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Zusammenfassung

In der vorliegenden Arbeit wird Leibniz’ wahrscheinlich detailliertestes und ausgefeiltes-
tes System untersucht: ein Kalkil der Einfiigung und eine der Konjunktion dhnliche Opera-
tion, die er realis abjectio nennt. Das System soll hinreichend detailliert und mit hinreichender
Priizision vorgestellt werden, um zu zeigen, dal es ausgefeilt formal logisch ist und eine
Anzahl origindrer und wichtiger Ziige aufweist. Neben seinem eigenstindigen Interesse ist
dieses System wichtig wegen seiner Auswirkungen auf andere Aspekte von Leibniz’ Logik
und Philosophie, und ein weiteres Ziel dieser Arbeit ist, einige dieser Verbindungen aufzu-
spiiren.

In this paper I will examine what is probably Leibniz’s most detailed and
polished logical system, a calculus of inclusion and a conjunction-like operator
thathecalls real addition.My first objective is to present this system in
sufficient detail, and with sufficient precision, to show that it is a well-devel-
oped formal logic with a number of original and important features. But in
addition to its intrinsic interest, Leibniz’s system is significant because of its
bearing on other aspects of his logic and philosophy, and my second objective is
to trace some of these connections.

1 sketch the motivation for my projectionin § 1. In § 2: I consider Leibniz’s
presentation of his logical calculus in some detail, and in § 3. I present a formal
development of it based on this examination. Leibniz’s own exposition of his
system is surprisingly sophisticated, and its syntax does not require much
additional systematization. His semantics is less explicit, but he stresses that his
logical calculus is amenable to alternative interpretations, and so he clearly
appreciates the distinction between the formal system, on the one hand, and
alternative interpretations of it, on the other. Accordingly, in the second half of
§ 3. I supply Leibniz’s calculus with a formal semantics that is suggested by his
use of his system, together with his general views about meaning and truth. In
§ 4., I discuss some of Leibniz’s extensions of his logical calculus, examine
several modern developments that he anticipated, and consider the bearing of
his system on several other aspects of his work in logic and philosophy. In an
appendix, I sketch a proof that the logic (as formalized in § 3.) is sound and
complete.

* 1 am grateful to Neera Badhwar, Hugh Benson, Monte Cook, Ray Elugardo, James
Hawthorne, Helga Madland, and a referee for Studia Leibnitiana for helpful comments on
an earlier draft of this paper.
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1. Background and Motivation

Although Leibniz is frequently regarded as the founder of symbolic logic, it
is often thought that his primary achievement was to envision the general
contours of the field, rather than to make any detailed contributions to it!.
However, in his paper on real addition, Leibniz gives a sophisticated algebraic
treatment of logic (discussed below in § 4.4.), presents detailed proofs of over
twenty theorems about semilattices and shows their relevance to logic (§ 3. and
§ 4.4.), provides what is probably the first formal theory of the part-whole
relation (§ 4.5.), and discusses alternative interpretations of his formal system
(8§ 3.2.). All of these are absolutely fundamental contributions to logic, and my
first objective is to present Leibniz’s system in sufficient detail to show just
how this is so. But Leibniz’s calculus of real addition also sheds light on other
aspects of his logic and philosophy, including his views on the structure of
concepts and on infinite analysis, and my second objective is to briefly trace
some of these connections (§§ 4.6.— 4.7).

Leibniz’s paper on real addition occupies twelve pages in volume seven of
Gerhardt’s edition of Leibniz’s philosophical writings2. Like many of Leibniz’s
other logical studies, it is untitled and its date is uncertain, but it is clearly a
mature work, and there are several reasons why it is a fruitful place to begin a
study of his logic3. First, although much of Leibniz’s logical writing consists of
incomplete and exploratory fragments, this paper is a finished and polished
piece of work. Second, the paper contains Leibniz’s most thoroughly developed
logical system, including proofs of twenty-one theorems and several corollar-
ies, three constructions, numerous examples and illustrative diagrams, and
discussions of counterexamples that show various arguments formulable in his
system to be invalid. Third, the logic developed in this paper is more limited in

scope than a number of Leibniz’s other calculi, and this makes it a more
manageable system with which to begin. But finally, despite its modest aims,
Leibniz’s calculus of real addition forms the core of a number of his other
logics, and so an understanding of it should provide a useful starting point for a
study of them.
There have been several formal accounts of Leibniz’s logical systems. In an
important pioneering work Rescher reconstructs several of Leibniz’s calculi,
and in two more recent papers Castafieda formalizes one of Leibniz’s systems

1 This view is expressed by W. and M. Kneale: The Development of Logic, Oxford 1962,
pp. 320-321 and G. H. R. Parkinson in his introduction to Leibniz: Logical Papers,
Oxford 1966, LIX-LXI.

2 See GP VII, 236-247/Leibniz: Logical Papers (LLP), transl, by G. H. R. Parkinson,
Oxford 1966, pp. 131-144,

3 It was once thought that the paper was written after August 1690 (see LLP LVnS), but
more recent research suggests that it may have been written in the period between 1685
and 1687 (see VE N. 419).
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from 1686*. However, Castafieda focuse.s almost e.xclus'ively on s'ynta):;fzttﬁg
although Rescher has a valuable discussion of various 1nterpretat10rtlsof [ e
systems he examines, he does not include a deta{led formal treatmento ! their
semantics. Moreover, although there are several interesting attemnpts con
struct the semantics implicit in Leib.nizjs work, these pavg not been gear
the syntax of specific calculi that Leibniz actually devised '.b s Togic in ()
My account will differ from such 'tfeatmfnts of I',el l’ll; : ! iaccoum
focusing on his mature paper on real addltlop.,' (ii) prov1d1ng, a detai le account
of both its syntax and its semantics, anq (iii) concentrating main ly on what
Leibniz considers the primary interpretations of his calcul'us, name y o
which its characters denote concepts (ra_the'r Ehan sets, as in Leniertl ss :loicé
My goal is to provide an account of Leibniz’s loglcz_ll galculu_s ; at is aformal
faithful to his text, yet precise enough to show‘ that it is a satis z'lctor)]/3 formal
system that is sound and complete (relative to its natural semarll'tlcls). Because
Leibniz wrote long before the advent of contemporary symbo 15 t(:gl ;an s
two aims are in some tension, but it is surprising just how well they

jointly accommodated.

2. Leibniz’s Calculus of Real Addition

In this section I develop Leibniz’s calculus of real gddition asa fullly for(rina;
system; throughout my concern is to stay as close tq his text as pqsmp ?, an sr
this section also serves as a commentary on the earlier parts of Leibniz’s paper.

2.1. Overview of Leibniz’s System

The three central notions of Leibniz’s logical calcul_us are ide 3 tit ys,
inclusion, and a conjunction-like operator for formmﬁ cgzg;oug n;:llll)zr
, iti LLP 143/GP VII, . His
that he calls real addition (see : 143/ . .
contains two axioms, two postulates, and six definitions, on the bgsm of wlzgl;
he constructs detailed proofs of over twenty theorems. However, his conce;;d on
of an axiom system is more akin to Euclid’s than to that current today. Li

i i ] i Iculi, in: The Journal of
: Leibniz’s Interpretation of His Logthl Ca, , i T ! of
! gefnbrjy.lif zsocghiirIQL(e 119’512,1) pp- 1—f3; H.-N. Castafieda: Leibniz’s Syllogu‘ttcoo-(})’ro;r()ioi_sln‘_tl(\)I
nil Calculus, in: Notre Dame Journal of Formal L_ogi.c 17 (1976), p9pg.(;181-5 152};18 -N.
Castafieda: Leibniz’s Complete Propositional Logtc., in: Topoi 9 (.1 ?, sp.Anal s','s .
5 Examples of such reconstructions may be found in I. Hacking: Iyljinl eh v {e”;m.z.
Studia Leibnitiana V1/6 (1974), pp. 126-130 and B. Mates: The Philosophy ;
i d Language, Oxford 1986. .

6 g{:‘&)’h{zg;ﬁ Arithfnetical vs. ‘Real’ Addition: A Case Study of the .Relqlt)w.n.? Be;:}e::

Logic, .Mathematics, and Metaphysics in Leibniz, in: N. Rescher (ed.): Leibnizian Ing

ries: A Group of Inquiries, New York 1989, pp. 149-157.
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Euclid, he distinguishes axioms from postulates, his propositions include con-
structions to be performed (in addition to theorems to be proved) and, most
importantly, his definitions are presented separately from his axioms, with
several central concepts being defined in terms of other notions that are left
completely undefined. We should not be surprised by such differences from our
conception of an axiomatic system which, after all, derives largely from work in
the foundations of geometry by Hilbert and others at the end of the nineteenth
century. But these dissimilarities do mean that if we are to view Leibniz’s
calculus as a satisfactory formal system, we will have to reinterpret at least
some of his definitions as something else (e.g., as rules of inference or as
informal elucidations of primitive terms).

2.2. Characters and Signification

Leibniz uses the letters ‘A’, ‘B’, ‘C’, etc. as names in what we would now
regard as the object language of his formal system. In light of current usage, it
would be natural to call these symbols terms. However, Leibniz usually
reserves the word ‘term’ (terminum) for the thing that such a letter
denotesor signifies (typicallya concept or idea; (e.g., LLP 39/C
243), rather than for the linguistic expression itself. I will follow Leibniz in his
use of term and, adopting another of his labels, call the linguistic expression
a ‘character’ (character ). Leibniz sometimes urges that natural-lan-
guage sentences containing nonsignifying characters should be counted as false
(largely to ensure bivalence), and he seems to allow such characters in some of
his formal systems as well (see LLP 82/C 393). However, he makes no provi-
sions for nonsignifying characters in his paper on real addition, and so I shall
assume that when his system is interpreted, all of its characters are to receive
significations.

2.3. Definition One: Identity
Leibniz’s paper opens with his celebrated definition of identity:
Def 1: terms are the same or coincident which can be substituted for
each other wherever we please without loss of truth value (see LLP

131/GP VII, 236).

Leibniz symbolizes the claim that A and B are identical as ‘A e B’, but 1
will follow most commentators in writing it as ‘A = B’. Definition 1 appears to

7 See e.g., Monadology and Other Philosophical Essays, transl. by P. Schrecker and A. M.
Schrecker, New York 1965, p. 18/GP VII, 204.
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say that the intersubstitutivity of terms is a sufficient condition for their idpnti—
ty, but in all of his uses of this definition Leibniz instead relies on its being a
necessary condition. In a fragment containing a system closely related to his
calculus of real addition, he makes his intentions clearer, telling us that inter-
substitutivity is both sufficient an d necessary for the identity of terms (see
LLP 122/GP VIi, 228). However, the principle that intersubstitutivity is a
sufficient condition for identity is not easily formulated as an axiom or an
inference rule in the language of his system, and in fact it plays no role in his
calculus. Hence, I will confine attention to his claim that whenever two terms
are identical, either can be substituted for the other salva ver itate,ie.,
without affecting the truth values of sentences that contain them.

As has often been lamented, Leibniz’s habitual talk of identical terms
being substitutable for one another involves a use-mention confusion. It is not
terms, when these are taken to be concepts (or other extra-linguistic items),
that can be substituted for each other. Rather, if the sentence ‘A = B’ is true,
thenthe characters ‘A’ and ‘B’ signify one and the same thing, and it is
these linguistic items, rather than the things they signify, that can be
substituted for one another. Because seventeenth-century writers were much
less attentive to the use-mention distinction than we are today, such lapses are
to be expected, and fortunately they rarely lead Leibniz into serious difficulti.es.
Indeed, with the judicious insertion of quotation marks (which are quite foreign
to Leibniz’s Latin) and attention to the distinction between object-language and
meta-language, we can rephrase his account so as to avoid use-mention difficul-
ties without altering his basic ideas. And to help with this, I shall use ‘, ‘P,
etc. as metalinguistic variables ranging over object-language characters (like
‘A’ and ‘B’) and ‘@’and ‘Y’ as metalinguistic variables ranging over object-
language sentences (like ‘A=B"). ‘

In addition to blurring use and mention, Leibniz’s characterization of
identity employs undefined substantive notions like substitution and
truth-value, and so by contemporary standards, it is defective as a
definition in a formal system. However, Leibniz uses this principle to
license inferences from a pair of sentences of the form @(ct) and "ov = B
to the sentence ¢( %) (where ¢(av) is any object language sentence with at least
one occurrence of the character o, ¢ (%) is a sentence that results from @(Q) by
replacing one or more occurrences of a by the character . Hence, 1 will treat
Leibniz’s “definition” of identity as a rule of inference which, because of its
similarity to the natural-deduction rule of identity elimination, I will call ‘=E’8.

8 We will see in § 3.1.5. that all instances of "ot = o are theorems of Leibniz’s system, and
in the presence of = E, this means that his characterization of identity '{s the same as that qf
contemporary first-order logic with identity. It should be noted that in Lezbftlz s Syll~ogt-
stico-Propositional Calculus, and Leibniz's Complete Propositional Logic, Castafieda
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2.4. Definition Two: Diversity

Leibniz’s second definition isof diversity:

Def 2: terms are diverse which are not the same, or, in which substitu-
tion sometimes does not hold (see LLP 131/GP VII, 236).

Leibniz symbolizes the assertion that o and P are diverse as "o non oo B,
The claim that terms are not identical amounts to the negation of the claim that
they are. Hence Leibniz’s system includes a sentential connective for negation,

and I will symbolize the negation of "o =" as "o = B’ (or, more concisely, as
foo # B).

2.5. Indirect Proof and Bivalence

Leibniz proceeds to use Definition 1 to prove that identity is symmetrical
(Proposition 1), transitive (Prop 3 and its corollary), and that ‘A # C’ follows
from the premises ‘A = B” and ‘B # C’ (Prop 4). However, his derivation of
‘B # A’ from ‘A # B’ in Prop 2 is an indirect proof in which he assumes the
opposite of the conclusion he wants to establish and derives a contradictory of a
sentence that occurs earlier in the demonstration. Although his present paper
does not contain anything that explicitly sanctions this mode of reasoning,
Leibniz endorses it in many other places, telling us, for example, that it is
obviously true that “to reduce a proposition to absurdity is to demonstrate its
contradictory”. Furthermore, he explicitly incorporates a rule of indirect proof
in some of his other logics!®.

Leibniz’s use of indirect proof is closely related to his view that language,
including the formal language of his calculus, is bivalent, i.e., that (when
it is interpreted) each of its sentences is either true or false!!. In fact, bivalence

justifies indirect proofs. Every sentence is either true or false, and a sentence
and its contradictories have opposite truth values!2. Thus, the derivation of a

argues that Leibniz’s relation of coincidence is not identity, but a weaker congruence
relation on concepts. He adduces little direct evidence for this claim, however, and it is
difficult to reconcile with Leibniz’s insistence on the centrality of identities in logic and
his frequent characterizations of coincidence as identity or sameness. Addi-
tional arguments against Castafieda’s position may be found in H. Ishiguro: Leibniz’s
Philosophy of Logic and Language, Cambridge 21990, Ch. 2 and p. 206n7.
9 Nouveaux Essais (NE) IV, VIII § 2/A VI, 6, 428/transl. by P. Remnant and J. Bennett,

Cambridge 1981 (the pagination follows that of the Academy edition).

10 E.g., LLP 107/C 412; LLP 112/GP VII, 208; LLP 115-116/GP VII, 211-212.

11 See NEIV,I1§ 1/A VI, 6, 362; LLP 61/C 371.

12 See Leibniz: Philosophical Papers and Letters (PPL), transl. by L. E. Loemker, Dor-
drecht 21970, p. 225/GP VII, 299; LLP 112/GP VII, 208.
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contradictory pair of sentences from a sentence ¢ means that ¢ is false and,
hence, that any contradictory of @ is true.

2.6. Real Addition

Immediately after proving his first four theorems, Leibniz 'defin'es‘ 'the
notion of one term’s being included in another (Def 3?. However, this defln}t1on
makes essential use of the notion of real addition which hf’ has not yet defined,
and so I will reverse the order of Leibniz’s presentation and discuss real
addition before inclusion. o

Although Leibniz stresses that his calculus is amenable t_o a‘ltel"natlve inter-
pretations, he very frequently interprets its characters as signifying concepts
and real addition as an operation for conjoining them:, for example, the real
addition of the concepts rational and animal is thg (':omplex conqept
rational animal. In order to accommodate real addition in the objf-:ct
language, Leibniz employs what we would now rc‘:ga,lrd as 2‘1 c’haracter-formul:g
operator that allows us to join characters 1.1ke A apd B to 'produce ht e
composite character ‘A®B". In mtejrpr.eFatlons in which the char-
acters of his calculus denote concepts, ‘A & B’ signifies the compound concept
thatis the real sum of the concepts A and B . L

The assumption that every character, ir}clufilng composxtfz ones like ‘A @
B’, has a signification means that real addition is a total fupguon, so that every
pair of concepts has a real sum. This is a strong ex1st§nce claim, but there can pe
little doubt that Leibniz endorses it. For example, his second postulate permits
the real addition of any two terms (see §2.9.),and ht? stresses 'that”“an.y tgrm can
be compounded with any term”, even one that is “incompatible vy1th it (LLP
139/GP VII, 243). The use of ‘@’ as an operation symbol also requires that this
sum be unique, and Leibniz always treats it as such.. ' ‘ '

After Definition 3 and three less central definlthqs (dlscu§sed in § 28
below), Leibniz presents two axioms for real_ addition. Unllke.hls defini-
tions and postulates, these are sentences in the object language of his calcfulus,
namely BON=N®B’ and ‘A® A=A’ (see LLP 132/GP VI, 237). Hls use
of these axioms clearly indicates that he means for any sentence haV}ng the
same form as either of them to count as a theorem (and pcrhaps.as an ax1om)'as
well. Hence, a fully explicit presentation of Leibniz’s system will either require
a rule of substitution, which allows the substitution of' any characu‘ar for eac?h
occurrence of a primitive character in a sentence occurring at. an earlier stage in

a proof, or else his axioms must be viewed as. embryon.lc .ax1om schematafth;lt
would properly be regarded as metalinguistic abbreviations for each oh the
infinitely many object-language sentences of the same form as the schema
ltsel‘fb;xiom schemata were not explicitly introduced until the twentieth century,
but earlier writers sometimes employed devices that came to much the same
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thing. Indeed, passages in some of Leibniz’s logical writings can be read in this
way!3, although other passages suggest something closer to a rule of substitu-
tion (see LLP 42-43/GP VII, 24). It would be equally straightforward to
develop the present interpretation of Leibniz’s System using either such a rule
or schemata, but I will employ schemata here in order to more closely retrace
the steps of Leibniz’s proofs, which do not make explicit use of a rule of
substitution.

Leibniz’s discussion often suggests that he views ‘@’ as a binar y
character-forming operator i.e., one capable of joining just two characters at a
time, although there is also evidence that he regards it as multi grade,
i.e., as capable of linking any (finite) number of characters at a fell swoop. In §
4.1. I will show how to treat Leibniz’s operator as multigrade, but until then,
there are several reasons for treating it as binary. First, in some places (includ-
ing his axioms, where we would expect him to take special care), Leibniz seems
to consider ‘@’ a binary operation symbol. Second, even if real addition is
multigrade, it is not irreducibly so. Repeated applications of binary real addi-
tion can always be used to define the real sum of any (finite) number of terms,
and so a binary version of real addition and a (finitary) multigrade version come
to much the same thing. Third, commentators typically treat this operation as
binary, and since Leibniz’s text does not settle the issue, I will follow suit so
that my account can be more easily compared with theirs!4.

In schematic form, Leibniz’s axjoms are (AD)'a®B=B® a’and (A2) "«
@ a=a0a. (Al says that real addition is commutativ e, insensitive to
order. (A2) says thatitis ide m P otent,so that the real addition of the same
term to itself has no effect; o @ o reduces to o. Treating real addition as a
binary operation also requires a third axiom, A)(o@B)dn=adPen),
to ensure that it is associative. Although Leibniz does not include this
axiom in his calculus, the need for it in some of his other work is noted by
Frege, and it is discussed in some detail by Rescher (a chief reason for adding
(A3) is that several of Leibniz’s proofs fail without it; we will see an example of
this in § 3.1.6.)!5. Taken together, (A1)-(A3) tell us that in real addition order,
repetition, and grouping are irrelevant. Once we know the subterms of a real
sum, there is nothing more to learn about it!6.

13 Seee.g., LLP 40/GP VII, 221; LLP 57/C 367.

14 Real addition is treated as a binary operation by Rescher (see note 4), p. 2, Castafieda in
Leibniz’s Syllogistico-Propositional Calculus (see note 4), p. 491, and Lenzen (see note
6), passim; a notable exception to this approach is Castaiieda’s Leibniz’s Complete
Propositional Logic (see note 4), § 3. Infinitary versions of real addition are also possible,
and I will discuss one in § 4.7.

15 See G. Frege: The Foundations of Arithmetic, transl. by J. L. Austin, Evanston 1968, § 6
(first published as: Die Grundlagen der Arithmetik, Breslau 1884); Rescher (see note 4),
p-11.

16 Although Leibniz’s treatment of real addition in his present paper is more detailed than in
most of his other work, both it and (A1) and (A2) occur in numerous other studies. He
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2.7. Inclusion

With the axioms for real addition in hand, we can return to Leibniz’s
account of the inclusion of one term in another:

Def3: Aisin (inesse) LorLcontains (continere) A isthe
same as that L is assumed to coincide with a plurality of terms, among
which is A (see LLP 132/ GP VII, 237).

Leibniz’s use of this definition clearly shows that b){ aplu r'a.l ity o.f
terms he means a real sum of terms, one of which is A. Intuitively, o is
included in P just in case o is one of the conjupcts or surr}manFls of PB. For
example, the concept rational is included in tl}e (conjuncFlvc?) ’cqncept
rational animal,ie,in rational & anxma'l (Lelbn}z ] 1nc!u-
sion relation subsumes improper inclusion, so r a tiona l. is also in-
cludedin rational; Prop 7). For bg:vity, I will write the claim that o is
i inB(ainesse PHasa<P. .
mCh;;i:f(iinitiEn(B amounts to thBe claim that o is included in B jl{st in case there is
some term X such that "o @ X = . In many contempora_ry log_xcs, this ?vpulc.l be
a perfectly respectable definition, but it requires an existential qpaqtlflcatlop,
and these cannot be expressed in Leibniz’s system. Howeve.:r, Lf:lbruz uses his
definition in three ways, two of which treat it rather like a pair of 1nt:erf:nce rules
that allow the introduction and the elimination gf the symbol ‘<’, Just as an
explicit definition would do. And because it will QO much less violence to
Leibniz’s system to treat Def 3 as including such a pair of rules, rather than as a
definition that requires an existential quantifie'r, I w1l'1 do s0 he}'e. '

More specifically, Leibniz uses his definition of inclusion in the following
thfe‘; WI?ylss sometimes used to move from an identity to an “inclusionf’. For
example, it is used to move from ‘A @ B =L’ to ‘A <L’(e.g., the scholium to
PmpZ.lglz. is sometimes used to move from an inclusion to an identity. For
example, it is used to move from ‘B<L’to ‘L =B @ A’ (e.g., Prop 14).

often represents real addition by the concatenation of characters like ‘AB’ or 3[1)1 (2e.2g8.,
LLP 56 ff/C 366 ff), although he sometimes uses ‘+j (e.g., LLP 12-2~.129'/GP ,b ;
235) or (as here) ‘@’ (e.g., C 256). He employs an axiom of commutivity in a Eu;gl&",r oe
other writings, (e.g., LLP 40/GP VII, 222; LLP 90/C 235;. LLP 93/C 412, z?nd ,t;e
also NE HI, I1I § 10/A VI, 6, 292). The idempotence axiom also occurs in mz.ulli ; 98;
works, (e.g., LLP 40/GP VII, 222; C 260; C 262; LLP 56/C 3.66.; I:LP 85/C 396; '
C 235; LLP 93/C 412; C 421, and LLP 124/GP VII, 230). Leibniz’s preser}t treatments o
identity and inclusion are also similar to those in most of these other studies.
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3. It is sometimes used, rather like an axiom, to enter a sentence of the form
0. < 0. @ B’ in a derivation. For example, it is used to justify the direct entry of
sentences like ‘A<A® B’ and ‘A ® B < (A ® B) ® N’ in proofs (see Prop 12).

In the first use, Def 3 functions as a rule taking us from an identity like ‘A ®
B = C’ to the inclusion ‘A < C’, and given the intended meaning of inclusion,
this step preserves truth.

However, arguments that run back the other direction, from ‘A<C’ to
‘A@®B=C’,are not valid. If A is in C, then A together with s o m e other term
coincides with C, but that other term needn’t be B. The idea behind Leibniz’s
second kind of use of Def 3 is more subtle than this, however, as can be
illustrated by the following line of reasoning. Suppose that A is in C. Then A
together with s o me other term composes C. Call this other term ‘N’, select-
ing a new character for the purpose to ensure that it isn’t already being used
to name something that isn’t in C (see LLP 57/C 367). The idea is reminiscent
of what Greek geometers and logicians called ekthesis!’. Itis also similar
to the Gentzen-style natural-deduction rule of existential elimination, which
tells us that if we can deduce a sentence ¢ from the provisional assumption of an
instance of an existential quantification (using an instantial constant that doesn’t
appear earlier in the proof or in @), then we can deduce @ directly from the
existential quantification itself.

Gentzen’s rule may seem to embody an inordinately elaborate pattern to
attribute to a seventeenth-century thinker, but in fact Leibniz uses something
very like it; in particular,

1. He is committed to what amounts to the use of provisional assumptions
that are discharged later in demonstrations (because of his use of indirect proof;
e.g., Prop 2).

2. He always introduces a new character v each time he moves from a
sentence of the form "o < 37 to one of the form'a @ v = p.

3. He uses these new characters in the course of proofs, but they do not
appear in his conclusions.

In short, Leibniz’s first two uses of his definition of inclusion involve
something very like the following pair of inference rules. The first rule, which I
will call ‘< E’, says that if, in the presence of "ot < B7, we can use a provisional
assumption of "o @ v = B to derive a sentence ¢ (where v is a non-complex
character that doesn’t occur earlier in the proof, in "o < B7, or in @), then ¢
follows from just 'o. € " (and any undischarged background premises). The
second rule, <1, allows us to move from an identity "o, @ B =m" to an inclusion
"o <M. These rules will be formulated precisely in § 3.1.5., where we will also
see that Leibniz’s third use of Def 3, to enter sentences of the form"a < o @ B’
directly in derivations, can be justified in terms of the other rules of his
system!®,

17 See Aristotle’s discussion in the Prior Analytics 25al6.
18 Other reconstructions of Leibniz’s second use of Def 3 are possible. In various other
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2.8. Further Definitions

Leibniz’s first three definitions introduce fundamental principles governing
identity, diversity (and with it sentential negation), and inclusion. Immediately
after Def 3, he presents three further definitions, but these merely introduce
additional terminology. The fourth definition tells us that the constituent terms
of a real sum are its components (although as the paper proceeds,
Leibniz more frequently calls them ine xistents)and, correlatively, that a
complex term is composed of, or constituted by, its compo-
nents. The fifth definition tells us that terms are subalternants if either
includes the other, and the sixth that terms are disparate when they are
not subalternants.

2.9, Postulates

Leibniz rounds out his system with two postulates. Unlike his axioms, they
are not identities and, indeed, are not even presented in the object language of
his calculus. T will begin with Leibniz’s less problematic second postulate,
which plays the dual role of ensuring that real addition is a total function and of
sanctioning the use of definitions:

Postulate Two “Any plurality of terms, such as A and B, can be taken
together to compose one term, A @ B, or, L” (LLP 132/GP VII, 237).

In part, this postulate licenses joining any pair of terms to form their real
sum, but Leibniz also uses it to introduce defined characters (e.g., LLP 138-
139/GP VII, 242-243). A similar postulate in a paper containing a system
closely related to the present one is slightly more detailed:

“Several terms, whatever they may be, can be taken together to constitute one; thus, if
there are A and B there can be formed from these A @ B, which can be called L” (LLP 124/GP
VII, 230)19. .

writings, he distinguishes between definite characters, like ‘A’ and ‘B’, which are
used to signify specific things, and indefinite characters, like ‘X’ and ‘Y’, which
are variable-like symbols used to signify ‘indefinitely’. And in at least one .fragment he
suggests that ‘A < C’ means the same thing as ‘A ® Y = C’ (see C 265). Thls sugge§ts a
rule allowing us to move from "o S B to"a @ p = p7, where [ is a (new) in definite
character. We will see in § 3.1.7. that it is also possible to define inclusion in terms of real
addition in a way that avoids the need for any special rules or axioms for i.nclusion and
that the resulting system is equivalent to the present one. I will not a.dol.nt either of thfese
approaches to Def 3, however, because each is too different from Leibniz’s prescn.tatlon
in his present paper, and my goal is not merely to formulate a system that permits the
derivation of Leibniz’s theorems, but to be able to reproduce his derivations step by step.
19 See also LLP 42/GP VII, 224; LLP 38-39/C 242; LLP 57/C 367.
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In short, Leibniz is not only providing for the formation of complex charac-
ters, but is also establishing a convention for introducing definitional abbrevia-
tions for them. As he puts it in his discussion of a related logical system:

“If we have assumed some simple term as equivalent to some composite term, i.e. as
expressing the same thing, then the simple term will be the ‘defined term’ and the composite
term will be the ‘definition’. This defined term, expressed by a symbol, we shall call hence-
forth the ‘name’ of the thing” (LLP 44/GP VII, 226-227)%.

And such definitions are important, since they let us substitute abbrevia-
tions for complex characters that would be difficult to remember or manipu-
late?!.

If a definition is to serve as a mere abbreviation, however, it must be
eliminable (in favor of the defining expressions) and noncreative
(not allowing us to prove anything in the original language — before the defined
character was added — that we couldn’t prove without it). I will make this more
precise in § 3.1.4., but the basic idea is that"v = 0. ® B is a legitimate definition
of v just in case o and P contain only primitive (or previously defined)
characters and v is a primitive character that is new to the language (and so not
in o or in ). When Leibniz introduces defined characters with Postulate 2, they
are in fact always new to the problem he is working on. Hence, if we consider
the sublanguages of his system that contain just the primitive vocabulary
employed in particular problems, his uses of Postulate 2 to introduce defined
characters do satisfy these requirements.

In Leibniz’s logical work postulates also serve to tell us what sorts of
hypotheses are legitimate??, and this is the task of his first postulate:

Postulate One “Given any term, some term can be assumed which is
different from it, and, if one pleases, disparate, i.e. such that the one is
not in the other” (LLP 132/GP VII, 237).

This is a strong existence assumption, telling us that for each
term we can assume the existence of a second term that neither includes, nor is
included in, the first. Hence, Postulate 1 is quite different in spirit from any-
thing else in Leibniz’s calculus, and since he only invokes it in performing two
constructions, I will set it aside until § 4.2., where we will see how to incorpo-
rate it into his system.

20 Here and in the other quoted passages on definitions, Leibniz uses ‘term’ to mean
‘linguistic expression’.

21 See PPL 292/GP 1V, 423; Selections, transl. by P. P. Wiener, New York 1951, p. 28/C
326.

22 Seee.g., LLP 42/GP VII, 224; LLP 90/C 235; LLP 124/GP VII, 230.

Leibniz’s Calculus of Real Addition

2.10. Regimentation of Natural Language

Few claims are more central to Leibniz’s mature philosophy thz}n h.is
doctrine that a subject-predicate sentence of a natural }anguage is true just in
case the concept signified by the predicate is included in the. concept signified
by the subject. This claim is especially important for him, since he also hplds
that virtually all natural-language sentences can be reduced' to those of subject-
predicate form?. But the syntax of his calculus of real addition does not allow

the direct expression of subject-predicate sentences like ‘Gold is a metal’ or
‘Adam sinned’. ' ’

It would be possible to extend Leibniz’s system in various ways to allow a
more direct representation of natural-language sentences in 1t.' However, he
holds that ordinary language has numerous defects that ren'der it mcapable. of
functioning as a calculus®*, and he typicglly adopts tl}e loglgally con§ervat1vei
policy of regimenting natural language in the canonical {dlom of his forma
systems. Since Frege’s day, it has been part of our translation lore to represent
sentences of the form TAll as are Ps’ as first—or'der‘ §entences'of the fgrn}
rYp(opuoBu) . Similarly, I believe, Leibniz h.as an incipient doctrine of lo‘glga'l
form, according to which a sentence ‘c is ' is representefi by a sentence in his
formal system of the form 't < 6™, And the role of his calculus is to theln
provide a precise and detailed treatment of these formal counterparts of natural-
language sentences.

3. £®: The Formalization of Leibniz’s Calculus of Real Addition

In § 3.1. I collect the principles discussed in the previous section t(?gether
into a formal system, £®, and in § 3.2. provide L® with a forma‘ﬂ semantlcs‘that
is suggested by Leibniz’s use of his calculus, together with his general views
about meaning and truth.

3.1. Syntax of L®

One of the chief purposes of Leibniz’s logics is to serve as ins.tr}lment‘s‘ for
human reasoning. Hence, because our cognitive abilitles6 are felamte — “one
cannot go to infinity in proofs” (PPL 225/GP VII, 299)% — £® should not

23 Seee.g., LLP 12-13/C 244-245; LLP 84/C 395.

24 See Lfibniz (see note 7), p. 18/GP VII, 205; NEIIL, 1 § 5/A VL, 6, 276; see also LLP 12-
13/C 243-245; LLP 13-16/C 286-290. ) R

25 See LLP 67/C 378; Philosophical Writings (PW), transl. by M. Morris and G. H. R.

its Parkinson, London 1973, p. 87/ C 518-519.

26 See also PW 97/C 17-18; PW 75/GP VI, 309.

N
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contain infinitely long characters, sentences, or proofs. It will be convenient to
allow denumerably many primitive characters, but this will not make the
system infinitary in any objectionable sense, since particular applications of it
need only involve sublanguages with a finite number of primitives.

3.1.1. Primitive Vocabulary

We begin with the vocabulary of the language of £®:

Primitive (Simple) Characters: Denumerably many Roman capital let-
ters, ‘A’, ..., “T’, with or without positive integer subscripts.

Binary Character-Forming Operator: &

Two-place Predicates: =, <

Sentential Connective: -

Punctuation marks: (, )

3.1.2. Formation Rules

We next give a recursive definition of the setof characters of L%

(FC1) If o is a primitive character, then « is a character.

(FC2) If o and P are characters, then "(o0 @ B)' is a (composite)
character (I will call itthe real conjunction of a and B, and
will say that o and B are its immediate subcharacters)?.

We then define the set of sentences of £%; if a and B are characters
and @ is a sentence, then

(FS1) "o = " is a(n atomic) sentence (and is called an identity).
(FS2) "ot £ 7 is a(n atomic) sentence (and is calledan inclusion).
(FS3) "~ is a sentence (and is called the negation of ¢).

Only expressions that can be generated by a finite number of applications of
these rules are characters and sentences of £®2. To enhance readability, I will
drop unnecessary parentheses, and when issues of use and mention aren’t
explicitly at stake, I will follow the convention of autonymous use, letting each
simple expression stand for itself and each juxtaposition of expressions stand
for their concatenation.

27 Itis often natural to call characters like ‘A@® B’ real sums,and it is usually harmless

to do so. However, in § 2.6. we adopted this label for the compound terms that such
composite characters signify.
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3.1.3. Axioms

All instances of the following schemata areaxioms of L8

Aho®p=p®a,
(AQ)ado=a
A3 (@B ON=0OPSn)

3.1.4. Postulates

In § 4.2. we will see how to incorporate Postulate 1 in L® as a rule of
inference. However, this postulate raises several special problem§, and because
Leibniz rarely uses it, I will defer discussion of it to that subsecnon..

One task of Postulate 2 is to enable us to form the real conjunction of any
two characters, and the formation rule (FC2) already takes care of this. A
second task is to allow the introduction of defined characters in the manner
discussed in § 2.9. For this purpose, we suppose that we have available‘g supply
of auxiliary characters, A, A", .... Thenv=0® ﬁ_ls gcorrect deﬁmtlo'n‘ of v
just in case (i) each sub-character of o and of P is either a '(.nonjauxﬂl'ar)f)
primitive character or else a previously defined character and (i) v is a primi-
tive character that is new to the language (or to the sublanguage of L® with
which we are working).

3.1.5. Rules of Inference

If x is an atomic sentence, I will say that its simple'c ontradictorz
is —vy; if y; is a negation, -1, it has two simple contr.adictorles, 0 and =0. Let @
be a simple contradictorg of @, @(0) a sentence with at least one occurrence of
the character o, and @( ;) a sentence obtained from @(ct) by replacn}g one or
more occurrences of o by the character 3. With these conventions, the
inference rules for £2 have the following schematic form:

aodv=p
L
<E_asBW
t 3 T w
IP:WW
(p*

Where v is a simple character and nei-
ther it, nor any character ultimately de-
fined in terms of it, occurs in & < B, ¥
or any undischarged premises.
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—p 2@ o=P _g 9B a=p < %®B=7
o) oG asn

The notation works as in standard presentations of modern natural deduc-
tion systems. Thus, the rules = E and < I sanction inferences of sentences of the
form below the line from sentences of the form above it. The remaining rules,
IP and < E, involve provisional assumptions (9,in IP; o0 @ v = B, in < E). This
means that if we deduce a sentence (perhaps satisfying certain conditions) from
the provisional assumption, then we can discharge that assumption and transfer
dependence of our conclusion to the premise of the sentence immediately above
the line (y*, in IP; a < B, in < E), together with any other undischarged
premises. For readability, I have not stated all of the variations on order that can
be obtained using the symmetry of identity and the commutivity of real addi-
tion, but I will also count such modifications as instances of these rules (for
example, in < I the premise o @ B = 1 would license the inference to B<nas
well as to a < 7).

The premise set forarule is the set of premises on which a sentence
obtained by an application of the rule depends. Premises depend on themselves,
and the premise set of an axiom is empty. The premise sets for = E and < I are
the premise sets of their premises. The premise set for IP is the union of the
premise sets of y and y*, minus ¢, and that for < E is the union of the premise
sets of o < B and the first occurrence of y, minus o0 ® v = B.A derivation
is defined in the now standard way, and when y is derivable from the sentences
Qp -5 @, T will write Qe @ -

There are two important schemata that Leibniz treats rather like axioms, but
which can in fact be derived in £L®. First, although he frequently declares that
we need not (indeed cannot) demonstrate “formal and explicit identities” like A
= A (PPL 226/GP VII, 300), such sentences can be derived in his calculus by
entering o = & @ o (by A2), then using the substitutivity of identity (= E) to
obtain o = o.. Hence, we can allow the direct entry of such identities in proofs
using a derived rule I will call = I. Second, we saw in § 2.7. that in addition to
the uses of the definition of inclusion (Def 3) captured by <1 and < E, Leibniz
sometimes uses this principle to justify the direct entry of instances of . < ot @ P
in proofs. We can justify this by using = I to derive o, ® B = o @ B, then using
<TI to obtain o. < oo @ P. Leibniz often calls Def 3 the definition of
inexistence, and so I will say that such instances of o < ot @ B are
obtained by the (derived) rule Inexistence.

3.1.6. A Sample Derivation

I will illustrate the workings of the inference rules of £® by reconstructing
a representative derivation from Leibniz’s paper. Because £® does not contain
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a conditional, the resulting theorem must be viewed as a metalinguistic claim
about derivability, rather than as a sentence in the object language itself.

Proposition 12: If Bis in L, then A ©@ B will be in A €B L...ForletL =
B @ N (by the definition of inexistent); A@ BisalsoinB®N @ A (by
the same definition), that is [A @ B is] in A & L (see LLP 134/GP VII,

239).
In short, BSL |- A ® B<A ®L;in L® the proof runs as follows:

{1} (H)B<ZL Premise .

{2} 2)L=B®&N Provisional Assumption (for <E)
0] BYAPB<(A®B)®N Inexistence

1) HASGBL<A®B®N) 3A3

10 BYASBLBOEN)DA 4Al

{2} (6)A®BZL@A 5,2=E

{1} (MHMAD®BLSA 1,2,6<E

{1} B APB<A®L 7Al

Note that the instantial character, ‘N’, is new to the proof and doesn’t'oc.cur
in the conclusion. Leibniz’s remaining theorems can be reprqdpced %n similar
fashion (as in this example, many of them require the assoc.iat1v1ty axiom), and
the arguments he shows to be intuitively invalid can be given countermodels
using the semantics developed in § 3.2.

3.1.7. A (non-Leibnizian) Definition of Inclusion

In modern algebra, inclusion relations like < are often defined by a bicondi-
tional like o0 < B iff o @ B = P (see § 4.4.). Leibniz proves that the twg ha.lvcs gf
this biconditional are equivalent?®, and it is routine to construct fie.rl'vatlons in
L2 that retrace his arguments. This would allow us to use thi§ definition of < to
replace the rules < I and < E. We could dispense with <1, since once we have
this definition, a brief reductio showsthato ® B =Nl-o<n. Tq see how
to dispense with < E, suppose that we have o < . Using our new definition of
inclusion, we rewrite this as o0 @ p = B. To introduce the new charactgr vof<E,
we invoke Postulate 2 to obtain v = § @ B, then use (A2) to reduce this tov = .
By = E we infer o @ v = B, and we then proceed to derlve. @ as beforeé The
modern definition of < thus provides an alternative formalization of £ that
allows us to dispense with < as a primitive of the sy'stem. But whatever its
attractions, it is not the formalization that Leibniz provides.

28 In Propositions 13 and 14 (see LLP 135/GP VII, 239).
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3.2. Semantics of £®

Formal semantics as we now think of it did not exist until Tarski’s work in
the 1930s. However, Leibniz is mindful of the distinction between syntax and
semantics (e.g., NEIIL II§5=A VI, 6, 287), and his views about the nature of
real addition can be developed into a formal semantics for L® in a quite natural
way. Doing so will enable us to Justify the syntactic principles of his logic by
showing that its axioms are necessarily true and its inference rules necessarily
truth preserving. It will also highlight the abstract formal structure of Leibniz’s
system in a way that is less sensitive to the nuances of particular presentations
(e.g., to which of its semantically equivalent axiomatizations is selected for
study) than syntactic treatments are.

Leibniz stresses that his calculus of real addition can be interpreted exten-
sionally or intensionally; indeed, “whenever [...] [its axioms] are observed, the
present calculus can be applied” (LLP 142/GP VII, 245)%. Thus he clearly
appreciates the distinction between the syntax of the system, on the one hand,
and various meanings that can be assigned to its characters, on the other3,
Furthermore, Leibniz’s views on meaning and truth involve something very
like what is now known as referential semantics, according to which the
meaning of a character is (at least in part) the extra-linguistic thing that it
signifies. This comes out, for example, in his criticisms of Hobbes’s view that

truth is a matter of convention, which, Leibniz contends, stems from a failure to
appreciate the distinction between language (which is conventional) and the
extra-linguistic reality that linguistic expressions signify (which is inde-
pendent of conventions)®!. Leibniz believes that various sorts of interpretations
of his calculus can be useful, so it would be misleading to speak of an
intended interpretation of £®. But the primary interpretations he has
in mind for his system are those in which its characters signify concepts’?

29 See also Leibniz: Selections (see note 21), p. 74/C 531.

30 Leibniz presents most of his formal calculus without invoking any semantic notions like
signification or truth, and this makes it reasonably straightforward to separate the syntax
and semantics of £. However, his definition of identity does rely on the notion of truth. I
have urged that this definition is best construed as a semantic characterization of identity
that justifies the syntactic rule = E of § 2.3., but this is not to deny that Leibniz’s grip on
the use-mention distinction often weakens when identity is involved.

31 See LLP 33/GP VII, 219; PPL 182-185/GP VII, 190-193; NE1V, V § 11/A VI, 6, 397-
398.

32 In many of the examples in Leibniz’s present paper, characters signify concepts, and in
numerous other works they do so as well (e.g., LLP 39/C 243). This is motivated, of
course, by his view that truth conditions for sentences are specified in terms of the
concepts that their constituent characters signify (see § 2.10.).
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3.2.1. Leibnizian Relational Structures

The key notions in Leibniz’s primary int'erpretations of his calcull(xis :1;2
those of a concept, the real addltlf)n of con(;epts, an ne
signification of characters. I will systematize thf:se notions using la "
of apparatus from contemporary mgdel_ theory. The po.lnt .of tht1; is sxsrlrllgsz'an_
organize the account, however, and it will not saddle Leibniz w11 illllly ubstan-
tive semantic views that are not support.ed by the text; fgr examp 61; c: hs antic
values of characters will still be thc:1 thn)lgs that they signify (rather than

- retic surrogates for these). . o
sortsvfessiltlhfrfterpret the iganguage of £2 over what I willcall Lei b.n i Zfl ?hg
Relational Structures. Such structures are orderefi pairs o ine
form, L=< C, ®>, where Cis a nonempty set and.@'ls a total, blpary qlt);rlej eli% i
on ( that is commutative, idempotent, and gssoc1at1ve. In keepmg wi  Lelb
niz’s view that £® can be interpreted extensionally as wel'l as 1ntt:1'151onf . r)"i,on
could be any nonempty family of sets anq @ the s.et—theoretxc operation c()1 anion
(see note 47). But in primary interpretations, C is a set of C(_)ncg%t; anouia e
logical operation that forms real sums of the concepts inC.¥ e.;:i ould add
a primitive inclusion relation, £, to L,.but to keep serpanﬂc prlriu ves ©
minimum, I will instead define this relation with the e.quwalence xZy 11 f_Lg;
=y embodied in Leibniz’s Propositions 13 a.nd 14.'F1r?a¥ly, a mo dle ot -
is an ordered pair, IR = <L, [ 1>, where L isa Lelt')mz‘lfin rf:lamonat hstruhca;lac:
and [ ], is an interpretation function that assigns 51gn1f1cat10ns to the ¢
ters of L2 in the way explained in the following subsection.

3.2.2. Signification and Truth

We define the signification of the character a in the model M
(abbreviated as [(x]m) as follows:

i imiti hen [, € C
(IC1) If a is a primitive char'acter, t 3
(IC2) For each real conjunction p & 7, [B gtn]sm = [B]m@ Mg,

We then define the relation of the sentence ¢’s being true in the
model IN (abbreviated M E o):

ISHM ko=Piff [0y, = Bly, ]
2152; MEas<Piff [alﬁ s [B]g}t (i. ., iff [0, @ [Bly, = [Blgy)-
(IS3) M k - iff it is not the case that M = .

Leibniz endorses bivalence, so the sentence @ is' fals e m.?m _]lllst in ctaifzl
it is not true in IMN. As usual, a set of sentences I' is sati s.f1 a'b e jus er
case it has amodel,and T entails the senter}ce ¢ (T E @) just in case lex;ivz
model of T is also a model of @. Proofs that L® is sound and complete (rela

to this semantics) are sketched in the appendix.
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The syntactic structure of Leibniz’s calculus (embodied in the five forma-
tion rules of § 3.1.2.) mirrors its semantic structure (embodied in the five
semantic evaluation rules of the previous paragraph). This is as it should be, for
Leibniz is convinced that a logically perspicuous language

“[...1 would represent our thoughts truly and distinctly, and [...] when a thought fe.g., a
concept, which is the semantic value of a character in Leibniz’s primary interpretations of his
logic] is composed of other simpler ones, its character would also be similarly composed™33.

Such passages contain perhaps the earliest suggestions of a compositional
semantic theory in the history of logic. They also reflect Leibniz’s preoccupa-
tion with combinatorial rules and their use as an effective procedure - ‘a
mechanical thread’ - to draw inferences based on the forms of sentences4.
Indeed, (IC2) and (IS1) — (IS3) simply are combinatorial rules that provide an
algorithm for determining the semantic value for each form of complex linguis-
tic expression, given the semantic values of its simpler parts3S.

4. Extensions, Anticipations, and Applications

In this section I examine several additional features of Leibniz’s calculus
and discuss some of its implications for other aspects of his logic and philoso-
phy.

4.1. Real Addition as a Multigrade Operation

Commentators typically treat ‘@’ as a symbol fora binary operation.
Some passages in Leibniz certainly suggest such a reading, but there is also
evidence that he views it as a symbol fora multigrade operation, one
capable of joining any finite number of characters in a single stroke. For one
thing, he sometimes treats relations as multigrate; for example, in work on the
geometry of situation (analysis situs) of 1679, his central primitive
notion is a generalized congruence relation that can relate any (even) number of
points (see PPL 249-253/GM 1I, 20-27). Furthermore, Postulate 2 of his
present paper says that “any plurality of terms [...] can be taken together to

33 Philosophical Essays, transl. by R. Ariew and D. Garber, Indianapolis 1989, p. 240/GP
1V, 295-296; see also GM 1V, 141; Leibniz: Selections (see note 21), p. 10/GP VII, 192;
LLP 33/GP VII, 219; LLP 21/C 54; PPL 192-194/GM IV, 460-462; Leibniz (see note 7),
p. 18/GP VII, 209.

34 See LLP 192-194/GM IV, 460-462; see also PPL 670/GM VII, 24; LLP 85-87/C 396-399;
GP1V, 27-102.

35 1 discuss this aspect of Leibniz’s logic and semantics in more detail in Leibnizian
Expression, forthcoming in the Journal of the History of Philosophy.
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compose one term” (LLP 132/GP VII, 237)*, and virt‘uazly none of his logtlicoa;
writings contain grouping devices like par;nthesgs. If ‘@ isa plga? opc;rez;1 on
symbol, this means that Leibniz often falls_ to discuss assoc1at1Y1 )(/1 w on he
should; for example, he fails to include an a?u.om to accommodate it, e;pife 1
insistence that features as basic as commutivity be exp,11c1tly .addres;e . lre:;
addition is a multigrade operation, however, we needn’t ascribe such careles
ness\’t&;)et::lzlfrll. treat real addition as a multigrade gperation by making the f9110vl\11-
ing modifications in L8 The vocabulary remains the. same, but we rlc:“;r12te ; rZ
formation rule for composite characters to say that 1f Qs oee s (pkb('l- 22) e
characters, then rEB((pl, cee s (pk)1 is also a character (Wthh. for readabi iity ;a?.rst
written in infix notation as'@ @ ... ® ¢, ). The rl.lle.s Qf 1pference and the fi :
two axioms stay the same, but the axiom for associativity is no longer Fequlfrteh .
Derivations remain much like those in § 3.1.6., although with the demlfelo Oe
associativity axiom, they parallel Leibniz’s own proofs even more clo:ezy.' 2
the semantic side, we require that every subset_ of .tern.15 Xps oo Xy k= )tm
has a real sum &(x,, ... , X,), also in C. As. with its lll’lgUIStl'C counterpar ,t.w‘e
retain the commutivity and idempotence axioms for @, but discard aSSOFla]lVl)-
ty. Finally, we generalize (IC2) so that-[GB((pl, q)n)]th = @1([([:11(]1@., m,in(p"wﬂffai
For simplicity, I shall employ the binary version of real addition " ;
follows, but it would be relatively straightforward to recast subsequent discus
sion in terms of the multigrade version introduced here.

4.2. Postulate 1

In § 2. I deferred discussion of Postulate 1 to this subsection. This assump-
tion, which Leibniz only employs in constructions (rather than in proofs of

theorems), reads:

“Given any term, some term can be assumed which is different from it, and, if one
pleases, disparate, i. e. such that the one is not in the other” (LLP 132/GP VII, 237).

Leibniz’s presentation at the beginning of his paper‘is rer'nlnlsgfl?tf' oi
Euclid’s presentation at the beginning of the Elements. Euchd begins v;n . v
postulates and five axioms (‘common notions’)z the axioms supposed i 'f)mii
applicable to any subject matter, the postulates just to geometry. é\low de; tlrller
sometimes equates postulates and axioms (PPL 187{A II, 1,' ?:9 ), an otner
times he speaks of postulates as “understood not 1'n.Euchd s way, uh.le
Aristotle’s, namely as assumptions which we are willing to agre; o6n ‘Zl é)
awaiting an opportunity to prove therrf’ (NE IY, VII §'11/A' VI, 6, ; as.
However, a key feature of postulates in his logical writings is to serv

36 See LLP 124/GP VII, 230; LLP 42/GP VII, 224.
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existence assumptions®. This is the role of Postulate 1, and in this

respect it is like Euclid’s first three postulates.

Euclid’s first three postulates, which authorize the construction of straight
lines and circles, in effect serve as existence assumptions about such figures.
Unlike most present-day geometry, Euclid’s treatise contains many construc-
tions of figures, and in Descartes’ Geometry of 1637 the emphasis on construc-

tions is even more pronounced. And just as the first twenty-one propositions of |

Leibniz’s paper generalize the idea of proving theorems in geometry® to
proving theorems in logic about the abstract structure of concepts, his last three
propositions generalize the idea of geometrical construction to show that con-
cepts satisfying certain specifications can be constructed. For example, in Prop

22 Leibniz shows how to construct a concept C that is different from both

members of any pair of disparate concepts, A and B, yet such that either A @ C
is in B @ C, or vice versa. With this generalization, questions about specific
methods of geometrical construction are left far behind, but some primitive
assumptions about what can be constructed are still necessary for constructions
to get off the ground. And much as Euclid’s first postulate allows us to draw a
straight line connecting any given pair of points, Leibniz’s first postulate allows
us to introduce the name of a term that is disparate from any given term.

The construction of a concept shows that it is consistent (provided that its
constituent concepts are), and this is closely related to Leibniz’s frequent claim
thata real definition of aconcept not only catalogues its subconcepts,

but also shows that the concept is possible or consistent. Indeed, a paradigm of |

the real definition of the concept of a geometrical figure is provided by a
construction, which shows that the concept is consistent by exhibiting it39.

Leibniz’s constructions also provide a brief formal treatment of one aspect of

proble:w solving (namely, finding concepts that satisfy certain condi-
tions), which is noteworthy because of his life-long dream to devise a Universal
Language that could be used not only for proving theorems, but also for solving
problems.

Although Postulate 1 is quite powerful, Leibniz doesn’t pause to defend it.
I think the main reason for this is that in primary interpretations of his calculus,
its characters signify concepts, and a concept can always be negated; indeed,
many of Leibniz’s other logical systems explicitly include an operation for
negating them. And if, as I shall argue in the next subsection, Leibniz views his
calculus of real addition as a minimal system that can be extended to incorpo-
rate such operations, this would mean that each term automatically has at least
one term disparate from itself, namely its negation.

One way to accomodate Postulate 1 in £® is to add an inference rule, P1,
that licenses the move from ¢(ct) on line 1 of a derivation to =(v < o) on line

37 Seee.g., LLP 124/GP VII, 230; LLP 90/C 235.
38 And a few other fields (see NEIV, II § 13/A VI, 6, 370-371).
39 See NEIIL III § 18/A VI, 6, 295; see also PPL 230-231/GP VII, 293-295.
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n(n>1) and (ot <v)onn + 1 (where v, which is'to ‘St.arve as the name of a term
that is disparate from the term named by @, is a primitive chargcter that does not
occur earlier in the proof). On the semantic side, we require that for every
concept in the domain of a Leibnizian Relation'al Structure, there pe some othc?r
concept that neither includes, nor is included in, it. However, this approach is
not in the spirit of the rest of Leibniz’s system, and so here §hall treat Pgstulate
1 as a metalinguistic principle allowing us to assume the existence of disparate
terms when performing constructions. It would be straightforward, however, to
use P1 to make this postulate an integral part of L9 itself.

4.3. Extensions of L®: Negation

Leibniz’s calculus of real addition is limited in scope, but there is good
evidence that he regards it as a core system that can be (conserva.uvely)
extended in various ways. Thus, near the end of his paper on real addition, he
says:

“[...] as various laws of combination [of characters] can be discovered, the result of this is that

various methods of computation arise. Here, however, no account is taken of the vangtpn
which consists in a change of order alone [...]. Next, no account is taken here of repetition

[...]” (LLP 142/GP VII, 245)*.

A page later he adds that “in due course order also wi'll b_e ’considered”,
although he doesn’t do so in the present paper. Moreover, Leibniz’s calgulus of
real addition, or one very like it, forms a subsystem of several of h‘1s other
logical systems*!. Indeed, in other papers Leibniz employs sevs:ral Qech?s that
could be used to extend L2, including variable-like symbols (‘indefinite ct}ar—
acters), the incorporation of the predicates ‘true’ and ‘false’ in the object
language, and various treatments of the syllogism*2. It v‘vould‘tak.e us too far
afield to examine these extensions here, but I will briefly indicate how a
combinatorial operation of negation can be added to L8

Leibniz often claims that concepts have negations; for example, the nega-
tion of the concept happy is the concept not-happy, and s;);nethmg
falls under the latter just in case it does not fall under the former™. Mo're-
over, in many of his other logical systems, he includes (.:haracter—formmg
negation operators, often writing the name for the negation of the concept
A as ‘not-A’(non-A). His axioms for negation vary from paper to paper, but he
almost always includes one of the form " = not-not-0.™4. In a system of 1690

40 See C 256.

41 See e.g., LLP 40-46/GP VII, 221-227; LLP 90-92/C 235-237; LLP 93-94/C 421-423; see
note 16.

42 See e.g., LLP 47-87/C 356-399; LLP 90-92/C 235-237; LLP 93-94/C 421-423.

43 See Leibniz: Philosophical Essays (see note 33), p. 11-12/C 86; see also LLP 47/C 356;
LLP 53/C 363; LLP 79/C 390.

44 Seee.g., LLP 69/C 379; LLP 84-86/C 396-397.
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that includes £2, he also employs an axiom of the form ‘o # (B @ not )? (see
LLP 90/C 235), and I will consider these two axiom schemata here, since they
enable us to derive many of Leibniz’s principles about negation.

We extend £® to the calculus £9X by adding a unary, character-forming
operator, ‘not-’, to its vocabulary, the formation rule (FC3), which tells us that
if o is a character, then 'not-ois also a character, and the axiom schemata (A4),
"o = not-not-a." and (AS),"a= (B @ not-cl)". On the semantic side, we consider
ordered triples <C, @, Neg>, where and @ are as before and Neg is a unary
operation on ( that maps terms to their ‘negations’ (subject to the restrictions
that for each x and yin(C x = Neg(Neg(x)) and x # (y @ Neg(x))). Finally, we
add a clause (IC3) to the definition of an interpretation in § 3.1 .2., telling us that
[not-oc]m = Neg([a]sm).

Many of Leibniz’s central principles about negation are provable in £8%
including |- not-o = not-a, o = B |- o # not-B, and o = B I- not-o = not-B (e.g.,
LLP 83/C 394-395). It is also possible to provide a justification for Postulate 1
in this system. We begin by noting that we can now prove that o and not-o, are
disparate, i.e., that all instances of ~(q < not-at) and ~(not-o < o) are theorems.
For example, we prove that (A < not-A) is a theorem by assuming the
opposite, namely A < not-A. By Prop 14, this delivers A @ not-A = not-A. By
(A1) and (A4) this yields not-A = not-A ® not-not-A. We then enter an instance
of (A5), not-A # (not-A & not-not-A), which is the contradictory of the

previous sentence, and use IP to conclude —(A < not-A). This done, we set

not-A equal to a new character v by Postulate 2 and (A2) to obtain a name, v, of
a term disparate from a, as required?s.

4.4. Leibnizian Algebras

Leibniz’s insistence that £9 is amenable to alternative interpretations,
together with his modeling of real addition on the standard algebraic operation
of numerical addition (with the difference that it is idempotent*0), inaugurated
the algebraic approach to logic that runs from Boole and Pierce in the nine-
teenth century to work in cylindrical and polyadic algebras in the twentieth.
Furthermore, because Leibniz’s axioms are quantifier-free equations (see LLP
118/GP VII 214), his formulation of his calculus is also algebraic, and so it is
not surprising that a Leibnizian Relational Structure, £ = <(, ©>, turns out to
be an algebra. More specifically, because the operation @ is idempotent,

45 Further axioms for negation, or for additional combinatorial operations like disjunction,
can be added on the model employed here. Although Leibniz does not explicitly restrict
negation to simple concepts, doing so would fit better with some passages which suggest
that concepts can in principle be analyzed into simple concepts and their negations. We
could impose this restriction on £9% combining it with the system in § 4.6. below.

46  See LLP 143/see also GP VII 246; and LLP 124/GP VII, 230.
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mmutative, and associative, it is a semilattice, an.d. glvc'an. Lelt.mlz. S
fr:atment of the relationship between inclusion and real addition, itisa join
semilattice, with @ its join*’. . ‘ o < i torms of the foin with

In a semilattice we can define a blngry 'rel.atlon S in term i]) o with
the biconditional x £y iff x @ y = y, which is just the e.quwalence fl:m odie in
Leibniz’s Propositions 13 and 14. Often thc? ne)i;1 s:qt) .mra; 5:(:1 ‘c,)en( :til():(e)s ;i Ny

i i rdering,i.e., thatitis £x),
P tha}t %i;Sxa<p :1;(; ;aslx,(ihen X = y),g and transitive (if x Sy and y £ z., the‘n
syr<nm etarllncd Leil_)_-n}ilz gives- detailed proofs that < has these three properties in
Pro Z());itions 7, 17, and 15 respectively. Another rudimentary resu.lt in lattlc.e
tf;r:(fry is that i’f X g zand y £z, then x © y _S_ z, which is proved in lsrfop(i)sel-
jon 18. Again, it is typically shown that @'15 isotone or grder-pres'e.rv g, i.e.,
i tif x<y,thenz @ x £z @y, and Leibniz proves this in Proposmon'lZ.
e Iiike=rr1),c;st of his_logi-c—:s, Leibniz’s calculus of Feal additiop does not 11;1011122;2
a disjunction operation, and so a Le(iiblniz.ian (Relat}icigi gtlrglz)c(:;l;:nn;ge:::a) ack
thus not be a full-fledged lattice (muc . .
;Iinseziizlllni remarkable fact that two centuries befor'e Dedekm;i‘ laugci?egr (t,ﬁ:
modern study of lattices, Leibniz had produced' qul.te thorgugl an theigr rous
proofs of over twenty basic theorems about semilattices and shown

vance to logic.

4.5. Leibnizian Mereology

Leibniz often says that when one concept is ir}éluded irll1 (but‘no; 1(cil§ngtllclzia.sl
i irst i f the second*®. Elsewhere, includin
with) a second, the firstisa part o . :
presc):nt paper, he claims that although the formal feature§ pf 1nclu§{on are a
necessary aspect of a part-whole relation, they are not sufficient for it:

47 In many familiar cases where lattices are of logical' relevance (e.ﬁ.,f pr(éﬁ(;sr:;lloclﬁlr:jll?s:tlieo:;rt
algebras, algebras of sets), conjunction-like ppgratxons (e.g., truth-fun nal conjunclion,
se% inter;ection) are meets rather than joins. This is so, bec‘:-auslc:.]deZ, o Jthe on
like entities resulting from the applicati(?n of such operations are I;l:)(;v ded” in the liems
to which the operation is applied to obtain them (e.g,xNycCy). fo arded, e
is inverted in intensional interpretau.ons, where terms are gt rded as concepts
This is so, because one concept is included;; Zsi(,:;)ng nggnga;e[j]_lps 2o _]384_385)'

'136/GP VIL, 240; LLP 20-21/C 53; A VI, 6, 486, 275; /
S:fatlétli‘ [:'iclaivﬁs/i}bout the inverse relationshi[})] b;tweeRn 1ntle£1(s)1g()ircl (a;;liej(rtfgjscl;z}x:i:;i ;e}e):
i i in the Port Roya » Pt
?Idvzilncf;i)"} (111656c?1:)sy Iirigzlil;(’isa\?ii\ljslﬁethe relationships between i.nter.lsioanAand extensi-
01; (i:n .more detail in Leibniz on Intension and Extension, fo\r,t;llcgr;l;:g \;}1 602;.6 LLp 29/
48 See LLP 19-20/C 52; LLP 66-67/C 377 see also NE1V, X , 6, ;

C 81-82.
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“[...] if the terms which are in something are homogeneous with that in
which they are contained, they are called parts and the container is called a
whole” (LLP 142/GP VII, 245)%,

In short, the inclusion relation in the presence of homogeneity is the same
thing as the part-whole relation. It would take us too far afield to explore
Leibniz’s notion of homogeneity, which involves the geometric notions of
similarity and dimension®. But it is important to note that Leibniz’s calculus is
probably the earliest formal theory of the part-whole relation (or at least of the
relation of inclusion that underlies it).

In recent mereological theories like Leonard and Goodman’s calculus of
individuals, the part-whole relation is a partial ordering, and every set of things
has a mereological sum. In £, £ is a partial ordering, and any finite
number of terms have a real sum. Repeated applications of real addition cannot
generate infinite sums, however, and so an infinite set of terms will not have a
real sum. Recent mereological accounts are sometimes criticized for incorpo-
rating such strong existence assumptions, however, and so it is not obvious that
Leibniz’s account is the worse for this omission’!.

4.6. Simple Concepts

Leibniz holds that all complex concepts are built up from simple
concepts by real addition (and probably other operations, at least nega-
tion). As the years went by, he came to doubt that human beings were capable of
isolating absolutely simple concepts, but he continued to believe that we could
discover those concepts that were incapable of further analysis b y us’?
These concepts would comprise an alphabet of human thought,
and the primitive characters of a logically perspicuous language would signify
them?3. However, this aspect of Leibniz’s views is not reflected in his calculus
of real addition; indeed, his system is neutral as to the existence of simple
concepts, and in some of its models every concept is infinitely complex, the
conjunction of two further concepts, downward without end (see LLP 141-142/

49 See LLP 122-123/GP VI, 229; PPL 668/GM VII, 19.

50 See PPL 666-669/GM VII, 18-21: see also LLP 122-123/GP VII, 229; NE Preface/A VI,
6, 63-64.

51 Inastudy probably composed around the same time as the paper on real addition, Leibniz
isolates the notions of communicating and uncommunicating terms
(see LLP 123/GP VII, 229). These correspond to the relations of overlap ping and
being discrete from , respectively, of the calculus of individuals (see H. S.
Leonard and N. Goodman: The Calculus of Individuals and its Uses, in: Journal of
Symbolic Logic 5 (1940), pp. 45-55).

52 See Leibniz: Selections (see note 21), p. 51/C 176; PW 10/GP VII, 292.

53 See Leibniz (see note 7)., pp. 18-19/GP VII 205; see also LLP 33-34/GP VII, 219.
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GP VII, 245). We can implement Leibniz’s vit?w that simpl; chzgacters should
signify simple concepts, though, with a few minor changes in L®. .

We select a subset, S, of primitive characters whose mejmt?ef wil serve as1
pames of simple concepts. In the semantics, we extend Lelbplzlan Relang??
Structures to ordered triples of the form <C, C°, ©>, where @'15 as beforez is
a non-empty set, and Cis the closure of C* under the opt?ratlon . In prlmarty
interpretations, (* is a set of simple concepts, and Ccontains all .Of tl'le con;:ep ?
that can be generated from the members. of C‘. by repeated appl'lcatlo.ns of rea
addition. We then say that a primitx.ve interpretation is a.unclz—
tion [ }° that maps each simple character.m Sto a member of  (if each simple
concept is to have only one name in an 1dea}1 language, we fbould alsc? requlrﬁ
that [ ]° be one-one). Finally, an interpretation based on [ ]°is a functlocrll suc
that for each primitive character o, [a] = [&]*, and fo.r gl} charactefs o, an B,. [o
@ B] = [®] © [B]. The remaining clauses of the definition of an interpretation

are as given in § 3.2.2.

4.7. Infinite Analysis

Leibniz maintains that a finite analysis can redgce a necessary trth todan
identity, whereas “true contingent propositions require an analysis continue ttlo
infinity” (LLP 61/C 371). And near the end gf his paper on real ‘ad(‘htloni .g
adds that “the whole of synthesis and analysis d‘epends on the prlnr01p}es 1a1'
down here” (LLP 142/GP VII, 245). The 'ideja is thgt a _sentence 'o 1; 4 lis
contingently true just in case we could in principle begin \ylth the claim t a; :he
concept T is included in the concept o, and. b‘y.“an analysis of Fhe tern;ls oth‘ e
proposition and the substitution of the deﬁr?mon of a part of it, for Fde : tmg
defined” get ever closer to, though never arrive at, Frapsparently true identi 1lt:s
of the form "ot = o™*. But if Leibniz’s picture of infinite analysis is to hrna}de
sense, the concepts involved must be infinitely complex, and 1ndeed.h¢f3“ 0 1s
that individual concepts, like that of Adam, are .complete and so 1p initely
structured>®. There are many difficulties with Leibmz’.s account of contingency,
but here I want to ask whether his account of the lgg‘lc.al strqctgr; of conce;;ts,
or any natural extension of it, can explain the possibility of infinitely complex
conclfel‘,)itl:r.liz typically holds that the stock of siplple concepts 1s flane;llndeelclls,
God produces the greatest variety of things with th§ most c'conom'lcah me?? s
possible, so it may well be quite small®®, and the first difficulty is that it i

i les inédits de Leibniz, Paris
54 A.-L. Foucher de Careil (ed.): Nouvelles lettres et opuscu .
1857 p;(:. 181-182/PPL 264f; see also PPL 267-268/C 518-519; PW 75/GP VII, 309.
55 Seee.g. LLP 66/C 377; PPL 332-335/GP 11, 48-54; PW 77/GP VIL, 311.
56 See PW 2/C 430; Leibniz (see note 7), p. 18/GP VII, 205.
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impossible to construct infinitely complex concepts from a finite set of primi-
tives with just the operation of real addition. This is so because real sums are
amorphous; order, repetition, and grouping make no difference, so that once we
know the simple constituents of a complex concept, there is nothing more to
learn about it. Hence, the set of real sums that can be generated from a finite set
of primitive concepts is in one-to-one correspondence with the set of all subsets
of that original set. This means that if we begin with n primitive concepts, we
can only generate 2% concepts, each with n or fewer (primitive) subconcepts.
Consequently, when A(is finite, we can only construct a finite number of
concepts, none of which is infinitely complex.

Leibniz does say that “infinite things can be compounded out of the combi-
nation of a few” (PW 2/C 430), and this may suggest that it was a mistake to
regard real addition as a finitary operation. Nowadays infinitary operations are
familiar; for example, a ¢ om plete join semilattice is one in which every
set of elements, whatever its cardinality, has a join. And perhaps Leibniz
vaguely anticipated such operations, thinking that even infinite sets of concepts
have real sums. If so, we should extend Leibnizian relational structures to
include an infinitary version of @. But the most complex concept that can be
generated from a set of concepts with such an operation is still just the real sum
of all of the concepts in the set, so as long as the set of primitives is finite, even
an infinitary version of real addition will only allow the construction of finite
concepts.

However, Leibniz sometimes suggests that there might be infinitely many
primitive concepts (see PW 10/GP VII, 291). If so, a binary version of real
addition would be able to generate infinitely many concepts, although since
repeated applications of a finitary version of real addition cannot generate sums
of infinite sets of concepts, we still could not obtain concepts of infinite
complexity. Hence, if we are to generate infinitely complex concepts using
anything like the operation of real addition (even when augmented by term
negation and disjunction), we need infinitely many primitive concepts and an
infinitary version of real addition. But aside from a few passing remarks about
infinite conjunctions (see LLP 142/GP VII, 245). Leibniz doesn’t discuss such
operations. And so a gap remains between the infinitely structured concepts that
his accounts of individual concepts and contingency require and what his
logical apparatus can provide’’.

57 It should be stressed that we are considering an infinitary version of the operation @ on
concepts, rather than an infinitary version of the character-forming operator @ in the
object language of £®, As long as the language is finitary, @ must be finitary, and so
infinitely complex concepts could not be fully described using it. This is what we should
expect, however, since as Leibniz stresses, infinitely complex concepts can never be fully
grasped by the finite creatures for whom £ is designed. With an infinitary version of @,
Leibniz’s account of the part-whole relation also moves closer to more recent accounts of
it.
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5. Conclusion

Leibniz’s calculus of real addition, with its concentrgtion on inclusi(?n and
conjunction, is undeniably limited in scope, and som.e of its features, partlcullal.F—
ly its treatment of definitions, are bound to seem inadequate today.. But this
should not obscure the fact that his system hgs a numbf:r ‘of stpkmg and
important features. Among other things, it sheds llght (?n.Lelbmz s views about

arts and wholes, the structure of concepts, and 1nf1r}1te an.alyms. It is alsp
remarkable how many features of Leibniz’s account, mclgdmg his algebraic
treatment logic, his formal account of something very .llke the Qart-whol.e
relation, and his discussion of the possibility of alternative interpretations of his
abstract formal system, are detailed anticipations of later developments that are

important even today.

Appendix: Metatheory of £L®

L3 is strongly sound and complete. Since it is a weak system, these _resglfs
are not of great intrinsic interest, but they are good evidence tha}t Lmbm; s
calculus validates all of the theorems it should and that the semantics supplied

~in § 3. for it is the correct one.

We can prove that L® is strongly sound -i.e., that fqr any.set of
sentences I and any sentence ¢ of L%, if |- ¢, then k¢ - by an 1nduc¥10n on
the length of derivations, showing that the sentfance on each line is eqtalled by
its premise set. The basis clause and the inductive stgps for ‘all of the inference
rules but < E are straightforward, and the proof for this rule is analogou§ to that
for the rule of existential elimination in contemporary natural-deduction sys-
temsﬁ’ isalso strongly complete:IfT k@, then T |- ¢ A set of
sentences is consistent justin case there is no seqtence such t.hat bqth it
and its negation are derivable from that set, and it is maxgnally c9n31stent if no
further sentences can be added to it without destroying its consistency. So as

usual, completeness is equivalent to

(C) If A is a consistent set of sentences of £®, then A has a model,

which we establish with a Henken proof. _ .
Assume that A is a consistent set of sentences. We extend it to a maximal

consistent superset, M*, by an induction along an engmeratiqn of the stntences
of £2 with steps and proofs of the familiar sort. If A* is a maxupal c*on51stent se?;
of sentences of L%, then: (a) ¢ € A* iff ~@ ¢ A*, (b) ¢ € A* 1ffA . - o, (.c) i
@ (0)e A*and o =P € A*, then @ (?x) e A* (d) o= a e A*, (e) if @ is an axiom,
then ¢ € A*, and (f) o < B € A*iff o ® B = B € A*. Clauses (a)—(e) arz
demonstrated in the usual way. Clause (f) requires the use of.thf: rul_es <land <
E, and its demonstration is essentially that given by Leibniz in his proofs of
Propositions 13 and 14 (see LLP 135/GP 11, 239).
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The next step is to construct a model, De*, for A*. We begin by factoring
out equivalence classes of characters of £, taking o’s equivalence, class [a],
asthe set {a’ :"a= o’ € A*} (the proof that such sets are equivalence classes
relies on properties (c) and (d) of maximal consistent sets). We then take the set
of these classes as the domain of IR *’s underlying Leibnizian relational struc-
ture and let each character signify its associated equivalence class, i.e., [a] =
[a]. For example, [A & B]im* includes ‘A @ B’, ‘B ® A’, ‘‘A® A)®B’, and
infinitely many other characters as well.

The final step is to show that IN* is a model of A*, i.e., that for each
sentence ¢ of L2,

(Mod) ¢ € A* if and only if IR* & ¢.

The proof proceeds by induction on the number of negations in @. The basis
clause divides into a case for identities and one for inclusions, D * is contrived
to ensure that (Mod) holds for identities, but the situation for inclusions is more
interesting. Interpretations in familiar systems like first-order logic assign
extensions to predicates like ‘<’ but this is not how things work in Leibniz’s
system. Hence, a bit of effort is needed to prove that a. < B € A* iff TR* k= o <
B. Going left to right, assume that o < Pe A*. Then o ® B =B e A* (by
properties (b) and (f)). Since (Mod) holds for identities, IR* = o, & B=B. And
50, by the definition of <, MM* k= o < B. For the converse, assume that IR * & o
< PB. Then, by the definition of <, M* ko @ P = B. Since (Mod) holds for
identities, 0 @ B = B € A*. Hence, o < B € A* (again by (b) and (f)). The
inductive step proceeds in the usual way for negation. Finally, the restriction of

IN* to A is a model of A, which concludes the proof of (C), and so of the

completeness of L®. The compactness and downward Léwenheim-Skolem
theorems follow as immediate corollaries in the usual way.
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