
 Notes on Tarski’s Definition of Satisfaction  

Here is a statement of the usual syntax of FOL 

 
A syntax for first-order language FOL consists of a series of sets (“parts of speech”) VblsFOL, ConsFOL, 

FuncsFOL, PredsFOL, TrmsFOL, AFFOL and FFOL, and the rule set RFOL meeting the following conditions: 
We stipulate that the following sets exist, called sets of atomic (or basic) expressions: 
 the (infinite) set of variables: VblsFOL ={v1,...,vn,...}; 
 some set ConsFOL of constants (proper names) drawn from (i.e.  subset of): {c1,...,cn,...}; 
 some set PredsFOL of predicates drawn from: {P01,...,P0n,...;P11,...,P1n,...;…;Pm1,...,Pmn,...;…} ; it is 

stipulated that P01 is ⊥, called the contradiction symbol  (it’s meaning is explained below); 
 some set FuncsFOL of functors drawn from: {f11,...,f1n,...;…;fm1,...,fmn,...;…}. 
The set RFOL of grammatical rules includes R~,R∧,R∨,R→, and R↔ from sentential syntax and three new 

rules: 
 RAF takes a symbol x and a string of n items y1...yn and makes up the string xy1...yn:  
   i.e. RAF(x,y1,...,yn)= xy1...yn; 
 RFunc takes a symbol x and a string of n items y1...yn and makes up the string x(y1...yn);  
   i.e. RFunc(x,y1,...,yn)= x(y1...yn); 
 R∀ takes the sign x and string y and makes up the string ∀xy; i.e. R∀(x,y)=∀xy. 
The set TrmsFOL of terms  is defined inductively:  
 1. Basis Clause. All constants and variables are terms (i.e. VblsFOL and ConsFOL are subsets 

TrmsFOL).  
 2. Inductive Clause. If t1,...,tn are terms and fn  is a functor, then the result fn(t1...tn) made up by apply 

to them the rule RFunc  is a term.  
 3. Nothing else is a term. 
The set AFFOL of atomic formulas of FOL generated by TrmsFOL, PredsFoL, and FuncsFOL is the set of all 

Pnmt1...tn  made up by applying the rule RAF to a predicate Pnm and the string of terms t1,...,tn. 
The set FFOL of formulas (also called the language) generated by TrmsFOL, PredsFoL and FuncsFOL is 

inductively defined: 
 1. Basis Clause.  If P is in AFFOL then P is in FFOL (i.e. AFFOL is a subset of FFOL). 
  2. Inductive Clause.  If P and Q are in FFOL, and v is a variable, then the strings ∼P, (P∧Q),  

(P∨Q), (P→Q), (P↔Q), and ∀vP that result from applying to them the rules  
R~,R∧,R∨,R→, R↔, and R∀ are all in FFOL. 

 3. Nothing else is in FFOL. 
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Here are two statements of the semantics of FOL.  The first is what is now the one commonly found in 
logic texts.  The second is closer to one of Tarski’s in the 1950’s in which it is perfectly clear that the 
notion of truth is extensional, i.e. that truth of a formula, even that of quantified formulas, is defined as a 
function of the truth of its parts. 

 
Let FFOL be a first-order language. 
A model or structure for basic expressions of FFOL  relative to a non-empty domain D and an 
interpretation operation ℑ is any A=<D,ℑ>, that meets the following conditions: 
• D≠∅. 
• Every constant c is assigned by ℑ to an object in D.  That is, ℑ(c)∈D. 
• Every n-place predicate is assigned by ℑ to an n-place relation on objects in D.  There are three special 

cases: 
  1.  If n=1, then ℑ(P1)⊆D, i.e. a one place predicate P1 stands for a subset of D. 
  2.  If n>2, then ℑ(Pn)⊆Dn, i.e. ℑ(Pn) is an n-place relation on elements of D, i.e. some set of n-tuples 

drawn from Dn.   If the syntax specifies that first 2-place predicate P21  is the identity predicate =, 
then it is required that ℑ(P21) be the identity relation on D. 

  3.  If n=0, then ℑ(P0i)∈{T,F}, i.e. 0-place predicates function semantically like sentence letters of 
sentential logic in that they do require any terms to their right and they stand for a truth-value.  
Furthermore, the syntax specifies that the first 0-place predicate P01 is the contradiction sign ⊥.  It is 
required that ℑ(⊥)=F, i.e.  ⊥ always takes the value F. 

• Every n-place functor fn is assigned by ℑ to an n-place function (also called an operation) on objects in 
D. That is, ℑ(fn)∈DDn. 

 
Let A=<D,ℑ> be a model.   
A variable assignment over D for FFOL  is any function s of mapping the set of variables into D.  
An interpretation ℑ relative to a model A=<D,ℑ> and an assignment s of the variable over D for FFOL, 
briefly ℑA

s, is defined inductively:  
• Basis Clause.   If t is a constant, then ℑA

s(t)=ℑ(t). 
    If v is a variable, then ℑA

s(v)=s(v). 
• Inductive Clause.  If t is some complex term, then fn(t1...tn), ℑA

s(fn(t1...tn))= ℑ(fn)(ℑA
s(t1),...,ℑA

s(tn)). 
 
P is satisfied in model A=<D,ℑ> relative to an a variable assignment s over D for FFOL (abbreviated 
equivalent as  As╞P or ℑA

s(P)=T) is defined inductively:  
• Basis Clause.  An atomic formula Pnt1,...,tn  is T in ℑA

s, iff the objects picked out by its terms under ℑA
s 

(in order) stand in the relation picked out in ℑ by its predicate. In symbols  
  As╞Pnt1,...,tn iff <ℑA

st1),..., ℑA
s(tn)>∈ ℑ(Pn) 

or equivalently, 
   ℑA

s(Pnt1,...,tn)=T) iff < ℑA
s(t1),..., ℑA

s(tn)>∈ ℑ(Pn) 
• Inductive Clauses. The satisfaction of a molecular formula relative to variable assignment is broken 

down into case one for each formation rule of the syntax:  
  As╞ ∼P iff not As╞P;   or  ℑA

s(∼P)=T iff  ℑA
s P)≠T 

  As╞P∧Q iff (As╞P and As╞Q);   or  ℑA
s(P∧Q)=T iff,  ℑA

s(P)=T and  ℑA
s(Q)=T 

  As╞P∨Q iff (As╞P or As╞Q);or  ℑA
s(P∨Q)=T iff,  ℑA

s(P)=T or  ℑA
s(Q)=T 

  As╞P→Q iff (not As╞P or As╞Q); or  ℑA
s(P→Q)=T iff,  ℑA

s(P) ≠T or  ℑA
s(Q)=T 

  As╞P↔Q iff (As╞P iff As╞Q);or  ℑA
s(P↔Q)=T iff,  ℑA

s(P)=T iff  ℑA
s(Q)=T 

  As╞∀xPx iff for any x-variant s′ of s, As’╞Px, or  ℑA
s(∀xPx)=T iff for any x-variant s′ of s,  ℑA

s(Px)=T 
   
P is true (simpliciter) in A=<D,ℑ>  (abbreviated A╞P) iff, for all s over D, As╞P. 
X logically entails P (briefly X╞P) iff, for all A, if (for all Q in X, A╞Q), then A╞P). 
P is valid (briefly ╞P) iff, for all A, A╞P.   
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A model or structure for basic expressions of FFOL  relative to a non-empty domain D and an 
interpretation operation ℑ is any A=<D,ℑ>, that meets the following conditions: 
• D≠∅. 
• Every constant c is assigned by ℑ to an object in D.  That is, ℑ(c)∈D. 
• Every n-place predicate is assigned by ℑ to an n-place relation on objects in D.  There are three special 

cases: 
  1.  If n=1, then ℑ(P1)⊆D, i.e. a one place predicate P1 stands for a subset of D. 
  2.  If n>2, then ℑ(Pn)⊆Dn, i.e. ℑ(Pn) is an n-place relation on elements of D, i.e. some set of n-tuples 

drawn from Dn.   If the syntax specifies that first 2-place predicate P21  is the identity predicate =, 
then it is required that ℑ(P21) be the identity relation on D. 

  3.  If n=0, then ℑ(P0i)∈{T,F}, i.e. 0-place predicates function semantically like sentence letters of 
sentential logic in that they do require any terms to their right and they stand for a truth-value.  
Furthermore, the syntax specifies that the first 0-place predicate P01 is the contradiction sign ⊥.  It is 
required that ℑ(⊥)=F, i.e.  ⊥ always takes the value F. 

• Every n-place functor fn is assigned by ℑ to an n-place function (also called an operation) on objects in 
D. That is, ℑ(fn)∈DDn. 

 
Let A=<D,ℑ> be a model.   
 
A satisfaction sequence over D for FFOL  is any denumerable sequence s of elements in D, i.e. any element 
of Dω.  
 
An interpretation ℑ of terms relative to a model A=<D,ℑ> and a satisfaction sequence s over D for 
FFOL, briefly ℑA

s, is defined inductively:  
• Basis Clause.   If t is a constant, then ℑA

s(t)=ℑ(t). 
    If v is a variable, then ℑA

s(v)=si, the i-th element of the sequence s. 
• Inductive Clause.  If t is some complex term, then fn(t1...tn), ℑA

s(fn(t1...tn))= ℑ(fn)(ℑA
s(t1),...,ℑA

s(tn)). 
 
The set ℑA(P) of sequences that satisfies P in model A=<D,ℑ> FFOL ℑA(P)=T) is defined inductively:  
 
• Basis Clause.  For an atomic formula Pnt1,...,tn,   

       ℑA(Pnt1,...,tn) = { s∈Dω | <ℑA
s(t1),..., ℑA

s(tn)>∈ ℑ(Pn)}. 
 
• Inductive Clauses. The definition of  ℑA(P) a molecular formula P is broken down into case one for 

each formation rule of the syntax:  
   ℑA(∼P)= Dω–ℑA(P), 
  ℑA(P∧Q)=ℑA(P)∩ℑA(Q), 
  ℑA(P∨Q) =ℑA(P)∪ℑA(Q), 
  ℑA(P→Q)= [Dω–ℑA(P)]∪ℑA(Q), 
   ℑA(∀xP)=Dω if ℑA(P)=Dω, ℑA(∀xP)=∅ otherwise.   
 
P is true (simpliciter) in A=<D,ℑ>  (abbreviated A╞P) iff ℑA(P)=Dω. 
X logically entails P (briefly X╞P) iff, for all A, if (for all Q in X, A╞Q), then A╞P). 
P is valid (briefly ╞P) iff, for all A, A╞P.   
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