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MATHEMATICS

CONTRIBUTIONS TO THE THEORY OF MODELS. I
BY

ALFRED TARSKI

(Communicated by Prof. A. Heyrine at the meeting of Junc 26, 1954)

Introduction

Within the last years a new branch of metamathematics has been
developing. It is called the theory of models and can be regarded as a part
of the semantics of formalized theorics. The problems studied in the
theory of models concern mutual relations between sentences of formalized
Lhcorli('s and mathematical systems in which these sentences hold. Every
set, X of sentences determines uniquely a class K of mathematical systems:
in fact, the class of all those mathematical systems in which every sentence
of 2 holds. 2’ is sometimes referred to as a postulate system for K; mathe-
matical systems which belong to K are called models of Z. Among questions
which naturally arise in the discussion of these notions, the following may
bo mentioned: Knowing some structural (formal) properties of a set X of
sentences, what conclusions can we draw concerning mathematical
properties of the correlated class K of models? Conversely, knowing some
mathematical properties of a class K of mathematical systems, what can
we say about structural properties of a set X which constitutes a postulate
system for K¢ Among publications in this field we may point out the
articles and monographs Birkrory [1], HeNkix [8], RosiNsoN [16], and
Tawskr [23] listed below in the Bibliography 1).

In this paper we present some new results from the theory of models 2).
In § 1 we consider sets 2 consisting exclusively of first-order universal
sentences; the correlated classes of models are called universal classes of
relational systems. We give a simple mathematical characterization of

e e e i,

) The well-known Léwenheim-Skolem theoremn, which was fivst proved in
1815, may be regarded as the earliest result in the theory of models. Tn the author’s
paper [20], part 11, pp- 298-301, the development of the theory of models as a
separate fiold of research was cloarly anticipated, some general notions in this
tield wore introduced, and some results were established ; as indicated 1. cit., - 301,
these results originated in 1926-1932, Cf. {20] also for bibliographical references
to ewlier publications. (The numbers in square brackets refer to the bibliography
which will follow § 2 of this paper.)

")v Most results of this paper were obtained in 1949-1950 and discussed in &
seminar condueted by the author in the University of California, Berkeley, in Fall
1950; they have been summarized in [217 and [24]. The last two theorems of § 2
have been found recently. The paper was prepared for publication while the author
was working on a research project in the foundations of mathematics supported
by the Office of Ordnance Research, U.S. Army.
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universal classes, i.e., a set of simple mathematical conditions which are
necessary and sufficient for a class K to be universal, and we establish
some related Tesults concerning these classes. In § 2 we are dealing with
sets I consisting exclusively of algebraic equations (identities); the
correlated classes of models are referred to as equational classes of algebras.
A mathematical characterization of equational classes was first given in
{1]. Using results of § 1, we establish a new set of necessary and sufficient
conditions for a class of algebras to be equational. In the last two theorems
of § 2 a special class of algebras, in fact, the class L of representable relation
algebras, is discussed. We show that the class L is equational and we state
some purely algebraic properties of L implied by its equational character
(e.g., the fact that a homomorphic image of a representable relation algebra
is itself a representable relation algebra). What seems especially interesting
in connection with these last results is that no set of equations which could
serve as a postulate system for L has yet been actually exhibited, and that
no purely algebraic proof of those properties of L implied by its equational
character is known at present.

§ L. Universal classes of relational systems

In the subsequent discussion various set-theoretical notions will be
involved, in particular those of an ordinal and a cardinal. We assume that
ordinals have been defined in such a way that every ordinal coincides with
she set of all smaller ordinals. A cardinal can be understood as an ordinal
which has a larger power than every smaller ordinal. Given an ordinal &,
an a-termed sequence (i.e., a sequence of type a) with consecutive terms
Tgy Typ over Leo +ov 18 represented by (Zg)sca sometimes also by {(Zg, o) Ta-r)
(if « is not a limit ordinal) or by (&g, .o, Tes -eo) (without indicating the
type of the sequence). A similar notation (a);; is somebimes used to
represent a system of elements indexed by an arbitrary set I (ie.,
strictly speaking, a funetion, with domain /, which correlates an element
¥, with every element i of I). Given a set B and an ordinal «, the set of all
a-termed sequences (T gy in which all terms belong to B (wge B for § < o)
is denoted by B Thus, x and f being two ordinals, 8* denotes here the set
of all a-termed sequences in which every term is an ordinal smaller than 8.

We identify finite ordinals with natural numbers; given a natural
number v, we do not distinguish between »-termed sequences and ordered
ptuples (g, s Tyy)- BY a2-07Y relation we understand an arbitrary sct R
of ordered »-tuples; R is called a finitary relation or, simply, a relation if it
is a y-ary relation for some natural ». In case the relation R is not empty,
the number » is uniquely determined by E and is called the rank of R; the
empty set is regarded as a relation of any given rank .

By a relational system we understand an arbitrary system (seqquence)
R=(4, By, ..., Bey - in which A4 is a non-empty set, Ry, ..., B, ... are
finitary relations, and each relation R is included in A% (R, CA") where
ve is the rank of Re; the type of the sequence (Ryy oo Bey ) 18 called the
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order of R %). Elements of the set 4 are sometimes referred to as elements of
the system R; we speak of the power of R meaning the power of A4: % is
called finite if 4 is finite, etc. Two relational systems

(1) R=(4, Ry, ..., B, ..>
and

(ii) &=(B, 8, ..., Se, ..>

are called similar if they are of the same order x and if, for every £ <«, the
corresponding relations R, and S, are of the same rank. A class consisting
of all relational systems which are similar to a certain system 9 is called a
species or a similarity class (cf. [1], p. 439, and [10], part I, p. 896; since
the notion of rank when applied to the empty relation is ambiguous, we
may assume here that no relation R; constituting % is empty). When
discussing a class K of relational systems, we shall always tacitly assume
that any two systems of K are similar, i.e., that K is included in a similarity
class.

M and & heing two similar systems of order x defined by formulas (i)
and (ii), we say that & is a subsystem of % if BC A and if, for every &<,
Sg=Re N B (i.c., 3 is the intersection of R; and B¥) where v is the rank
of K. Given a class K of relational systems, $(K) denotes the class of all
subsystems of systems in K. In case K consists of one system 9, i.e.,
K={R}, we write S(R) instead of S(K); the same applies to all symbols
introduced below which involve a variable class K. S,(K) (where y is a
cardinal) is the class of all systems of $(K) with power smaller than y; thus,
in particular, S, (K)is the class of all finite systems of §(K). The class K is
called a chain if K is not empty and if, given any two systems in K, one of
them is always a subsystem of the other (i.e., we have % e S(€)or © e S(R)
for any 9%, & € K).

Let again N and S be two systems of order x defined by (1) and (ii).
A function { is said to map R homomorphically onto & if (1) the domain
of fincludes 4 ; (2) B is the set of all elements fla) with a € 4; (3) for every
&<u, S, consists of all ordered »-tuples {flay), ..., f(a,_;)> where v is the
rank of R; and {ay, ..., a,_;> belongs to R,. If, in addition, f is a biunique
(univalent) function, it is said to map R isomorphically onto &. In case there
is a function f which maps i homomorphically, orisomorphically, onto &, %
issaid to be homomorphic, or isomorphic, to &, and Sis called a homomorphic,
or isomorphic, image of R. (The relation of isomorphism, as opposed to
that of homomorphism, is of course symmetric.) H(K) is the class of all
homomorphic images and I(K) that of all isomorphic images of systems
belonging to a given class K; hence, e.g., SI(K) is the class of all subsystems
of isomorphic images of systems in K. A system Sis said to be isomorphically
embeddable in a system R if it is isomorphic to a subsystem of R, i.e.,

S elsi).

) In [10] (cf. part I, p. 897) the relational systems are referred to as algebras
in the wider sense; in (7] the relational systems of finite order are called polyrelations.

PRSPEEN N 1% 4
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- The following formulas are easily seen to hold for every class K of
relational systems:

K C S(K)=SS(K),

K C I(K)=1I(K) C H{K) = HH(K),
IH(K) = HI(K) = H(K),

SH(K) C HS(K),

SI(K) = IS(K).

We also have for any two classes K and L of systems
S(K U L)=S(K) U S(L), H(K U Ly=H(K) U H(L), I(KU Ly=I(K) U I(L),
and similarly for arbitrary many classes; hence

KCL
always implies

S(K) C S(L), H(K) C H(L), and I(K) CI(L).

All this is obvious, except perhaps for the inclusion IS(K) C SI(K), which
constitutes a “half” of one of the formulas listed above and which can be
established by means of the familiar “‘exchange procedure” (cf., e.g., [28],
p. 42).

The union of two systems R and & defined by formulas (i} and (i) is
the system

(i) T=dC, Ty ooy Ty )

/

of the same order x in which C=4 U B (i.e., C is the set union of 4 and B)
and similarly 7= R, U S; for every &< x. Analogously we define the union
of a class K of systems. As is easily seen, if Kis a chain and R is the union
of K, then K C $(R). By U(K) we denote the class of all unions of chains
which are subelasses of K. It may be noticed that all statements involving
U(K) in the subsequent discussion remain valid if we agree to denote by
U(K), not the class of all unions of chains, but either the less comprehensive
class of all unions of well-ordered chains included in K or the more com-
prehensive class of all unions of directed subclasses of K. (A class L is called
directed if, for any systems R, & e L, there is a system T € L such that
R, G e $(T).)

The cardinal (direct) product R x & of two systems R and & defined by
(i) and (ii) is the system T defined by (iii) such that (1) ' consists of all
ordered couples (a, b> with a € 4 and b € B, and (2), for every &<, T,
consists of all ordered w-tuples <{ag, bpDs «+vs (@ys by Where v is the
common rank of R; and S {ay, ..., @) € Bg, and (b, .o, b, €8
Analogously, we define the cardinal product P (B¥) of a system
{RD, . ; of relational systems

RO = (4D, RO, ..., R, ..>

indexed by an arbitrary set I; instead of couples (a, by with a € 4 and
be B, and ordered »-tuples of such couples, we use gystems {a);¢r
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with a¥ e A% for every i el, and ordered v-tuples of such systems.
K being a class of relational systems, P(K) is the class of all cardinal pro-
ducts B,¢(R?) where I is a non-empty set and R e K for every i e1;
given a cardinal y, P(K) is the class of all such products in which, in
addition, the power of I is smaller than y. Thus, if we agree not to dis-
tinguish ordered 1l-tuples from the only terms of these 1l-tuples, then
PQ(K) simply coincides with K while P;(K) consists of all systems of K and
all products f x & with R, & € K (together with some systems isomorphic
to these products).

For any given similarity class R we construct a formalized theory T'(R)
within which relational systems of R can be discussed. This theory is
simply the first-order predicate logic (with the identity symbol, without
variable predicates) enriched by some non-logical symhols 4). There are
denumerably many  distinet tndewvidual variables in T(R), which are
arranged in a simple infinite sequence (v, ... v, ...> 0. The set of logical
constunts of T(R) consists of the sentential connectives —, v, n, ~, the
wniversal quantifier A, the existential quantifier V, and the identity symbol =.
The non-logical constants are predicates. They are arranged in a sequence
Py ooy Py o e where « is the common order of all relational systems
A, By, ... By, .. belonging to R. Moreover, if B, (5 «) is a »-ary relation,
then P is a v-placed predicate. The identity symbol is also a predicate and,
in fact, a two-placed (binary) predicate; it is the only predicate which is a
logical constant,

An expression Py (u,,, s ¥y, ) where Py is a w-placed predicate and
Cupe -oon By e variables is called an atomic [ormule; appropriate com-
binations of atomic formulas by means of sentential connectives and
quantificr expressions (i.c., quantifiers followed by variables) are referred
to as formulas. A formula without free variables is called a sentence; it is
called o universal semtence if it is of the form

Aty oo At (B)

where ¢ s a formula containing no quantifiers.

We assume it to be clear under what conditions a sentence o of T(R)
i salisfied in o system R={4, Ry, ..., R, ...> of R. Roughly speaking,
this means that o proves to be true if all the variables of R arc assumed
to range over the set 4, the logical constants are interpreted in the usual
wiay, and the predicates P, ..., P, ... are understood to denote the
relations Ry, ..., Ry, ..., respectively. A system N is called a model of a
sentence o if ¢ is satistied in #; it is called a model of a set X of sentences
ff' it-is & model of every sentence of this set. A class K of systems (included
in R) is ealled an arithmetical elass, in symbols K € AC, if it consists of all
models of a certain sentence ¢ of T(R). K is called an arithmetical class in

S
F N . . . ) . .
) For a wore detailed discussion of such theories {the so-ecalled theories with
standard formalization) see [25], pp- 5 ff.

sl it SRS

v sl
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the wider sense, in symbols K ¢ AC,, if it consists of all models of a certain
set X of sentences; this is equivalent to saying that K is an intersection of
arbitrarily many arithmetical classes ®)¢). Two systems £ and & are
called arithmetically equivalent if every sentence of T'(R) which holds in
one of these systems holds also in the other; or, what amounts to the same,
if every class K € AC which contains one of these systems contains also
the other. If, instead of considering arbitrary sentences of T(R), we
restrict ourselves to universal sentences, we arrive at the notions of a
universal (arithmetical) class, a universal class in the wider sense, and
universally equivalent systems 7). The formula K € UC, or K € UCy, expresses
the fact that K is a universal class, or a universal class in the wider sense,
respectively. For instance, among systems (4, R) in which R is a binary
relation, the class of all partially ordered systems and that of all simply
ordered systems belong to UC. On the other hand, the class of all reflexive
systems withoit eycles belongs to UC,, but not to UC. ({4, R} is said to
be a reflexive system without cyeles if <z, x> € R for every z € 4 and if,
for every natural number »# 0 and every sequence {Z, ..., &,> € A1, the
formulas (xg, 2> € R, ..., &y, @) € B, and {x,, 2y € B imply 2,=ux,.}

Various elementary properties of UC and UC, directly follow from the
definitions of these notions. Thus, e.g., unions and intersections of finitely
many classes in UC are again classes in UC; similarly, unions of finitely
many and intersections of arbitrarily many classes in UC, are again classes

in UCA.

$) The notions of arithmetical classes and arithmetical equivalence were firgt
introduced in [20], part 1T, pp. 298 ff.; they were applicd there only to relations,
and not to relational systems, and instead of “arithmetical class” and ‘‘arithmetical
equivalence” the terms “elementary property” and “elementary equivalence’’ were
used. A purely mathematical definition of arithmetical classes (and & discussion of
their fundamental mathematical properties) can be found in [23].

8} In [8], p. 418, the notion of a quasi-arithmetical class is introduced; a class
(of relational systewns) is called quasi-arithmetical if it consists of all models of a
set of first-order sentences. Tt could thus scern that quasi-arithmetical classes coin-
cide with arithmetical classes in the wider sense. Actually this is not the case since
the terms “sentence” and “model’” are not used in [8] exactly in the same sense
with which they appear in the present article. To define quasi-arithmetical classes
in our terminology, we assume that the formalized theory T'(R) is provided with
arbitrarily (not only denumerably) many variables and we use the notion of simul-
tancous satisfiability of an arbitrary set of formulas (not necessarily gentences);
a class is quasi-arithmetical if it consists of all relational systemns in which a certain
set of formulas is simultancously satisfiable. From this definition it is casily soen
that every arithmetical class in the wider sense is quasi-arithmetical. The converse
in general fails. For instance, given any relational system R, the class K of all systems
S such that 15(8) does not contain % is always quasi-arithmetical (for an idea of
a proof see [8], pp. 414 f.). In general, however, K is not in ACy,; it is certainly not
in AC, if R is a non-denumerable systern of finite or denumerable order.

7y Universal classes were first discussed in [14], p. 190, where they were referred
to as universally definable classes. By means of the method developed in [23], pp.
707 ££., the notion of a universal class can be defined in purely mathematical terms.
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We shall give below simple and purely mathematical criteria, formulated
in terms of subsystem and isomorphism, for a class of relational systems
to be universal in the wider sense and for two relational systems to be
universally equivalent; ef. Ths. 1.2, 1.3, 1.2/, 1.3/, and 1.4. An even simpler
criterion makes it possible to single out universal classes from among all
arithmetical classes; cf. Ths. 1.7 and 1.8.

Theorem 1.1. ZLet 8=(B,8,, ..., 8, be a finite relational system
of finite order v, and let K be the cluss of all systems N (simalar to &) in which
& is not isomorphically embeddable. Then K e UC.

Proof: The elements of B are assumed to be arranged in a finite
sequence (b, ..., b,_1>, a>0, without repeating terms. Let R be the simi-
larity class containing &. For every p<v let g, be the rank of the relation
8, and hence also the place number of the predicate P, in T'(R). Let @ be
the set consisting of the following formulas of T'(R): (i) all the formulas
V=9 with x.-2i<m; (i) all the formulas P, (v, ..., ¥, ...) sueh that
<y, gy ey %y, - € 3%, and the ordered g, -tuple (b, , ..., b’w ...> does
not belong to S,: (iii) all the formulas ~ P, (v, ..., > ---) such that
poivy Ky, ooy gy oy €%, and (b, oy by, .0 €8, Clearly, the set @
of formulas is finite, so that its elements can be arranged in a finite sequence
Py s Pory. Tt is easily seen that the universal sentence

(1) AVg oo Ay (v ool V)

holds in a system § if and only if i has no subsystem isomorphic to &.
Hence K is the class of all models of (1) and consequently K e UC.

Theorem 1.2, Let K be a cluss of relutional systems of finite order.
For K e UCy it is necessary and swfficient that K satisfy the following three
conditions :

() S(K)C K;
(i) IK)C K;
(iii) for every R, ¢f S,(N) C K, then R e K.
Condition (iil) can be replaced by
(i) U(K) C K;
and the three conditions (1)—(iil) can be repluced by one:
(iv) for every R, if S,(N) CIS(K), then R e K.

Proof: If K& UC,, then K consists of all models of a certain set X of
universal sentences. It is obvious that, if a universal sentence o holds in a
system M, it also holds in every subsystem of 9t and every isomorphic
image of . Also, it can easily be shown (e.g., by contradiction) that if ¢
holds in every finite subsystem of N, then it holds in the system R itself.
Hence, conditions (i)—(iii) are necessary for K € UC,.

Condition (iv) elearly follows from (i)—(iii). Assume now that the class

i g AR,
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K satisfies (iv). Let K’ be the intersection of all classes L € UC whieh
include K. Obviously, K' € UC, and K C K’. Suppose there is a system &
which belongs to K’ but not to K. By (iv), a certain finite subsystem & of
% is not isomorphically embeddable in any system of K. Let M be the
class of all systems in which & is not isomorphically embeddable. Thus
KC M and, by 1.1, MeUC. Hence, by the definition of K', K'C M.
Therefore ) € M; in other words, the subsystem & of R is not isomor-
phically embeddable in R, which is obviously absurd. In view of this
contradiction, the classes K and K' must coincide, and K e UC;. Thus
condition (iv) is sufficient for K e U(,.

Finally, as regards the relation between (iii) and (iii’), the first of these
conditions implies the second for every class K of relational systems
satisfying (i). For, if Lis a chain included in K and R is the union of L,
then, as is easily seen, S,(N) C $(K); hence S5,(3) C K by (i), and NekK
by (iii). Conversely (iii’) implies (iii) for any class K of systems whatsoever.
In fact, assume to the contrary that (iii’y holds while (iii) fails. Thus there
are systems 9 for which S, (%) C K and which do not belong to K; let 3y
be a system with these properties and with the smallest possible power.
Obviously ®, is infinite and hence, by the well-ordering principle, it can
be represented as the union of a chain L of systems each of which has a
smaller power than R,. Clearly, for every © € L we have §,(&)CS, (R, CK
and therefore & e K. Consequently, L C K and, by (iii’), 9, € K, which
contradicts our assumption. Thus, (iii) can be replaced by (iii’), and the
proof has been completed.

Tt has been observed by Vauvewur in [27] that, by slightly modifying 1.2,
we obtain a mathematical eriterion for K € UC; for this purpose it suffices
to strengthen condition (iii) in the following way:

(iii*) There is a natural number v sueh that, for every R, if S,(R) € K,
then R e K.

Instead of modifying 1.2 (iii), we can modify 1.2 (iv) analogously.

Theorem 1.3. Let R and & be two similar relational systems of finite
order. For R and & to be universally equivalent it is necessary and sujficient

that
S, (R) CIS(G) and S,(&) C IS(R).

Proof: Assume first that % and & are universally equivalent. Let
R’ e S, (R) and let K be the class of all systems T (similar to ) such that
®' does not belong to IS(Z); in other words, R’ is a finite subsystem of
% and K is the class of all systems in which %' is not isomorphically
embeddable. By 1.1, K & UC. Therefore, since K obviously does not contain
%, it cannot contain &, so that R’ € 18(&). Hence

’

(1) S.(R) C15(©).



For the same reasons
(2) S.(&) CIS(R).

Thus formulas (1) and (2) are necessary for i and & to be universally
equivalent.

Assume now, conversely, that formulas (1) and (2) hold. Consider a
class K € UC which contains one of the systems R and &, say &. (1) then
implies

(3) S.(MN) CIS(K).

Since K € UC, we have a fortiori K € UC, and therefore K satisfies 1.2 (iv}).
Hence, by (3), K contains . Similarly, if K contains 8, it must also con-
tain &. Thus formulas (1) and (2) are jointly sufficient for & and & to be
universally equivalent, and the proof is complete.

Tt is easily scen that the two inelusions formulated in 1.3 can be replaced
by one equality:

IS, (N)=15,(3).

As has been noticed by VaueHT in [27], Ths. 1.1—1.3 do not directly
extend to relational svstems of infinite order. To obtain analogous results
for systems of arbitrary order, we introduce the following notation.

With every relational system

(i) R=C4, Ry, ..., Re, ...
of order « and with every sequence

(if) gy oer by o> €0

we correlate the system
(iii) Rt = <A By Ry )

of order f, called the reduct of R indexed by the sequence {(§y ..., &, ...>. If
Kis any class of systems (i) and <{{,, ..., {z, ... any sequence satisfying (ii),
we denote by K, ., = the class of all reducts (iii) correlated with
systems R e K.

For our immediate purposes we need exclusively finite reducts, i.e.,
reducts indexed by finite sequences. Using this notion, we shall now
formulate and prove Ths. 1.1'—1.3” which can be recognized as extensions
of 1.1—1.3 to systems of arbitrary order.

e--..

Theorem 1.1, Let &=(B,Sy ....8, ...0 be a finite relattonal
system of order « ; given a finite sequence {{q, ..., {,1> € o, let K be the class
of all systems R (similar to &) such that &, . | s not isomorphically
embeddable in Ry, . . Then K e UC.

Proof: entirely analogous to that of 1.1.
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Theorem 1.2'. Let K be u class of relational systems of order «. For

K € UC, it is necessary and sufficient that K satisfies conditions (i), (ii) of 1.2
and the following condilion .

(iii) for every R, if S, (N, .;_ ) CK;

foniy_, JOT every fimite sequence
Ly oeos Gyoyy €7, then R e K.

These three conditions can be replaced by one:

(iv) for every R, if S,(Ne, .0, ) CIS (K, 2, ) for every finite sequence

oy oes Gpyy €&, then R e K
Proof: With small changes, we argue as in the proof of 1.2, applying
1.1’ instead of 1.1.

Theorem 1.3. Let R and & be two relational systems of arbitrary
order. For Bt and & fo be universally equivalent it is necessary and suffictent
that, for every finite sequence (o, ..., §, 1> € o, we have

SRty SIS (8, y) and Su(&, e, JEIS(BRe, g, )

(and thus that the systems Ry, .  and &, . | be universally equivalent).
Proof: analogous to that of 1.3, applying 1.1’ and 1.2’ instead of

1.1 and 1.2.

With the help of 1.1'—1.3’ we shall be able to establish most of the sub-
sequent theorems of this section without restricting ourselves to systems
of finite order.



MATHEMATICS

CONTRIBUTIONS TO THE THEORY OF MODELS. 11
BY

ALFRED TARSKI

(Communicated by Prof. A. HEyring at the meeting of June 26, 1954)

Theorem 1.4. ZLet R and € be two similar finite relational systems of
arbitrary order x. For R and & to be universally equivalent it is necessary
and sufficient that they be isomorphic.

Proof: The sufficiency of the condition is obvious. To prove its

necessity, we suppose that the systems 3 and & are universally equivalent
but not isomorphic. We put

R=<{4, R, ..., R, ..),
@=<B, SO? ""SE’ >

Since the sets 4 and B are finite, there are only finitely many functions f
whose domain is 4 and which map 4 onto B; they can be arranged in a
finite sequence (fy, ..., f,.;»>. None of these functions f,, »<», maps R
isomorphically onto & hence, as is easily seen, we can correlate with each
such fanetion an ordinal ¢, <«, such that f, does not map <4, R, > iso-

morphically onto (B, S; >. Consequently, none of the functions f,, ..., f,_,
maps the system

(1) (A, By, o By, D=Re, o .
isomorphically onto the system
(2) (B By o8, _2=Cp, i, -

But since the isomorphism of these two systems cannot be established by
any function different from f,, ..., f,_,, we arrive at the conclusion that the
systems R, . and &, . are simply not isomorphic. On the
other hand, the systems % and & being universally equivalent, we con-
clude by 1.3’ that Re,....,_, I8 isomorphic to a subsystem (B, 8[,....5 >
of &, ., and similuly &, . is isomorphic to a subsystem
A", B, ..., Ry > of Ry, ¢, . Consequently, the set 4 has the same
power as the subset B’ of B, and the set B has the same power as the
subset A’ of 4. Remembering that the sets 4 and B are finite, we obtain
B=B and &, .  =<B,8{, ...,8 >, so that the systems Re,t,
and &; ., ., now turn out to be isomorphic. Thus our supposition
leads to a contradiction. We conclude that, if # and & are universally
equivalent, they are isomorphic, and the proof has been completed.

The following result of HENRIN will be involved in our discussion:
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Theorem 1.5. Let K be a class of relational systems of arbitrary order
such that K ¢ AC4. Then, for every relational system R (similar to systems
in K), we have N & S(K) provided S,(M) C S(K).

Proof: see [8], pp. 4141

It may be noticed that, for every class K of systems, the conclusion of
1.5 is cquivalent to the following formula:

US(K) C S(K).
For the equivalence of the two formulations compare the proof of 1.2 (last

part).
Actually we shall apply, not 1.5, but a somewhat stronger result:

Theorem 1.5°. ILet Kbea class of relational systems of arbitrary order
o such that K e AC,. Then, for every relational system R (ssmilar to systems
in K), we have R e S(K) provided S,(R, . ) CS(K,,. ;,_,) holds for
every finite sequence (&, ..., {4y €&

Proof: entirely analogous to that of 1.5.

It may be observed that in the discussion preceding 1.5 we have not
applied the axiom of choice except when deriving 1.2(iii") from 1.2(iii);
if we omitted condition (iii’) (which is rather irrelevant for the subsequent
discussion) in formulating 1.2, we could state that all the results preceding
1.5 are independent of the axiom of choice. On the other hand, this axiom
is essentially involved in the proofs of 1.5 and 1.5'%). In our further
discussion we shall find results which are based upon 1.5 or 1.5° and
essentially depend on the axiom of choice (1.6 and 1.9) as well as results
independent of this axiom (1.11, 2.1, and 2.2 except for 2.2(i)). In some
cases the situation is less clear. For instance, the proofs of Ths. 1.7 and 1.8
which are given here are based upon 1.5'; however, as was pointed out
by C. . CHANG, it is possible to modify these proofs so as to dispense with
the use of the axiom of choice.

Theorem 1.6. Let K be a class of relational systems of arbitrary order
o such that K e AC,. Then S(K) e UC,.

Proof: Let
(1) L=S(K).
We easily see that
(2) snot
and also, since I{(K)C K,
(3) I{Ly=15(K) C SI(K) C S(K)=L.

8) As was shown in [8], p. 415, Th. 1.5 (and hence.a fortiori 1.8") implies the
representation theorem for Boolean algebras; on the other hand, it is known that
the latter theorem cannot be established without the help of the axiom of choice. The
problem remains open whether 1.5 (or 1.5") is equivalent to the axiom of choice.
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By 1.5" and (1) we conclude:

(4)  for every system R, of S,(Ry, . ) CS(L;

C S(L;,...z,_,) holds for every finite
sequence {{y, ..., {1y €, then R e L.

From (1)—(4), by applying 1.2" (with K replaced by L), we immedia-
tely obtain the conclusion.

We thus see that 1.6 can be derived in an elementary way from 1.5" with
the help of 1.2. The derivation in the opposite direction—of 1.5° from
1.6—1is even simpler. In view of the rather elementary character of 1.2
we can therefore regard Th. 1.6 as an equivalent formulation of Th. 1.5',
As a matter of fact, from 1.2’ it is seen that the conclusions of 1.5' and 1.6
are equivalent for every class K of relational systems such that I(K) C K
(and not only for every class K € AC,). Similarly, by 1.2, the conclusions
of 1.5 and 1.6 are equivalent for every class K of systems of finite order
such that I(K) C K. In both cases the equivalence is independent of the
axiom of choice.

Theorem 1.7. Let K be a class of relational systems of arbitrary order.
For KeUC, it is necessary and sufficient that K e AC, and $(K) C K.

Proof: If KeUC, then obviously KeAC, and S(K) C K (cf. 1.2'). If,
conversely, KeAC, and S(K)C K, we clearly have S(K)=K and we
obtain S(K) e UC, by 1.6, so that finally K e UC,.

Theorem 1.8. Let K be a class of relational systems of arbitrary order.
For K e UC it 1s necessary and sufficient that K € AC and S(K) C K.

Proof: The necessity of the conditions is obvious. To prove their
sufficiency, assume that K € AC and S(K) C K. Then, by 1.7, K € U(,; i.e.,
there is a family F of classes L € UC such that K is the intersection of all
these classes. Both all the classes LeF and their intersection K are
arithmetical. Hence, by the compactness theorem for arithmetical classes
(ef. [23], p. 710, and also [15]), there is a finite subfamily G of F such that
K coincides with the intersection of all classes L € G. Clearly, the inter-
section of finitely many universal classes ig itself universal. Hence K e UC,
which completes the proof.

We thus see that 1.7 remains valid if we replace in it both UC, by UC
and AC, by AC. It can be shown that 1.6 loses its validity if modified in
the same manner. In fact, the class K of all groups treated as systems
with one binary operation is clearly in AC (cf. the beginning of § 2 of this
paper); on the other hand, it easily follows from the results in [12] that
$(K) is not in UC.

A class L of relational systems of order 8 is called pseudo-arithmetical,
or pseudo-arithmetical in the wider sense, in symbols L € PC, or L e PC,, if
there is a class K of systems of some order x and a sequence ({,, ..., {s,...>exf
such that KeAC, or KeAC,, and L=K, . . By analyzing the
proofs of 1.5 and 1.5" we notice that these two theorems can be extended
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to arbitrary psendo-arithmetical classes in the wider sense, i.e., that they
remain valid if AC, is replaced hy PC,4?). Consequently 1.6 and L7 can
also be extended in an analogous way. (However, 1.8 loses its validity if
AC is replaced by PC. For instance, let K be the class of all systems (4, R)
where R is a binary relation such that, for some relation 8, BCS and
(4,8} is a simply ordered system. As is easily seen, K € PC and $(K) C K;
it can be shown, however, that K is not in UC. K proves to coincide with
the class of reflexive systems without cycles, which was pl'eviously men-
tioned in this discussion.)

Tor further reference we state heve explicitly (though without using the
symbol PC,) one of the extensions just mentioned, in fact, that of 1.6,

Theorem 1.9. Let K be a class of relational systems of arbitrary order
o« such that K € AC, ; lel 8 be any ordinal and (&, ..., &g, ...» be any sequence
in of. Then S(K, . )eUC,.

Proof: We first extend 1.5° to pseudo-arithmetieal classes in the
wider sense by repeating, with inessential changes, the original proof of
1.5in [8], pp. 414 f. Hence, with the help of 1.2/, we derive our theorem by
arguing as in the proof of 1.6.

Besides the class of reducts K, . . a closely related class
Kobe deserves  attention. By definition, K. ... consists of all
relational systems © such that for some system N with R, = ©
we have R € K. On the other hand, Ké-#¢ is defined ay the class of all
systems & such that for cvery system 9 with M, . =G we have

R e K. Kbo-ie can also be defined by means of the formula
Kéorfe o Ry, oo~ (R Ky 2

where R is the similarity class including K (and L—K denotes as usual the
difference of the classes L and K). It turns out that 1.9 does not remain
valid if Kp, ;. . is replaced by Kéfe For instance, as is casily
seen, the class L of all well-ordered systems (A, R) ean be represented in
the form L= Kt where K eAC; nevertheless, S(L) is not in UC,
since clearly S(L)=1L and 1.2’(iii) fails for K=L. On the other hand we
have the following:

Theorem 1.10. Let K be a class of relational systems of arbitrary

%) Henkin points out in [8], pp. 418 f., that Th. 1.5 extonds to quasi-arithmetical
classes (cf. footnote 6 above). From some further remarks in [8), pp. 425 £, it follows
that the conclusion of 1.5 applies to gtill other clusses of relational systems; in fact
to every class which consists of all models of a set of sceond-order sentencos having

the form

VR, ...V, (¢)
where R,,...,H, are variable predicates and @ is a first-order formula (cf. the romarks
below following 1.10). As is easily seen, hoth the quasi-arithmeatical classes and the
classes just mentioned are gpecial instunces of PCy.
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order x such that K e UC,; let § be any ordinal and (g, ..., Cey ooy be any
sequence in of. Then

1) K, .z

AERRECE T

(ii) Koo uc,.

Proof: To obtain (i), notice that the premise K e UC, obviously
implies K € AC4 and hence, by 1.9,

(1) S(K,,,.z..) € UCs.

On the other hand, from K e UC, we conclude that S(K)C K (cf. 1.27).
Hence, as is easily seen, S(K, .. )CK. . . and therefore

N R T ST

(2) S(K.,.. c0.) =K ¢

Formulas (1) and (2) give at once (i).

Conclusion (ii) is a direct consequence of 1.2; its proof does not involve
1.9 (and is independent of the axiom of choice). We simply check that,
under the assumption K e UC,, the class L= Kéofe satisfies all the
conditions mentioned in 1.2, i.e., 1.2(i), 1.2(ii), and 1.2/(iii) (with K and «
replaced by L and §). Details need not be given.

Laeee®
-

If we replace UC4 by UC everywhere in 1.10, conclusion (ii) remains
valid. However, (i) falls away; this is seen from the example constructed
above to show that UC cannot be replaced by PC in 1.8,

Theorem 1.10 implies an interesting consequence which can be described
in metamathematical terms as follows. Assume that the relational systems
of a similarity class R are discussed, not within the theory 7T(R), but
within the second-order formalized theory 7'(R) obtained from 7T'(R) by
adding variable predicates. Thus 7"(R) contains, in addition to logical
constants, three kinds of symbols: individual variables vy, v, ..., constant
predicates Py, Py, ..., and variable predicates R, E,, .... As ig eagily seen,
every sentence in 7"(R) can be equivalently transformed into a sentence o
consisting of three consecutive parts: (i) a succession of arbitrary (universal
or existential) quantifiers, each followed by a variable predicate; (ii) a
succession of arbitrary quantifiers, each followed by an individual variable;
(iii) an arbitrary formula without quantifiers. In fact, the structure of
part (ii) of ¢ can be further specified; it can be assumed that in this part
all the universal quantifiers precede all the existential quantifiers (or
conversely). Now consider those sentences ¢ of the form just described in
which part (ii) contains no existential quantifiers. By an induction based
upon both conelusions of 1.10 we easily show that every sentence o of this
kind is equivalent to a set of first-order universal sentences; in other words,
if Z'is any set of sentences of this kind and K is the class of all models of
2, then KeUC, 1),

10y ‘When speaking of models of second-order sentences, we have exclusively
in mind the so-called standard models; cf., e.g., [8], p. 425. In other words, we
ggsume that the notion of satisfaction underlying that of a model is the one which
was discussed in a detailed way in [19], §§3 and 4.
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- From 1.9 and 1.10 we can derive various more special consequences in
which the notion of & redniet is not involved. For instance, it turns out that
SH(K) e UC4 and SIP(K) = UC, whenever K e ACy, and that H(K) € UC,
whenever K € UC,. The derivation of these results is simple, but not
quite direct. E.g., we do not know whether, under our definitions of AC,
and PC,, the formula K € AC, implics H(K) € PC,, although with the help
of 1.9 we can show that it implies SH(K) e UC,.

The next theorem is of a more special character. In a somewhat more

general form (given in Theorem .14 below) it will be applied in § 2, in
the proof of 2.2.

Theorem 1.11. Let K e a cluss of relational systems of arbitrary order.
If KeUCy and P,(K) C K, then P(K) C K.

Proof: By hypothesis, Kis the class of all models of a certain set 2
of universal sentences (belonging to the theory T(R) where R is the
similarity class including K). Tt is well known that every universal sentence
is equivalent to a conjunction of sentences of the form

(1) Ay, oo N (G0 Voo V@)

where each of the expressions ¢, ..., ¢ 18 either an atomic formula or the

negation of an atomic formula. Hence, without loss of generality, we can
assume that all sentences in X are of form (1). The hypothesis Py(K) C K
implies that % x & € K for any two svstems R, & of K. Using this fact
and applying an argument essentially due to McKixsey [13]), pp. 661,
we show that every sentence o in X can be replaced by a sentence o' which
and in which, in addition, at most one term of the
v g, is an atomic formula (while the remaining terms
_We thus arrive at a set 27 of sentences
such that (i) K is the class of all models of £, and (ii) every sentence in
X' is of form (1) and has the additional property just mentioned. From
(ii) it is easily seen that a sentence of X' always holds in the cardinal
product ;e (R,) of systems N, whenever it holds in all the systems
R, (6 cI); cf,, e.g., Horx [9], p. 17, Th. 411). Hence, by (i), we arrive at
the desired conclusion: P(K)C K.

is also of form (1)
disjunction ¢y v ...
are negations of atomic formulas)

As is easily seen, under the assumption that K e UC; (or KeAC, or,
more generally, I(K) C K), the formula Py(K) C K occurring in the hypo-
thesis of 1.11 is equivalent to the formula P,(K)C K.

It may be mentioned that VAUGHT has recently obtained the following
result which pr’esents a far reaching improvement of 1.11:

11y McKinsey in [19] and Hosx in [9] concern themselves exclusively with
algebras (in the sense of § 2 of this paper). However, their results can easily be
extended to arbitrary relational systems once the notion of a cardinal product has
been properly defined for thesc systems.
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Let K and L be two classes of relational systems of arbitrary order. If
KeAC, and P, (L) C K, then P(L) C K.

In addition to the notions discussed so far in this section, we can consider
more general notions of a relative character. Let M be a class of relational
systems included in a similarity class R, and let K be another subclass of R.
K is said to be arithmetical relative to M, in symbols K AC(My, if
K=L N M for some class L € AC; in other words, if K consists of all those
systems of M which are models of a certain sentence ¢ of the formalized
theory 7'(R). In an entirely analogous way we define the notions AC 4( M),
UC(M), and UC4(M). In case M= R, AC(M) obviously coincides with AC:
in case M e AC, AC(M) is simply the family of all those subclasses of M
which belong to AC; similarly for AC,(M), UC(M), and UC,(M). Various
results stated above and involving UC and UC, can easily be extended,
with some minor changes in formulations, to the relativized notions
UC(M) and UC4(M); in certain cases, however, this requires additional
assumptions concerning M. F¥or further reference some extensions thus
obtained will be stated here explicitly.

Theorem 1.12. Let K and M be two classes of relational systems of
finite order. For K € UC4(M) it is necessary and sufficient that the following
condetions be salisfied :

iy KC M;

(i) for every M e M, if S,(R) CIS(K), then R e K.

Proof: The necessity of conditions (i) and (ii) obviously follows from
the definition of UC4(M) and from Theorem 1.2. Assume now that these
two conditions are satisfied, and let K’ be the intersection of all classes
L € UC which include K. By arguing as in the proof of 1.2 (second part),
we easily show with the help of 1.1 that K=K’ N M; since K’ € UC,, we
conclude that K e UC,(M).

Theorem 1.13. Let K and M be two classes of relational systems of
arbitrary order. If MeACy and K e AC4(M), then S(K) " M e UC4(M).

Proof: By hypothesis, K=L N M for some L € AC,; hence K & AC,,
The conclusion now easily follows by 1.6.

Theorem 1.14. Let K and M be two clusses of relational systems of
arbitrary order. If P(M)C M, K € UC4(M), and P,(K) C K, then P(K) C K.
Proof: Entirely analogous to that of 1.11.

By taking in 1.12—1.14 the whole similarity class including K for M,
we clearly obtain 1.2, 1.6, and 1.11.
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