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Leibniz on Intension and Extension

CHRIS SWOYER -
University of Oklahoma

Leibniz is well-known for his intensional interpretation of logic, according to
which a subject-predicate sentence is true just in case the concept signified by the
predicate is included in the concept signified by the subject. But he also dis-
cusses, and sometimes even employs, an extensional approach, according to
which a subject-predicate sentence is true just in case the set of things in the
extension of the subject is included in the set of things in the extension of the
predicate. Leibniz has various brief, but interesting, discussions of the relation-
ships between these two approaches, and my aim here is to examine his views on
intension, extension, and the connections between them. Among other things, I
shall argue that Leibnizian intensions and extensions share a common structure
that explains the relationships among the various interpretations he proposes for
his logics, that because of this common structure extensions express intensions in
Leibniz’s important, technical sense of expression, and that Leibniz’s views on
intension and extension (in conjunction with his views about truth) require that
concepts be extensional.

In §1 I sketch Leibniz’s intensional and extensional accounts of the truth
conditions of subject-predicate sentences. Leibniz most frequently discusses the
relationships between these two accounts in his writings on logic, and in §2 I
briefly review one of his central logical systems in order to locate his discussion
in the formal context in which he typically places it. In §3 I examine Leibniz’s
version of the principle of the inverse variation of intension and extension and
consider its bearing on the extensionality of Leibnizian concepts. In §4 I examine
Leibniz’s claim that his logical systems are amenable to both intensional and
extensional interpretations and in §5 investigate the relationships between these
two kinds of interpretations. In §6 I show how the discussion of earlier sections
carries over to several of Leibniz’s richer logical systems.

© 1995 Basil Blackwell, Inc., 238 Main Street, Cambridge, MA 02142, USA, and
108 Cowley Road, Oxford OX4 1JF, UK.
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1 Leibniz’s Intensional and Extensional Accounts of Truth

On Leibniz’s standard, intensional, account a subject-predicate sentence is true
just in case the concept signified or denoted by the predicate is included in the
concept signified or denoted by the subject. Leibniz calls this his ‘great prin-
ciple’, and a typical statement of it reads

... in every true affirmative proposition, necessary or contingent, universal or partic-
ular, the concept of the predicate is in a sense included in that of the subject; the
predicate is present in the subject. Praedicatum inest subjecto; otherwise I do not
know what truth is [G.ii, 56 = LA, 63; cf. G.ii, 43—-46 = LA, 46-50; C, 16—-17 =
PW, 96; C, 518-19 = PW, 87-8; NE, 486].!

For example, the universal sentence ‘Rectangles are parallelograms’ is true just
in case the concept of a parallelogram is included in the concept of a rectangle,
and the singular sentence ‘Adam is human’ is true just in case the concept of a
human is included in the (individual) concept of Adam [G.vii, 240 = LLP, 136;
. G.iv, 436-37 = PPL, 310-11].2 This doctrine, often called Leibniz’s predicate-
in-subject account of truth, only applies directly to sentences of the forms S is
P71, T'Ss are Ps', and their variants like TEvery S is P. But the doctrine takes
on much wider significance in Leibniz’s own work, since he holds that a
wide variety of natural-language sentences can be reduced to, or at least para-
phrased by, subject-predicate sentences [e.g., C, 244-5 = LLP, 12-13; C,
395 = LLP, 84].

Leibniz believes that Aristotle’s logic is intensional [G.vii, 215 = LLP,
120; NE, 486; C, 519 = PW, 87, C, 388 = LLP, 77], whereas the logic of the
Scholastics is extensional [C, 53 = LLP, 20]. He clearly thinks that the inten-
sional approach is superior, but he acknowledges that the extensional approach
can also be useful, and he even adopts it in some of his own work [e.g., C,
193ff = LLP, 95ff; C, 410ff = LLP, 105ff; cf. C, 82 = LLP, 29-30]. On the ex-
tensional approach, sentences of the form 'S is P! and their variants are true just
in case the extension of the subject is included in the extension of the predicate.
Thus, ‘Every B is C’ is true just in case ‘the individuals belonging to B [individua
ipsius B] are contained in the individuals belonging to C’, that is, just in case ‘all
the individuals belonging to B are comprehended in the individuals belonging to
C’ [C, 411 = LLP, 105-06; cf. C, 53 = LLP, 20-21; G.vii, 216 = LLP, 120;
NE, 486]. For today’s reader, this is likely to suggest that the set of Bs is a subset
of the set of Cs, and I will employ a few notions (like that of a subset) from basic
set theory in order to streamline the discussion that follows. However, these
notions are eliminable in favor of more complex locutions, so this will not
anachronistically saddle Leibniz with any substantive views about sets.3

Extensional inclusion cannot be the subset relation in the case of singular
sentences, however, since the extension of an individual concept is typically an
individual (like Adam), rather than a set. We could accommodate this by saying
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that « is extensionally included in the set 3 just in case o is an individual that is a
member of B or a is a set that is a subset of 3. But it is simpler to identify the
extension of an individual concept with the set whose sole member is the individ-
ual falling under that concept (if there is such an individual, and with the empty
set otherwise). This means that extensional inclusion can be modeled by the
subset relation in all cases (as Leibniz almost suggests at NE, 485). And since
this approach can always be translated into the more complex account suggested
earlier in this paragraph, I will adopt it here to avoid unnecessary complexity.4

Both Leibniz’s intensional and extensional accounts of truth are based on
inclusion relations. Extensional inclusion is basically our subset relation, but
intensional inclusion is less familiar, and in the next section I will begin an
examination of its formal properties. Among other things, we will find that
intensional and extensional inclusion have a number of structural features in
common, which leads Leibniz to treat them as species of a single, generic inclu-
sion relation [G.vii, 244-5 = LLP, 141].

2 Leibniz’s Logic of Real Addition

Leibniz’s discussions of the relationship between intension and extension typ-
ically occur in his logical writings, and it will be easier to understand his views if
we consider them in this context. I will focus on a logical calculus he develops in
a paper, probably written about 1686, in which he discusses the possibility of
both intensional and extensional interpretations of his logic [G.vii, 236-247 =
LLP, 131-144]. This system is a useful one to work with, since it is Leibniz’s
most polished and detailed logic; furthermore, it forms the core of many of his
other systems, so we can concentrate on it with little loss of generality.

The central notions of this logic are the two-place relations, % (identity) and
inesse (inclusion), and a binary, conjunction-like operation, €. Leibniz calls this
operation real addition, and so I will call this system his calculus of real addi-
tion, for readability, I will abbreviate ‘inesse’ as ‘<X’, and I will follow most
commentators in writing ‘=" for Leibniz’s ‘’.

Leibniz provides two axioms to ensure that real addition is commutative (o
B = B @ o) and idempotent (a D o = a). And if his proofs are to work, we also
need a third axiom (which he doesn’t supply) to ensure that it’s associative ((o D
B)Dvy=0a® (P D ), Frege [1968, §6]; Rescher [1954, 11]). Identity works
much as it does in logic nowadays, and a is included in B just in case it is a
conjunct of B, i.e., just in case there is some x such that o b x = B [G.vii, 237
= LLP, 132]. Leibniz goes on to prove two theorems (Propositions 13 and 14
[G.vii, 239 = LLP, 135]) that together yield what I will call

Leibniz’s Equivalence: o < § if and only if & B = B,

and this relationship between inclusion and real addition will be important in
what follows.>



LEIBNIZ ON INTENSION AND EXTENSION 99

In Leibniz’s intensional interpretations of his system, Roman capital letters
signify concepts or, as he also calls them, ideas or terms [C, 243 = LLP, 39;
G.iii, 224]. By way of example, let ‘R’ signify the concept rational, ‘A’ the
concept animal, and ‘H’ the concept human. Then the composite character ‘R €
A’ signifies the complex concept, rational animal, which is the real sum of the
concepts rational and animal. The sentence ‘R €© A = H’ says that the concept
rational animal is identical with the concept human, and ‘A <H’ says that the
concept animal is included in the concept human.

Leibniz is mindful of the distinction between syntax and semantics [NE, 287],
and he stresses that his calculus of real addition is amenable to alternative
interpretations, including both intensional and extensional ones [G, vii, 245 =
LLP, 142; cf. G.vii, 240 = LLP, 136; G.vii, 223 = LLP, 42; C, 531 = LS, 74—
5]. For today’s reader, it is natural to construe such interpretations as models of
Leibniz’s formal system, and in order to bring out the abstract, structural features
that these interpretations have in common, it will be useful to view Leibniz’s
axioms for his system as characterizing what I will call Leibnizian Relational

" Structures (as with our use of sets, this machinery is eliminable; see note 9).
Leibnizian Relational Structures are ordered triples of the form (€, ®, <), where
€ is a nonempty set, € is a binary operation on ¢ that is commutative, idempo-
tent and associative, and < is a binary relation on € such that for all « and 8 in
€, o < B just in case there is some x in € such that a & x = B (or, equivalently,
just in case a D B = B).

In Leibniz’s extensional interpretations of his logical system, € is a nonempty
family of sets, & is the set-theoretic operation of union (not intersection; see §4
below), and < is the standard subset relation. But in keeping with his preference
for the intensional approach, the primary interpretations that Leibniz has in mind
for his logical calculus are those in which its characters signify concepts, and
here 6 will be a set of concepts, & a logical operation that forms real sums
(conjunctions) of concepts, and =< the relation of concept inclusion.

3 Leibniz on the Inverse Variation of Intension and Extension

3.1 Intension and Extension Leibniz would probably have traced the distinction
between intension and extension back to Aristotle.® However, the influence of
this distinction in modern logic stems largely from Arnauld and Nicole’s treat-
ment of it the Port Royal Logic (The Art of Thinking) of 1662. Not surprisingly,
philosophers disagreed about the exact meanings of intension and extension, but
when the two notions were construed as features of concepts or ideas (as they
were by Leibniz), the extension of a concept was typically taken to consist of the
individuals to ‘which the concept applied; e.g., the extension of the concept
human was held to consist of all individual human beings (which for convenience
we may think of as the set of humans). There was less accord about the nature of
intension, but it was often agreed that the intension of a concept consists of the
subconcepts or attributes or qualities that compose it; e.g., the intension of the
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concept human was frequently said to consist of the concepts rational and ani-
mal. Thus, Arnauld and Nicole held that the extension (extension) of an idea
comprised the things falling under it and that the intension or, as they called it,
the comprehension (compréhension) of an idea consisted of ‘the attributes that it
contains’ (PRL, Pt. II, ch. 17; cf. PRL, Pt. I, ch. 6].

Leibniz only rarely mentions intension and extension by name (as he does at
NE, 486), but he often employs what clearly amount to these notions. On his
view, the extension of a concept consists of the individuals that fall under it [C,
411 = LLP, 105-06], and its intention consists of its constituent concepts (in the
case of a simple concept, this is just the concept itself), which means those
subconcepts that are conjoined by the operation of real addition to produce the
concept in question [NE, 486; C, 53 = LLP, 20; C, 82 = LLP, 29-30; G.vii,
240 = LLP, 136]. So, fittingly enough, Leibniz’s intentional account of truth is
based on intensions, while his extensional account is based on extensions.

3.2 Relationships between Intensions and Extensions It gradually became a
commonplace among logicians from the late seventeenth to the late nineteenth
century that intension and extension were inversely related: the greater the inten-
sion of a concept, the smaller its extension, and conversely. This slogan was
often formulated rather carelessly, but one reasonably clear version of it boils
down to a conditional and its converse. First, if the intension of the concept a is
included in the intension of the concept B, then the extension of $ will be
included in the extension of a.. Second, if the extension of § is included in the
extension of a, then the concept a will be included in the concept 3. Although
these two theses were sometimes treated as a single principle, clarity will be
gained by separating them. To this end, I will call the first, which sanctions the
move from a claim about intensions to a claim about extensions, the /E principle,
and its converse, which sanctions a move from a claim about extensions back to a
claim about intensions, the EI principle.

The IE principle is less controversial than its converse. It is nicely illustrated
by an example of Leibniz’s: the concept animal is included in the concept man,
and so the set of men is included in the set of animals (G.vii, 240 = LLP, 136].
The intuitive idea here is that the intension of a compound concept like rational
animal is “larger” than the intension of the concept animal in the sense that it
contains more subconcepts. By contrast, the extension of the concept rational
animal is smaller than that of the concept animal, since something will belong to
the former only if it is already in the extension of the original concept animal and
also has the additional property of being rational. In other words, when we add
the concept rational to the concept animal, the extension of the resulting concept
will be smaller than the extension of animal alone, since all non-rational animals
will be subtracted from it.

A qualification is needed, since adding one concept to another doesn’t always
produce a concept with a smaller extension than the original one. For example,
no human beings weigh more than a ton, so adding the concept weighing less
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than a ton to the concept rational animal won’t shrink its extension. Still,
whenever the concept a is included in the concept 8, 3’s extension cannot be any
larger than o’s. Hence, a more circumspect statement of the /E principle says that
if the concept a is included in the concept 3, then the extension of B is included
in, or identical with, the extension of «.”7

The IE principle is quite independent of the predicate-in-subject theory of
truth. Indeed, all that is really needed to motivate it is a view of concepts (or
related intensional entities, like attributes or meanings) as things that are struc-
tured in such a way that some of them can be included as conjuncts of others.
And many philosophers have endorsed such a picture while denying that the
concept of the predicate of a true sentence is always (or, in the case of contingent
sentences, ever) included in that of the subject. However, the IE principle as-
sumes much greater significance in the context of Leibniz’s predicate-in-subject
account of truth, since on this account, the concept of the predicate is included in
the concept of the subject in all true subject-predicate sentences, so that the /E
principle comes into play for every sentence of this form.

3.3 Leibniz on the Relationship between Intensions and Extensions Leib-
niz holds that intension and extension vary inversely. In a paper of April, 1679 he
says:

... the concept of gold and the concept of metal differ as part and whole; for in the
concept of gold there is contained the concept of metal and something else—e.g., the
concept of the heaviest among metals. Consequently, the concept of gold is greater
than the concept of metal ... . The Scholastics [who employ the extensional ap-
proach] speak differently; for they consider, not concepts, but instances which are
brought under universal concepts. So they say that metal is wider than gold, since it
contains more species than gold, and if we wish to enumerate the individuals made of
gold on the one hand and those made of metal on the other, the latter will be more
than the former, which will therefore be contained in the latter as a part in the whole.
By the use of this observation, and with suitable symbols, we could prove all the
rules of logic by a calculus somewhat different from the present [intensional] one—
that is, simply by a kind of inversion of it [C, 53 = LLP, 20].

In another paper written in the same month he says that in his own work in logic:

... I do not consider a genus as something greater than the species, i.e., as a whole
composed of species, as is commonly done (and not done wrongly, since the individ-
uals of the genus are related to the individuals of the species as whole to part). I
consider the genus as a part of the species, since the concept of the species is produced
from the concept of the genus and of the differentia [C, 81-82 = LLP, 29-30].

A quarter of a century later he writes in the New Essays that

... when I say ‘every man is an animal’ I mean that all the men are included amongst
all the animals; but at the same time I mean that the idea [i.e., concept] of animal is
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included in the idea of man. Animal comprises more individuals than man does, but
man comprises more ideas or more attributes; ... one has the greater extension, the
other the greater intension [l'un a plus d’ extension, I’ autre plus d’intension] [NE,
486; cf. NE, 275].

And he concludes a similar discussion in a fragment of 1690 with the pithy
remark that an increase in the concepts or conditions (conditiones) means a
decrease in the number (of instances) [C, 235].

Leibniz expresses much the same view in his paper on real addition, where he
says

... all men are contained in all animals, and all animals in all corporeal substances;
therefore all men are contained in corporeal substances. On the other hand, the con-
cept of corporeal substance is in the concept of animal and the concept of animal is in
the concept of man; for being a man contains being an animal [G.vii, 240 = LLP,
136].

And, more generally, the intensional approach

... can be inverted, if instead of concepts considered in themselves we consider the
individuals comprehended under a concept [ibid; cf. G.vii, 244 = LLP, 141; G.vii,
223 = LLP, 42; C, 384-5 = LLP, 74].

These passages span a period of twenty-five years, so it appears that Leibniz’s
views on the relationship between intension and extension remained relatively
constant during his mature career. Throughout, he maintains that if the concept o
is included in the concept {3, then the extension of 8 will be included in (or
identical with) the extension of a; moreover, although he says less about the
converse of this principle, we will see in a moment that his views also commit
him to it.8

A bit of notation will help bring out the criss-crossing structural relationships
between intensions and extensions. Let . be a function that assigns a (pos-
sibly empty) set of individuals as an extension to each concept. Thus, for each
concept a, () is the set of individuals that fall under it (e.g., if ‘R’ denotes
the concept red, «./(R) is the set of red things). There is nothing in the IE
principle itself that prevents distinct concepts from having the same extension, so
we will not require that the function «. be one-one (i.e., we will not require that
it assign distinct extensions to distinct concepts).

Using this notation, the /E principle says that for all concepts a and 3,

IE: If o < B, then eA'/(B) Cc mf((l).

Now something is in the extension of the conjunctive concept rational animal
(i.e., of rational ® animal) just in case it is rational and also an animal, that is,
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justin case it is a member of the intersection of the set of rational beings and the
set of animals [cf. C, 52-53 = LLP, 20-21]. More generally, the extension of a
conjunctive concept is the intersection of the extensions of its conjuncts, i.e., it is
determined in accordance with the principle that for all concepts o and §,

Ext: m'/((l (&) B) = m'/(OL) n mf(B).

It is worth nothing that in Leibniz’s framework, the /E principle follows from just
this simple characterization of the extension of a conjunctive concept. To see
why, assume that o < 8. Then by Leibniz’s Equivalence (from §2), a @ 8 = B.
The sentence ev(a D B) = e(a @ B) is a logical truth, and so by the substi-
tutivity of identity, ew(aw @ B) = ev(B) [G.vii, 236 = LLP, 131]. By the
principle Ext, this is equivalent to e/(at) N e(B) = «(B), Which by (virtual)
set theory yields e./(B) C ~v(a), as desired.?
Although the IE principle has had many champions, its converse,

EI: If «./(B) C e(e), then o <.

has inspired less devotion. This is scarcely surprising, since it is typically thought
to be a contingent, rather than a logical, matter which individuals are in the
extension of a given concept. For example, it might just happen that all cyclists
are mathematicians, so that the extension of the concept being a cyclist is a
subset of the extension of the concept being a mathematician. But few philoso-
phers would conclude that the concept being a mathematician is in any sense
included in the concept being a cyclist.

Leibniz agrees that it is often a contingent matter that a given individual is in
the extension of a concept . But for him this means that it would require an
infinite analysis to show that « is included in the concept of that individual, and
because of his predicate-in-subject theory of truth, he is committed to EI. To see
why, suppose that «/(B) C (o). Given the meaning of extensional inclusion, it
follows that every B is an a [C, 411 = LLP, 105-6]. Hence, it is true that all Bs
are as, and so by the predicate-in-subject account of truth a < B.

It follows from the EI principle that Leibnizian concepts are extensional, i.e.,
that concepts with the same extension are identical (so that the extension assign-
ment turns out to be one-one after all).1° Leibniz held that an individual concept,
like the concept of Adam, is complete in the sense that for each concept «, it
contains either o or else a’s negation. Thus individual concepts with the same
extension must contain exactly the same subconcepts, since otherwise some
subconcept would apply to the individual falling under it (since that subconcept
is included in one of the individual concepts) and also fail to apply to it (since it is
not included in the other). And when two concepts contain precisely the same
subconcepts, they should indeed be identical. But Leibniz doesn’t note (and
perhaps doesn’t recognize) that the identity of all coextensive concepts follows
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from two of his basic principles, namely his predicate-in-subject account of truth
(which yields EI) and the uncontroversial principle Ext (which he tacitly uses
quite often). So it is not surprising that the doctrine that coextensional concepts
are identical does not play a major role in his philosophy.!!

4 Intensional and Extensional Interpretations of Leibniz’s Logic

One of Leibniz’s deepest insights is that logics can be viewed as abstract formal
systems that are amenable to alternative interpretations. He is particularly explic-
it about this in his paper on real addition, where he tells us that his system’s
inclusion relation can be construed in different ways.

We say that the concept of the genus is in the concept of the species, the individuals
of the species in the individuals of the genus; a part in the whole, and the indivisible
in the continuum [G.vii, 244 = LLP, 141].

A page later he says of his axioms for real addition that ‘whenever these laws are
' observed, the present calculus can be applied’ [G.vii, 245 = LLP, 142]. In short,
it is the purely formal features of < and €D that are the key to Leibniz’s logical
calculus.

In Leibniz’s intensional interpretations of his system, @ is a conjunction-like
operation on concepts, but in his extensional interpretations, it becomes a
disjunction-like operation on extensions (in effect, it becomes set-theoretic
union). Speaking of a related system that includes the axioms of his calculus of
real addition, Leibniz tells us that its theorems are

... easily proved from the one assumption that the subject is as it were a container,
and the predicate a simultaneous or conjunctive content [this is the intensional
interpretation]; or conversely, that the subject is as it were a content, and the predi-
cate an alternative or disjunctive container [praedicatum ut continens alternativum
seu disjunctivum; this is the extensional interpretation] [G.vii, 223 = LLP, 42].

And in discussing the possibility of extensional interpretations of his calculus of
real addition, he says

... our proofs hold even of those terms which compose something distributively, as
all species together compose the genus [G.vii, 244 = LLP, 141].

A closer look at the algebraic structure of Leibniz’s logical system will clarify the
relationships between its various interpretations and explain why this shift to a
disjunctive reading of ‘@’ is required.

Leibniz proves that the inclusion relation of his calculus of real addition is
reflexive (¢ < o), anti-symmetric (if « < 8 and B < «, then o = B), and
transitive (if « < B and B < v, then a < vy) [Propositions 7, 17, and 15, re-
spectively], and so < is what is now called a partial ordering. Furthermore, a
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relational structure of the form (%6, @, <) in which < is a partial ordering and ©®
is an idempotent, commutative and associative operation is what is now known
as a semilattice. Indeed, given Leibniz’s treatment of the relationship between
inclusion and real addition, a Leibnizian Relational Structure is a join semilat-
tice, with @ its join.12

In modern work on semilattices, Leibniz’s Equivalence—‘a =< 3 and only if
o & B = B’—is often used to define the inclusion relation in terms of the join,
but we can also define €@ in terms of inclusion. An element o of a partially
ordered set (€, <) is a least upper bound of a set B C € just in case « is an
upper bound of & (i.e., for each B in B, B < a) and for each upper bound +y of
RB, o < +y. It is an elementary theorem about semilattices that if < is a partial
ordering and each pair set of elements o and 3 in ‘6 has a least upper bound, then
(6, <) is a join semilattice with the least upper bound of « and 8 being their join.
We thus require that each set {«, B} have a least upper bound, and this turns out
to be the unique element o & B. Hence, a Leibnizian Relational Structure is a
partially-ordered set in which each pair of elements has a least upper bound,
_ namely their real sum.

In Leibniz’s extensional interpretation of his logic, inclusion is basically the
subset relation, so we can replace ‘<<’ by ‘C’ and rewrite Leibniz’s Equivalence
more perspicuously as ‘a C B if and only if « © B = B’. And (virtual) set theory
assures us that for o @© B = B to hold in the realm of sets, € must be the
disjunction-like operation of set-theoretic union, rather than the conjunction-like
operation of intersection. After all if &« C B, then & N B is «, rather than {;
however, a U B is B. Hence, Leibniz’s extensional interpretations can be mod-
eled by relational structures of the form (€, U, C), where € is a nonempty
family of sets, U is union, and C the subset relation. By way of example, on
such interpretations Leibniz’s theorem that « is included in the real sum of a and
B means that « C o U . It is readily verified that C is a partial ordering and that
the union of any pair of sets in ¢ forms their least upper bound. Thus, such
relational structures are join semilattices, i.e., Leibnizian Relational Structures,
and so they obey all the laws of Leibniz’s logical system. Hence, letting < stand
for the subset relation and €@ for union provides an interpretation of Leibniz’s
calculus of real addition in which € functions as a kind of disjunction, just as he
says [G.vii, 223 = LLP, 42; G.vii, 244 = LLP, 141].13

It is also possible to construct extensional interpretations in which €& repre-
sents the conjunction-like operation of set intersection, but this requires a com-
pensatory adjustment in the interpretation of <. Writing N for @, Leibniz’s
Equivalence now becomes o < B ifandonlyifa N 3 =B. Whena N B =B, o
will not in general be a subset of 3 (indeed, it can never be a proper subset of it);
however, B will be a subset of a. Hence, for a =< (3 to hold exactly when o N 3
= B does, < must be the superset relation, D, and so we are dealing with
relational structures of the form (6, N, D). The superset relation is the converse
of the subset relation, and since C is a partial ordering, D is a partial ordering too
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(this follows from what is known as the principle of duality for partially-ordered
sets; cf. e.g., Birkhoff [1967, Ch. 1]). Moreover, basic set theory assures us that
the intersection of any two sets in the family of sets ‘6 will be their least upper
bound, and so (€, N, D) is a Leibnizian Relational Structure and obeys the laws
of Leibniz’s logical calculus. Hence, although Leibniz doesn’t consider such
interpretations, letting < stand for the superset relation and  for set intersection
provides a second kind of extensional interpretation of his calculus of real addi-
tion.

Just as duality gives rise to two kinds of extensional interpretations of Leib-
niz’s system, it also yields two kinds of intensional interpretations. Indeed,
Leibniz sometimes comes close to noting this in his frequent discussions of the
relation of concept containment. Concept containment is the converse of concept
inclusion, so the concept o contains the concept B (which I will abbreviate o >
B) justin case B < o [G.vii, 237 = LLP, 132]. By the IE principle, the concept 8
is included in the concept o only if the extension of « is a subset of the extension
of B. Hence, if o contains 3, then anything falling under o will also fall under 3,
and so > is a sort of entailment relation among concepts. !4

When we treat concept containment (=) rather than inclusion (<) as the
ordering relation on concepts, Leibniz’s Equivalence takes the form o > f just in
case o @ B = B. But since we are now working with the converse of the
inclusion relation, €0 can no longer be the conjunctive operation of real addition;
after all, if o contains 3, the conjunction of o and  will be «, rather than B.
Given the familiar duality between conjunction and disjunction, we might expect
@ to be a disjunctive operation on concepts, so that the extension of o D B is
now the set of things that are either a or 8 (or both), and one way to see that this
is so is to take > seriously as a kind of entailment.

In classical propositional logic, the sentence P entails the sentence Q just in
case the disjunction P or Q is logically equivalent to the disjunct Q, i.e., just in
case P or Q and Q entail each other, and when we turn to an entailment relation
on concepts, Leibniz’s Equivalence embodies a similar idea. This is so, because
a sentence of the form A €@ B = B is equivalent to the conjunction of A & B > B
and B > A @ B [by Prop 8, G.vii, 238 = LLP, 133 and Prop 17, G.vii, 240 =
LLP, 136]. This means that the concept A entails the concept B just in case the
concepts A @D B and B entail one another. So on the present, disjunctive, inter-
pretation of €, Leibniz’s Equivalence says that the concept A entails the concept
B just in case B and the disjunctive concept being either A or B entail one
another. This is precisely how disjunction should behave, and hence the reading
of > as concept entailment yields a reading of @ as concept disjunction. Leibniz
pays little attention to disjunctions of concepts, and so it isn’t surprising that he
doesn’t discuss such intentional interpretations of his system. Nevertheless, on
the disjunctive construal of €, it remains an idempotent, commutative, and
associative operation, and the present interpretation of Leibniz’s logical calculus
is a completely legitimate one.!5
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5 Intensions, Extensions, and Leibnizian Expression

In this section I will briefly examine an important structural relationship between
intensions and extensions. To this end, let us define an intensional Leibnizian
Relational Structure as an ordered triple, £, = (€, ®, <), where as before € is a
set of concepts, @ is the operation of real addition of concepts, and < is the
relation of concept inclusion. And to highlight the structural similarity between
the realm of intensions and that of extensions, we will consider extensional
Leibnizian Relational Structures of the form £y = (¥, N, D), where & is a
nonempty family of sets, M is set intersection, and D is the superset relation.
(The relations < and D are definable in terms of € and N respectively, but since
they play a central role in Leibniz’s discussions of logic and truth, I will include
them explicitly.)

The notion of a structure preserving mapping is a central concept of modern
algebra, and in the present context it turns out that an assignment of extensions to
concepts is just such a mapping. To see what this means, note that an extension
assignment « is a function from a set of concepts € to an appropriately struc-
tured family of sets &, which serve as their extensions. Moreover, this function
preserves the join and the ordering of an intensional structure ¥, i.e., for all
concepts o and B in €

(l) m'/((l @ B) = (&1‘/(&) N PJ’/(B), and
(ll) ifa < B, then ar/(a) 2 ('J‘/(B).

Clause (i) is just the condition Ext that was seen to govern the extensions of
conjunctive concepts in §3.3, and clause (ii) is equivalent to the /E principle.
This means that an assignment of extensions to concepts is the sort of structure-
preserving mapping that is now known as a (join) homomorphism, and when
there is such a mapping from &, to &£, the two structures are said to be (join)
homomorphic.

When such a mapping exists, the defined operations and relations in &£, will
also be preserved under ext. Indeed, /E falls out of Exr precisely because < and
D are defined in parallel ways, which means that < is preserved by D. Similarly
the defined relation of containment (>) in &, is preserved by the subset relation
of &, and the operation of intensional disjunction of §4 is preserved by union.

The set of empty concepts in € (those whose extensions are the empty set, &)
is closed under the inclusion relation, i.e., if « <  and (o) = I, then «./(B)
= (J. Similarly, the set of universal concepts is closed under the converse of <.
Furthermore, these points carry over to extensions of Leibniz’s system where
empty and universal concepts are of more interest than they are in his calculus
of real addition. For example, if we add the negation operation discussed in §6,
we can show that the concept a @ Nov(a) has an empty extension [cf. C, 368 =
LLP, 58].
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Although Leibniz doesn’t have the explicit concept of a homomorphism, he
does have something very like the notion of a structure preserving mapping or
function. Not only did he introduce the terminology of functions into mathemat-
ics, but his important concept of expression (which figures most prominently in
his doctrine that each monad expresses the entire universe) involves a correspon-
dence between things that requires just the sort of preservation of relations found
in the structure-preserving mappings familiar in algebra and model theory today.
In a paper of 1678 that probably contains his most extended discussion of expres-
sion, he characterizes it this way:

That is said to express a thing in which there are relations which correspond to the
relations of the thing expressed [G.vii, 263 = PPL, 207; cf. G.ii, 112 = PW, 71, C,
15 = PW, 176-177; LH, 80-1; GM.y, 141].

This suggests that one thing expresses a second just in case there is a structural
similarity between the relations holding among the constituents of the first thing
and the relations holding among the constituents of the second, as there is when
one can be mapped to another by a structure-preserving mapping like a homo-
morphism (Swoyer, [forthcoming-b]). It is in this sense that relations like N and
D (among extensions) ‘correspond to relations’ like € and < (among concepts),
with the result that a semilattice of extensions expresses its associated semilattice
of concepts.

Expression is important because the similarity of structure between an object
and its expression allows us to reason about the latter in order to draw conclu-
sions about the former. As Leibniz puts it,

What is common to all these expressions is that we can pass from a consideration
of the relations in the expression to a knowledge of the corresponding properties
of the thing expressed [G.vii, 263 = L, 207; cf. G.vii, 264 = PPL, 208; C, 154~155
= LS, 14].

Leibniz doesn’t note the point explicitly, but in the presence of EI, distinct
concepts have distinct extensions. Hence, the structures of extensions directly
mirror the structures of intensions, and so we could always use the extensions of
concepts as surrogates in reasoning about the concepts themselves. Indeed, /E
alone (without its converse) would often allow such reasoning. And this would
justify the use of extensional logic while retaining the primacy of intensional
accounts of truth and entailment.

6 Intension and Extension in Leibniz’s Richer Logics

Leibniz’s logical calculus of real addition is limited in scope, but there is good
evidence that he regards it as a core system that can be (conservatively) extended
in various ways. Indeed, he suggests several extensions in his paper on real
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addition [G.vii, 245-46 = LLP, 14244, cf. C, 256], and a number of his other
logics include this calculus as a subsystem (cf. note 5). I will close by examining
the ways in which three such extensions would affect my discussion in previous
sections of this paper.

6.1 Additional Operations on Concepts In other works Leibniz often em-
ploys an operation for negating concepts, and I will consider it as a case study in
how additional logical operations on concepts would affect the relationships
between intensions and extensions.!¢ Leibniz’s axioms for negation vary from
paper to paper, but since my concern is with the general way in which additional
operations would affect our earlier discussion, I will only consider his most
common axiom, A = Ner-Nev-A [C, 379 = LLP, 69; C, 396—7 = LLP, 84-6; C,
235 = LLP, 90].

Let 6., be the standard set-theoretic operation of (relative) complementation
and let Nor be the operation of concept negation (which is governed by the
requirement that for each concept o, &« = Nos(Ner(at))). The negation of the
concept happy is the concept not-happy, and something falls under the latter just

- in case it does not fall under the former [C, 86 = PE, 11-12; cf. C, 356 = LLP,
47; C, 390 = LLP, 79; NE, 276]. Thus the homomorphism condition for ne-
gation

ext(Not(o)) = Comp (ext(ar)),

should govern the extensions of negative concepts.

The addition of the negation operation yields additional logical principles like
Nee(ar) < Ner(B) only if er(a) C ev(B).17 However, the presence of negative
concepts does not undo the fact that the inclusion relation can still be charac-
terized in terms of & by Leibniz’s Equivalence; it is still true that o is in 3 just in
case o and (perhaps) some other concepts completely make up 3. Moreover, an
individual is still in the extension of a conjunctive concept exactly when it is in
the extension of both of its conjuncts, and so we still have Ext, and with it the [E
principle. Finally, Leibniz’s predicate-in-subject account of truth still yields the
converse of this principle, namely EI, by the argument in §3.3. In short, new
operations like concept negation yield additional logical principles, but they do
not undermine any of the results discussed in previous sections.

6.2 Modality Leibniz is sometimes credited with analyzing necessary truth as
truth in all possible worlds. Although textual evidence for this attribution is
harder to come by than one might suppose, we can work modality into the picture
by thinking of each concept as having an extension at each possible world. To
this end, let «.* be a binary function that assigns extensions to concepts at
possible worlds in conformity with the natural model analogue of Ext, namely
that for each world w, ex*(a @ B, w) = a*(a, w) N er*(B, w) (we also require
that the extensions of a concept at distinct worlds be pairwise disjoint to accom-
modate Leibniz’s view that no individual exists in more than one world). This
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modal version of Ext can then be used to show that the /E principle holds within
each world, and a straightforward adaptation of the argument of §3.3 yields the
intra-world version of EI. But although this extension of Leibniz’s ideas now
seems a natural one, it should be stressed that possible worlds in fact play little
role in his own discussions of intension, truth, and modality.

6.3 Propositions as Concepts Perhaps a more interesting extension of Leib-
niz’s treatment of intension and extension is suggested by his claim that proposi-
tions can be treated as terms (i.e., as concepts [C, 243 = LLP, 39; G.iii, 224])
and that entailment relations among propositions amount to inclusion relations
among their associated terms:

If the proposition A is B is treated as a term, ... there arises an abstract term, namely
A’s being B, and if from the proposition A is B the proposition C is D follows, then
from this there is made a new proposition of this kind: A’s being B is, or contains, C’s
being D, i.e., The B-ness of A contains the D-ness of C ... [C, 389 = LLP, 78, italics
added; cf. C, 382 = LLP, 71].

I will use A as a term-forming operation that transforms the proposition P into the
term \[P], so that, for example, A[Adam is human] is the concept or term Adam’s
being human. Then Leibniz’s point amounts to the claim that P entails Q just in
case \[Q] is included in A[P]. The latter holds just in case A[P] contains A[Q],
and so P entails Q just in case A[P] contains A[Q].

Now P entails Q just in case A\[Q] < A[P], so the /E principle together with its
converse assure us that P entails Q just in case «#(A[P]) C e(A[Q]). Leibniz
does not say enough about propositions as concepts or terms for us to be certain
what (if anything) the extension of a propositional term would be. However, the
extension of a standard concept or term is just the set of things to which it
applies, and by a natural extrapolation of this idea, the extension of a proposi-
tional term would be the set of things, namely situations or worlds, to which it
applies. Hence, in the non-modal case the extension of a propositional term
would be the set containing the actual world (if its associated proposition is true)
or else the empty set (if its associated proposition is false). And in the modal case
the extension of a propositional term would be the set of worlds at which its
associated proposition is true.

It follows from EI that coextensional concepts are identical, so if «/(A[P]) =
«#(N[Q]), then N\[P] = A[Q]. In the non-modal case, this has a number of
unhappy consequences, e.g., that all propositions with the same truth value
entail each other. Things are somewhat better in the modal case, where we are
only forced to identify propositional terms whose associated propositions have
the same truth value at all possible worlds, but this still collapses distinctions
among propositional terms whose associated propositions are logically equiva-
lent.

In the absence of its converse, however, the IE principle has more promising
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consequences. In particular, it tells us that if P entails Q, then ~./(\[P]) C
«#(N[@]). In other words, P entails Q only if the set of situations in which P is
true—its “truth set”—is included in the set of situations in which Q is true. In the
non-modal case, the two admissible extensions of a propositional term are the set
containing the actual situation and the empty set, and these can be modeled (or,
in Leibniz’s terminology, expressed) by the two-element Boolean algebra whose
domain consists of the truth values true and false that we now use in standard
propositional logic. And in the modal case, the extension of a propositional term
is the set of worlds at which its associated proposition is true, so that we can
represent or express a proposition by the set of worlds at which it is true, as is
often done in modal logic today. Of course Leibniz does not actually develop his
ideas in this way, but when we combine his views about intension and extension
with his treatment of propositions as terms, we are well on the way to such an
account. !8

Notes

'T will use the abbreviations in the left margin of the bibliography in citing primary works.

2Thus the sense in which Leibniz’s logics are intensional is rather different from that in which
recent, Kripke-style intensional logics are. The latter give completely extensional truth (or satisfac-
tion) conditions for subject-predicate formulae (and, indeed, for all formulae free of intensional
operators), and intensionality only enters the picture because the semantic value (at a given possible
world) of a formula containing such operators is determined by the semantic values of related
formulae at other possible worlds.

3x is a subset of y (x C y) just in case x and y are sets and all of the members of x are also members
of y; x is a proper subset of y just in case it is a subset of, but not identical with, y. In note 9, we will
see how to express Leibniz’s claims about extensions in Quine’s theory of virtual classes [1963,
pp. 15-21], in which talk of sets is a convenient but dispensable shorthand.

4Leibniz sometimes holds that a subject-predicate sentence is false if its subject lacks a denotation
[C, 393 = LLP, 82]. One way to work this into his extensional account of truth is to hold that 'S is P
is true just in case S has a non-empty extension (or, if S is a proper name, just in case it has a
denotation) that is included in the extension of P. But Leibniz’s claim that sentences with non-
denoting subject terms are false doesn’t accord well with his intensional account of truth, since
concepts with empty extensions often include other concepts [C, 53 = LLP, 20]. For example, the
concept of a parallelogram would be included in the concept of a rectangle even if there were no
rectangles, and so ‘rectangles are parallelograms’ would still be true. But in general Leibniz is not
very concerned with non-denoting terms, and since he doesn’t provide for them in his discussions on
intension and extension, I won’t pursue the matter here.

5As with many of his other works on logic, Leibniz never published his paper on real addition.
Although his treatment of real addition in his present paper is more detailed than in his other works,
both the operation and his axioms for it occur in many other writings. For example, the commutivity
axiom occurs at G.vii, 222 = LLP, 40; C, 235 = LLP, 90; C, 412 = LLP, 93; and C, 421, and the
idempotence axiom at G.vii, 222 = LLP, 40; C, 260; C, 262; C, 366 = LLP, 56; C, 396 = LLP, 85;
C, 235 = LLP, 90; C, 412 = LLP, 93; C, 421; and G.vii, 230 = LLP, 124. One or both of these
axioms, along with treatments of identity and inclusion similar to those in his present paper, occur in
several other works where Leibniz discusses the relationships between intension and extension,
including G.vii, 222 = LLP, 40; C, 356ff = LLP, 47ff, and NE, 292. A fuller discussion of Leibniz’s
calculus of real addition and his applications of it may be found in Swoyer [forthcoming-a]. In §4.1
of that paper I note some evidence that Leibniz viewed real addition as a multigrade operation, i.e.,
one capable of joining any number of concepts in a single stroke, but this possibility won’t affect the
basic issues discussed here.

SLeibniz sometimes says that the intension of the genus is included in the intension of the species,
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whereas the extension of the species included in the extension of the genus [G.vii, 244 = LLP, 141;
C, 82 = LLP, 29-30]. This is reminiscent of Aristotle’s remark that when we consider the parts of a
definition, the genus is included in the species, but that we can also regard the species as included in
the genus (Metaphysics, 1023b 22].

7This qualification was proposed by J. N. Keynes in the late nineteenth century [1884, p. 37].
However, we will see that it is already present in Leibniz’s account, since both his intensional and
extensional inclusion relations subsume improper inclusion, i.e., « is included in o (Proposition 7
[G.vii, 238 = LLP, 133]).

8The labels ‘intension’ and ‘extension’ are often credited to Sir William Hamilton, but Leibniz
uses their French counterparts over a century earlier to mark essentially the same distinction that later
writers did [NE, 486]. Intension and extension are closely related to Mill’s connotation and denota-
tion, DeMorgan’s force and scope, Peirce’s depth and breadth (a pair of terms that really was first
suggested by Hamilton), Kant’s content (Inhalt) and extension (Umfang), and Frege’s concept ((Be-
griff ), whose subparts are Merkmale) and extension (Werthverlauf ). Although the principle of inverse
variation was espoused by such luminaries as Kant [1974, p. 101], Mill [1843, Bk 1, ch 7, §5], and
Peirce, [1984, pp. 76ff], interest in it waned in the twentieth century as the traditional notion of
intension faded out of logic.

9We can avoid sets by rewriting /E as the claim that if the concept a is included in the concept 8,
then all Bs are as and rewriting Ext as the claim that something is in the extension of the conjunctive
concept o @ B just in case it is in the extension of « and also in the extension of B. All other uses of
set-theoretic notions in this paper can be eliminated in similar fashion, and we can avoid the use of
relational structures by more intricate paraphrases. For example, in §2 we interpreted Leibniz’s
calculus of real addition over a Leibnizian Relational Structure, (6, &, <), but we could instead say
that on Leibniz’s intentional interpretations, names denote concepts, ‘@’ stands for the operation of
real addition, and ‘<’ stands for the relation of concept inclusion. However, the use of relational
structures will greatly facilitate discussion later, when we consider the structural relationships be-
tween intensions and extensions.

10In the context of Ext (the straightforward characterization of the extension of conjunctive con-
cepts) it is routine to prove that E/ is true if and only if ../ is one-one, though only the entailment
from left to right is relevant here. To see why it holds, assume that E7 is true, i.e., assume that for all
concepts y and 8, «/(y) C «v(3) only if 8 < . Now suppose that for some arbitrary pair of
concepts, a and B, ~v(a) = «/(B). To prove the extension assignment is one-one, we must show that
a = B. By hypothesis, ~./(a) = «/(B), and so by (virtual) set theory /(o) C ext(). We then invoke
EI to conclude that B < a. Similarly, c/(a) = c/(B) entails «/(B) C «/(a), and a second
application of EI yields a < B. But B < a and o < 3 together entail o = B (as Leibniz proves in Prop
17 [G.vii, 240 = LLP, 136]). Hence, if EI holds, then . is one-one and concepts that in fact have
the same extension are identical. This foreshadows Frege’s view two centuries later that concepts with
the same extension stand in that relation between concepts which corresponds to the relation of
identity among objects [1984, p. 200].

'"Most commentators take Leibniz’s relation of coincidence (%) to be identity, but in two impor-
tant papers Castafieda [1976], [1990] argues that it is a weaker congruence relation on concepts. I
think Ishiguro [1990, Ch. 2] is right that Castafieda’s reading is difficult to reconcile with Leibniz’s
insistence on the centrality of identities in logic and his frequent characterizations of coincidence as
identity or sameness. But perhaps the fact that any pair of coextensive concepts stand in the %-relation
provides some support for Castafieda’s reading, since it may seem more plausible to hold that
coextensive concepts are always congruent than to hold that they are always identical.

12We could express this without relational structures by saying simply that Leibniz’s concepts
have the structure of a join semilattice. Like most of his logics, Leibniz’s calculus of real addition has
only one binary operation, and so a Leibnizian Relational Structure may lack a meet and thus not be
a full-fledged lattice (much less a Boolean algebra). In Leibniz’s primary interpretations of his
calculus, its binary operation works like a conjunction. In familiar cases where lattices are now of
logical relevance (e.g., algebras of sets, propositional Boolean algebras), conjunction-like operations
(e.g., set intersection, truth-functional conjunction) yield meets rather than joins. This is so because
conjunction-like entities resulting from the application of such operations are “included” in the items
to which the operation is applied to obtain them (e.g., y N & C -y). However, intensional approaches
invert this picture, so that conjuncts are included in conjunctions (a < o © B).

13Just as the intersection of the sets a and B (a N B) is the set whose members are precisely the
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things that are in a and in B, the union of a and B (a U B) is the set whose members are precisely the
things that are in « or in 8, which is why unions behave much like disjunctions. To avoid excessive
use of quotation marks, I will henceforth follow the convention of autonymous use, letting each
simple expression stand for itself and each juxtaposition of expressions stand for their concatenation.
14Such a relation among concepts or properties has been of interest to a number of philosophers,
arguably beginning with Plato. It involves what Vlastos [1974] calls Pauline Predication, and he
argues that when Plato says that fire is hot, he means that the Forms Fire and Heat are necessarily
related in such a way that anything exemplifying the former must also exemplify the latter.

!5In his pioneering study of Leibniz’s logics, C. I. Lewis [1918, p. 17] notes the possibility of
both sorts of extensional interpretations discussed in this section, and Kneale & Kneale [1962,
pp. 343—44] note the two sorts of intensional interpretations. However, none of these writers discuss
these interpretations in any detail or examine the algebraic relationships among them.

16 eibniz also occasionally mentions disjunction and a type of conjunction in which order is
relevant [C, 532 = LS, 75; G.vii, 246 = LLP, 143-44; C, 556-57; cf. G.vii, 206 = M, 20; C, 256].

17The relative complement (on a domain %) of the set a is the set of things in 9 that are not in a.
To see why Nor(a) < Ne(B) only if ex(at) C «e(B), suppose that Ns(a) < N#(B). By IE this yields,
et(Noe(B)) T ex(No(a)). By the homomorphism condition for negation, this is equivalent to
Bompe (ext(B)) C Bomp (er(a)), which by basic set theory entails exv(a) C ().

18] am grateful to Neera Badhwar, Monte Cooke, Reinaldo Elugardo, James Hawthorne, Kihyeon
Kim and the referees for Nois for helpful comments on an earlier draft of this paper.

References

Artistotle. (1953) Metaphysics. Trans. W. D. Ross. Oxford: Oxford University Press.

PRL: Arnauld, Antoine. (1964) The Art of Thinking. Trans. by James Dickoff & Patricia James. New
York: Bobbs-Merrill. First published as La Logique ou I'Art de Penser, 1662.

Birkhoff, Garrett. (1967) Lattice Theory. Providence, Rhode Island: American Mathematical Society.

Castaneda, Hector-Neri. (1976) “Leibniz’s Syllogistico-Propositional Calculus,” Notre Dame Jour-

nal of Formal Logic, 17: 481-500.

. (1990) “Leibniz’s Complete Propositional Logic,” Topoi, 9: 15-28.

Frege, Gottlob. (1968) The Foundations of Arithmetic. Trans. J. L. Austin. Evanston: Northwestern

University Press. First published as Die Grundlagen der Arithmetik, 1884.

. (1984) “Review of E. G. Husserl, Philosophie der Arithmetik 1,” in Frege’s Collected

Papers on Mathematics, Logic, and Philosophy. Ed. Brian McGuinness. Oxford: Basil

Blackwell. First published in Zeitschrift fiir Philosophie und philosophische Kritik, 1894.

Ishiguro, Hide. (1990) Leibniz’s Philosophy of Logic and Language. Second edition, Cambridge:
Cambridge University Press.

Kant, Immanuel. (1974) Logic. Trans. R. S. Hartman & W. Schwarz. New York: Bobbs-Merrill.
Originally published in an edition by Gottlob Benjamin Jasche in 1800.

Keynes, John Neville. (1894) Studies and Exercises in Formal Logic. London: Macmillan & Co.

Kneale, William & Kneale, Martha. (1962) The Development of Logic. Oxford: Clarendon Press.

LH: Leibniz, Gottfried Wilhelm. (1966) Die Leibniz-Handschriften der Kéniglichen dffentlichen
Bibliothek zu Hannover. Catalogued by E. Bodemann; reprinted Olms: Hildesheim.

LA: . (1967) The Leibniz-Arnauld Correspondence. Trans. H. T. Mason. Manchester: Man-
chester University Press.

LLP: . (1966) Leibniz Logical Papers. Trans. & ed. G. H. R. Parkinson. Oxford: Clarendon
Press.

GM: . (1849-1855) Leibniz: Mathematische Schriften. Ed. C. 1. Gerhard, seven volumes.
Berlin.

PPL: . (1970) Leibniz: Philosophical Papers and Letters. Ed. L. E. Loemker. Dordrecht:
D. Reidel, 2nd/ed.

PW: . (1973) Leibniz: Philosophical Writings. Ed. G. H. R. Parkinson. London: Dent.

LS: . (1951) Leibniz Selections. Ed. P. P. Weiner. New York: Charles Scribner’s Sons.



114 NOUS

M: . (1965) Monadology and Other Philosophical Essays. Trans. Paul Schrecker & Anne
Martin Schrecker. New York: Bobbs-Merrill.

NE: . (1981) New Essays on Human Understanding. Trans. & ed. Peter Remnant & Jon-
athan Bennett. Cambridge: Cambridge University Press. This edition follows the pagination
of the Akademie-Verlag edition (1962; VI.6, pp. 43-527).

C: . (1903) Opuscules et fragments inédits de Leibniz. Ed. L. Couterat. Paris.

PE: . (1989) Philosophical Essays. Trans. & ed. Roger Ariew & Daniel Garbor. Indi-
anapolis: Hackett.

G: . (1875-1890) Die philosophischen Schriften von Gottfried Wilhelm Leibniz. Ed. C. 1.

Gerhardt, seven volumes. Berlin.

Lewis, C. 1. (1918) A Survey of Symbolic Logic. Berkeley: University of California Press.

Mill, John Stuart. (1843) A System of Logic. London: Parker.

Peirce, Charles S. (1984) “Upon Logical Comprehension and Extension,” in Writings of Charles S.
Peirce: Vol II. Ed. E. C. Moore. Bloomington: Indiana University Press; 70—86. Written in
1867.

Quine, W. V. O. (1963) Set Theory and its Logic. Cambridge: Harvard University Press.

Rescher, Nicholas. (1954) “Leibniz’s Interpretation of His Logical Calculi,” The Journal of Symbolic
Logic, 19: 1-13.

Swoyer, Chris. (forthcoming-a) “Leibniz’s Calculus of Real Addition,” to appear in Studia Leibni-

tiana.

. (forthcoming-b) “Leibnizian Expression,” to appear in Journal of the History of Phi-

losophy.

Vlastos, Gregory. (1974) “A Note on ‘Pauline Predications’ in Plato,” Phronesis, 19: 95-101.




