals. In view of  (10'), [] should be regarded as the standard 
necessity operator. In view of (8') and earlier remarks, 0-place predicate 
variables range over propositions; accordingly, we may, by (12'), read 
G[ ] as 'the proposition G is true'. 

Quantification over individual concepts and over relations (in the 
extensional sense) is lacking, but its effect can nevertheless be achieved. 
Let <A, F> be a possible interpretation for an intensional language, and 
let U be the union of the sets A~ for i e DA. By an individual concept of 
<A, F> is understood a function from DA into U. But individual concepts 
of <A, F> can be identified with (DA, U>-predicates satisfying the 
formula 

~Vu  Av(G[v]~v=u). 

Further, as J. A. W. Kamp has observed, < U, U>-relations can be identi- 
fied with <DA, U, U>-predicates satisfying the formula 

A u A v ([-1 G [u, v] v []-1 G [u, v]) ; 

and a similar identification can be performed for relations of more or 
fewer places. 

Let us now introduce precise definitions having Criteria (1)-(12') as 
consequences. We assume that 9~ is a possible interpretation for an 
intensional language L, 9~= (A, F,),  U is the union of the sets Aj for 
j e DA, and i e DA. We can no longer regard simple infinite sequences 
as assigning values to variables; the presence of variables of various sorts 
requires the consideration of double sequences in which one of the indices 
determines the sort of variable in question. In particular, let us under- 
stand by a system associated with 9.I a function x having as its domain 
the set of pairs (n, k> for which n is a natural number and k an integer 
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t> -1,  and such that whenever <n, k> is such a pair, either k =  - 1  and 
x(<n, k>) e U, or k~>0 and x(<n, k>) is a k-place DA-predicate of mem- 
bers of U. We assume that S is the set of all systems associated with 9~; 
as is customary, we shall understand by x.,k the function value x(<n, k>). 
In addition, we assume that n, k are natural numbers; and if x is a func- 
tion, we understand by x~ the function obtained from x by substituting b 
for the original value of x for the argument a, that is, the function 
(x - { < a ,  x(a)>}) w {<a, b)}. 

The extension of a term or formula is introduced by a single 
recursion. 

DEFINITION IX. (1) I f  e is an individual constant of L, then Ext~,~s (c) 
is that function H with domain S such that, for all x ~ S, H(x)=Fc(i). 

(2) Exti,~(v,) is that function H with domain S such that, for all 
x e S, H(x)=x.,-1. 

(3) Exti,~(G.,k) is that function H with domain S such that, for all 
x e S, H(x)=x.,k. 

(4) If  ~b is a formula of L, then Exh,~(TG.,k~b) is that function H 
with domain S such that, for all x e  S, either {H(x)}={Y:x<"~k>e 
Exti,~(~b)}, or thereis no Z for which {Z}={Y:x<"~k>~ Exh,~(~b)}, and 
H(x) is DA x {A}. 

(5) If  ~ is an individual constant of L or an individual variable, then 
Exti,~(E [~]) is {x:x e S and (Exti,~(O) (x) ~ Ai}. 

(6) If  each of ~, i/is either an individual constant of L or an individual 
variable, then Exti,~(~=~/) is { x : x e S  and (Exti ,~(0)(x) is identical 
with (Exti,~(q)) (x)}. 

(7) If  ~/ is an n-place predicate variable or a term TG¢ (with G an 
n-place predicate variable), and each of if0 . . . .  , ~.-1 is an individual con- 
stant of L or an individual variable, then Exh, ~ @/lifo . . . .  , ft.-1]) is {x:x e 
S and <(Ext,, ~(~o)) (x), ..., (Exh, ~(~.-1)) (x)> e (Exh, a@/)) (x) (i)}. 

(8) I f P  is a predicate constant of L of type (So,..., s . - l>  and, for each 
i<n, either si>~ 0 and ffi is either an si-place predicate variable or a term 
TGq~ in which G is an si-place predicate variable and ¢ a formula of L, 
or s~ = - 1 and ~i is an individual constant of L or an individual variable, 
then Exti,va(P[~o, ..., ~.-1]) is {x:x e S and <(Exti,~(~o)) (x) .. . .  , (Exti,~ 
(~.-1)) (x)> e Fp(i)}. 

(9) f f  4, ~ are formulas of L, then Extl, ~(--n ~b)is S - E x h ,  ~(~b), and 
similarly for the other sentential connectives. 
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(10) If  ¢ is a formula of L, then Exh,~(Vv.¢)  is {x:x e S and, for 
some y e U, the system x<n'; 1> e Exh,~(¢)}, and similarly for Av~¢. 

(11) If  ¢ is a formula of  L, then Exti,~(VG.,k¢ ) is {x:x e S and, for 
some k-place DA-predicate Y of members of U, the system x<~ k> e Ext,,~ 
(¢)}, and similarly for AG.,k¢. 

(12) I f  ¢ is a formula of L, then Exti,~([-q¢) is {x:x e S and, for all 
j e DA, x e Extj,~(¢)}. 

DEFINITION X. If  ¢ is a sentence of L, then ¢ is true,,~ if and only if 
Ext,, ~ (¢) = S. 

DEFINITION XI. If  ¢ is a formula of L with exactly one free variable, 
then y sah,~q~ if and only if either there is a natural number n such that 
the free variable of ¢ is v, and there exists x e Exh,~(¢) such that 
xn, -1 =Y, or there are natural numbers n, k such that the free variable of 
¢ is G~,k and there exists x e Ext,,~(~b) such that X~,k =y. 

DEFINITION XII. I f  ¢ is a term or formula of L, then Int~(¢), or the 
intension of ~ with respect to 9~, is that function H with domain DA such 
that, for each i e DA, H(i)=Exh,~(¢).  

D~FINmON XIII. A sentence ~b is a logical consequence (in the sense 
of intensional logic) of a set F of sentences if and only if for every inten- 
sional language L and all 9~, A, F, i, if ~ =  <A, F>, 9.1 is a possible inter- 
pretation for L, i e DA, F w {¢} is a set of sentences of L, and for every 
~k e F, ~k is true~,9~, then ¢ is truei,~. A sentence is logically true if and 
only if  it is a logical consequence of the empty set. A sentence ¢ is 
logically equivalent to a sentence ~/if  and only if the sentence (~b ~ ~/) is 
logically true. 

The remarks about extensions and intensions made in connection with 
pragmatic languages continue to apply here, with infinite sequences 
everywhere replaced by systems. Further, Criteria (1)-(12') are immediate 
consequences of Definitions IX-XI. 

It was said earlier that descriptive phrases of the sort we admit, that is, 
descriptive phrases involving predicate variables, are eliminable. We can 
now make a more precise statement: if q~ is any sentence of an intensional 
language L, then there is a sentence of L without descriptive phrases that 
is logically equivalent to qZ For instance, if q~ is 

[TG,~ [G]], 

where G is a 1-place predicate variable and ~ ,  ~ are predicate constants 
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of type (1),  then q~ is logically equivalent to 

V c ( a  [ q  ^ A/~(~  [Lrl --, []  A x ( n [ x l  ~ C [x])) 
^ ~ [G]) v (-7 V G(-~ [G] ^ A H(.~ [H] - .  
[]Ax(H[x]  ~ GCx]))) ^ V G ( E ] A x  m G[xl ^ ~[G])).  

The convenience of descriptive phrases is found in the construction of 
names of specific predicates. For instance, we can distinguish as follows 
expressions designating properties or 2-place predicates expressed by 
particular formulas (with respect to places marked by particular individual 
variables): if ~ is a formula and u, v are distinct individual variables, 
understand by aq~ (which may be read 'the property of u such that ~b') 
the term TG A u [ ] ( G  [u] ~ ¢), and by a~q5 (read 'the predicate of u and 
v such that q~') the term T H  A u  AvD](H[u,  v] ~ ~b), where G, H are 
respectively the first 1-place and the first 2-place predicate variables not 
occurring in ¢. We can of course proceed upward to three variables or 
more; but - and this is more interesting - we can proceed downward to 
the empty sequence of variables. In particular, if ~b is any formula, under- 
stand by ^q~ the term TGD(G[ ]~--~ qS); this term designates the pro- 
position expressed by the formula qS, may be read 'the proposition that 
qS' or simply 'that qS', and serves the purposes for which the term '~' of 
Kaplan [1] was constructed. 

It is clear from Definition IX that sentences of intensional languages, 
unlike those of pragmatic languages, may contain indirect components 
- that is, components of which the intension must be taken into account 
in determining the extension of the compound - of only one sort; and 
these are components standing within the scope of the particular operator 
[]. An equivalent construction would have taken the indirect context ^q~ 
rather than D~b as basic, together with the notion of identity of propo- 
sitions; we could then have defined D~b as ^c~ = ^ A VoVo = Vo. 

Now let us see how to accommodate operators within intensional 
languages. (The observation that this can be done, as well as the present 
way of doing it, is due jointly to J. A. W. Kamp and me.) Suppose that L 
is any pragmatic language and (A, F, R)  any possible interpretation for 
it. Let the operators N of L be mapped biuniquely onto predicate con- 
stants N'  of type (0).  Let L' be an intensional language of which the 
individual constants are those of L, and the predicate constants are those 
of L together with the symbols N ' ,  for N an operator of L. Let F'  be such 
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that (A, F ' )  is a possible interpretation for the intensional language L', 
Fc_F', and for each operator N of L and each i • DA, F'N, (i) is {<U>: U 
is a (DA>-predicate and <i, {j:j • DA and U(j) = (A}}> e Ru}. Then we 
can easily prove the following: if $ is a sentence of L, ¢' is obtained from 
¢ by replacing each subformula of the form N~, where N is an operator 
of L and ~O a formula of L, by 

V G([-](G[ ] +-+ ~p) ̂ N' [G]), 

and i • DA, then ¢ is true with respect to i and the pragmatic interpre- 
tation <A, F, R> if and only if~b' is true with respect to i and the intensional 
interpretation <A, F'>. 

We thus have a reduction of pragmatics to intensional logic which 
amounts, roughly speaking, to treating 1-place modalities (that is, 
relations between points of reference and sets of points of reference) as 
properties of propositions. Conversely, every property of propositions 
corresponds to a 1-place modality. Indeed, if <A, F> is an interpretation 
for an intensional language and ~ is a property of propositions with 
respect to <A, F> (that is, a <DA, U>- predicate, where U is the set of all 
<DA>-predicates), then the corresponding 1-place modality will be the 
set of pairs <i, J> such that i e DA and there exists Y E ~( i )  such that 
J= {j:j • DA and Y(j) = {A}}. 

Let us be a little more precise about the sense in which intensional logic 
can be partially reduced to pragmatics. Let L be an intensional language 
of which the predicate constants are all of type <0> or (So,..., s,_l>, 
where s p = - i  for all p<n,  and let <A, F> be any interpretation 
for L. Let the predicate constants ~ of L having type <0> be mapped 
biuniquely onto operators ~ ' ,  and let N be an operator not among these. 
Let L' be a pragmatic language of which the individual constants are those 
of L, the predicate constants are those of L not having type <0>, and the 
operators consist of N together with the symbols ~ '  for # a predicate 
constant of L of type <0>. Let F',  R be such that <A, F', R> is a possible 
interpretation for the pragmatic language L', F'G F, RN is the set of pairs 
<i, J> such that i • DA and J=DA, and for each predicate ~ of L of type 
<0>, R~, is the set of pairs <i, J> such that i e DA and there exists Y e F~(i) 
such that J =  {j:j • DA and Y(j)= {A}}. Then we can easily show that 
if i • DA, ¢ is a sentence of L, $' is obtained from ~b by replacing each 
subformula ~ [^~k], where # is a predicate constant of type <0> and 
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is a formula of L, by ~ '~ ,  and q~' is a sentence of the pragmatic language 
L' (this imposes certain limitations on the form of 4~), then q~ is true with 
respect to i and the intensional interpretation (A, F )  if and only if q~' is 
true with respect to i and the pragmatic interpretation (A, F', R). 

The fact that 1-place modalities coincide in a sense with properties of 
propositions is what lends interest to those modalities and provides 
intuitive sanction for using them to interpret operators. (A completely 
analogous remark would apply to many-place modalities and many-place 
operators if these had been included in our system of pragmatics.) The 
relations among various systems can be roughly expressed as follows. If 
we understand by modallogic that part ofintensional logic which concerns 
formulas containing no predicate variables, then intensional logic can be 
regarded as second-order modal logic, and pragmatics is in a sense con- 
tained in it; indeed, pragmatics can be regarded as a first-order reduction 
of part of intensional logic. 

Nothing of course compels us to stop at second-order modal logic. We 
could extend the present construction in a fairly obvious way to obtain 
various higher-order systems, even of transfinite levels. Only the second- 
order system, however, is required for the rather direct philosophical 
applications for which the present paper is intended to provide the ground- 
work. 

For example, belief can be handled in a natural way within intensional 
logic. Let L be an intensional language containing a predicate constant 

of type ( - 1, 0). If (A, F )  is a possible interpretation for L, we now 
regard the domain of A as the set of all possible worlds, A~ as the set of 
objects existing within the possible world i, and Fc(i) as the extension of 
the nonlogical constant c within the world i. Then a (DA)-predicate can 
reasonably be regarded as a proposition in the full philosophical sense, 
not merely the extended sense considered earlier, and the intension of a 
sentence with respect to (A, F )  as the proposition expressed by that 
sentence (under the interpretation (A, F)).  We regard N as abbreviating 
'believes', and accordingly regard F~(i) as the set of pairs (x, U) such 
that x believes the proposition U in the possible world i. The proposal to 
regard belief as an empirical relation between individuals and propositions 
is not new. A number of difficulties connected with that proposal are, 
however, dispelled by considering it within the present framework; in 
particular, there remains no problem either of quantifying into belief 
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contexts or of iteration of  belief. 1° Consider the assertion 'there exists an 
object of  which Jones believes that Robinson believes that it is perfectly 
spherical'. This involves both iteration and quantification into indirect 
contexts, but is represented in L (with respect to <A, F>) by the simple 
sentence 

V x(E Ix] ^ ~[I ,  ^ ~  JR, ^S[xll]), 

where J and R are individual constants regarded as designating Jones and 
Robinson respectively and S is a predicate constant regarded as expres- 
sing the property of  being perfectly spherical; or, if we prefer to avoid 
descriptive phrases, by the logically equivalent sentence 

V x  VG(E[x] A &[J,G] A [ ] ( G [ ]  ~--~ VH(~[R,H] A 
[] (/t[ ] ,-. S[x])))). 

Two objections might be raised. In the first place, what empirical sense 
can be assigned to belief as a relation between persons and propositions? 
As much, I feel, as is customary with empirical predicates. One can give 
confirmatory criteria for belief, though probably not a definition, in 
behavioristic terms. I present two unrefined and incompletely analyzed 
examples: 

(1) If  ~b is any sentence expressing the proposition G, then the assertion 
that x assents to ~b confirms (though certainly not conclusively) the 
assertion that x believes G. 

(2) If  ~b is any formula with exactly one free variable that expresses 
the property H (in the sense that, for all i e DA, H(i) is the set of  possible 
individuals satisfying ~b with respect to i and a given interpretation), then 
the assertion that x assents to ~b when y is pointed out to x confirms 
(though again not conclusively) the assertion that x believes the propo- 
sition that H[y]. 

A second objection might concern the fact that if ~b and ~k are any 
logically equivalent sentences, then the sentence 

[I, ^41 -~ ~ [J, ^~1 

is logically true, though it might under certain circumstances appear un- 
reasonable. One might reply that the consequence in question seems un- 
avoidable if propositions are indeed to be taken as the objects of belief, 
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that it sheds the appearance of unreasonableness if (1) above is seriously 
maintained, and that its counterintuitive character can perhaps be traced 
to the existence of another notion of belief, of which the objects are 
sentences or, in some cases, complexes consisting in part of open for- 
mulasJ 1 

As another example, let us consider the verb 'seems', as in 

u seems to be perfectly spherical to v. 

We let L be as above, except that it is now to contain a predicate constant 
Sa of type < - 1, 1, - 1>; if <A, F> is a possible interpretation for L and 
i E DA, Fs~ (i) is to be regarded as the set of triples <x, U, y> such that, 
in the possible world i, x seems to y to have the property U. The formula 
displayed above would then be represented in L by the formula 

Se [u, aS[w], v]. 

We have made no attempt to define 'believes' or 'seems'. But that need 
not prevent us from clarifying the logical status of these verbs and the 
notions of logical truth and logical consequence for discourse involving 
them; and this would appear to be the main requirement for the evalu- 
ation of a number of philosophical arguments. The philosophical utility 
of intensional logic, however, is not in my opinion thereby exhausted; 
more important applications can be found in other areas, notably 
metaphysics and epistemology, and are to some extent discussed in 
Montague [3]. 

It is perhaps not inappropriate to sketch here an intermediate system, 
due to Dana Scott and me, which may be called extendedpragmatics. TM 

The symbols of an extended pragmatic language are drawn from the 
following categories: 

(1) the logical constants of pragmatics, 
(2) parentheses, brackets, commas, 
(3) individual variables, 
(4) individual constants, 
(5) operators of degree <m, n, p>, for all natural numbers m, n, p. 
The set of formulas of such a language L is the smallest set F satisfying 

certain expected conditions, together with the condition that 

Nuo... urn-1 [~o,'", [ ,-1,  q~o ... .  , q~v-l] 
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is in/" whenever Nis  an operator of L having degree (m, n ,p) ,  Uo .... , um-i 
are distinct individual variables, each of  ~o .... , ft,-t is either an individual 
constant of  L or an individual variable, and ~bo .... , q~p-t are in F. A 
possible interpretation for an extended pragmatic language L is a pair 
(A,  F> satisfying conditions (1), (2), (4) of Definition I, and in addition 
such that (3') F is a function whose domain is the set of individual con- 
stants and operators of  L, and (5') whenever N is an operator of  L of  
degree ( m , n , p ) ,  F n is a (DA, Uo, . . . ,U,_I ,  Vo .... , Vp-1)-predicate, 
where each U~ (for i<n) is the union of the sets Aj f o r j  e DA, and each 
V~ (for i<p) is the set of m-place DA-predicates of members of the union 
of  the sets A~ (for j e DA). The extension of an individual variable, an 
individual constant, or a formula with respect to a possible interpretation 
9~ having the form (A, F )  and at a point of reference i e DA is character- 
ized as in Definition II, together with a recursion consisting of clauses (1), 
(2), (4), (5) of Definition III, together with the following clause: if N is 
an operator of L of degree (m, n ,p) ,  ko, ..., kin-1 are distinct natural 
numbers, each of  ~o,..., ( , -1 is either an individual constant of  L or an 
individual variable, and ~o .... , ¢p-1 are formulas of  L, then Exti, ~ 
(NVko ... Vkm_ 1 [(0 ..... ~,-1, ~bo,"., q~p-1]) is {x:x  e U ~ and <Ext~.~(~o) 
(x) ..... Exti,~(~,_i) (x), Yo,x ..... Yp-l,x> e Fu(i)}, where, for each q < p  
and x e U  °~, Yqx, is {<J, {(Yo,...,Y,-i):x~y~ -" y.,-~k"-~ eExti,~(q~q)}) : 
j e DA}. 

Thus, in particular, if N is an operator of degree (0, n, 0), then 
Exti,ga(N[~o,..., ~,-1]) is { x : x e  U °~ and (Exti,~(~o) (x) ..... Exq,~ 
(~,-1) ( x ) ) e  FN(i)}, and N will play the role of an n-place predicate 
constant; and if N has degree (0, 0, 1), then Exti,a(N[~b]) is {x:x  e U °' 
and ({( j ,  { A } ) : j e D A  and xeExt i ,~ (¢)}  u { ( j , A ) : j e D A  and x ~  
Ext~.~(¢)}) e FN(i)}, and N will accordingly serve as a substitute for 
a (one-place) operator of  pragmatics. Further, an operator of  extended 
pragmatics of arbitrary degree (m, n, p )  can be replaced within intensional 
logic by a predicate constant of type (So,..., s,-1, to, ..., t~,-i), where 
each s i (for i<n) is - 1  and each t~ (for i<p) is m. 

Thus, in a sense, pragmatics is contained in extended pragmatics, which 
is in turn contained in intensional logic. We can regard extended prag- 
matics as providing another first-order reduction, more comprehensive 
than that supplied by ordinary pragmatics, of  part of intensional logic. 
For  instance, if & is, like 'believes', a predicate constant of type ( - 1, 0)  
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of intensional logic, we could replace ~ by an operator ~ '  of  degree 
(0, 1, 1) (of extended pragmatics) and express the assertion 

~[x, ^¢] 

equivalently (under a suitable interpretation) by 

~'[x, ¢1. 

Similarly, if  5 p is, like 'seems', a predicate constant of type (1, 1, - 1), 
we could replace Sp by an operator 5p' of degree (1, 2, 1} and express the 
assertion 

[u, ~¢, vl 
by 

Se'w[u, v, ¢1. 

(It should be clear from this example, as well as from the general definition 
of  extension, that the m variables immediately following an operator of  
degree (m, n ,p} are to be regarded as bound.) There is of course no 
contention that all formulas of intensional logic involving ~ or S a can 
be paraphrased within extended pragmatics; for instance, the assertion 
'Jones believes something which Robinson does not believe' does not 
correspond to any formula of extended pragmatics. 

We may now consider various technical properties of the three systems 
introduced in this paper. Notice first that the compactness theorem does 
not hold for intensional logic. In other words, let us call a set of sentences 
satisfiable if  there is a nonempty interpretation ~ and a point of reference 
i of 9~ such that all sentences in the set are true with respect to i and 9.I; 
then it is not the case that for every set F of sentences ofintensional logic, 

(3) if  every finite subset of F is satisfiable, then F is satisfiable. 

This is obvious in view of the reduction, at which we hinted earlier, of 
ordinary second-order logic to intensional logic, together with the well- 
known failure of the compactness theorem for second-order logic. On the 
other hand, let us call ~b a predicative sentence if  ~b is a sentence of  
intensional logic not containing the descriptive symbol and such that 
(1) whenever G is a predicate variable, ~ is a formula, and A G~k is a 
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subformula of ~b, there are # ,  [o .... , ~,, X such that # is a predicate 
constant, each [~ (for i < n) is either an individual constant, an individual 
variable, or a predicate variable, )~ is a formula, 0 is the formula ( ~  [~o, 
• .-, ~n] ~ )~), and G is ~i for some i<~n, and (2) whenever G is a predicate 
variable, 0 is a formula, and V GO is a subformula of ~, there are ~ ,  
[0,.-., [,, X satisfying the same conditions as in (1) except that 0 is now 
to be (~  [[0,..., {,] A X). For the predicative sentences of intensional logic 
we do have a compactness theorem; in other words, (3) holds for every 
set F of predicative sentences. 13 From this assertion we can infer full 
compactness theorems for pragmatics and extended pragmatics, in other 
words, the assertion that (3) holds for every set F of sentences of prag- 
matics and for every set/"  of sentences of extended pragmatics; we use 
reductions of the sort sketched above of those disciplines to intensional 
logic and notice that the reductions can be performed in such a way as 
to result exclusively in predicative sentences. 

Similar remarks apply to the recursive enumerability of the logical 
truths of the three systems we have considered. We must, however, say 
a word about the meaning of recursive enumerability in this context. We 
have not required that the symbols from which our languages are con- 
structed form a countable set; it would thus be inappropriate to speak 
of a GSdel numbering of all expressions. We may, however, suppose that 
a G6del numbering satisfying the usual conditions has been given for a 
certain denumerable subset S of the set of all expressions; we may further 
suppose that all logical constants, the parentheses and brackets, the 
comma, all individual variables, all predicate variables, infinitely many 
n-place predicate constants (for each n), infinitely many predicate con- 
stants of each type, infinitely many 1-place operators, and infinitely many 
operators of each degree are in S, and that S is closed under the concate- 
nation of two expressions. When we say that a set of expressions is 
recursive or  recursively enumerable we shall understand that it is a subset 
of S which is recursive or recursively enumerable under our fixed Ggdel 
numbering. 

Let us identify a language with the set of symbols it contains; we may 
accordingly speak of recursive languages. It is then easily shown, by the 
same methods as those sketched in connection with compactness, that (1) 
there are recursive intensional languages of which the sets of logical 
truths are not recursively enumerable; (2) if L is any recursive intensional 
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language, then the set of predicative sentences of L which are logically 
true is recursively enumerable; (3) if  L is any recursive pragmatic language, 
then the set of all logical truths of L is recursively enumerable; (4) if L 
is any recursive extended pragmatic language, then the set of all logical 
truths of L is recursively enumerable. 

On the basis of (2)-(4), together with a theorem of Craig [1], we can 
of course show for each of the three sets mentioned in (2)-(4) the existence 
of a recursive subset which axiomatizes the set in question under the rule 
of detachment. It would be desirable, however, to find natural and simple 
recursive axiomatizations of these sets. Of the three problems that thus 
arise one has been definitely solved: David Kaplan has recently axiom- 
atized the set of logical truths of (ordinary) pragmatics. He has also 
axiomatized the set of logical truths of a system closely resembling ex- 
tended pragmatics; and it is likely that when his axiomatization becomes 
available, it will be capable of adaptation to extended pragmatics. The 
problem, however, of axiomatizing predicative intensional logic remains 
open. 

In connection with problems of axiomatizability it is perhaps not in- 
appropriate to mention that all three of our systems are purely referential 
in one sense, specifically, in the sense that 

(4) A u  A v ( u  = v --, (4) '--' ~o')) 

is logically true whenever u, v are individual variables, ~b is a formula of 
the language in question, and ~b' is obtained from ~b by replacing a free 
occurrence of  u by a free occurrence of v, but no t  purely referential in 
another sense: it is not generally true that whenever c, d are individual 
constants, ~b is a formula of one of the languages under consideration, 
and qS' is obtained from ~b by replacing an occurrence of c by d, the 
formula 

( 8  c = d - ~  (4  ~ 4')  

is logically true. It follows, of course, that the principle of universal 
instantiation does not always hold; it holds when one instantiates 
to variables but not in general when one instantiates to individual 
constants. 



P R A G M A T I C S  A N D  I N T E N S I O N A L  L O G I C  91 

There is rather general (though not universal) agreement that (5) ought 
not to be regarded as logically true when modal and belief contexts are 
present; for consider the following familiar example of (5): 

If the Morning Star =the Evening Star, then Jones believes 
that the Morning Star appears in the morning if and only if 
Jones believes that the Evening Star appears in the morning. 

This viewpoint has led some philosophers, however, to reject also the 
logical truth of (4). The desirability of maintaining (4) as a logical truth 
but not (5) was, to my knowledge, first explicitly argued in the 1955 talk 
reported in Montague [2], but has more recently been advanced in 
Fgllesdal [1] and Cocchiarella [2], and in addresses of Professors Rich- 
mond Thomason and Dagfinn F~llesdal. 

Let me conclude with a few historical remarks concerning intensional 
logic. The first serious and ]etailed attempt to construct such a logic 
appears to be that of Church [1]. Carnap had independently proposed 
in conversation that intensional objects be identified with functions from 
possible worlds to extensions of appropriate sorts, but that, in distinction 
from the later proposal of Kripke adopted in the present paper, possible 
worlds be identified with models. David Kaplan, in his dissertation 
Kaplan [1 ], pointed out certain deficiencies of Church's system, presented 
a modified version designed to correct these, and supplied a model theory 
for the revised system based on Carnap's proposal. Kaplan's system, 
however, suffered from the drawback indicated above involving the 
iteration of empirical properties of propositions; the difficulty stemmed 
largely from Carnap's suggestion that possible worlds be identified with 
models. More recent attempts by Charles Howard, David Kaplan, and 
Dana Scott (some preceding and some following the talk reported by the 
main body of the present paper) have avoided this difficulty but have 
shared with Kaplan [1 ] the drawback of not allowing unrestricted quanti- 
fication over ordinary individuals. Without such quantification, however, 
I do not believe that one can treat ordinary language in a natural way or 
meet adequately Quine's objections to quantification into indirect con- 
texts. 

University of California, Los Angeles 
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R E F E R E N C E S  

* This paper was delivered before the Southern Califomia Logic Colloquium on 
January 6, 1967, and reports research partly supported by U.S. National Science 
Foundat ion Grant  GP-4594. I should like to express gratitude to my student Dr. 
J. A. W. Kamp for a number  of valuable suggestions beyond those explicitly acknowl- 
edged below, and to Mr. Tobin Barrozo for correcting an error. It should perhaps be 
mentioned that this paper was submitted to another journal on November 7, 1967, but  
was withdrawn after two and one-half years because of the great delay in its publication; 
it was thus intended to appear before either Montague [3] or Montague [4], for both  of 
which it supplies a certain amount  of background. 
1 Other terms for these expressions include 'egocentric particulars' (Russell), ' token- 
reflexive expressions' (Reichenbach), ' indicator words' (Goodman), and 'noneternal 
sentences' (Quine, for sentences that are indexical). 
2 For  an account of the fundamental concepts of model theory see Tarski [2]. 
3 This work was reported in a talk I delivered before the U.C.L.A. Philosophy Collo- 
quium on December 18, 1964. The treatment of special cases within the general frame- 
work of the present paper will be discussed in another publication. 
4 Cocchiarella considered quantification only in connection with tense logic; his 
treatment may be found in the abstract Cocchiarella [1] and the unpublished doctoral 
dissertation Cocchiarella [2]. 
5 The idea of construing propositions, properties, and relations-in-intension as 
functions of the sorts above occurs first, I believe, in Kripke [1]. 
8 This simple and obvious approach is not  the only possible treatment of ' thinks of', a 
phrase that  has been discussed in the philosophical literature, for instance, in Ans- 
combe [1], with incomplete success; but it is, I think, one possible treatment of one 
sense - the referential - of that phrase. For  a treatment of the non.referential sense see 
Montague [3]. 
7 Let us call an interpretation (A, F, R)  empty if the union of the sets A~ for i ~ DA is 
the empty set. We have not  excluded empty interpretations from consideration, and it 
might be feared that minor difficulties might consequently arise in connection with the 
notions introduced in Definition VII. Such fears would be unjustified; it can easily be 
shown that  the definition given above of logical consequence is equivalent to the result 
of adding to it the restriction that ~ be a nonempty interpretation. On the other hand, 
some of the criteria given above of t ruth and satisfaction would fail for empty inter- 
pretations; but the case of empty interpretations is excluded by the assumption 'x is a 
member of the union of the sets At'. 
8 Recursion on well-founded relations was first explicitly introduced in Montague [1]; 
for a discussion of it see Montague, Scott, Tarski [1]. 
9 The present system could, however, be extended so as to contain a full theory of 
definite descriptions in any of the well-known ways, for instance, that of Montague 
and Kalish [1]. It is partly in order to avoid irrelevant controversy over the best 
treatment of descriptions that I introduce them so sparingly here. 
10 Problems of the first sort have been pointed out many times by Quine, for instance, 
in Quine [1]; and problems of the second sort arose in connection with Kaplan [1], 
the system of which appeared incapable of being extended in such a way as adequately 
to accommodate iteration of belief. 
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n A partial treatment of such a notion may be found in Montague and Kalish [2]. The 
discussion there is, however, incomplete in that it fails to provide for such cases as 
those for which the confirmatory criterion (2) was designed - cases in which beliefs may 
concern objects for which the believer has no name. 
z~ The outline of extended pragmatics did not occur in the original version of this paper, 
but was added after I had seen a treatment of modal logic developed by Scott in June, 
1967, and had discussed it with him and David Kaplan. The principal difference 
between Scott's system and extended pragmatics is that in the former no allowance is 
made for quantification over individuals, but only over individual concepts. 
z8 This assertion, the formulation of which is partly due to J. A. W. Kamp, can be 
shown rather easily on the basis of the completeness theorem for co-order logic of 
Henkin [1], and is not peculiar to second-order modal logic: indeed, the compactness 
theorem would hold for the predicative sentences of a higher-order modal logic con- 
taining variables of all finite levels. 


