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PREFACE

Kurt Gödel’s astonishing discovery and proof, published in 1931, that even in elementary parts of
arithmetic there exist propositions which cannot be proved or disproved within the system, is one
of the most important contributions to logic since Aristotle. Any formal logical system which
disposes of sufficient means to compass the addition and multiplication of positive integers and
zero is subject to this limitation, so that one must consider this kind of incompleteness an inherent
characteristic of formal mathematics as a whole, which was before this customarily considered the
unequivocal intellectual discipline par excellence.

No English translation of Gödel’s paper, which occupied twenty-five pages of the
Monatshefte für Mathematik und Physik, has been generally available, and even the original
German text is not everywhere easily accessible. The argument, which used a notation adapted
from that of Whitehead and Russell’s Principia Mathematica, is a closely reasoned one and the
present translation—besides being a long overdue act of piety—should make it more easily
intelligible and much more widely read. In the former respect the reader will be greatly aided by
the Introduction contributed by the Knightbridge Professor of Moral Philosophy in the University
of Cambridge; for this is an excellent work of scholarship in its own right, not only pointing out
the significance of Gödel’s work, but illuminating it by a paraphrase of the major part of the
whole great argument.

I proposed publishing a translation after a discussion meeting on “Gödel’s Theorem and its
bearing on the philosophy of science”, held in 1959 by the Edinburgh Philosophy

vii
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viii PREFACE

of Science Group. I wish to thank this society for providing the stimulus, the publishers for their
ready co-operation on the proposal, and Professor Braithwaite not only for the Introduction but
also for meticulous assistance in translation and proof-reading of a typographically intricate text.
It may be noted here that the pagination of the original article is shown in the margins of the
translation, while the footnotes retain their original numbers.

B. MELTZER

University of Edinburgh

January, 1962
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INTRODUCTION

by

R. B. BRAITHWAITE

Every system of arithmetic contains arithmetical propositions, by which is meant
propositions concerned solely with relations between whole numbers, which can neither be
proved nor be disproved within the system. This epoch-making discovery by Kurt Gödel a
young Austrian mathematician, was announced by him to the Vienna Academy of Sciences in
1930 and was published, with a detailed proof, in a paper in the Monatshefte für Mathematik
und Physik Volume 38 pp. 173-198 (Leipzig: 1931). This paper, entitled “Über formal
unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I” (“On formally
undecidable propositions of Principia Mathematica and related systems I”), is translated in this
book. Gödel intended to write a second part to the paper but this has never been published.

Gödel’s Theorem, as a simple corollary of Proposition VI (p. 57) is frequently called,
proves that there are arithmetical propositions which are undecidable (i.e. neither provable nor
disprovable) within their arithmetical system, and the proof proceeds by actually specifying
such a proposition, namely the proposition g expressed by the formula to which “17 Gen r”
refers (p. 58). g is an arithmetical proposition; but the proposition that g is undecidable within
the system is not an arithmetical proposition, since it is concerned with provability within an
arithmetical system, and this is a meta-arithmetical and not an arithmetical notion. Gödel’s
Theorem is thus a result which belongs not to mathematics

1
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2  INTRODUCTION

but to metamathematics, the name given by Hilbert to the study of rigorous proof in
mathematics and symbolic logic.

METAMATHEMATICS. Gödel’s paper presupposes some knowledge of the state of
metamathematics in 1930, which therefore I shall briefly explain. Following on the work of
Frege and Peano, Whitehead and Russell’s Principia Mathematica (1910-13) had exhibited
the fundamental parts of mathematics, including arithmetic, as a deductive system starting
from a limited number of axioms, in which each theorem is shown to follow logically from the
axioms and theorems which precede it according to a limited number of rules of inference.
And other mathematicians had constructed other deductive systems which included arithmetic
(see p. 37, n. 3). In order to show that in a deductive system every theorem follows from the
axioms according to the rules of inference it is necessary to consider the formulae which are
used to express the axioms and theorems of the system, and to represent the rules of inference
by rules Gödel calls them “mechanical” rules, p. 37) according to which from one or more
formulae another formula may be obtained by a manipulation of symbols. Such a
representation of a deductive system will consist of a sequence of formulae (a calculus) in
which the initial formulae express the axioms of the deductive system and each of the other
formulae, which express the theorems, are obtained from the initial formulae by a chain of
symbolic manipulations. The chain of symbolic manipulations in the calculus corresponds to
and represents the chain of deductions in the deductive system.

But this correspondence between calculus and deductive system may be viewed in
reverse, and by looking at it the other way round Hilbert originated metamathematics. Here a
calculus is constructed, independently of any interpretation
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of it, as a sequence of formulae which starts with a few initial formulae and in which every
other formula is obtained from preceding formulae by symbolic manipulations. The calculus
can then be interpreted as representing a deductive system if the initial formulae can be
interpreted as expressing the axioms of the system and if the rules of symbolic manipulation
can be interpreted as representing the logical rules of inference of the system. If this can be
done, a proof that a formula (other than one of the initial formulae) occurs in the sequence of
formulae of the calculus yields a proof that the proposition which is the interpretation of this
formula is a theorem of the deductive system, i.e. can be deduced from the axioms of the
system by the system’s rules of inference. Metamathematicians in the 1920’s established many
important results about deductive systems by converting proofs of what formulae can be
obtained by symbolic manipulations within a calculus into proofs of what theorems can be
proved within a deductive system which could be represented by the calculus. Frequently
consideration of symbolic manipulations provided a “decision procedure” by which whole
classes of theorems could actually be proved. Thus Presburger in 1930 published a decision
procedure applicable to every proposition of a mutilated system of arithmetic which uses the
operation of addition but not that of multiplication; he proved that every one of its
propositions is decidable, i.e. either provable or disprovable, within this system.

Gödel’s paper established the opposite of this for an arithmetical system which uses
multiplication as well as addition—”the theory of ordinary whole numbers” (p. 38). And this is
the piece of mathematics which is oldest in the history of civilization and which is of such
practical importance that we make all our children learn a great deal of it at an early age.
Gödel was the first to prove any unprovability
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theorem for arithmetic, and his way of proof was subtler and deeper than the
metamathematical methods previously employed. Either of these facts would have ranked this
paper high in the development of metamathematics. But it was the fact that it was a
proposition of whole-number arithmetic which he showed to be undecidable that created such
a scandal.

GÖDEL’S ‘FORMAL SYSTEM’ P. In order rigorously to prove the undecidability of
some arithmetical propositions it is necessary to be precise about the exact deductive system
of arithmetic which is being considered. As is indicated in the title of his paper, Gödel takes
for his arithmetical deductive system that part of the system of Principia Mathematica required
to establish the theorems of whole-number arithmetic. Since his proof is metamathematical he
is concerned with a calculus representing his arithmetical system: what he proves in
Proposition VI (p. 57) is a result about the calculus and not about what the calculus
represents, for what it directly establishes is that neither of two particular formulae—the first
referred to by “17 Gen r”, the second by “Neg (17 Gen r)” (p. 59)—can be obtained from the
initial formulae of the calculus by the rules of symbolic manipulation of the calculus. If the
calculus is interpreted (as it can be interpreted) so that it represents the arithmetical part of the
Principia Mathematica deductive system, with the second formula expressing the
contradictory of the arithmetical proposition expressed by the first formula, then the theorem
about the deductive system which corresponds to the calculus-theorem states that the
proposition g to which “17 Gen r” refers is such that neither it nor its contradictory is
provable within the system. Hence within the system g is neither provable nor disprovable. An
unprovability theorem for the arithmetical deductive
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system which Gödel is considering is a simple corollary of Proposition VI about his calculus.
Thus the paper is concerned with what formulae can (or, rather, cannot) be obtained within a
particular calculus, although of course the calculus would have little general interest if it could
not be interpreted as representing a deductive system of whole-number arithmetic.

Gödel’s attention solely to his calculus will explain some features of his terminology
which may puzzle philosophical logicians. He transfers many epithets which are applied more
naturally to deductive systems than to calculi, using them to refer to features of his formal
system (his term for what I have called his calculus). He employs formula in the way in which
I have used it so that a formula is a “finite series of basic signs”, but he goes on to say that “it
is easy to state precisely just which series of basic signs are meaningful formulae and which
are not” (p. 38). “Meaningful” is a misnomer, since it is the formal system that is being
considered and not an interpretation of it. When he specifies on p. 43 precisely which series of
basic signs are to be well-formed formulae (to use the modern term)—Gödel calls them
formulae without a qualifying adjective—he makes no reference to meaning. A formula for
him is a series of signs which either is an elementary formula (a concatenation of signs of
specified sorts) or is built up out of elementary formulae together with some or all of three
specified signs by the use, or repeated use, of three specified rules of construction. When
Gödel speaks, in connexion with a formal system, of ‘rules of inference’, he is referring to the
rules according to which one formula can be obtained from other formulae within the formal
system. In his system he uses two ‘rules of inference’, which he specifies by giving one
condition for a formula being an ‘immediate consequence’ of two formulae and one condition
for its being an
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‘immediate consequence’ of one formula (p. 45). A ‘proof-schema’, for him, is a series of
formulae in which each formula (except the initial formulae, which he calls ‘axioms’) is an
‘immediate consequence’ of one or of two of the formulae preceding it in the series. A
‘proof-schema’ is a ‘proof’ of the last formula in it; and a formula is ‘provable’ if there is a
‘proof’ of it. Gödel gives his precise definition of the class of ‘provable’ formulae in language
familiar to mathematicians as “the smallest class of formulae which contains the axioms and is
closed with respect to the relation ‘immediate consequence of’ ” (p. 45), i.e. the smallest class
which contains the axioms and which contains the ‘immediate consequence’ of every formula,
and of every pair of formulae, contained in the class. For the benefit of philosophical logicians
[ shall continue the practice followed in this paragraph of putting single quotation marks
round terms which without quotation marks refer to features of deductive systems, when I am
using them, in Gödel’s manner, with reference to a formal system, i.e. to a calculus.

Gödel gives an “exact description” of his formal system P on pp. 42ff. by specifying
(1) its basic signs, (2) its formulae (i.e. its well-formed formulae), (3) its ‘axioms’ (initial
formulae), (4) the relation of being an ‘immediate consequence’ of. He says that P is
“essentially the system obtained by superimposing on the Peano axioms [for whole-number
arithmetic] the logic of PM [Principia Mathematica]” (p. 41). Since the Peano axioms are
‘provable’ (and indeed ‘proved’) in the calculus of PM, Gödel’s system P is virtually that part
of the calculus of PM required to lead up to whole-number arithmetic: as Gödel says, “the
addition of the Peano axioms, like all the other changes made in the system PM, serves only to
simplify the proof and can in principle be dispensed with” (p. 41, n. 16). GÖDEL states his
rules of symbolic construction and manipulation more precisely
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than do Whitehead and Russell. His only noteworthy divergence from them is that, instead of
employing a limited number of ‘axioms’, he follows the example of von Neumann in using,
besides three of Peano’s ‘axioms’, eight ‘axiom-schemata’ each covering an unlimited number
of cases (p. 44): by doing this he is able to manage with only two ‘rules of inference’ (see p.
45, n. 24). Gödel specifies the formal system P in the way he does in order to simplify his
proof of the undecidability of some of the formulae of P. Since, as he explains, this
undecidability is not due to “the special nature of the systems set up, but holds for a very
extensive class of formal systems” (p. 38), the exact form he has chosen for P is of no intrinsic
importance. What is essential is that P should be an appropriate subject for the exhibition of a
method of metamathematical proof which Gödel invented, a method so powerful that it can
establish an ‘unprovability’ result for every formal system capable of representing arithmetic.

THE METHOD OF “ARITHMETIZATION”. Gödel’s novel metamathematical
method is that of attaching numbers to the signs, to the series of signs (formulae) and to the
series of series of signs (‘proof-schemata’) which occur in his formal system. Just as Descartes
invented co-ordinate geometry by assigning number-pairs to the points of plane Euclidean
geometry, so Gödel invented what might be called co-ordinate metamathematics by assigning
numbers to the basic signs, series of basic signs, series of series of basic signs (all of which I
shall for convenience lump together under the generic term string) which form an essential
part of the subject-matter of metamathematics. Descartes proved geometrical theorems about
points by proving algebraic theorems about numbers; Gödel established metamathematical
results about the strings of his formal system
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by considering numbers co-ordinated with the strings. The difference between the co-ordinate
systems of co-ordinate geometry and of co-ordinate metamathematics is that the former uses
number-pairs for two-dimensional geometry, number-triads for three-dimensional geometry,
and so on, and the numbers used are not confined to integers. whereas co-ordinate
metamathematics is one-dimensional, using only single numbers, and these (in Gödel’s paper)
are restricted to being “natural numbers”, i.e. 0, 1, 2, 3, etc.

Gödel explains what is now called his “arithmetization” method on p. 45. What he
does is to provide a co-ordinating rule according to which a different number (which I shall
call a Gödel number) is assigned to each string in his formal system. The rule also works in
reverse: of every number 0, 1, 2, 3, etc. the rule determines whether the number is the Gödel
number of a basic sign, or of a series of basic signs, or of a series of series of basic signs, or is
not a Gödel number at all (i.e. there is no string of which it is the Gödel number); and if the
number is a Gödel number, the rule specifies uniquely which string it is of which it is the
Gödel number. In his account Gödel speaks of his rule as establishing a “one-to-one
correspondence”. Not all numbers are Gödel numbers: the one-to-one correspondence
established by the rule is between the members of a specific sub-class of the class of natural
numbers, namely those which are Gödel numbers, and the members of the class of strings,
which class is the union (logical sum) of three exclusive classes—the class of basic signs, the
class of series of these signs, the class of series of series of these signs. The Gödel number of a
series of series of signs is not explicitly mentioned in Gödel account of his method of
arithmetization, but he uses the notion in the definitions (from 22 onwards, pp. 52ff.) which
form an essential preliminary to the proof of his Theorem. This Gödel number is the
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number constructed out of the Gödel numbers of the elements of the series of series of signs in
exactly the same way as the Gödel number of a series of signs is constructed out of the Gödel
numbers of the signs which are the elements of this series of signs (p. 45). Thus the Gödel
number of a series of k elements, whether these elements are signs or are series of signs, is
constructed out of the elements’ Gödel numbers n1, n2, . . . nk as the number 2n1 . 3n2 . . . pk

nk,
a product whose prime factors are the first k prime numbers (1 not being counted as a prime
number) with the 1st, 2nd, . . . kth prime number occurring respectively n1, n2, . . . nk times in the
product. The one-to-one correspondence between Gödel numbers defined in this way and the
strings of which they are Gödel numbers is a consequence of the “fundamental theorem of
arithmetic”, namely that every natural number greater than 1 which is not itself a prime has a
unique resolution into prime factors.

Gödel’s rule of arithmetization ensures that to every class of strings there corresponds
a unique class of Gödel numbers, and vice versa. And that to any relation R between strings
there corresponds a unique relation R' between Gödel numbers, and vice versâ : i.e. the n-adic
relation R' holds between n Gödel numbers if and only if the n-adic relation R holds between
the n strings. For example, the metamathematical statement that the series s of formulae is a
‘proof’ of the formula f is true if and only if a certain arithmetical relation holds between the
Gödel numbers of s and of f which corresponds to the relation: being a ‘proof’ of. Gödel uses
the same language to refer to the arithmetical properties of, and relation between, Gödel
numbers as he uses to refer to the corresponding properties of, and relations between, strings
(see p. 39, n. 9), printing the terms in italics when they refer to arithmetical concepts
applicable to Gödel numbers (p. 46). In a sequence of
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definitions 6-46 (pp. 50-55) he defines, step by step, a sequence of arithmetical concepts
which correspond, according to his rule of arithmetization, to the metamathematical concepts
expressed by the same words. [Definitions 1-5 define the ancillary arithmetical concepts (being
the nth prime number, etc.) used in his method of arithmetization.] As examples, definition 8
(p. 50) defines the arithmetical operation * upon two numbers x and y in such a way that the
number x * y which is the result of performing this operation is the Gödel number of the string
obtained by taking the string whose Gödel number is x and placing the string whose Gödel
number is y immediately after it. And definition 45 (p. 55) defines the arithmetical relation B
between x and y so that the proposition x B y is the same as the conjunction of the proposition
that x is the Gödel number of a series of series of signs forming a ‘proof-schema’ with the
proposition that the series of signs whose Gödel number is y is the last series of signs in this
‘proof-schema’ i.e. this ‘proof-schema’ is a ‘proof’ of the last formula in it. For the sake of
clarity I shall not follow Gödel’s abbreviating practice of using italicized words and phrases to
refer to arithmetical concepts applicable to Gödel numbers, and shall use italics only in the
ordinary way for emphasis. For example, while Gödel paraphrases the x B y  of definition 45
(p. 55) as: x is a proof of the formula y, I paraphrase it as: x is the Gödel number of a ‘proof’
of the formula whose Gödel number is y.

The interpreted symbolism used in these definitions, as in all Gödel’s
metamathematical statements (see p. 47, n. 29), is that of Hilbert and Ackermann’s
Grundzuge der theoretischen Logik (1928: English translation, 1950). The only deviations

from the symbolism of Principia Mathematica are: “ p ” to stand for Not p, “p & q” for Both

p and q, “p → q” for Not both p and Not q (the “p ⊃ q” of PM),
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“p ~ q” for Either both p and q or both Not p and Not q (the “p ≡ q” of PM), and “(Ex)” as
the existential quantifier in place of the “(∃x)” of PM. Gödel uses “≡” as an abbreviation for
“means the same as” in his definitions.

Except for these purely logical concepts, all the concepts involved in Gödel’s
definitions 1-46 (pp. 49-55), and also those in (5), (6), (6.1), (8.1) of pp. 57f., are arithmetical
concepts (properties, relations, operations) which apply to natural numbers, i.e. the
substitution values for the variables “x”, “y”, “z”, “n”, etc. occurring in the definitions are “0”,
“1”, “2”, . . . And the logical concepts are restricted so that they apply to only a finite number
of entities. Whenever a universal or existential quantifier occurs in any of the definitions 1-45,
a clause is inserted within the quantification which ensures that the quantification is only over
a finite number of values. For example, the first definition (p. 49) defines “x is divisible by y”
as There is a z less than or equal to x which is such that x = y.z, the phrase which I have
italicized being inserted so as to restrict the quantification to numbers not greater than x. This
makes the definiens equivalent to: x = y.0 or x = y.1 or. . . or x = y.x, a truth-function of a
finite number (x + 1) of equalities. This restriction upon the quantifiers (except in definition
46) secures that all the arithmetical concepts employed (except Bew) are recursive in a sense
of this word which Gödel defines and discusses in an excursus from his main argument (pp.
46-49).

RECURSIVENESS. The notion of recursiveness has played a central part in
metamathematics since Gödel’s work on it, but little more will be said about it here than is
necessary for an understanding of Gödel’s proof of his Theorem.

The method of recursive definition is an extension of the method of definition by
“mathematical induction” by which
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the natural numbers are, step by step, defined. Starting with 0, 1 is defined as the immediate
successor of 0, 2 as the immediate successor of 1, and so on. A recursive definition (a
“primitive recursive definition”, as it is now called) is the specification of each number in a
sequence of numbers by means of a specification of the first number and of a rule which
specifies the (k + 1)-th number in terms of the k-th number and of k itself. [This is a
paraphrase of Gödel’s definition of a recursively defined arithmetical function, where this
function is of only one numerical variable: see (2) of p. 46.] An arithmetical function is
recursive if it is the last term in a finite sequence of functions in which each function is
recursively defined by a rule involving two functions preceding it in the sequence (or is the
successor function or a constant or obtained by substitution from a preceding function); and
the recursiveness of other arithmetical concepts is defined by means of the notion of recursive
function. The essential feature of a recursive concept—a dyadic relation R. for example—is
that whether or not R holds between m and n, i.e. whether R (m, n) is true or false, can be
decided by a step-by-step procedure working upwards from R (0, 0) with the use of a limited
number of recursive definitions.

The importance of recursiveness for metamathematics in general lies in the fact that
recursive definition enables every number in a recursively defined infinite sequence to be
constructed according to a rule, so that a remark about the infinite sequence can be construed
as a remark about the rule of construction and not as a remark about a given infinite totality.
For this reason the use of only such mathematical concepts as are recursive is favoured by
mathematical thinkers of both the finitist and intuitionist schools of metamathematics, and is
accepted (although with extensions made by Gödel and others to the notion of recursiveness
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in this paper) by present-day constructivists who decline to talk about any mathematical
entities that cannot be recursively constructed.

For the proof of Gödel’s ‘Unprovability’ Theorem the importance of recursiveness lies
in the fact (Proposition V, p. 55) that every statement of a recursive relationship holding
between given numbers x1, x2, . . . xn is expressible by a formula f of the formal system P
which is ‘provable’ within P if the statement is true and ‘disprovable’ within P (i.e. the
‘negation’ of f, written as Neg f, is ‘provable’ within P) if the statement is false. Gödel only
outlines a proof of this proposition, since it “offers no difficulties of principle and is somewhat
involved” (p. 56); so I will expand what he says in his footnote (p. 56, n. 39). Since the
relation R in question is recursive, then if R (x1, x2, . . . xn) is true, R (x1, x2, . . . xn) can be
proved in a deductive system for arithmetic by constructing a finite sequence of propositions
starting with the axioms and ending with R (x1, x2, . . . xn); and if R(x1, x2, . . . xn) is false, Not
R(x1, x2, . . . xn) can similarly be proved. The calculus or formal system P was designed by
Gödel to represent this deductive system; so the finite sequence of propositions which
constitutes a proof of R(x1, x2, . . . xn) or of Not R(x1, x2, . . . xn) will be expressed in P by a
finite series of formulae ending in a formula f in the one case and in the formula Neg f in the
other. To express in P the step-by-step definitional procedure by which the truth or falsity of
the recursive relationship is established is to construct either a ‘proof’ off or a ‘proof’ of Neg
f: f or Neg f will only appear in the formal system accompanied by a ‘proof-schema’ of which
it is the last formula. So if R(x1, x2, . . . xn) is true, there is a ‘proof’ of f, and f is a ‘provable’
formula (definition 46, p. 55); and if R (x1, x2, . . . xn) is false, Neg f is a ‘provable’ formula
within the system P.
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Define a class-sign as a series of signs which is a formula and which contains exactly
one free variable (which may occur at several places in the formula) (p. 43). [In Gödel’s
system P there is no distinction between a class-sign and a property-sign, since
‘axiom-schema’ V (p. 44) may be regarded as expressing the axioms that two properties (of
the same type) which always go together are identical—“axioms of extensionality”.] A
class-sign is recursive if it can be interpreted as expressing a recursive arithmetical class, in
which case the formula resulting from the substitution for its variable of a number-sign will be
‘provable’ or ‘disprovable’ according as the number represented by the number-sign in the
interpretation of the system is or is not a member of this recursive class. A recursive
relation-sign is defined similarly (p. 43: see also p. 47, n. 28). Note that neither a class-sign
nor a relation-sign is a basic sign, since the former contains one and the latter several free
variables.

THE ‘UNPROVABILITY’ THEOREM FOR P. “We now come”, as Gödel says (p.
56), “to the object of our exercises”—the proof of the ‘Unprovability’ Theorem. To prove this
he establishes Proposition VI which is more general than is necessary for proving that there
are undecidable formulae in the formal system P, since it is concerned not only with ‘proofs’
within P but also with ‘deductions’ within P from formulae not included among the ‘axioms’
of P. i.e. with ‘proofs’ within a formal system P' obtained from P by adding these formulae as
additional ‘axioms’. Gödel requires this subtlety later on in his paper, but it complicates the
proof of Proposition VI, which I shall discuss in the simplified form in which the class c of
added formulae is the null class (i.e. no formulae are added to the axioms), so that a
‘c-provable’ formula within P (p. 59) is the same as a ‘provable’ formula within P, and the
argument is concerned
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solely with ‘proofs’ within P. Gödel’s Bc is thus taken as equivalent to his relation B, and
Bewc as equivalent to his property Bew.

Proposition VI simplified in this way may be stated as follows: If the formal system P
satisfies a certain condition of ‘consistency’, then there is at least one recursive class-sign r
in P such that neither v Gen r nor Neg (v Gen r) is ‘provable’ within P, where v Gen r is the
generalization of r with respect to its free variable v.

The undecidability of v Gen r within P depends upon P’s satisfying a certain
‘consistency’ condition. Since this condition is only relevant to the last stage of the proof, and
itself raises important questions, consideration of ‘consistency’ will be deferred until the main
part of the proof has been discussed.

This main part is given in pp. 58f. from (8.1) to (16). Gödel states his argument in
terms of Gödel numbers and of relations between Gödel numbers; and when the expressions
relation-sign, free variable, class-sign, provable are used they are italicized to show that they
refer to arithmetical concepts applicable to Gödel numbers. Because of the correspondence
between these concepts as applied to Gödel numbers and metamathematical concepts as
applied to the strings which have these Gödel numbers, Gödel’s whole argument applies
equally well if his symbols are interpreted as strings and the terms relation-sign, free variable,
etc. are taken in their usual sense. Since Gödel’s argument, though couched in terms of
numbers, is a metamathematical argument, it may be convenient for philosophical logicians if I
give it wholly in metamathematical terms. This will have the additional advantage that
interpretations of the formulae can be inserted parenthetically at appropriate places, on the
assumption that the calculus Gödel’s formal system P) is to be interpreted as representing a
deductive system which
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includes propositional and first-order predicate logic—though, strictly speaking, any actual
interpretation is irrelevant to the argument.

However, a recasting of Gödel’s argument in metamathematical terms makes one
unimportant modification necessary. For the part of his argument which establishes the
‘unprovability’ of Neg (v Gen r) requires at one point considering a statement about all
numbers, whether or not they are Gödel numbers; and this statement cannot be construed
without change as a statement about all strings, since a number which is not a Gödel number
does not correspond to any string. But it is easy to close the gap in the recasting by
considering the numbers which are Gödel numbers as arranged in a sequence of increasing
magnitude, and then using, instead of a Gödel number itself, the number which gives the place
of this Gödel number in the sequence. To be precise, if n is the (m + 1)-th Gödel number in
increasing order, call m the G-number of the string of which n is the Gödel number, and use
the G-number m wherever Gödel in his argument uses the Gödel number n. Then every
natural number 0, 1, 2, etc. will be the G-number of some string; and there will be a recursive
one-to-one correspondence between natural numbers and strings. So arithmetical statements
about all numbers can be construed as metamathematical statements about all strings. Of
course Gödel’s sequence of definitions 6-46 defines arithmetical concepts which correspond
to metamathematical concepts according to the Gödel-number method of arithmetization. But
the purpose of his definitions is to establish that all the arithmetical concepts concerned
(except Bew) are recursive and so are also all the corresponding metamathematical concepts.
Consequently any proposition about them is expressible in P by a formula which is ‘provable’
or ‘disprovable’ according as the proposition is true or false.
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Having proved this (by Proposition V, p. 55) Gödel makes no further use in his argument for
the ‘Unprovability’ Theorem of his particular method of arithmetization. All that is necessary
is that there should be a unique number assigned to every string. So no harm will result from
continuing the argument using G-numbers instead of the corresponding Gödel numbers; and
this use of G-numbers I shall call the “modified arithmetization”.

To facilitate comparison with Gödel’s text, I shall use Gödel’s symbols, except that, as
well as single small italic letters denoting numbers, I shall in future use the same letters in bold
type to stand for the strings of which these numbers are G-numbers. Thus x will be the string
whose G-number is x. Gödel writes Z(x) for the Gödel number of the number-sign for the
number x in his formal system P (see definition 17, p. 51). This number-sign is “0” preceded
by x “f” s; e.g. the number-sign for 3 is “fff O” (see p. 42). I shall call these number-signs
numerals; and shall write Gx (or, if x is a complex expression, G[x]) for the numeral for the
G-number of x and call Gx the G-numeral of x. Since every number is a G-number, every
numeral is a G-numeral; and there is a recursive one-to-one correspondence between the
members of the class of numerals “0”, “f 0”, “ff 0”, etc. and the members of the class of
strings (which, of course, includes the class of numerals as a sub-class).

A class-sign will be written in the form a(v) and a dyadic relation-sign in the form b (v,
w) with v or v, w, the free variables (of first type) concerned, mentioned explicitly. [But the
G-numerals of a(v) and of b (v, w) will be abbreviated to Ga and to Gb.] Since we are
concerned with the formal system P whose “individuals” are natural numbers (p. 42) the
substitution values for v and w will always be numerals, and thus always G-numerals. The
result of substituting Gx
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for v and Gy for w in b (v, w) will be written as b (Gx, Gy). Gödel uses a typographically less
convenient notation for substitution. In comparing my version with his text it should be
remembered that 17 is the Gödel number of v and 19 that of w.]

The simplified Proposition VI may now be restated as: If the formal system P satisfies
a certain condition of ‘consistency’, then there is at least one recursive class-sign r(v) in P
such that neither v Gen r(v) nor Neg [v Gen r(v)] is ‘provable’ within  P.

We can now follow the principal steps in the argument of pp. 57-59 from (8.1)
onwards.

Define Q' (x, y(u)) as Not [x B y (Gy)], i.e. x is not a ‘proof’ of the formula obtained
by substituting for the variable in the class-sign y(u) the G-numeral Gy for the class-sign itself.

Let Q (x, y) be the relationship between the G-numbers of x and of y which is
equivalent to Q' (x, y (u)) by the modified arithmetization. Q(x, y) is recursive; and so it
follows from Proposition V that there is a recursive relation-sign q (v, w) which is such that



 Q (x, y) → [q (Gx, Gy)] is ‘provable’;

Not Q (x, y) → [Neg q (Gx, Gy)] is ‘provable’.
 

But Q' (x, y (u)) is equivalent to Q (x, y); and thus

 


Q' (x, y (u)) → [q (Gx, Gy)] is ‘provable’;

Not Q' (x, y (u)) → [Neg q (Gx, Gy)] is ‘provable’.
 

The relation-sign q (v, w) may therefore be regarded as a formula expressing the
relation which x has to y(u) when x is not a 'proof' of y(Gy).

Consider the 'generalization' of the relation-sign q (v, w) with respect to the free
variable v, yielding the formula v Gen q (v, w). This has one free variable, namely w, and so
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is a class-sign. Call it p(w). It may be regarded as denoting the class of which a class-sign y(u)
is a member if and only if everything is not a ‘proof’ of y(Gy), i.e. if and only if y(Gy) is
‘unprovable’.

Next consider the substitution in the same relation-sign q (v, w) of Gp for the free
variable w, yielding the formula q (v, Gp). This also has one free variable, v, and so is also a
class-sign. Call it r(v). It may be regarded as denoting the class of strings which are not
‘proofs’ of p(Gp). Since it may also be regarded, according to the modified arithmetization, as
denoting the class of the G-numbers of these strings, which is a recursive arithmetical class,
r(v) is a recursive class-sign.

Now consider the ‘generalization’ of this class-sign r(v) i.e. of q (v, Gp), with respect
to its free variable v, which yields the formula v Gen r(v). This has no free variable, and may
be regarded as expressing the proposition that everything is not a ‘proof’ of p(Gp), i.e. that
p(Gp) is ‘unprovable’.

But, and here is the crux of the argument, v Gen r(v) is the same as p(Gp). For we
arrived at the former by first substituting Gp for w in q(v, w), which yielded r(v), and then
‘generalizing’ with respect to v, which yielded v Gen r(v). But, since the substitution and the
‘generalization’ had reference to different free variables, the two operations yield the same
final result if performed in the reverse order, i.e. by first ‘generalizing’ q (v, w) with respect to
v, which yields p(w), and then substituting Gp for w in p(w), which yields p(Gp). If either of
the formulae v Gen r(v) or p(Gp) be expanded to get rid of the abbreviations r and p, we get
one and the same formula

v Gen q (v, G [v Gen q (v, w)]).

This formula, and of course each of the abbreviations of
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it, may be regarded as expressing the proposition that the formula itself is ‘unprovable’, i.e.
the formula expresses its own ‘unprovability’.

The formula of Gödel’s which I have sometimes quoted, namely “17 Gen r”, is the
modified arithmetization of my metamathematical “v Gen r(v)”, but with 17, the Gödel
number of my variable v, used instead of the G-number of v. Since it is immaterial in which
way the metamathematical formula is written, I shall in the next few pages use the shortest
form, namely p(Gp).

Now for the last stages of the proof. We go back to Q' (x, y(u)), defined as Not [x B
y(Gy)], i.e. as expressing the metamathematical proposition that x is not a ‘proof’ of y(Gy). If
we take the class-sign y(u) to be p(u), which is the same as p(w), since u and w are variables,
we get for the consequences of the truth or falsity of Q’ (x, p(u)), i.e. of the truth or falsity of
Not [x B p(Gp)]:



Not [x B p(Gp)] → [q (Gx, Gp)] is ‘provable’;

  x B p(Gp)  → [Neg q (Gx, Gp)] is ‘provable’.
 

q (Gx, Gp) is the same as r(Gx) (which corresponds to Gödel’s expression in square brackets
on the right-hand side of (15), p. 59).

Suppose now that p(Gp) were to be ‘provable’. Then there would be a ‘proof-schema’
n such that n B p(Gp}, and hence such that Neg q (Gn, Gp) i.e. Neg r(Gn) would be
‘provable’. But if p(Gp), i.e. v Gen r(v), were ‘provable’, so also would be r(Gn). So from
the supposition that p(Gp) is ‘provable’, there follows that both r(Gn) and Neg r(Gn) are
‘provable’. Call a formal system (a calculus) ‘consistent’ if it contains no pair of ‘provable’
formulae of the forms f, Neg f. Then, if p(Gp) is ‘provable’, the formal system P is
‘inconsistent’; so, if P is ‘consistent’, p(Gp) is ‘unprovable’ within P.
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Suppose that P is ‘consistent’ and that Neg p(Gp) were to be ‘provable’. Since p(Gp)
is ‘unprovable’, Not [n B p(Gp)] holds for every string n. Thus q (Gn, Gp), i.e. r(Gn), is
‘provable’ for every string n; and hence r(m) is ‘provable’ for every numeral m. But Neg
p(Gp) is the same as Neg [v Gen r(v)]; and, if this were to be ‘provable’, the curious situation
would arise of every substitution-instance r(m) of the class-sign r(v) being ‘provable’ while
the ‘generalization’ of r(v) with respect to v was ‘disprovable’. This situation is, however,
compatible with the ‘consistency’ of P: in order to prohibit its occurrence a stronger form of
consistency, called by Gödel ‘ω-consistency’, must be assumed to hold of P. [A formal system
is ‘ω-consistent’ if it contains no class-sign a(u) which is such both that a(m) is ‘provable’
within the system for every numeral m and that Neg [u Gen a(u)] is ‘provable’ within the
system (see p. 57).] Since the ‘consistency’ (sometimes called ‘simple consistency’) of P is a
consequence of its ‘ω-consistency’ (see p. 23), the conjunction of ‘ω-consistency’ with the
‘provability’ of Neg p(Gp) yields a contradiction, so, if the formal system P is ‘co-consistent’,
Neg p(Gp) is ‘unprovable’ within P.

Combining these two results tells us that, if P is ‘ω-consistent’, neither p(Gp) nor Neg
p(Gp) is ‘provable’ within P. i.e. p(Gp) is undecidable within P.

In order to compare this with my simplified restatement of Gödel’s Proposition VI (p.
18) we must remember that p(Gp) is the same as v Gen r(v). r(v) is a recursive class-sign; so
there is a recursive class-sign r(v) in P such that neither v Gen r(v) nor Neg [v Gen r(v)] is
‘provable’ within P. if P is ‘ω-consistent’.

‘CONSISTENCY’. If a formal system (a calculus) is ‘inconsistent’, it will contain both
a ‘provable’ formula f and a
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‘provable’ formula Neg f. If its ‘axioms’ and ‘rules of inference’ are such that the
‘inconsistent’ calculus can be interpreted, with Neg interpreted as meaning Not and a
‘provable’ formula interpreted as standing for a provable proposition, so that the deductive
system which it represents includes a deductive sub-system of propositional logic (as is the
case with Gödel’s calculus P), then this deductive system will have as theorems both a
proposition p (namely, the proposition represented by f) and its contradictory Not p (the
proposition represented by Neg f and hence the conjunction p & Not p—a self-contradiction.
The deductive system will thus be inconsistent in the usual sense of the term, which, of course,
is why Gödel uses the same word to apply to a calculus and I use the same word within single
quotation marks.

Since p ⊃ (p ∨ q), which is equivalent to (p & Not p) ⊃ q, is either an axiom or a
theorem in propositional logic (the formula representing it in Gödel’s P falls under
‘axiom-schema’ 11.2: see p. 44), and since modus ponens (q is an immediate consequence of
p and p ⊃ q) is a rule of inference in propositional logic (Gödel’s P uses the corresponding
‘rule’: see p. 45), every proposition is a consequence of a self-contradiction. An inconsistent
deductive system which includes a sub-system of propositional logic will therefore contain
every proposition whatever as a theorem of the system. So if a calculus can be interpreted as
representing a deductive system with the very small number of features required for it to
include propositional logic, and if the calculus is ‘inconsistent’, every (well-formed) formula in
the calculus will be ‘provable’ within the calculus. Such a calculus will be of no interest, since
there will be no division of its formulae into those which are ‘provable’ and those which are
not. This is the principal reason why metamathematicians attach such importance to a calculus
being
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‘consistent’, altogether apart from whether or not the calculus is in fact interpreted to
represent a deductive system.

If the calculus P were ‘inconsistent’, all its formulae would be ‘provable’ and so the
condition for ‘ω-consistency’ (p. 21) could not be satisfied. So if P is ‘ω-consistent’, it is also
‘consistent’. The notion of ‘ω-consistency’ is intimately connected with finitist methods of
proof. It will not be further considered here, since it is not a necessary condition in an
‘Unprovability’ Theorem for Gödel’s formal system P. In 1936 Rosser, by an argument
involving a recursive class-sign more complicated than Gödel’s r(v), established an
‘Unprovability’ Theorem for P (and for systems of similar character) which required as a
condition only that P is ‘consistent’.

A principal aim of Hilbert and his school had been to establish the ‘consistency’ of a
calculus capable of being interpreted as expressing arithmetic, and thus to prove the
consistency of a deductive system of arithmetic. To them the second great theorem contained
in this paper was even more of a shock than the ‘Unprovability’ Theorem. For this second
theorem proves the undecidability within P of a formula expressing the ‘consistency’ of P,
thus showing that the ‘consistency’ of P, if P is ‘consistent’, cannot be established by a ‘proof’
within P. i.e. a ‘proof’ starting with only the ‘axioms’ of P and using only P’s ‘rules of
inference’. [If P is ‘inconsistent’, of course both P’s ‘consistency’ and P’s ‘inconsistency’ can
be ‘proved’ within P.]

THE ‘UNPROVABILITY’-OF (CONSISTENCY THEOREM FOR P. Gödel proves
this theorem (his Proposition XI: p. 70) in a general form, corresponding to that of his
Proposition VI, which is concerned with ‘deductions’ as well as ‘proofs’ within P. As with
Proposition VI I shall discuss Proposition
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XI in a simplified form in which it is concerned solely with ‘proofs’ within P. The simplified
form is obtained by taking the class c to be the null class, and consequently Bc and Bewc as
equivalent to B and to Bew respectively.

Proposition XI simplified in this way may be stated as follows: If the formal system P
is ‘consistent’, its ‘consistency’ is ‘unprovable’ within P.

In order to prove this theorem Gödel uses the result established towards the end of the
proof of his ‘Unprovability’ Theorem, namely that, if P is ‘consistent’, the formula p(Gp) is
‘unprovable’. Since, as we have seen (p. 19), this formula may be regarded as expressing its
own ‘unprovability’, the metamathematical proposition

P is ‘consistent’ → p(Gp) is ‘unprovable’

may be expressed within P by the formula, ‘provable’ within P.

w Imp p(Gp),

where w (this symbol no longer being used as a variable) is a recursive formula expressing in P
the ‘consistency’ of P. and u Imp v expresses in P the propositional schema Not a or b (see
definition 32, p. 53). Then it follows from the definition of ‘immediate consequence’
(definition 43, p. 55) that, if w were to be ‘provable’, p(Gp) would also be ‘provable’. But if
P is ‘consistent’, p(Gp) is ‘unprovable’, and so also is w. Thus a formula w expressing the
‘consistency’ of P is ‘unprovable’ within P—on the assumption, of course, that P is
‘consistent’.

In this paper Gödel only professed to “sketch in outline” the proof of his Proposition
XI, and the sequel in which he intended to present it “in detail” he never published. Indeed the
part of the detailed proof which establishes that w Imp p(Gp) is ‘provable’ within P requires
exhibiting a ‘proof’ within P of w Imp p(Gp), and this is a lengthy and
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complicated business. However there is prima facie a gap in Gödel’s “sketch” of the proof,
namely how a recursive formula w which expresses the ‘consistency’ of P can be constructed
in P; but this gap can easily be closed by an argument which I owe to Rosser. Let t be a
particular formula which is ‘provable’ in P; e.g. one of the ‘axioms’ of P. If Neg t is also
‘provable’, P is ‘inconsistent’. But, if P is ‘inconsistent’, every (well-formed) formula is
‘provable’ in P, and so Neg t is ‘provable’. Thus the ‘inconsistency’ of P is logically
equivalent to the ‘provability’ of Neg t, and the ‘consistency’ of P to the ‘unprovability’ of
Neg t. So all that is required is a recursive formula in P expressing the ‘unprovability’ of Neg
t, which is easy to provide. x B y (x is a ‘proof’ of the formula y) is a recursive relation-sign
(definition 45, p. 55) with x and y as its free variables; hence Neg (x B Neg t) is a recursive
class-sign, with x as its free variable, and x Gen [Neg (x B Neg t)] is a recursive formula
which expresses in P the ‘unprovability’ of Neg t, which is equivalent to the ‘consistency’ of
P. So the w of the proof in the last paragraph may be taken to be x Gen [Neg (x B Neg t, in
which case the proof (when given in detail) will fully satisfy the requirements of finitists and
constructivists.

Gödel says at the end of his paper that his ‘Unprovability’-of-‘Consistency’ Theorem
represents “no contradiction of the formalistic standpoint of Hilbert. For this standpoint
presupposes only the existence of a consistency proof effected by finite means, and there
might conceivably be finite proofs which cannot be stated in P” (p. 71). This was a pious hope
of Gödel’s, made reasonable when he uttered it by the lack of precision in Hilbert’s notion of a
proof “effected by finite means”. Clarification of this notion, to which this paper and later
work of Gödel notably contributed, have explicated it in terms of the concept of recursiveness
and of
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extensions of this concept; and it is now certain that, within any formal system using only such
concepts and capable of expressing arithmetic, it is impossible to establish its own
‘consistency’ (if it is ‘consistent’). In 1936 Gentzen was able to prove the ‘consistency’ of
such a formal system, but only by using non-constructive methods of proof (“transfinite
induction”) which fall outside the constructive ‘rules of inference’ of the system. Gödel in this
paper which established his two great theorems by methods which are constructive in a
precise sense, on the one hand showed the essential limitations imposed upon constructivist
formal systems (which include all systems basing a calculus for arithmetic upon “mathematical
induction”), and on the other hand displayed the power of constructivist methods for
establishing metamathematical truths. To a philosophical logician it appears an even more
remarkable feat to have been able to establish the internal undecidability of some arithmetical
formulae than to provide (as Hilbert’s school would have wished) a decision procedure for the
whole of arithmetic.

THE SYNTACTICAL CHARACTER OF Gödel’s THEOREMS. In concluding this
Introduction I wish to elaborate a point I have made several times in passing, namely that
Gödel’s two great theorems are metamathematical theorems about a calculus (his formal
system P) and are not, in themselves, metamathematical theorems about a deductive system
which is an interpretation of the calculus. However, theorems about deductive systems are
immediate corollaries. The statement that there are arithmetical propositions which are neither
provable nor disprovable within their arithmetical system (which at the beginning of this
Introduction I called Gödel’s Theorem tout court) is, for the deductive system for arithmetic
represented by the
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calculus P, a corollary of the ‘Unprovability’ Theorem for P. To appreciate this, consider the
formula v Gen r(v) whose undecidability (subject, of course, to P being ‘ω-consistent’) was
established by the proof of the ‘Unprovability’ Theorem. Interpret the class-sign r(v) as
denoting the class of G-numbers of the strings which are not ‘proofs’ of p(Gp)—the second
interpretation of r(v) mentioned on p. 19. This class of numbers, specified thus
metamathematically, may also be specified arithmetically by modifying the arithmetization of
series of formulae, formula, proof provided by definitions 1-45 (pp. 49ff.). So if ‘generalizing’
r(v) with respect to v is interpreted as stating that the class of numbers denoted by r(v) is the
universal class, the formula v Gen r(v) will be interpreted as expressing the proposition that
every number is a member of a certain arithmetically specified class—a straight arithmetical
proposition (call it g). If the calculus P (assumed to be ‘ω-consistent’) is interpreted as
representing a deductive system S for arithmetic (and it was devised so that it could represent
that part of the Principia Mathematica deductive system required for arithmetic), with the
‘axioms’ and ‘rules of inference’ of P representing the axioms and rules of inference of S (and
such an interpretation permits the interpretation of v Gen r(v) as expressing the arithmetical
proposition g), then g will be neither provable nor disprovable by the methods of proof
available in S. i.e. neither g nor Not g will be a theorem of S. [In Section 3 of this paper Gödel
uses arithmetical in a more restricted sense than I have used it, and establishes that, even in
this restricted sense, there will be arithmetical propositions undecidable in S.] The
undecidability (the ‘unprovability’ and ‘undisprovability’) of v Gen r(v) within P is transferred
to the deductive system S represented by P to yield the undecidability (the unprovability and
undisprovability) of g within S. Similarly the
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‘unprovability’ within P of the ‘consistency’ of P (assumed to be ‘consistent’) transfers to S to
yield the unprovability within S of the consistency of S.

The undecidability of some arithmetical propositions within the deductive system S
may be classed among the syntactical metamathematical characteristics of the system S
(represented by the calculus P), for the reason that this undecidability derives from the
undecidability of some formulae within the calculus P which represents S. Deductive systems,
unlike calculi, have also semantical metamathematical characteristics; in particular their
propositions have or lack the semantical property of being true—what Gödel in his
introductory Section I calls being “correct as regards content” (inhaltlich richtig). Connecting
the syntactical property of being provable with the semantical property of being true by taking
every proposition provable within S (i.e. every axiom and theorem of S) to be true (see p. 41)
gives an additional kick to the undecidability in S of g—by adding that g is true. For the
correlation of arithmetical and metamathematical propositions effected by the modified
arithmetization ensures that g will be true if and only if v Gen v(r) is ‘unprovable’ within P.
i.e. if and only if g is unprovable within S. Hence if g were not true, g would be provable
within S and so true—a contradiction. Consequently if the axioms and theorems of the
deductive system-for-arithmetic S are true (and this implies the consistency of S, for otherwise
two propositions p and Not p, which cannot both be true, would both be theorems of S), then
there is an arithmetical proposition, namely g, which is not provable within S (a syntactical
characteristic) but which nevertheless is true (a semantical characteristic). This
metamathematical argument which, combines semantical with syntactical considerations,
establishes the truth of an arithmetical proposition which cannot be proved within S.
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In his introductory Section I Gödel intermingles semantical with syntactical
considerations in sketching a proof of the undecidability of g (which is the reason why I have
seldom referred to this section in this introduction). The distinction between what is
syntactical and what semantical was not made explicitly until a year or two later (by Tarski,
whose work included rigorously establishing unprovability theorems that were semantical);
but it is implicit in Gödel’s remark towards the end of Section I that “the exact statement of
the proof [of the undecidability of g], which now follows, will have among others the task of
substituting for the second of these assumptions [that every provable formula is also correct as
regards content] a purely formal and much weaker one” (p. 41). Gödel’s proof in Section 2 is
a purely syntactical proof about a calculus (the formal system P) whose interpretation as a
deductive system for arithmetic is, strictly speaking, irrelevant to his argument. It is true that
Gödel explains arithmetization as a way of co-ordinating strings in his calculus with natural
numbers, and he discusses recursive functions in terms of natural numbers (and I have
followed him in speaking of numbers in both these contexts). But whenever he talks about
numbers, and thus makes a remark which is prima facie about a deductive system rather than
about a calculus, the remark is always a syntactical remark about the deductive system, and is
therefore in essence a remark about the calculus which represents the system. For example,
when Gödel says at the beginning of Section 2 that his formal system P has “numbers as
individuals”, and speaks of “variables of first type (for individuals, i.e. natural numbers
including 0)” (p. 42), all that is relevant to his argument is that numerals are the only
substitution values (not containing variables) permitted for his variables of first type. This is
shown most clearly when Gödel specifies
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the substitution operation in connexion with his ‘axiom-schema’ III.1 (p. 44), which requires
the substitution for a variable of first type of a sign of first type, which he has previously
explained as being “a combination of signs of the form: a, fa, ffa, fffa, etc., where a is either
“0” [in which case the sign is a number-sign] or a variable of first type” (p. 42; in Gödel’s text
0 occurs instead of “0”, but this would seem to be a misprint).

Gödel’s ‘arithmetization’ of metamathematical concepts (as also my ‘modified
arithmetization’) is in fact effected by correlating to each string x another string which is a
numeral: there is no need to pass from a string x to this numeral by the indirect route of first
moving to the Gödel number (or G-number) of x and then passing from this number to the
numeral which expresses it in the calculus P. In the argument the equivalence, for example,
between the metamathematical proposition about P stating that the string (the series of
formulae) n is a ‘proof’ of the string (the formula) y and an arithmetical relationship between
the G-numbers n and y of these strings may equally well be construed as an equivalence
between the metamathematical proposition and the occurrence as a ‘theorem’ of P (i.e. as a
‘provable’ formula within P) of an appropriate ‘recursive’ ‘arithmetical’ formula f containing
the strings (the numerals) Gn and Gy. [The requirement that f should be ‘recursive’ ensures
that, if f is not a ‘theorem’ of P. Neg f is.] The peculiarity of the ‘recursive’ class-sign r(v) of
the ‘Unprovability’ Theorem is that; if there were to be a string n which was a ‘proof’ of v
Gen r(v), the ‘recursive’ ‘arithmetical’ formula Neg r(Gn) would occur as a ‘theorem’ of P.
whereas r(Gn) would also appear as a ‘theorem’ of P as an ‘immediate consequence’ of a
formula falling under ‘axiom-schema’ llI.1 (p. 44) and of v Gen r(v). In other words, if v Gen
r(v) were to be a ‘theorem’ (derived by a
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‘proof’ n), r(Gn) would be a ‘theorem’ for a reason internal to the calculus, and Neg r(Gn)
would be a ‘theorem’ for the reason that it was the ‘recursive’ formula whose occurrence as a
‘theorem’ was equivalent, according to the ‘modified arithmetization’, to n being a ‘proof’ of
v Gen r(v).

In the last paragraph, where part of the proof of Gödel’s ‘Unprovability’ Theorem has
been restated in terms which either are used within the calculus P or are syntactical terms used
to describe features of P. I have put single quotation marks round ‘recursive’, ‘arithmetical’,
‘arithmetization’, ‘modified arithmetization’ to indicate that these words are being used (like
‘theorem’, ‘proof’, ‘provable’, etc.) as calculus terms and not as deductive-system terms. The
whole of Gödel’s formal argument in this paper is syntactical: that he arithmetizes
metamathematics instead of only ‘arithmetizing’ it is purely a matter of expository
convenience. For his arithmetization is in terms of recursive arithmetical concepts, and by his
Proposition V (see also p. 15) the question as to whether or not a recursive arithmetical
relationship holds between numbers is equivalent to the syntactical question as to which of
two ‘recursive’ formulae containing numerals, of the forms f. Neg f respectively, is a
‘theorem’ of the calculus P. [In my sketch (pp. 18-21) of Gödel’s proof of the ‘Unprovability’
Theorem I have declined to follow him in using such terms as formula, proof, class-sign with
an arithmetical interpretation; and I have, so far as was conveniently possible, employed
G-numerals instead of G-numbers.]

Thus Gödel’s two great theorems are theorems about his calculus P: they assert the
‘unprovability’ within P of certain well-formed formulae of P (on the assumption that P is ‘ω-
consistent’ or ‘consistent’ respectively). Of course the interest to the learned world of the
calculus P is that it can be regarded as representing a deductive system for
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arithmetic in which, therefore, there are undecidable arithmetical propositions. Though
Gödel’s formal proofs apply only to P, he indicates how similar proofs would apply to any
calculus satisfying two very general conditions (p. 62), conditions so general that any calculus
capable of expressing arithmetic can hardly fail to satisfy them. So this paper of Gödel’s
proclaimed the thesis, which has been clarified and confirmed by the work of subsequent
metamathematicians, that no calculus can be devised in such a way that every arithmetical
proposition is represented in it by a formula which is either ‘provable’ or ‘disprovable’ within
the calculus, and therefore that any deductive system whatever for arithmetic will have the
general syntactical characteristic of not containing either a proof or a disproof of every
arithmetical proposition.

This syntactical fact about arithmetic is sometimes described by saying that arithmetic,
in its very nature, is incomplete. Gödel’s discovery of this incompleteness, presented in this
paper, is one of the greatest and most surprising of the intellectual achievements of this
century.

[I am much indebted to Dr T. J. Smiley for criticizing most helpfully the penultimate
draft of this Introduction.

R. B. B.]
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NOTE

The symbols Gödel uses for metamathematical concepts or their Gödel numbers are
mainly abbreviations of German words. Although the concepts themselves are carefully
defined in the text, the following alphabetical list of the more important of these symbols with
their etymology may be helpful to the reader:

A from “Anzahl” = number

Aeq from “Aequivalenz” = equivalence

Ax from “Axiom” = axiom

B from “Beweis” = proof

Bew from “Beweisbar” = provable

Bw from “Beweisfigur” = proof-schema

Con from “Conjunktion” = conjunction

Dis from “Disjunktion” = disjunction

E from “Einklammern” = include in brackets

Elf from “Elementarformel” = elementary formula

Ex from “Existenz” = existence

Fl from “unmittelbare Folge” = immediate consequence

Flg from “Folgerungsmenge” = set of consequences

Form from “Former” = formula

Fr from “frei” = free

FR from “Reihe von Formeln” = series of formulae

Geb from “gebunden” = bound

Gen from “Generalisation” = generalization

Gl from “Glied” = term

33
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Imp from “Implikation” = implication

I from “Lange” = length

Neg from “Negation” = negation

Op from “Operation” = operation

Pr from “Primzahl” = prime number

Prim from “Primzahl” = prime number

R from “Zahlenreihe” = number series

Sh from “Substitution” = substitution

St from “Stelle” = place

Su from “Substitution” = substitution

Th from “Typenerhohung” = type-lift

Typ from “Typ” = type

Var from “Variable” = variable

Wid from “Widerspruchsfreiheit” = consistency

Z from “Zahlzeichen” = number-sign

The only way in which the translation deviates from Gödel’s symbolism is that, from p.
57 onwards, c is used to stand for the class which Gödel denotes by κ.
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ON FORMALLY UNDECIDABLE PROPOSITIONS
[173]

OF PRINCIPIA MATHEMATICA AND RELATED
SYSTEMS I1

by Kurt Gödel Vienna

1

The development of mathematics in the direction of greater exactness has—as is well
known—led to large tracts of it becoming formalized, so that proofs can be carried out
according to a few mechanical rules. The most comprehensive formal systems yet set up are,
on the one hand, the system of Principia Mathematica (PM)2 and, on the other, the axiom
system for set theory of Zermelo-Fraenkel (later extended by J. v. Neumann).3 These two
systems are so extensive that all methods of proof used in mathematics today have been
formalized in them, i.e. reduced to a few axioms and rules of inference. It may therefore be
surmised that these axioms and rules of inference are also sufficient

1 Cf. the summary of the results of this work, published in Anzeiger der Akad. d. Wiss. in Wien
(math.- naturw. Kl.) 1930, No. 19.

2 A. Whitehead and B. Russell, Principia Mathematica, 2nd edition, Cambridge 1925. In particular,
we also reckon among the axioms of PM the axiom of infinity (in the form: there exist denumerably many
individuals), and the axioms of reducibility and of choice (for all types).

3 Cf. A. Fraenkel, ‘Zehn Vorlesungen über die Grundlegung der Mengenlehre’, Wissensch. u. Hyp.,
Vol. XXXI; J. v. Neumann, ‘Die Axiomatisierung der Mengenlehre’, Math. Zeitschr. 27, 1928, Journ. f. reine
u. angew. Math. 154 (1925), 160 (1929). We may note that in order to complete the formalization, the axioms
and rules of inference of the logical calculus must be added to the axioms of set-theory given in the
above-mentioned papers. The remarks that follow also apply to the formal systems presented in recent years by
D. Hilbert and his colleagues (so far as these have yet been published). Cf. D. Hilbert, Math. Ann. 88, Abh. aus
d. math. Sem. der Univ. Hamburg I (1922), VI (1928), P. Bernays, Math. Ann. 90; J. v. Neumann, Math.
Zeitschr. 26 (1927), W. Ackermann, Math. Ann. 93.

37
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to decide all mathematical questions which can in any way at all be expressed formally in the
systems concerned. It is shown below that this is not the case, and that in both the systems
mentioned there are in fact relatively simple problems in the theory of ordinary whole
numbers4 which [174] cannot be decided from the axioms. This situation is not due in some
way to the special nature of the systems set up, but holds for a very extensive class of formal
systems, including, in particular, all those arising from the addition of a finite number of
axioms to the two systems mentioned,5 provided that thereby no false propositions of the kind
described in footnote 4 become provable.

Before going into details, we shall first indicate the main lines of the proof, naturally
without laying claim to exactness. The formulae of a formal system—we restrict ourselves
here to the system PM—are, looked at from outside, finite series of basic signs (variables,
logical constants and brackets or separation points), and it is easy to state precisely just which
series of basic signs are meaningful formulae and which are not.6 Proofs, from the formal
standpoint, are likewise nothing but finite series of formulae (with certain specifiable
characteristics). For metamathematical purposes it is naturally immaterial what objects are
taken as basic signs, and we propose to use natural numbers7 for them. Accordingly, then, a
formula is a finite

4 I.e., more precisely, there are undecidable propositions in which, besides the logical constants −
(not), ∨ (or), (x) (for all) and = (identical with), there are no other concepts beyond + (addition) and ⋅
(multiplication), both referred to natural numbers, and where the prefixes (x) can also refer only to natural
numbers.

5 In this connection, only such axioms in PM are counted as distinct as do not arise from each other
purely by change of type.

6 Here and in what follows, we shall always understand the term “formula of PM” to mean a formula
written without abbreviations (i.e. without use of definitions). Definitions serve only to abridge the written text
and are therefore in principle superfluous.

7 I.e. we map the basic signs in one-to-one fashion on the natural numbers (as is actually done on p.
45).
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series of natural numbers,8 and a particular proof-schema is a finite series of finite series of
natural numbers. Metamathematical concepts and propositions thereby become concepts and
propositions concerning natural numbers, or series of them,9 and therefore at least partially
expressible in the symbols of the system PM itself. In particular, it can be shown that the
concepts, “formula”, “proof-schema”, “provable formula” are definable in the system PM, i.e.
one can give10 a formula F(v) of PM—for example—with one free variable v (of the type of a
series of numbers), such that F(v)—interpreted as to content—states: v is a provable formula.
We now obtain an undecidable proposition of the system PM, i.e. a proposition A, for which
neither A nor not-A are provable, in the following manner:

A formula of PM with just one free variable, and that of [175] the type of the natural
numbers (class of classes), we shall designate a class-sign. We think of the class-signs as
being somehow arranged in a series,11 and denote the n-th one by R(n); and we note that the
concept “class-sign” as well as the ordering relation R are definable in the system PM. Let α
be any class-sign; by [α; n] we designate that formula which is derived on replacing the free
variable in the class sign α by the sign for the natural number n. The three term relation x = [y;
z] also proves to be definable in PM. We now define a class K of natural numbers, as follows:

8 i.e. a covering of a section of the number series by natural numbers. (Numbers cannot in fact be put
into a spatial order.)

9 In other words, the above-described procedure provides an isomorphic image of the system PM in
the domain of arithmetic and all metamathematical arguments can equally well be conducted in this
isomorphic image. This occurs in the following outline proof, i.e. “formula”, “proposition”, “variable”, etc.
are always to be under stood as the corresponding objects of the isomorphic image.

10 It would be very simple (though rather laborious) actually to write out this formula.

11 Perhaps according to the increasing sums of their terms and, for equal sums, in alphabetical order.
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n ε K ≡ Bew  [R(n) ; n] 11a  (1)

(where Bew x means: x is a provable formula). Since the concepts which appear in the
definiens are all definable in PM, so too is the concept K which is constituted from them, i.e.
there is a class-sign S,12 such that the formula [S; n]—interpreted as to its content—states that
the natural number n belongs to K. S, being a class-sign, is identical with some determinate
R(q), i.e.

S = R(q)

holds for some determinate natural number q. We now show that the proposition [R(q); q]13 is
undecidable in PM. For: supposing the proposition [R(q); q] were provable, it would also be

correct; but that means, as has been said, that q would belong to K, i.e. according to (1), Bew

[R(q); q] would hold good, in contradiction to our initial assumption. If, on the contrary, the

negation of [R(q); q] were provable, then n ε K , i.e. Bew [R(q); q] would hold good. [R(q);

q] would thus be provable at the same time as its negation, which again is impossible.

The analogy between this result and Richard’s antinomy leaps to the eye; there is also
a close relationship with the “liar” antinomy,14 since the undecidable proposition [R(q); q]
states precisely that q belongs to K, i.e. according to (1), that [R(q); q] is not provable. We
are therefore confronted with a proposition which asserts its own

11a The bar-sign indicates negation.

12 Again there is not the slightest difficulty in actually writing out the formula S.

13 Note that “[R(q); q]” (or—what comes to the same thing—“[S; q]”) is merely a metamathematical
description of the undecidable proposition. But as soon as one has ascertained the formula S, one can naturally
also determine the number q, and thereby effectively write out the undecidable proposition itself.

14 Every epistemological antinomy can likewise be used for a similar undecidability proof.
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unprovability.15 The method of proof just exhibited can clearly be applied to every formal
system having the following [176] features: firstly, interpreted as to content, it disposes of
sufficient means of expression to define the concepts occurring in the above argument (in
particular the concept “provable formula”); secondly, every provable formula in it is also
correct as regards content. The exact statement of the above proof, which now follows, will
have among others the task of substituting for the second of these assumptions a purely formal
and much weaker one.

From the remark that [R(q); q] asserts its own unprovability, it follows at once that
[R(q); q] is correct, since [R(q); q] is certainly unprovable (because undecidable). So the
proposition which is undecidable in the system PM yet turns out to be decided by
metamathematical considerations. The close analysis of this remarkable circumstance leads to
surprising results concerning proofs of consistency of formal systems, which are dealt with in
more detail in Section 4 (Proposition XI).

2

We proceed now to the rigorous development of the proof sketched above, and begin
by giving an exact description of the formal system P, for which we seek to demonstrate the
existence of undecidable propositions. P is essentially the system obtained by superimposing
on the Peano axioms the logic of PM16 (numbers as individuals, relation of successor as
undefined basic concept).

15 In spite of appearances, there is nothing circular about such a proposition, since it begins by
asserting the unprovability of a wholly determinate formula (namely the q-th in the alphabetical arrangement
with a definite substitution), and only subsequently (and in some way by accident) does it emerge that this
formula is precisely that by which the proposition was itself expressed.

16 The addition of the Peano axioms, like all the other changes made in the system PM, serves only
to simplify the proof and can in principle be dispensed with.
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The basic signs of the system P are the following:

I. Constants: “~” (not), “∨” (or), “Π” (for all), “0” (nought), “f” (the successor of),
“(”, “)” (brackets).

II. Variables of first type (for individuals, i.e. natural numbers including 0): “x1”, “y1”,
“z1”, …

Variables of second type (for classes of individuals): “x2”, “y2”, “z2”, …

Variables of third type (for classes of classes of individuals): “x3”, “y3”, “z3”, …

and so on for every natural number as type.17

Note: Variables for two-termed and many-termed functions (relations) are superfluous
as basic signs, since relations can be defined as classes of ordered pairs and ordered pairs
again as classes of classes, e.g. the ordered pair a, b by ((a), (a, b)), where (x, y) means the
class whose only elements are x and y, and (x) the class whose only element is x.18

[177]  By a sign of first type we understand a combination of signs of the form:

 a, fa, ffa, fffa . . . etc.

where a is either 0 or a variable of first type. In the former case we call such a sign a
number-sign. For n > 1 we under stand by a sign of n-th type the same as variable of n-th
type. Combinations of signs of the form a(b), where b is a sign of n-th and a a sign of (n +
1)-th type, we call elementary

17 It is presupposed that for every variable type denumerably many signs are available.

18 Unhomogeneous relations could also be defined in this manner, e.g. a relation between individuals
and classes as a class of elements of the form: ((x2), ((x1), x2)). As a simple consideration shows, all the
provable propositions about relations in PM are also provable in this fashion.
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formulae. The class of formulae we define as the smallest class19 containing all elementary
formulae and, also, along with any a and b the following: ~(a), (a) ∨ (b), xΠ(a) (where x is
any given variable).18a We term (a) ∨ (b) the disjunction of a and b, ~(a) the negation and
xΠ(a) a generalization of a. A formula in which there is no free variable is called a
propositional formula (free variable being defined in the usual way). A formula with just n
free individual variables (and otherwise no free variables) we call an n-place relation-sign
and for n = 1 also a class-sign.

By Subst a 



v

b  (where a stands for a formula, v a variable and b a sign of the same

type as v) we understand the formula derived from a, when we replace v in it, wherever it is
free, by b.20 We say that a formula a is a type-lift of another one b, if a derives from b, when
we increase by the same amount the type of all variables appearing in b.

The following formulae (I-V) are called axioms (they are set out with the help of the
customarily defined abbreviations: ., ⊃, (Ex), =,21 and subject to the usual conventions about
omission of brackets)22:

18a Thus x Π (a) is also a formula if x does not occur, or does not occur free, in a. In that case x Π (a)
naturally means the same as a.

19 With regard to this definition (and others like it occurring later), cf. J. Lukasiewicz and A. Tarski,
‘Untersuchungen über den Aussagenkalkül’, Comptes Rendus des séances de la Societe des Sciences et des
Lettres de Varsovie XXIII, 1930, C1 III.

20 Where v does not occur in a as a free variable, we must put Subst a



v

b  = a. Note that “Subst” is a

sign belonging to metamathematics.

21 As in PM I, *13, x1 = y1 is to be thought of as defined by x2Π (x2(x1) ⊃ x2(y1)) (and similarly for
higher types.)

22 To obtain the axioms from the schemata presented (and in the cases of II, III and IV, after carrying
out the permitted substitutions), one must therefore still

1. eliminate the abbreviations

2. add the suppressed brackets.

Note that the resultant expressions must be “formulae” in the above sense. (Cf. also the exact
definitions of the metamathematical concepts on pp. 49ff.)
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I. 1. ~ (fx1 =  0)

2. fx1 = fy1 ⊃ x1 = y1

3. x2(0) . x1 Π (x2(x1) ⊃ x2(fx1)) ⊃ x1  Π (x2(x1))

[178] II. Every formula derived from the following schemata by substitution of any formulae
for p, q and r.

1. p ∨ p ⊃ p 3. p ∨ q ⊃ q ∨ p

2. p ⊃ p ∨ q 4. (p ⊃ q ) ⊃ (r ∨ p ⊃ r ∨ q)

III. Every formula derived from the two schemata

l. v Π (a) ⊃ Subst a 



v

c

2. v Π (b ∨ a) ⊃ b ∨ v Π (a)

by making the following substitutions for a, v, b, c (and carrying out in 1 the operation
denoted by “Subst”): for a any given formula, for v any variable, for b any formula in which v
does not appear free, for c a sign of the same type as v, provided that c contains no variable
which is bound in a at a place where v is free.23

IV. Every formula derived from the schema

1 . (Eu) (v Π (u(v) Π (a)

on substituting for v or u any variables of types n or n + 1 respectively, and for a a formula
which does not contain u free. This axiom represents the axiom of reducibility (the axiom of
comprehension of set theory).

V. Every formula derived from the following by type-lift (and this formula itself):

1. x1 Π (x2(x1) ≡ y2(x1)) ⊃ x2 = y2.
23 c is therefore either a variable or 0 or a sign of the form f . . . fu where u is either 0 or a variable of

type 1. With regard to the concept “free (bound) at a place in a” cf. section I A5 of the work cited in footnote
24.
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This axiom states that a class is completely determined by its elements.

A formula c is called an immediate consequence of a and b, if a is the formula (~(b))
∨ (c), and an immediate consequence of a, if c is the formula v Π (a), where v denotes any
given variable. The class of provable formulae is defined as the smallest class of formulae
which contains the axioms and is closed with respect to the relation “immediate consequence
of”.24

The basic signs of the system P are now ordered in one-to-one correspondence with
natural numbers, as follows:

“0” … 1 “v” … 7 “(“ … 11 [179]

“f ” … 3 “Π” …  9 “)” … 13

“~” … 5

Furthermore, variables of type n are given numbers of the form pn (where p is a prime number
> 13). Hence, to every finite series of basic signs (and so also to every formula) there
corresponds, one-to-one, a finite series of natural numbers. These finite series of natural
numbers we now map (again in one-to-one correspondence) on to natural numbers, by letting
the number 2

n1, 3
n2 . . . pk

nk correspond to the series n1, n2, . . . nk, where pk denotes the k-th
prime number in order of magnitude. A natural number is thereby assigned in one-to-one
correspondence, not only to every basic sign, but also to every finite series of such signs. We
denote by Φ(a) the number corresponding to the basic sign or series of basic signs a. Suppose
now one is given a class or relation R (a1, a2, . . . an) of basic signs or series of such. We
assign to it that class (or relation)

24 The rule of substitution becomes superfluous, since we have already dealt with all possible
substitutions in the axioms themselves (as is also done in J. v. Neumann, ‘Zur Hilbertschen Beweistheorie’,
Math. Zeitschr. 26, 1927).
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R'(x1, x2, . . . xn) of natural numbers, which holds for x1, x2, . . . xn when and only when there
exist a1, a2, . . . an such that xi = Φ,(ai) ( i = 1, 2, . . . n) and R (a2, a2, . . . an) holds. We
represent by the same words in italics those classes and relations of natural numbers which
have been assigned in this fashion to such previously defined metamathematical concepts as
“variable”, “formula”, “propositional formula”, “axiom”, “provable formula”, etc. The
proposition that there are undecidable problems in the system P would therefore read, for
example, as follows: There exist propositional formulae a such that neither a nor the negation
of a are provable formulae.

We now introduce a parenthetic consideration having no immediate connection with
the formal system P, and first put forward the following definition: A number-theoretic
function25 φ (x1, x2, . . . xn) is said to be recursively defined by the number-theoretic functions
ψ (x1, x2, . . . xn - 1) and µ (x1, x2, . . . xn + 1), if for all x2, . . . xn, k 26 the following hold:

φ (0, x2, . . . xn) = ψ (x2 . . . xn)

φ (k + 1, x2, . . . xn) = µ (k, φ (k, x2, . . . xn), x2, . . . xn). (2)

A number-theoretic function φ is called recursive, if there exists a finite series of
number-theoretic functions φ1, φ2, . . . φn, which ends in φ and has the property that every
function φk of the series is either recursively defined [180] by two of the earlier ones, or is
derived from any of the earlier ones by substitution,27 or, finally, is a constant or

25 I.e. its field of definition is the class of non-negative whole numbers (or n-tuples of such),
respectively, and its values are non-negative whole numbers.

26 In what follows, small italic letters (with or without indices) are always variables for non-negative
whole numbers (failing an express statement to the contrary).

27 More precisely, by substitution of certain of the foregoing functions in the empty
places of the preceding, e.g. φk (x1, x2) = φp [ φ (x1, x2), φr (x2)] (p, q, r  < k). Not all the
variables on the left-hand side must also occur on the right (and similarly in the recursion
schema (2)).
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the successor function x + 1. The length of the shortest series of φi, which belongs to a
recursive function φ, is termed its degree. A relation R (x1 . . . xn) among natural numbers is
called recursive,28 if there exists a recursive function φ (x1 . . . xn) such that for all x1, x2, . . . xn

R (x1 . . . xn) ~ [φ (x1 . . . xn) = 0] 29

The following propositions hold:

I. Every function (or relation) derived from recursive functions (or relations) by the
substitution of recursive functions in place of variables is recursive; so also is every function
derived front recursive functions by recursive definition according to schema (2).

II. If R and S are recursive relations, then so also are R , R ∨ S (and therefore also

R & S).

III. If the functions φ(x) and ψ(n) are recursive, so also is the relation: φ(x) =
ψ(n).30;

IV. If the function φ(x) and the relation R (x, n) are recursive, so also then are the
relations S,T

S (x, n) ~ (Ex) [x ≤ f (x) & R (x, n)]

T (x, n) ~ (x) [x ≤ f (x) → R (x, n)]
28 We include classes among relations (one-place relations). Recursive relations R naturally have the

property that for every specific n-tuple of numbers it can be decided whether R (x1, . . . xn) holds or not.

29 For all considerations as to content (more especially also of a metamathematical kind) the
Hilbertian symbolism is used, cf. Hilbert-Ackermann, Crundzüge der theoretischen Logik, Berlin 1928.

30 We use gothic1 letters x, n, as abbreviations for given n-tuple sets of variables, e.g. x1, x2 . . . xn.

                                               
1 Lucida Blackletter.
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and likewise the function ψ

ψ (x, n) = ε x [x ≤ φ (x) & R (x, n))],

where ε x F(x) means: the smallest number x for which F(x) holds and 0 if there is no such
number.

Proposition I follows immediately from the definition of “recursive”. Propositions II
and III are based on the readily ascertainable fact that the number-theoretic functions

corresponding to the logical concepts  , ∨, =

α (x), β (x, y), γ(x, y)

namely

α (0) = 1; α (x) = 0 for x ≠ 0

β (0, x) = β(x, 0) = 0; β (x, y) = 1, if x, y both ≠ 0

[181] γ(x, y) = 0, if x = y; γ(x, y) = 1,if x ≠ y

are recursive. The proof of Proposition 1V is briefly as follows: According to the assumption
there exists a recursive p (x, n) such that

R (x, n) ~ [ρ (x, n) = 0].

We now define, according to the recursion schema (2), a function χ (x, n) in the
following manner:

χ (0, n) = 0

χ (n+ 1, n) = (n + 1) ⋅ a + χ (n, n) ⋅ α (a) 31

where

a = α [α (ρ (0, n)] ⋅ α [ρ (n + l, n] ⋅ α [χ (n, n].

χ (n+ 1, n) is therefore either = n + 1 (if a = 1) or = χ (n, n) (if a = 0).32 The first case
clearly arises if and only if all the constituent factors of a are 1, i.e. if

31 We take it to be recognized that the functions x + y (addition) and x ⋅ y (multiplication) are
recursive.

32 a cannot take values other than 0 and 1, as is evident from the definition of α.
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R (0, n) & R (n + 1, n) & [χ (n, n) = 0].

From this it follows that the function χ (n, n) (considered as a function of n) remains 0
up to the smallest value of n for which R (n, n) holds, and from then on is equal to this value
(if R (0, n) is already the case, the corresponding χ (n, n) is constant and = 0). Therefore:

ψ (x, n) = χ (φ (x), n)

S(x, n) ~ R [ψ (x, n)), n].

The relation T can be reduced by negation to a case analogous to S. so that
Proposition IV is proved.

The functions x + y, x ⋅ y, xy, and also the relations x < y, x = y are readily found to be
recursive; starting from these concepts, we now define a series of functions (and relations)
1-45, of which each is defined from the earlier ones by means of the operations named in
Propositions I to IV. This procedure, generally speaking, puts together many of the definition
steps permitted by Propositions I to IV. Each of the functions (relations) 1-45, containing, for
example, the concepts “formula”, “axiom”, and “immediate consequence”, is therefore
recursive.

1. x/y ≡ (E z) [z ≤ x & x = y ⋅ z]33 [182]

x is divisible by y.34

2. Prim(x) ≡ ( E z ) [z ≤ x & z ≠ 1 & z ≠ x & x/z] &  x > 1

x is a prime number.
33 The sign ≡ is used to mean “equivalence by definition”, and therefore does duty in definitions

either for = or for ~ (otherwise the symbolism is Hilbertian).

34 Wherever in the following definitions one of the signs (x), (E x), ε x occurs, it is followed by a
limitation on the value of x. This limitation merely serves to ensure the recursive nature of the concept defined.
(Cf. Proposition IV.) On the other hand, the range of the defined concept would almost always remain
unaffected by its omission.
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3. 0 Pr x ≡ 0

(n+ 1) Pr x ≡ ε y[y ≤  x & Prim (y) & x/y & y > n Pr x]

n Pr x is the n-th (in order of magnitude) prime number contained in x.34a

4. 0! ≡ 1

(n + 1)! ≡ (n + 1) ⋅ n!

5. Pr (0) ≡ 0

Pr (n + 1) ≡ ε y [y ≤ {Pr (n)}! + 1 & Prim (y) & y >Pr (n)]

Pr (n) is the n-th prime number (in order of magnitude).

6. n Gl x ≡ ε y [y ≤  x & x |(n Pr x)y & x/(n Pr x)y + 1 ]

n Gl x is the n-th term of the series of numbers assigned to the number x (for n
> 0 and n not greater than the length of this series).

7. l (x) ≡ ε y [y ≤ x & y Pr x > 0 & (y + 1) Pr x = 0]

l (x) is the length of the series of numbers assigned to x.

8. x * y ≡ ε z [z ≤ [Pr {l (x) + l (y)}]x + y

& (n) [n ≤ l (x) → n Gl z = n Gl x]

& (n) [0 < n ≤ l (y) → {n + l (x)} Gl z = n Gl y]]

x * y corresponds to the operation of “joining together” two finite series of
numbers.

9. R (x) ≡ 2x

R (x) corresponds to the number-series consisting only of the number x (for x >
0).

10. E (x) ≡ R (11) * x * R(13)

E (x) corresponds to the operation of “bracketing” [11 and 13 are assigned to
the basic signs “(” and “)”].
34a For 0 < n ≤ z, where z is the number of distinct prime numbers dividing into x. Note that for n = z

+ 1, n Pr x = 0.
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11. n Var x ≡ (E z) [13 < z ≤ x & Prim (z) & x = zn] & n ≠ 0

x is a variable of n-th type.

12. Var (x) ≡ (E n) [n ≤ x & n Var x]

x is a variable.

13. Neg (x) ≡ R (5) * E (x)

Neg (x) is the negation of x.

14. x Dis y ≡ E (x) * R (7) * E (y) [183]

x Dis y is the disjunction of x and y.

15. x Gen y ≡  R (x) *R (9) * E (y)

x Gen y is the generalization of y by means of the variable x (assuming x is a
variable).

16. 0 N x ≡ x

(n + 1) N x ≡ R(3) * n N x

n N x corresponds to the operation: “n-fold prefixing

of the sign ‘f ’   before x.”

17. Z (n) ≡ n N [R(1)]

Z (n) is the number-sign for the number n.

18. Typ1' (x) ≡ (E m, n) {m, n ≤ x & [m = 1 ∨ 1 Var m]

& x = n N [R(m)]} 34b

x is a sign of first type.

19. Typn  (X) ≡ [n = 1 & Typ1' (x)] ∨ [n > 1 & (E v) {v ≤ x

& n Var v & x = R(v)}]

x is a sign of n-th type.

20. Elf (x) ≡ (E y,  z, n) [y , z, n ≤ x & Typn (y)

& Typn + 1 (z) & x = z * E (y)]

x is an elementary formula.
34b m, n ≤ x stands for: m ≤ x & n ≤ x (and similarly for more than two variables).
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21. Op (x, y, z) ≡ x = Neg (y) ∨ x = y Dis z ∨ (E v) [v ≤ x

& Var (v) & x = v Gen y]

22. FR (x) ≡ (n) {0 < n ≤ l (x) → Elf (n Gl x) ∨ (E p, q)

[0 < p, q < n & Op (n Gl x, p Gl x, q Gl x)]}

& l (x) > 0

x is a series of formulae of which each is either an elementary formula or arises
from those preceding by the operations of negation, disjunction and generalization.

23. Form (x) ≡ (En) {n ≤ (Pr [l (x)2])x ⋅ [l (x)]2

& FR (n) & x = [l (n)] Gl n}35

x is a formula (i.e. last term of a series of formulae n).

24. v Geb n, x ≡  Var (v) & Form (x) & (Ea, b ,c) [a, b, c ≤ x

& x = a * (v Gen b) * c & Form (b)

& l (a) + 1 ≤ n ≤ l (a) + l (v Gen b)]

The variable v is bound at the n-th place in x.

[184] 25. v Fr n, x ≡ Var (v) & Form (x) & v = n Gl x

& n ≤ l (x) & v Geb n, x

The variable v is free at the n-th place in x.

26. v Fr x ≡ (En) [n ≤ l (x) & v Fr n, x]

v occurs in x as a free variable.

27. Su x (y) ≡ ε z {z ≤ [Pr (l (x) + l (y))] x + y

& [(E u, v) u, v ≤ x & x = u * R (n Gl x) * v

& z = u * y * v & n = l (u) + 1 ]}

Su x 



n

 y  derives from x on substituting y in place of the n-th term of x (it being

assumed that 0 < n ≤ l (x)).
35 The limitation n ≤ (Pr [l (x)]2) x t`(x)]2 means roughly this: The length of the shortest series of

formulae belonging to x can at most be equal to the number of constituent formulae of x. There are however at

most l(x) constituent formulae of length 1, at most l (x) − 1 of length 2, etc. and in all, therefore, at most 1
2 [l

(x) {l (x) + 1 }] < [l (x)]2. The prime numbers in n can therefore all be assumed smaller than Pr {[l (x)]2},
their number ≤ [l (x)]2 and their exponents (which are constituent formulae of x) ≤ x.
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28. 0 St v, x ≡ ε n {n ≤ 1 (x) & v Fr n, x & (E p) [n < p < l (x)

& v Fr p, x]}

(k + 1) St v, x ≡ ε n {n < k St v, x

& v Fr n, x & (E p) [n < p < k St v, x & v Fr p, x]}

k St v, x is the (k + 1)th place in x (numbering from the end of the formula x) at
which v is free in x (and 0, if there is no such place).

29. A (v, x) _ ε n {n _ I(x) & n St v, x = 0}

A (v, x) is the number of places at which v is free in x.

30. Sb0  



x 

v
y  ≡ x

Sbk +  1 



x 

v
y  ≡ Su [Sbk 



x 

v
y ] 



k St v, x 

 y

31. Sb 



x 

v
y  ≡ SbA(v, x) 



x 

v
y  36

Sb 



x 

v
y  is the concept Subst a 



v

b  , defined above.37

32. x Imp y ≡ [Neg (x)] Dis y

x Con y ≡ Neg {[Neg (x)] Dis [Neg (y)]}

x Aeq y ≡ (x Imp y) Con (y Imp x)

v Ex y ≡ Neg {v Gen [Neg (y)]}

33. n Th x ≡ ε y {y ≤  x(xn) & (k) [k < l (x) → (k Gl x ≤ 13

& k Gl y = k Gl x) ∨ (k Gl x > 13

& k Gl y = k Gl x. [1 Pr(k Gl x)]n)]}

n Th x is the n-th type-lift of x (in the case when x and n Th x are formulae).

To the axioms I, 1 to 3, there correspond three determinate numbers, which we denote
by z1, z2, z3, and we define:

34. Z − A x (x) ≡ (x = z1 ∨ x = z2 ∨ x = z3)

36 Where v is not a variable or x not a formula, then Sb 



x 

v
y  = x.

37 Instead of Sb 



Sb 



x 

v
y  

z
w   we write Sb 



x 

v w
 y  z   (and similarly for more than two variables).
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[185] 35. A1 − Ax (x) ≡ (Ey) [y ≤ x & Form (y)

& x = (y Dis y) Imp y]

x is a formula derived by substitution in the axiom-schema II, 1. Similarly A2 −
Ax, A3 − Ax, A4 − Ax are defined in accordance with the axioms II, 2 to 4.

36. A − A x (x) ≡ A1 − A x (x) ∨ A2 - A x (x) ∨
A3 − A x (x) ∨ A4 − A x (x)

x is a formula derived by substitution in an axiom of the sentential calculus.

37. Q (z, y, v) ≡ (En, m, w) [n ≤ l (y) & m ≤ l (z) & w ≤ z

& w = m Gl x & w Geb n, y & v Fr n, y]

z contains no variable bound in y at a position where v is free.

38. L1 − A x (x) ≡ (Ev, y, z, n) {v, y, z, n ≤ x & n Var v

& Typn (z) & Form (y) & Q (z, y, v)

& x = (v Gen y) Imp [Sb 



v

z ]}

x is a formula derived from the axiom-schema III, I by substitution.

39. L2 - A x (x) ≡ (Ev, q, p) {v, q, p ≤ x & Var (v)

& Form (p) & v Fr p & Form (q)

& x = [v Gen (p Dis q)] Imp [p Dis (v Gen q)] }

x is a formula derived from the axiom-schema III, 2 by substitution.

40. R − A x (x) ≡ (Eu, v, y, n) [u, v, y, n < x & n Var v

& (n + 1) Var u & u Fr y & Form (y)

& x = u Ex {v Gen [[R (u) * E (R (v))] Aeq y] }]

x is a formula derived from the axiom-schema IV, I by substitution.

To the axiom V, I there corresponds a determinate number Z4  and we define:

41. M − A x (x) ≡ (En) [n ≤ x & x = n Th z4 ]



FL: Page 58 11/10/00

ON FORMALLY UNDECIDABLE PROPOSITIONS 55

42. A x (x) ≡ Z − A x (x) ∨ A − A x (x) ∨ L1 − A x (x) ∨ L2 − A x (x) ∨ R − A x (x) ∨
M − A x (x)

x is an axiom.

43. Fl (x y z) ≡ y = z Imp x ∨ (E v) [v ≤ x & Var (v)

& x = v Gen y]

x is an immediate consequence of y and z.

44. Bw (x) ≡ (n) {0 < n ≤ l (x) → A x (n Gl x) [186]

∨ (E p, q) [0 < p, q < n & Fl (n Gl x, p Gl x, q Gl x)]}

& l (x) > 0

x is a proof-schema (a finite series of formulae, of which each is either an
axiom or an immediate consequence of two previous ones).

45. x B y ≡ Bw (x) & [l (x)] Gl x = y

x is a proof of the formula y.

46. Bew (x) = (E y) y B x

x is a provable formula. [Bew (x) is the only one of the concepts 1-46 of which
it cannot be asserted that it is recursive.]

The following proposition is an exact expression of a fact which can be vaguely
formulated in this way: every recursive relation is definable in the system P (interpreted as to
content), regardless of what interpretation is given to the formulae of P:

Proposition V: To every recursive relation R (x1, . . . xn) there corresponds an n-place
relation-sign r (with the free variables 38 u1, u2, . . . un) such that for every n-tuple of numbers
(x1 . . . xn) the following hold:

38 The variables u1 . . . un could be arbitrarily allotted. There is always e.g., an r with the free
variables 17, 19, 23 . . . etc., for which (3) and (4) hold.
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R (x1 . . . xn)  → Bew 





Sb 





r 
u1

Z(x1)
 
. . .
. . .  

 u1

Z(xn)
 (3)

R (x1 . . . xn) → Bew 





Neg Sb 





r 
u1

Z(x1)
 
. . .
. . .  

 u1

Z(xn)
(4)

We content ourselves here with indicating the proof of this proposition in outline,
since it offers no difficulties of principle and is somewhat involved.39 We prove the
proposition for all relations R (x1 . . . xn)  of the form: x1  = φ (x2 . . . xn) 

40 (where φ is a
recursive function) and apply mathematical induction on the degree of φ. For functions of the
first degree (i.e. constants and the function x + 1 ) the proposition is trivial. Let φ then be of
degree m. It derives from functions of lower degree φ1 . . . φk by the operations of substitution
or recursive definition. Since, by the inductive assumption, everything is already proved for φ1

. . . φk, there exist corresponding relation-signs r1 . . . rk such that (3) and (4) hold. The
processes of definition whereby φ is derived from φ1 . . . φk  (substitution and [187] recursive
definition) can all be formally mapped in the system P. If this is done, we obtain from r1 . . . rk

a new relation sign r41, for which we can readily prove the validity of (3) and (4) by use of the
inductive assumption. A relation-sign r, assigned in this fashion to a recursive relation,42 will
be called recursive.

We now come to the object of our exercises:
39 Proposition V naturally is based on the fact that for any recursive relation R. it is decidable, for

every n-tuple of numbers, from the axioms of the system P. whether the relation R holds or not.

40 From this there follows immediately its validity for every recursive relation, since any such
relation is equivalent to 0 = φ (x1 . . . xn), where φ is recursive.

41 In the precise development of this proof, r is naturally defined, not by the roundabout route of
indicating its content, but by its purely formal constitution.

42 Which thus, as regards content, expresses the existence of this relation.
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Let c be any class of formulae. We denote by Flg (c) (set of consequences of c) the
smallest set of formulae which contains all the formulae of c and all axioms, and which is
closed with respect to the relation “immediate consequence of”. c is termed ω-consistent, if
there is no class-sign a such that:

(n) [Sb 





a 
v
Z(n)  ε Flg (c)] & [Neg(v Gen a)] ε Flg (c)

where v is the free variable of the class-sign a.

Every ω-consistent system is naturally also consistent. The converse, however, is not
the case, as will be shown later.

The general result as to the existence of undecidable propositions reads:

Proposition VI: To every ω-consistent recursive class c of formulae there correspond
recursive class-signs r, such that neither v Gen r nor Neg (v Gen r) belongs to Flg (c) (where v
is the free variable of r).

Proof: Let c be any given recursive ω-consistent class of formulae. We define:

Bwc (x) ≡ (n) [n ≤ l (x) → A x (n Gl x) ∨ (n Gl x) ε c ∨
(Ep, q) {0 < p, q < n & Fl (n Gl x, p Gl x, q Gl x)}]

& l (x) > 0 (5)

(cf. the analogous concept 44)

x Bcy ≡ Bwc (x) & [l (x)] Gl x = y (6)

Bewc (x) ≡ (Ey) y Bcx (6.1 )

(cf. the analogous concepts 45, 46)

The following clearly hold:

(x) [Bewc (x) ~ x ε Flg (c)] (7)

(x) [Bew (x) → Bewc (x)] (8)
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[188] We now define the relation:

Q (x, y) ≡ x Bc 





Sb 





y 
19
Z(y) . (8.1 )

Since x Bc y [according to (6), (5)1 and Sb 





y 
19
Z(y)  (according to definitions 17, 31)

are recursive, so also is Q (x, y). According to Proposition V and (8) there is therefore a
relation-sign q (with the free variables 17, 19) such that

x Bc 





Sb 





y 
19
Z(y)  → Bewc 





Sb 





q 
17 19

Z(x) Z(y)  (9)

x Bc 





Sb 





y 
19
Z(y)  → Bewc 





Neg Sb 





q 
17 19

Z(x) Z(y)  (10)

We put

p = 17 Gen q (11)

(p is a class-sign with the free variable 19)

and

r = Sb 





q 
19

Z(p)  (12)

(r is a recursive class-sign with the free variable 17).43 Then

Sb 





p 
19

Z(p)  = Sb 





[17 Gen q] 
19

Z(p)

= 17Gen Sb 





q 
19

Z(p) (13)

= 17 Gen r 44

43 r is derived in fact, from the recursive relation-sign q on replacement of a variable by a
determinate number (p).

44 The operations Gen and Sb are naturally always commutative, wherever they refer to different
variables.
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[because of (11) and (12)] and furthermore:

Sb 





q 
17 19

Z(x) Z(p)  = Sb 





r 
17

Z(x)  (14)

[according to (12)]. If now in (9) and (10) we substitute p for y, we find, in virtue of
(13) and ( 14):

x Bc ( 17 Gen r) → Bewc 





Sb 





r 
17

Z(x)  ( 15)

x Bc ( 17 Gen r) → Bewc 





Neg Sb 





r 
17

Z(x)  ( 16)

Hence: [189]

1. 17 Gen r is not c-provable.45 For if that were so, there would (according to 6.1 ) be
an n such that n Bc (17 Gen r). By (16) it would therefore be the case that:

Bewc 





Neg Sb 





r 
17

Z(n)

while—on the other hand—from the c-provability of 17 Gen r there follows also that of Sb







r 
17

Z(n) . c would therefore be inconsistent (and, a fortiori, ω-inconsistent).

2. Neg (17Gen r) is not c-provable. Proof: As shown above, 17 Gen r is not
c-provable, i.e. (according to 6.1) the following holds: (n) n Bc (17 Gen r). Whence it follows,

by (15), that (n) Bewc 





Sb 





r 
17

Z(n) . which together with Bewc [Neg(17Gen r)] would conflict

with the ω-consistency of c.

17 Gen r is therefore undecidable in c, so that Proposition Vl is proved.
45 “x is c-provable” signifies: x ε Flg (c), which, by (7), states the same as Bewc (x).
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One can easily convince oneself that the above proof is constructive,45a i.e. that the
following is demonstrated in an intuitionistically unobjectionable way: Given any recursively
defined class c of formulae: If then a formal decision (in c) be given for the (effectively
demonstrable) propositional formula 17 Gen r, we can effectively state:

1. A proof for Neg (17 Gen r).

2. For any given n, a proof for Sb 





r 
17

Z(n) , i.e. a formal decision of 17 Gen r would

lead to the effective demonstrability of an ω-inconsistency.

We shall call a relation (class) of natural numbers R (x1 . . . xn) calculable
[entscheidungsdefinit], if there is an n-place relation-sign r such that (3) and (4) hold (cf. Pro
position V). In particulars therefore, by Proposition V, every recursive relation is calculable.
Similarly, a relation-sign will be called calculable, if it be assigned in this manner to a
calculable relation. It is, then, sufficient for the existence of undecidable propositions, to
assume of the class c that it is ω-consistent and calculable. For the property of being calculable
carries over from c to x Bcy (cf. (5), (6)) [190] and to Q (x, y) (cf. 8.1), and only these are
applied in the above proof. The undecidable proposition has in this case the form v Gen r,
where r is a calculable class-sign (it is in fact enough that c should be calculable in the system
extended by adding c).

If, instead of ω-consistency, mere consistency as such is assumed for c, then there
follows, indeed, not the existence of an undecidable proposition, but rather the existence of a
property (r) for which it is possible neither to provide a counter-example nor to prove that it
holds for all numbers.

45a Since all existential assertions occurring in the proof are based on Proposition V, which, as can
easily be seen, is intuitionistically unobjectionable.
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For, in proving that 17 Gen r is not c-provable, only the consistency of c is employed (cf. p.

59) and from Bewc  (17 Gen r) it follows, according to (15), that for every number x, Sb







r 
17

Z(x)  is c-provable, and hence that Neg Sb 





r 
17

Z(x)  is not c-provable for any number.

By adding Neg (17Gen r) to c, we obtain a consistent but not ω-consistent class of
formulae c'. c' is consistent, since otherwise 17 Gen r would be c-provable. c' is not how ever

ω-consistent, since in virtue of Bewc  (17 Gen r) and

(15) we have: (x) Bewc Sb 





r 
17

Z(x) , and so a fortiori:

(x) Bewc' Sb 





r 
17

Z(x) , and on the other hand, naturally: Bewc [Neg (17 Gen r)].46

A special case of Proposition VI is that in which the class c consists of a finite number
of formulae (with or without those derived therefrom by type-lift). Every finite class a is
naturally recursive. Let a be the largest number contained in a. Then in this case the following
holds for c:

x ε c ~ (Em, n) [m ≤ x & n ≤ a & n ε a & x = m Th n]

c is therefore recursive. This allows one, for example, to conclude that even with the
help of the axiom of choice (for all types), or the generalized continuum hypothesis, not all
propositions are decidable, it being assumed that these hypotheses are ω-consistent.

In the proof of Proposition VI the only properties of the system P employed were the
following:

46 Thus the existence of consistent and not ω-consistent c’s can naturally be proved only on the
assumption that, in general, consistent c’s do exist (i.e. that P is consistent).
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1. The class of axioms and the rules of inference (i.e. the relation “immediate
consequence of”) are recursively definable (as soon as the basic signs are replaced in any
fashion by natural numbers).

2. Every recursive relation is definable in the system P (in the sense of Proposition V).

Hence in every formal system that satisfies assumptions 1 and 2 and is ω-consistent,
undecidable propositions exist of the form (x) F(x), where F is a recursively defined property
of natural numbers, and so too in every extension of such [191] a system made by adding a
recursively definable Inconsistent class of axioms. As can be easily confirmed, the systems
which satisfy assumptions I and 2 include the Zermelo-Fraenkel and the v. Neumann axiom
systems of set theory,47 and also the axiom system of number theory which consists of the
Peano axioms, the operation of recursive definition [according to schema (2)3] and the logical
rules.48 Assumption 1 is in general satisfied by every system whose rules of inference are the
usual ones and whose axioms (like those of P) are derived by substitution from a finite number
of schemata.48a

47 The proof of assumption 1 is here even simpler than that for the system P, since there is only one
kind of basic variable (or two for J. v. Neumann).

48 Cf. Problem III in D. Hilbert’s lecture: ‘Probleme der Grundlegung der Mathematik’, Math. Ann.
102.

48a The true source of the incompleteness attaching to all formal systems of mathematics, is to be
found—as will be shown in Part II of this essay—in the fact that the formation of ever higher types can be
continued into the transfinite (cf. D. Hilbert, ‘Über das Unendliche’ Math. Ann. 95, p. 184), whereas in every
formal system at most denumerably many types occur. It can be shown, that is, that the undecidable
propositions here presented always become decidable by the adjunction of suitable higher types (e.g. of type ω
for the system P). A similar result also holds for the axiom system of set theory.
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3

From Proposition VI we now obtain further consequences and for this purpose give
the following definition:

A relation (class) is called arithmetical, if it can be defined solely by means of the
concepts +, ⋅ [addition and multiplication, applied to natural numbers]49 and the logical

constants ∨,  , (x), =, where (x) and = are to relate only to natural numbers.50 The concept of

“arithmetical proposition” is defined in a corresponding way. In particular the relations
“greater” and “congruent to a modulus” are arithmetical, since

x > y ~  ( Ez ) [y = x + z]

x ≡ y (mod n) ~ (Ez) [x = y + z ⋅ n ∨ y = x + z⋅ n]

We now have:

Proposition VII: Every recursive relation is arithmetical.

We prove this proposition in the form: Every relation of the form x0 = φ (x1 . . . xn),
where φ is recursive, is arithmetical, and apply mathematical induction on the degree of φ. Let
φ be of degree s (s > 1). Then either

1. φ (x1 . . . xn) = ρ [χ1 (x1 . . . xn), [192]

χ2 (x1 . . . xn) . . . χm (x1 . . . xn)]

(where ρ and all the χ’s have degrees smaller than s) or

2. φ (0, x2 . . . xn) = ψ [χ1 (x2 . . . xn)

φ (k + 1, x2 . . . xn) = µ [k, φ (k, x2 . . . xn), x2 . . . xn]

(where ψ, µ are of lower degree than s).
49 Here, and in what follows, zero is always included among the natural numbers.

50 The definiens of such a concept must therefore be constructed solely by means of the signs stated,
variables for natural numbers x, y . . . and the signs 0 and 1 (function and set variables must not occur). (Any
other number-variable may naturally occur in the prefixes in place of x.)

53 It is not of course necessary that all x1 . . . xn should actually occur in xi [cf. the example in
footnote 27].
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In the first case we have:

x0 = φ (x1 . . . xn) ~ (Ey1 . . . ym) [R (x0 y1 . . . ym)

& S1 (y1, x1 . . . xn) & . . . & Sm (ym, x1 . . . xn)],

where R and S; are respectively the arithmetical relations which by the inductive assumption
exist, equivalent to x0 = ρ (y1 . . . ym) and y = χi (x1 . . . xn). In this case, therefore, x0  = φ (x1 .
. . xn) is arithmetical.

In the second case we apply the following procedure: The relation x0  = φ (x1 . . . xn)
can be expressed with the help of the concept “series of numbers” ( f )52 as follows:

x0  = φ (x1 . . . xn) ~ (Ef) {f0  = ψ (x2 . . . xn)

& (k) [k < x1 → fk + 1  ~ = ~ (k, fk, x2 . . . xn)]

& x0 = fx1}

If S(y, x2 . . . xn) and T(z, x1 . . . xn + 1) are respectively the arithmetical relations—
which by the inductive assumption exist—equivalent to

y = ψ (x2 . . . xn) and z = µ (x1 . . . xn + 1),

the following then holds:

x0  = φ (x1 . . . xn) ~ (Ef)  {S (f0, x2 . . . xn)

& (k) [k < x1 → T(fk + 1, k, fk, x2 . . . xn)]

& x0 = fx1} (17)

We now replace the concept “series of numbers” by “pair of numbers”, by assigning to the
number pair n, d the number series f (n, d) (f (n, d) = [n]1 + (k + 1)d ), where [n]p denotes the smallest
non-negative residue of n modulo p.

52 f signifies here a variable, whose domain of values consists of series of natural numbers. fk denotes
the k + 1-th term of a series f (f0 being the first).
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We then have the following:

Lemma 1: If f is any series of natural numbers and k any natural number, then there
exists a pair of natural numbers n, d, such that f (n, d) end f agree in the first k terms.

Proof: Let I be the largest of the numbers k, f0, f1 . . .fk− 1.

Let n be so determined that

n = fi (mod (1 + (i + 1)l!)] for i = 0, 1 . . . k − 1

which is possible, since every two of the numbers 1 + (i + 1)l!  [193]

( 0, 1 . . . k − 1) are relatively prime. For a prime number contained in two of these numbers
would also be contained in the difference (i1 − i2) l! and therefore, because [i1 − i2] < l, in l!,
which is impossible. The number pair n, l! thus accomplishes what is required.

Since the relation x = [n]p is defined by x ≡ n (mod p) & x < p and is therefore
arithmetical, so also is the relation P (x0, x1 . . . xn) defined as follows:

P (x1 . . . xn) ≡ (En, d) {S ([n]d + 1, x2 . . . xn)

& (k) [k < x1  → T ([n]1 +  d(k + 2), k, [n]1 + d (k + 1),

x2 . . . xn)] & x0 = [n]l + d (x1 + 1)}

which, according to (17) and Lemma 1, is equivalent to x0  = φ (x1 . . . xn)  (we are concerned
with the series f in (17) only in its course up to the x1  + 1-th term). Thereby Proposition VII
is proved.

According to Proposition VII there corresponds to every problem of the form (x) F(x)
(F recursive) an equivalent arithmetical problem, and since the whole proof of Proposition VII
can be formalized (for every specific F) within the system P, this equivalence is provable in P.
Hence:

Proposition VIII: In every one of the formal systems53 referred to in Proposition VI
there are undecidable arithmetical propositions.

53 These are the ω-consistent systems derived from P by addition of a recursively definable class of
axioms.
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The same holds (in virtue of the remarks at the end of Section 3) for the axiom system
of set theory and its extensions by ω-consistent recursive classes of axioms.

We shall finally demonstrate the following result also:

Proposition IX: In all the formal systems referred to in Proposition VI53 there are
undecidable problems of the restricted predicate calculus54 (i.e. formulae of the restricted
predicate calculus for which neither universal validity nor the existence of a counter-example
is provable).55

[194] This is based on

Proposition X: Every problem of the form (x) F(x) (F recursive) can be reduced to
the question of the satisfiability of a formula of the restricted predicate calculus (i.e. for every
recursive F one can give a formula of the restricted predicate calculus, the satisfiability of
which is equivalent to the validity of (x) F (x)).

We regard the restricted predicate calculus (r.p.c.) as consisting of those formulae

which are constructed out of the basic signs:  , ∨, (x), =; x, y . . . (individual variables) and F

(x), G (x, y), H (x, y, z) . . . (property and relation variables)56 where (x) and = may relate only
to individuals. To these signs we add yet a third kind of variables φ (x), ψ (x y), χ (x y z) etc.
which represent object functions; i.e.

54 Cf. Hilbert-Ackermann, Grundzüge der theoretischen Logik. In the system P, formulae of the
restricted predicate calculus are to be understood as those derived from the formulae of the restricted predicate
calculus of PM on replacement of relations by classes of higher type, as indicated on p. 42.

55 In my article ‘Die Vollständigkeit der Axiome des logischen Funktionenkalküls’, Monatsh. F.
Math. u. Phys. XXXVII, 2, I have shown of every formula of the restricted predicate calculus that it is either
demonstrable as universally valid or else that a counter-example exists, but in virtue of Proposition IX the
existence of this counter-example is not always demonstrable (in the formal systems in question).

56 D. Hilbert and W. Ackermann, in the work already cited, do not include the sign = in the
restricted predicate calculus. But for every formula in which the sign = occurs, there exists a formula without
this sign, which is satisfiable simultaneously with the original one (cf. the article cited in footnote 55).
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φ (x), ψ (x y), etc. denote one-valued functions whose arguments and values are individuals.57

A formula which, besides the first mentioned signs of the r.p.c., also contains variables of the
third kind, will be called a formula in the wider sense (i.w.s.).58 The concepts of “satisfiable”
and “universally valid” transfer immediately to formulae i.w.s. and we have the proposition
that for every formula i.w.s. A we can give an ordinary formula of the r.p.c. B such that the
satisfiability of A is equivalent to that of B. We obtain B from A, by replacing the variables of
the third kind φ (x), ψ (x y) . . . appearing in A by expressions of the form (ι z) F (z x), (ι z) G
(z, x y) . . ., by eliminating the “descriptive” functions on the lines of PM I * 14, and by
logically multiplying59 the resultant formula by an expression, which states that all the F. G . . .
substituted for the φ, ψ . . . are strictly one-valued with respect to the first empty place.

We now show, that for every problem of the form (x) F (x) (F recursive) there is an
equivalent concerning the satisfiability of a formula i.w.s., from which Proposition X follows
in accordance with what has just been said.

Since F is recursive, there is a recursive function Φ (x) such that F(x) ~ [Φ (x) = 0],
and for Φ there is a series of functions Φ1, Φ2, . . . Φn, such that In = 4', All (X) = X+ I and
for every 4:,k (I < k _ n) either

1. (x2  . . . xm) [Φk (0, x2  . . . xm) = Φp (x2  . . . xm)]

(x, x2  . . . xm) {Φk [Φ1 (x) x2  . . . xm]

= Φp [x1 (Φk (x, x2  . . . xm), x2  . . . xm]} (18)

p, q < k
57 And of course the domain of the definition must always be the whole domain of individuals.

58 Variables of the third kind may therefore occur at all empty places instead of individual variables,
e.g. y = φ (x), F(x, φ (y)), G [ ψ (x, φ (y)), x] etc.

59 i.e. forming the conjunction.
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[195]

or

2. (x1  . . . xm) [Φk (x1  . . . xm) = Φr (Φι1(x1)  . . . φιs (xs)] (19)

r < k, iv < k (for v = 1, 2 . . . s)

or

3. (x1  . . . xm) [Φk (x1  . . . xm) = Φ1 (Φ1 . . . Φ1 (0))] (20)

In addition, we form the propositions:

(x) Φ1 (x) = 0  & (x y) [Φ1 (x) = Φ1 (y) → x = y] (21)

(x) [(Φn (x) = 0] (22)

In all the formulae (18), (19), (20) (for k = 2, 3, . . . n) and in (21), (22), we now
replace the functions Φi by the function variable φι, the number 0 by an otherwise absent
individual variable x0 and form the conjunction C of all the formulae so obtained.

The formula (E x0) C then has the required property, i.e.

1. If (x) [Φ (x) = 0] is the case, then (E x0) C is satisfiable, since when the functions
Φ1, Φ2, . . . Φn are substituted for φ1, φ2, . . . φn in (E x0) C they obviously yield a correct
proposition.

2. If (E x0) C is satisfiable, then (x) [Φ (x) = 0] is the case.

Proof: Let Ψ1, Ψ2, . . . Ψn be the functions presumed to exist, which yield a correct
proposition when substituted for φ1, φ2, . . . φn in (E x0) C. Let its domain of individuals be I.
In view of the correctness of (E x0) C for all functions Ψi, there is an individual a (in I) such
that all the formulae (18) to (22) transform into correct propositions (18') to (22') on
replacement of the Φi by Ψi and of 0 by a. We now form the smallest sub-class of I, which
contains a and is closed with respect to the operation Ψ1 (x). This subclass (I') has the
property that every one of the functions

60 xi (i = 1 . . . s) represents any complex of the variables x1, x2 . . . xm, e.g. x1 x3 x2.
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Ψi, when applied to elements of I', again yields elements of I'. For this holds of Ψ1  in virtue
of the definition of I'; and by reason of (18'), (19'), (20') this property carries over from Ψi

lower index to those of higher. The functions derived from Ψi by restriction to the domain of
individuals I', we shall call Ψi'. For these functions also the formulae (18) to (22) all hold (on
replacement of 0 by a and Φi  by Ψi')

Owing to the correctness of (21) for Ψi' and a, we can map the individuals of I' in
one-to-one correspondence on the natural numbers, and this in such a manner that a
transforms into 0 and the function Ψi' into the successor function Φ1. But, by this mapping, all
the functions Ψi' transform into the functions Φι, and owing to the correctness of (22) for Ψ'n
and a, we get (x) [Φn (x) = 0] or [196] (x) [Φ (x) = 0], which was to be proved.61

Since the considerations leading to Proposition X (for every specific F) can also be
restated within the system P, the equivalence between a proposition of the form (x) F(x) (F
recursive) and the satisfiability of the corresponding formula of the r.p.c. is therefore provable
in P, and hence the undecidability of the one follows from that of the other, whereby
Proposition IX is proved.62

4

From the conclusions of Section 2 there follows a remark able result with regard to a
consistency proof of the system

61 From Proposition X it follows, for example, that the Fermat and Goldbach problems would be
soluble, if one had solved the decision problem for the r.p.c

62 Proposition IX naturally holds also for the axiom system of set theory and its extensions by
recursively definable ω-consistent classes of axioms, since in these systems also there certainly exist
undecidable theorems of the form (x) F(x) (F recursive).
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P (and its extensions), which is expressed in the following proposition:

Proposition XI: If c be a given recursive, consistent class63 of formulae, then the
propositional formula which states that c is consistent is not c-provable; in particular, the
consistency of P is unprovable in P,64 it being assumed that P is consistent (if not, of course,
every statement is provable).

The proof (sketched in outline) is as follows: Let c be any given recursive class of
formulae, selected once and for all for purposes of the following argument (in the simplest
ease it may be the null class). For proof of the fact that 17 Gen r is not c-provable,65 only the
consistency of c was made use of, as appears from 1, page 59; i.e.

Wid (c) → Bewc  (17 Gen r) (23)

i.e. by (6.1):

Wid (c) → (x) x Bc (17 Gen r)

By (13), 17 Gen r = Sb 





p 
19

Z(p)  and hence:

[197] Wid (c) → (x) x Bc Sb 





p 
19

Z(p)

i.e. by (8.1):

Wid (c) → (x) Q (x, p) (24)

We now establish the following: All the concepts defined (or assertions proved) in
Sections 266 and 4 are also expressible (or provable) in P. For we have employed throughout

63 c is consistent (abbreviated as Wid (c)) is defined as follows: Wid (c) = (E x) [Form (x) & Bewc

(x)].

64 This follows if c is replaced by the null class of formulae.

65 r naturally depends on c (just as p does).

66 From the definition of “recursive” on p. 46 up to the proof of Proposition VI inclusive.



FL: Page 74 11/10/00

ON FORMALLY UNDECIDABLE PROPOSITIONS 71

only the normal methods of definition and proof accepted in classical mathematics, as
formalized in the system P. In particular c (like any recursive class) is definable in P. Let w be
the propositional formula expressing Wid (c) in P. The relation Q (x, y) is expressed, in
accordance with (8.1), (9) and (10), by the relation-sign q, and Q (x, p), therefore, by r







since by (12) r = Sb 





q 
19

Z (p)  and the proposition (x) Q (x, p) by 17 Gen r.

In virtue of (24) w Imp (17 Gen r) is therefore provable in P67 (and a fortiori
c-provable). Now if w were c-provable, 17 Gen r would also be c-provable and hence it
would follow, by (23), that c is not consistent.

It may be noted that this proof is also constructive, i.e. it permits, if a proof from c is
produced for w, the effective derivation from c of a contradiction. The whole proof of
Proposition XI can also be carried over word for word to the axiom-system of set theory M,
and to that of classical mathematics A,68 and here too it yields the result that there is no
consistency proof for M or for A which could be formalized in M or A respectively, it being
assumed that M and A are consistent. It must be expressly noted that Proposition XI (and the
corresponding results for M and A) represent no contradiction of the formalistic standpoint of
Hilbert. For this standpoint presupposes only the existence of a consistency proof effected by
finite means, and there might conceivably be finite proofs which cannot be stated in P (or in M
or in A).

Since, for every consistent class c, w is not c-provable, there will always be
propositions which are undecidable

67 That the correctness of w Imp (17 Gen r) can be concluded from (23), is simply based on the fact
that—as was remarked at the outset— the undecidable proposition 17 Gen r asserts its own unprovability.

68 Cf. J. v. Neumann, ‘Zur Hilbertschen Beweistheorie’. Math. Zeitschr. 26, 1927.
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(from c), namely at, so long as Neg (w) is not c-provable; in [198] other words, one can
replace the assumption of ω-consistency in Proposition VI by the following: The statement “c
is inconsistent” is not c-provable. (Note that there are consistent c’s for which this statement
is c-provable.)

Throughout this work we have virtually confined ourselves to the system P, and have
merely indicated the applications to other systems. The results will be stated and proved in
fuller generality in a forthcoming sequel. There too, the mere outline proof we have given of
Proposition XI will be presented in detail.
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