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WHAT IS A SYLLOGISM? 

Lukasiewicz rejected the traditional treatment of syllogisms as arguments 
and claimed that the authentic Aristotelian syllogism is a conditional 
whose antecedent is the conjunction of the premisses and whose conse- 
quent is the conclusion.1 For Aristotle, however, a syllogism is essentially 
something with a deductive structure as well as premisses and conclusions. 
Consider, for example, his distinction between ostensive and per im- 
possibile syllogisms. This is entirely a matter of how their conclusions are 
derived and not at all a matter of what conclusions are derivable (An. Pr. 
45a26, 62b38). Aristotle writes as if he is marking a genuine distinction 
between two classes of syllogisms, but his way of going about it would be 
senseless if a syllogism were uniquely determined, as a Lukasiewiczian 
conditional is, by its premisses and conclusions. Moreover, everything 
suggests that Aristotle is concerned here with the distinction between 
direct and indirect patterns of deduction, as exemplified in the contrast 
between the ostensive argument ‘P, Q, so R’ and the per impossibile one, 
‘P, suppose not R, then not Q, so R’.2 

Eukasiewicz may be equally ready to distinguish between different 
patterns of deduction, but for him this will as yet have nothing to do with 
syllogism: syllogisms for him have no more intrinsic connection with 
deduction than any other conditionals, and in particular Aristotelian 
‘demonstrations’ are mere conditionals and not, ironically, proofs of 
anything. Thus if Eukasiewicz’s treatment is to accommodate Aristotle’s 
distinction, he must both show that the distinction makes sense when 
interpreted as applying to conditionals and that this sense is such as to 
establish some connection between ostensive and per impossibile condi- 
tionals and ostensive and per impossibile deduction. He attempts neither 
task, and perhaps it is sufficient to give a bare indication of the difficulties 
he would have to overcome. If we interpret the distinction as applying to 
conditionals, then, as was said at the beginning, we must not think that 
we are dividing conditionals as such into two classes; the grounds for 
calling a conditional ostensive or per impossibile must be sought outside 
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the conditional itself, and the same conditional may be called now osten- 
sive, now per impossibile. Two appropriate distinctions immediately 
suggest themselves. By the first, a conditional is to be called ostensive or 
per impossibile according as it is used in an ostensive or a per impossibile 
proof. Alternatively, a conditional is to be called ostensive or per im- 
possibile according as it is itself established by means of an ostensive proof 
or a per impossibile one. Both of these succeed in making a connection 
with ostensive and per impossibile deduction, but neither stands up for a 
moment against the text of the Prior Analytics.3 If, instead, we start from 
the text, a third way of drawing the distinction is suggested by 62b29 ff. : 
a conditional is ostensive when it is used in a derivation of its consequent, 
per impossibile when it is used in a refutation of one of its antecedents. 
But this is no better than the other two, for it fails to make any connection 
with ostensive and per impossibile deduction. A conditional can perfectly 
well be used in a per impossibile derivation of its consequent, e.g., 
‘P&Qz R, P, suppose not R, then not Q, but Q, so R’, and the obvious 
way to use a conditional in a refutation of one of its antecedents is by 
means of an ostensive argument, viz. ‘P&Q I R, P, not R, so not Q’. 

Lukasiewicz’s treatment similarly fails to do justice to Aristotle’s 
theory of the reduction of syllogisms. A syllogism may be valid, in that its 
conclusion follows from its premisses, but it may nonetheless be ‘imper- 
fect’ because it fails to show that the conclusion follows.4 Aristotle’s 
procedure in such a case is to ‘reduce’ the imperfect syllogism to a perfect 
one by filling in its intervals with intermediate steps (An. Pr. 24b24, 
An. Post. 79a30). This description makes excellent sense if syllogisms 
are regarded as arguments - to reduce an imperfect syllogism is to make 
it perspicuous by expanding it so that it has a finer and hence argu- 
mentatively more satisfying structure. We see, too, that the additional 
material may be inserted so as to produce either a fuller ostensive argu- 
ment or a per impossibile one. For example, ‘P, Q, so R’ may be expanded 
either into ‘P, Q, so S, so T, so U, OR’ or into ‘P, suppose not R, then not 
Q, but Q, so R’. On the other hand, as Lukasiewicz himself admits 
(op. cit., p. 44), the proof of a conditional does not fit Aristotle’s descrip- 
tion of reduction. A further difficulty for Lukasiewicz’s treatment is that 
to prove a conditional we need the deductive machinery of propositional 
logic - something which is conspicuous by its absence from Aristotle’s 
writings. And even if we read the necessary propositional logic back into 
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the Prior Analytics we must not think that this will bring Aristotle’s and 
Lukasiewicz’s ideas of reduction any closer together (Lukasiewicz, op. cit., 
pp. 54-6). Thus the price of accepting Lukasiewicz’s account of syllogisms 
is his wholesale rejection of Aristotle’s account of their reduction. 

The traditional treatment is free from these objections, for, as we have 
seen, an argument has a distinctive structure as well as having premisses 
and a conclusion. Nevertheless there is a decisive objection to identifying 
syllogisms with arguments, comparable to Frege’s objection to identi- 
fying propositions with assertions. Consider as examples, ‘P, Q, so R’ and 
‘P, suppose Q, then R, but not R, so not Q’. Frege’s point is that if we are 
to discern the same proposition Q as occurring in the first example (where 
it is asserted) and in the second (where it is not), then the proposition 
itself must not be identified with its assertion, but must be something 
neutral with respect to assertion, supposition, denial, etc. Now it is clear 
from Aristotle’s discussion of the reduction of imperfect syllogisms that 
if we are to discern a syllogism in the first example, we must be prepared 
to recognise the same syllogism at the beginning of the second. That is, 
we must discern the same syllogism in ‘P, suppose Q, then R’ as in ‘P, Q, 
so R’. But these are different arguments, just as supposition is different 
from assertion. It follows that the syllogism itself must not be identified 
with either argument, but must be something neutral with respect to a 
variety of possible argumentative uses. 

The object that appears to combine the requisite argumentative struc- 
ture with the requisite neutrality is aproof-sequence or deduction. A proof- 
sequence may be either formal or informal, according as its component 
statements (and the relation of implication which holds between them) 
belong to a formalised language or to ordinary informal mathematics. 
Thus to equate syllogisms with proof-sequences or deductions is not to 
prejudge the question of formalisation; it is only to revive Aristotle’s own 
definition of a syllogism as ‘discourse in which, certain things being stated, 
something other than what is stated follows of necessity from their being 
so’ (24bl8), while noting that zsBEvzov (stated) is neutral with regard to 
assertion. Among possible deductions in formalised languages we may 
however distinguish between those of which it is merely required that 
each succeeding wff should be implied by previous ones, and those in 
which each step must be justified by one of a given number of primitive 
rules of inference. It is, of course, the latter kind which is familiar from 
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the construction of axiomatic calculi, but the distinction provides the 
formal counterpart of Aristotle’s distinction between syllogisms in general 
and those ‘perfect’ syllogisms in which each step is self-evident. We may 
note too that the definition of a formal deduction is easily made to cover 
indirect patterns of proof like reductio ad impossibile; see Definition 1 
below. 

Given that Aristotle is concerned with deductions, i.e., with how con- 
clusions may be derived, we should expect him to be equally concerned 
with deducibility, i.e., with what conclusions are derivable. We should also 
bear inmind that deducibility can be discussed either by means of verbs such 

‘ as . . . implies...‘or‘...followsfrom...‘, or by means of conditionals suchas 
‘if.. . then necessarily.. .’ or plain ‘if.. . then.. .’ ; the difference between the 
verbal form and the conditional form being merely the difference between 
mention and use. In this way I think we can explain Aristotle’s frequent use 
of conditionals in his discussions of syllogistic without needing to identify, 
as Iukasiewicz does, the conditionals with the syllogisms themselves. 
Moreover, since deducibility is equivalent to the existence of a deduction, 
for to say that Q follows from P is equivalent to saying that there exists a 
deduction of Q from P, we shall at the same time be able to explain the 
frequent occurrence of such phrases as ‘there will be a syllogism’ or its 
opposite, ‘no syllogism will be possible’. 

It remains to enquire what it might mean for the premisses of a syllo- 
gism to imply the conclusion. By building onto the propositional calculus5 
Lukasiewicz in effect equates syllogistic implication with strict implication 
and thereby commits himself to embracing the novel moods correspond- 
ing to such theorems as Aab & Oab =) Icd or Aab & AcdD Aee. On the 
other hand Aristotle’s own omission of these syllogisms of strict impli- 
cation, as they may be called, can hardly be written off as an oversight. 
For they violate his dictum that ‘a syllogism relating this to that proceeds 
from premisses which relate this to that’ (41a6). This dictum is part of a 
principle which is absolutely fundamental to his syllogistic, namely the 
principle that the premisses of a syllogism must form a chain of predi- 
cations linking the terms of the conclusion. Thus his doctrine of the figures, 
which provides the framework for his detailed investigation of syllogistic, 
is founded on this principle (4Ob30 ff.) Not less important is that the 
chain principle is essential to the success of his attempt at a complete- 
ness proof for the syllogistic. By this I mean his attempt to show 
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that every valid syllogistic inference, regardless of the number of premisses, 
can be carried out by means of a succession of two-premiss syllogisms.6 
The proof turns on the argument that if neither of two pairs of premisses 
imply a conclusion, nor do all four premisses taken together. At first 
sight this looks like a very poor argument indeed, for it appears to over- 
look the obvious point that the logical strength of a number of premisses 
taken together is not limited to the sum of their separate strengths. 
If however we are assuming from the start that our premisses, 
if they are to be usable, have got to fit together in accordance with the 
chain principle, we are thereby placing a severe restriction on the way 
different pairs of premisses can genuinely augment one another; and we 
obtain an argument which if not absolutely conclusive is no longer 
despicable. 

One is thus led to ask what account of implication, if any, will harmo- 
nise with Aristotle’s chain principle for syllogisms. The question invites a 
logical rather than a historical answer, and there are two constraints 
governing any possible answer. Firstly, we must either exclude irrelevant 
premisses or else restrict reductio ad impossibile. For otherwise by using 
P, Q t-P in a per impossibile argument we could derive anything from a 
pair of contradictory premisses. For example, we could validate the 
distinctly non-Aristotelian mood Aab, Oab I- Icd by arguing ‘Aab, suppose 
Ecd, then Aab, but Oab, so Icd’. Secondly, even to permit a change in the 
multiplicity of occurrence of a relevant premiss will be incompatible with 
the free use of reductio ad impossibile. For otherwise we could start with 
Aca, Acat-laa, which is an instance of Darapti, and by ignoring the 
repetition of the premiss obtain Aca k laa. But Aab, Eab k Eaa by Cesare, 
and putting these together in a reductio ad impossibile yields the non- 
Aristotelian mood Aab, Eab I- Oca. 

I shall offer my answer to my question in the shape of a formal system 
in which I shall put into practice the idea of treating syllogisms as deduc- 
tions, and which is intended to match as closely as possible Aristotle’s 
own axiomatisation of the syllogistic by means of conversion, reductio ad 
impossibile, and the two universal moods of the first figure. The definition 
of deducibility will ensure that in counting premisses attention is paid to 
whether and how often they are used in a deduction. This is in order to 
satisfy the constraints mentioned in the preceding paragraph, and also 
to harmonise with Aristotle’s own remarks about the numbers of pre- 
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misses (cf. An. Pr. 42b1, An. Post. 86b13); though it should be stressed that 
the case for treating syllogisms as deductions is independent of the case 
for this particular treatment of deducibility. The principal result proved is 
that the system is complete with respect to the valid moods, where these 
are defined in the spirit of the Aristotelian figures but without his restric- 
tion to the special case of two premisses. I shall also show that the system 
possesses a simple decision procedure. Finally I shall test the system’s 
harmony with Aristotle’s ideas by considering it in relation to his well- 
known discussion of syllogisms with false premisses. 

The vocabulary of the system consists of the symbols A, E, Z, 0, 
together with an infinite stock of terms. The wffs are Aab, Eab, lab and 
Oab, for all terms a and b. Aab and Oab will be said to be each other’s 
contradictory; likewise Eab and lab. To indicate the contradictory of an 
otherwise unspecified wff P I shall write p, with the remark that this 
notation is part of the metatheory and not a connective belonging to the 
system itself. A corollary of the definition that will be taken for granted in 
the sequel, is that if P= Q then Q=P. Lower-case variables will be used 
to stand for terms, reserving P, Q, R for wffs and X, Y, Z for sets of wffs. 
Commas will be used to indicate the union or augmentation of sets, 
e.g., X, Y or X, P, and angled brackets will be used for sequences, e.g., 
(P, P, Q). Since it is going to be essential to our treatment of deducibility 
that we should be able to distinguish between cases where the same premiss 
occurs a different number of times, we shall want to construe the notion of 
a set of wffs so as to take account of their multiplicity of occurrence. This 
is most easily done by taking ‘set of wffs’ always to mean ‘set of occurren- 
ces of wffs’, and counting the number of members accordingly. For 
example, P, P, Q will be a different set from P, Q, and the former will 
have three members while the latter has only two. 

The system has no axioms but has the following rules of inference ; 

Rule 1. From Aab, Abe infer Aac 
Rule 2. From Aab, Ebc infer Eat 
Rule 3. From Eba infer Eab 
Rule 4. From Aba infer lab 

The definition of formal deduction is best given inductively: 

DEFINITION 1. (i) <Q) is a deduction of Q from itself. (ii) If, for each i, 
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(. . . Pi> is a deduction of Pi from X,, and if Q follows from Pl, . . . , P. by a 
rule of inference, then (... Pi, . . . , . ..P.,, Q) is a deduction of Q from 
X 1,. .., X,. (iii) If (... P) is a deduction of P from X1, &, and (. . .P) is a 
deduction of is from X,, then <... P, . ..P. Q) is a deduction of Q from 
Xl, x2. 

To signify that there exists a deduction of Q from X we write Xl- Q. 
The Grst two clauses in Definition 1 are intended to resemble the fami- 

liar idea of a formal deduction of Q from X as a finite sequence of wfIs 
ending in Q, each wff either belonging to X or following from preceding 
wffs by a rule of inference. The third clause is intended to accommodate 
reductio ad impossibile arguments. For example, since (Axn, Anm, Axm) 
is a deduction of Axm from Axn, Anm by rule 1, and since (Oxm> is a 
deduction of Oxm from itself, and given that A and 0 wffs are contra- 
dictories, it follows that (Axn, Anm, Axm, Oxm, Oxn> is a deduction of 
Oxn from Anm, Oxm. The per impossibile structure of this deduction is 
brought out in the corresponding argument, ‘suppose Axn, then since 
Anm, Axm; but Oxm, so Oxn’. The terms have been lettered to make it 
easier to compare this way of validating Baroco with that of Aristotle 
(27a37); it is instructive to compare it with Lukasiewicz’s treatment of the 
same passage (Lukasiewicz, op. cit., p. 54ff.). 

The omission of axioms from the system is intentional, but it would be 
a straightforward matter to allow for axioms in Definition 1, and to 
allow for theorems by supplementing the definition of ‘deduction of 
Q from X’ with a definition of ‘proof of Q’. This would incidentally 
supply the analogue, to the limited extent that it is possible to do so in 
purely formal terms, to the distinction between syllogisms in general and 
demonstrations (25b30, 71b18). If in particular Aaa is added as a sole 
axiom scheme, the results proved in the sequel will all carry over with 
minor modifications, e.g., the omission of ‘has more than one member’ 
from Definition 2 and Theorem 2, and the omission of ‘non-empty’ from- 
Definition 3 and Theorem 5. 

THEOREM 1. (i) P!- P. (ii) if each X, b Pi and Pl, . . . , P, I- Q then X,, . . . , 
X, l- Q. (iii) If X, & !-P then X, Pk Q. (iv) Aba I- lab. (v) Iba F lab. (vi) 
Aabl-lab. (vii) Aq, Ac1c2, . . . , Ac,b I- Aab; where n> 0. (viii) Aca, 
Icb t- lab. (ix) Aca, Zbc Flab. (x) Adb, Iadt Iab. (xi) Adb, Ida t-lab. (xii) 
AM, Adb, Icd k lab. (xiii) Acu, A&, Idc I- lab. (xiv) Aca, Acb I- lab. 
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The proof of this theorem, as of the subsequent ones, is given in the 
appendix. 

The intended interpretation of the system is the familiar one in which 
the terms are understood as ranging over non-null classes, while A, E, I, 0 
stand respectively for class-inclusion, exclusion, overlap and non-in- 
clusion. Satisfiability and logical consequence are defined with respect to 
this interpretation in the standard way. Thus a set of wffs will be said to 
be satisfiable if there is some way of assigning non-null classes as values 
to the terms so as to make all the members of the set true simultaneously. 
And a wff Q will be said to be a logical consequence of a set X if there is 
no way of assigning values to the terms so as to make all the members of 
X true and Q false. 

DEFINITION 2. A set of wffs is an antilogism if it can be derived by sub- 
stitution of terms for terms from a set which (i) is unsatisfiable, (ii) has no 
unsatisfiable proper subset, and (iii) has more than one member. 

By an A-chain AC, - c, I mean primarily a sequence of wffs of the form 
<&c,, Aws, . . . , AC,-I~,,) ; but it is convenient to be able to count any 
term as being linked to itself by an empty A-chain, and the same notation 
can be used to cover both cases. Thus to say that a set of wffs is of the 
form Aa- b is to mean that either its members can be arranged into a 
sequence of the kind described, with a as c1 and b as c,,, or else that it is 
empty and a = b. 

THEOREM 2. A set of wffs is an antilogism if and only if it has more than 
one member and is of one of the following forms 

(1) less Aa-b, Oab (2) AC-a, AC-b, Eab (3) AC-a, Ad-b, 
Icd (or Idc), Eab. 

THEOREM 3. If X, Q is an antilogism then Xl- Q. 

THEOREM 4. If Xt Q then X, Q is an antilogism. 
These theorems will be needed later as steps in the proof of Theorem 6, 

but they serve incidentally to establish the existence of an extremely 
simple decision procedure for the system. For by Theorems 3 and 4, 
whether Xl- Q depends on whether X, & is an antilogism, and Theorem 2 
provides an effective method for deciding this. In other words : 
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THEOREM 5. The system is decidable, and possesses the following decision 
procedure: XF Q if and only if X is non-empty and X, (z is of the form 
Aa-b,OaborAc-a,Ac-b,EaborAc-a,Ad-b,Icd(orIdc),Eab. 
Aristotle’s definition of the syllogistic figures is confined to the case where 
there are just two premisses, but otherwise it gives the maximum of 
generality to the idea that the premisses should form a chain of predica- 
tions linking the terms of the conclusion (40b30 ff.). That is to say, the 
variables he uses for the major, middle and minor terms are all distinct 
from one another, so that none occurs more than twice in the statement 
of the premisses and conclusion; though when it comes to substituting 
actual terms in the resulting forms we are of course at liberty to replace 
different variables by the same term (64al). The definitions given below 
are intended to reproduce these features of the Aristotelian figures, but 
freed however from their restriction to the special case ofjust two premisses. 

Let Vab stand indifferently for any of the wffs Aab, Aba, Eab, Eba, lab, 
Iba, Oab, Oba. Then by a chain of wffs I intend primarily a sequence of the 
form ( Vc1c2, Vc2c3, . . . , Vc,-,c,) ; but it is also convenient to be able to 
count any term as linked to itself by an empty chain. Thus to say that a 
set of wffs is a chain linking a and b is to mean that either its members can 
be arranged in a sequence of the kind described, with a as c1 and b as c,, 
or else that it is empty and a = b. The idea of a chain of wffs thus includes 
that of an A-chain as a special case, but it also includes chains that are 
not A-chains; e.g., the premisses in Cesare form a chain Aab, Ecb linking 
the terms a and c of the conclusion Eat. 

DEFINITION 3. X and Q belong to an Aristotelian mood if they can be 
derived by simultaneous substitution of terms from X, and Q, such that 
(i) X1 is a non-empty chain of wffs linking the terms of Q,, and (ii) no term 
occurs more than twice in X1, Q,. If in addition Q, is a logical conse- 
quence of Xl the mood is valid. 

THEOREM 6. Xl- Q if and only if X and Q belong to a valid Aristotelian 
mood. 

The idea of a valid Aristotelian mood combines a syntactic ingredient 
(the idea of a chain of wffs) with a semantic one (logical consequence). 
Theorem 6 establishes its equivalence to a purely syntactic idea of 
deducibility. Theorems 3 and 4, on the other hand, relate it to the purely 
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semantic idea of antilogism. Antilog&m was used in preference to impli- 
cation because its symmetry makes it easier to work with, but it ought to 
be possible to define an implication relation out of the same material, just 
as the classical consequence relation is defined out of the same material 
as the technically simpler idea of unsatisfiability. If this were done 
Theorems 3 and 4 could then be used to assert a direct equivalence 
between the idea of a valid Aristotelian mood and this purely semantic 
idea of implication. The relevant definition may be of some independent 
interest to a reader who is concerned with the controversies over entail- 
ment and strict implication. 

DEFINITION 4. X implies Q if X and Q can be derived by simultaneous 
substitution from X1 and Q, such that (i) Q, is a logical consequence of 
X1 but not of any proper subset of it, (ii) X1 is satisfiable, (iii) Q, is not 
logically true. On comparing this definition with Definition 2 it will be 
seen that X implies Q if and only if X, Q is an antilogism. This makes it 
easy to restate Theorems 3,4 and 6 as follows. 

THEOREM 7. These are equivalent to each other: (i) XF Q, (ii) Ximplies Q, 
(iii) X and Q belong to a valid Aristotelian mood. 

Discussing syllogisms with false premisses, Aristotle says that even 
where both premisses are false the conclusion may be true, ‘but it is not 
necessitated’ and it is true ‘only in respect to the fact, not to the reason’ 
(57a40, 53b8). What this means can only be explained by looking at the 
argument Aristotle uses in support of it. Namely, he argues that since the 
conclusion of a syllogism follows from the premisses, and since ‘it is im- 
possible that the same thing should be necessitated by the being and by the 
not-being of the same thing’ (57b3), it cannot be the case that the conclu- 
sion should also follow from the falsity of the premisses. Since the falsity 
of a premiss is equivalent to the truth of its contradictory, this is to say 
in effect that if a conclusion follows syllogistically from false premisses it 
cannot also follow from their contradictories. This is why, when we are 
given that the premisses of a syllogism are false, we are according to 
Aristotle never able to make use of this to show that the conclusion is true 
(i.e., by deriving it from the true contradictories of the original premisses), 
even though the conclusion may be true in fact. 

This is essentially the same reading of Aristotle as has been more fully 
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defended by Geach.7 Geach goes on to establish that Aristotle’s ‘meta- 
theorem of his syllogistic’ does indeed hold good for the traditional 
moods with two premisses. The following theorem removes the restriction 
on the number of premisses. It also generalises the result so as to apply to 
subsets of the premisses, the case where all are false being covered by 
taking X to be empty. 
THEOREM 8. If every member of X is true and each of PI,. . . , Pn is false 
(n>l),thennotbothX,P, ,..., P,,tQandX,P, ,..., FnlQ. 

APPENDIX 

Proof of Theorem 1. Part (i) follows immediately from Definition 1 (i). 
The proof of (ii) is by induction on the length of the assumed deduction of 
QfromP,,..., P,,. There are three cases to consider, corresponding to the 
three clauses of Definition 1. Case I : the deduction is (Q), in which case 
n = 1 and P, = Q, and the result follows immediately. Case 2: the deduc- 
tion is (... R,, . . . , . . . R,, Q), made up of deductions of each R, from Yj, 
where Q follows from R,, . . . , R, by a rule of inference and Yi, . . . , Y,,,= 
P 1, . . . , P,. By the induction hypothesis there exist deductions of each 
R, from Zj, where Zi represents the same selection from X1,. . . , X, as Yj 
isfromp,,..., Pn. Substituting these deductions for the originals produces 
the required deduction of Q from Z,, . . . , Z,,,, i.e., from Xi,. . . , X,. Cuse3: 
the deduction is (... R, . . . R, Q), made up of a deduction of R from Y1, Q 
and a deduction of i? from Yz, where Y1, Yz = P,, . . . , P,,. By the induction 
hypothesis there exist deductions of R from Z,, g and of R from Z,, where 
Z, and Z, represent the same partition of X1,. . . , X, as Y1 and Y2 are of 
P 1, . . . , P,. Substituting these deductions for the originals produces the 
required deduction of Q from Z,, Z,, i.e., from Xi,. . . , X,. 

To prove (iii) we recall that (P> is a deduction of P from itself. Then if 
(. . . P> is the assumed deduction of P from X, e, we see that (. . .P, P, Q) 
is the required deduction of Q from X, P in accordance with Definition 1 
(iii). 

The proof of (iv) is immediate from rule 4. (v) follows from rule 3 and 
(iii). (vi) follows from (iv) and (v), by (ii). (vii) is proved by induction on 
n, using (i) for the basis and using (ii) and rule 1 in the induction step. 
(viii) follows from rule 2 and (iii). (ix) follows from (viii) and (v), by (ii). 
(x) follows likewise from (ix) and (v). (xi) follows likewise from (x) and (v). 
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(xii) follows likewise from (viii) and (x). (xiii) follows likewise from (ix) 
and (x). (xiv) follows likewise from (viii) and (vi). 

Proof of Theorem 2. We first show that a set of wffs cannot be an antilo- 
gism unless it satisfies the conditions of the theorem. If X is not of any of 
the three forms listed in the theorem, neither is any X1 from which it 
might be derived by substitution. There are then two possibilities: either 
(i) X1 contains a proper subset which is of the required form, or (ii) 
neither X1 nor any subset of it is of the required form. In case (i), since 
any set of the required form is evidently unsatisfiable, X1 fails to satisfy 
Definition 2 (ii). In case (ii) consider the assignment of values in which the 
value of each term a is the class (call it the a-class) consisting of every 
term c for which X, contains a chain AC-~, together with every pair 
{c, d} for which X1 contains Icdand AC-~ (or Ad-u). These classes are 
non-null since every (I belongs to its own class by virtue of the empty 
chain Au-a. If a wff Aab belongs to 1, then whenever X1 contains a 
chain AC- a it contains a chain AC-~, namely AC-U, Aub. Every ele- 
ment of the u-class is therefore a member of the b-class, and so Aub is true 
under this assignment A wff Eub can only be false under the assignment if 
the u-class and the b-class have a common element. This can only happen 
if, for some c, X1 contains AC-U and Ac- b, or if, for some c and d, X1 
contains Icd and AC-U (or Ad- a) and AC-b (or Ad-b). if X1 also con- 
tained Eub it would in each of these cases contain a subset of one of the 
forms listed in the theorem, contrary to hypothesis. Thus if Eub belongs 
to X1 it is true. If lab belongs to X1 the pair {a, b) will be in the u-class 
and the b-class, and lab will therefore be true. If Oab belongs to X1 then 
X1 cannot contain any chain Au-b, for otherwise it would contain a 
subset of one of the forms listed in the theorem, namely Au-b, Oub. 
Hence a is not in the b-class; but it is in the u-class and Oub is therefore 
true. So every wff in X1 is true under this assignment of values, contrary to 
Definition 2 (i). Thus in neither case does X, satisfy the conditions re- 
quired for X to be an antilogism. Finally we note that if X does not have 
more than one member then, since we are taking account of multiplicity 
of occurrence, neither does any set from which it might be derived by 
substitution; and so again, by Definition 2 (iii), X cannot be an 
antilogism. 

To prove the converse we note that whenever a set is of one of the forms 
listed in the theorem its members can be arranged so as to link all the 
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terms concerned in a single non-empty closed chain of wffs. Thus in Aa- b, 
Oab the ends of the A-chain are joined by Oab (if Aa- b is empty there is 
present only the one term a, linked back to itself by Oaa). Similarly in 
AC-a, AC-~, Eab the A-chains join up directly at one end through c and 
are linked at the other end by Eab ; while in AC-~, Ad - b, Icd (or Idc), Eab 
they are linked at one end by Icd or Idc and at the other end by Eab. If, 
therefore, Xis of any of the required forms, by starting at any point in the 
chain and replacing where necessary each successive term by a term differ- 
ent from any that have preceded it, we obtain a set X, which is also of the 
required form but in which no term occurs more than twice. On the other 
hand no proper subset of this X1 can be of the required form, for other- 
wise its members too would make up a non-empty closed chain of wffs 
and then some terms would occur more than twice in X1, namely the term 
or terms through which those members of X1 that are not members of the 
subset link on to those that are. And since every subset of a proper subset 
is itself a proper subset of X,, it follows that no proper subset of X1 con- 
tains a subset of the required form. Therefore, by the argument of the 
first part of the proof, every such set is satisfiable. On the other hand X1 
itself is unsatisfiable, and X can of course be derived from it by substitu- 
tion. Finally, if X has more than one member so does X1, and so X, 
satisfies all the conditions of Definition 2 required for X to be an anti- 
logism. 

Proof of Theorem 3. For each of the three types of antilogism set out in 
Theorem 2 we shall show that the contradictory of the last wff in the list is 
deducible from the remaining ones. If Q is the last wff when X, Q is listed 
in accordance with Theorem 2, this will establish Xk Q directly. If the 
last wff is not Q let it be P, where X= Y, P. Then the proof below will 
establish that Y, Q FP, whence Xk Q by Theorem l-iii. 

Case 1: The antilogism is Aa- b, Oab. Aa - b is not empty, since an anti- 
logism must have more than one member, and so by Theorem l-vii it 
follows that Aa- b k Aab, as required. 

Case 2: The antilogism is AC-a, Ac-b, Eab. As before, the A-chains 
cannot both be empty. If AC-a is empty, what we have to show is (i) 
Aa - b I- lab, where Aa - b is non-empty. Similarly if Ac - b is empty we have 
to show (ii) Ab - a t lab, where Ab - a is non-empty. Where neither A-chain 
is empty we have to show (iii) AC - a, AC - b k lab. We have seen already from 
case 1 that when Aa - b is non-empty Aa - b k Aab, and also Aab!- lab by 
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Theorem l-vi; whence (i) follows by theorem l-ii. (ii) and (iii) follow like- 
wise from Theorems l-iv and l-xiv respectively. 

Case 3: The antilogism is AC- a, Ad-b, Icd (or Idc), Eab. According 
as both or one or other or neither A-chain is empty we have to show (i) 
Iab t-lab and Iba k lab, or (ii) Ad-b, Iadt lab and Ad-b, Ida I- lab, or (iii) 
AC-~, Icb k lab and AC- a, Ibc !- lab, or (iv) AC-~, Ad-b, Icd t- lab and 
AC -a, Ad-b, Idc Flab. Of these (i) follows directly from Theorems I-i 
and l-v. (ii) follows from Theorems l-x and l-xi taken in turn with 
Theorem l-ii and the result established in case 1. (iii) follows similarly 
from Theorems l-viii and l-ix, and (iv) from Theorems l-xii and l-xiii. 

Proof of Theorem 4 is by induction on the length of the assumed deduc- 
tion of Q from X. 

Case I : the deduction is (Q). The premiss is Q itself and the pair Q, & 
is an antilogism by Theorem 2 - of the tist type if Q is an A or 0 wff, of 
the third type if it is an E or Iwff. 

Case 2: the deduction is (... Pl, . . . . . . . P., Q), where Q follows from 
P i, . . ., P,, by a rule of inference and each Pi is deduced from Xi, where 
X=X,, . . . . X,. We consider the rules of inference in turn. 

If the rule in question is rule 1 then IZ = 2 and Q must be of the form Aac, 
while the two premisses of the rule are of the form Aab and Abe. Without 
loss of generality we may take Pl to be Aab and P2 to be Abe. Then by the 
induction hypothesis X1, Oab and X,, Obc are antilogisms. By Theorem 2, 
X1 must therefore be of the form Aa - b and X, must be of the form Ab - c. 
But then Xl, X2, (j is Au-b, Ab- c, Oat, which is of the form Au-c, 
Oat. Also X1, X,, Q has more than one member since both Xi and X,, 
are non-empty, by Theorem 2. Hence X1, X,, & is an antilogism by 
Theorem 2. 

If the rule is rule 2 then n=2 and P,, P,, (2 may be taken to be of the 
forms Aab, Ebc, Eat respectively. By the induction hypothesis X,, Oab 
and X,, Z&c are antilogisms. By Theorem 2, X, must therefore be of the 
form Aa - b and X, must be of the form Ab - e, AC-~, Eef(or Efe). But then 
X,, X2, 0 is Au-b, Ab -e, AC-~ Iac, Eef (or Efe), which is of the form 
Au-e, AC-~, Iac, Eef (or Efe), and so is an antilogism by Theorem 2. 

If the rule is rule 3 then n= 1 and Pi and Q are of the form Eba and Eab 
respectively. By the induction hypothesis X, Iba is an antilogism. But then 
X, Q, which is X, lab, is also an antilog&m by Theorem 2. 

If the rule is rule 4 then n= 1 and P, and Q are of the form Aba and lab 
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respectively. By the induction hypothesis X, Oba is an antilogism and by 
Theorem 2 Xmust therefore be non-empty and of the form Ab -a. But then 
X, 0, i.e., Ab-a, Eab, is an antilogism of the second type of Theorem 2. 

Case 3: the deduction is (.. . P, . . . P, Q), made up of a deduction of 
P from X1, Q and a deduction of P from X,, where X=X,, X,. There are 
four subcases to consider. 

Subcase 1: P is Aab. By the induction hypothesis X1, &, P is an anti- 
logism, so by Theorem 2 X1, Q must be non-empty and of the form Aa - b. 
But then the only difference between X,, P and Xi, X,, Q is that the latter 
contains a non-empty chain Aa - b where the former has the single wff Aab. 
Since by the induction hypothesis X,, P is an antilogism it follows from 
Theorem 2 that X1, X,, Q is also an antilogism. 

Subcase 2: P is Eab. By the induction hypothesis X1, Q, P and X,, P are 
antilogisms. By Theorem 2 therefore, X1, Q must be of the form Au-e, 
Ab -f, Eef(or Efe); while X, must be either of the form AC- a, AC-b or 
else of the form Ag-a, Ah-b, Igh (or Ihg). In the former case X1, X,, & 
is AC-~, Aa- e, AC-~, Ab-f, Eef (or Efe), which in turn is of the form 
AC-~, AC-~, Eef (or Efe) and so is an antilogism of the second type of 
Theorem 2. In the latter case it is Ag-a, Aa- e, Ah-b, Ab -f, Igh (or 
Ihg, Eef (or Efe), which in turn is of the form Ag- e, Ah-f, Igh (or ihg), 
Eef (or Efe) and so is an antilogism of the third type. 

Subcases 3 and 4: P is lab or Oab. P is then Eab or Aab, and we have 
merly to repeat the proofs of subcases 1 and 2, writing P for P and X1, Q 
for X, and vice-versa. 

Proof of Theorem 6. If X1 Q then, by Theorems 2 and 4, X, Q is of the 
form required by Theorem 2. Following the procedure described in the 
proof of Theorem 2 we obtain a set X1, Q1 in which no term occurs twice 
and whose members form a closed chain of wffs. If therefore we break the 
circle by removing Q, the remaining members will form a chain linking 
the terms of Q, ; but these are the same as the terms of Q,. Since an anti- 
logism must have more than one member, X1 is non-empty. Finally, since 
X1, Q, is unsatisfiable, Q, is a logical consequence of X1. Thus X1 and Q, 
meet all the requirements of Definition 3 for X and Q to belong to a valid 
Aristotelian mood. Conversely, suppose X and Q belong to a valid 
Aristotelian mood and let X1 and Q, be as in Definition 3. Since the 
members of X1 form a chain linking the terms of Q, and since these are 
the same as the terms of Q1, the members of X1, Q, form a closed chain of 
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wffs, in which moreover no term occurs more than twice. We can then 
argue exactly as in the proof of Theorem 2 to conclude that every proper 
subset of X1, Q1 is satisfiable. But X1, Q1 itself is unsatisfiable, since by 
hypothesis Q, is a logical consequence of X1 ; and it has more than one 
member by hypothesis X1 is non-empty. Thus it satisfies all the require- 
ments of Definition 2 for X, Q to be an antilogism. Hence X!- Q by Theo- 
rem 3. 

Proof of Theorem 8 is by reductio ad absurdum. Suppose that every mem- 
ber of X is true while each P, is false. Also suppose that both X, P,, . . ., 
P,l-Q and X,P, ,..., P. k Q. The corresponding antilogisms must both be 
of one of the forms required by Theorem 2. Inspection of the quality and 
quantity of the wffs involved shows that this will at most be possible if 
n=2 and then only if P, and P, are of opposite quality and quantity. 
There are thus two cases to consider. 

Case I: P, is Aab and P, is Ocd. By Theorem 2 the antilogism X, P,, 
P,, & must be of the form AC-~, Ocd and & must therefore be an A wff. 
Let it be Aef, then X must be either (i) AC-~, Ab - e, Af - d, or (ii) AC-~, 
Af - a, Ab - d. By the same theorem the antilogism X, p,, I’,, Q must be of 
the form Aa - b, Oab, and so X must be either (iii) Aa - c, Ad-e, Af - b, 
or (iv) Aa- e, Af - c, Ad-b. In dealing with the four cross-combinations 
which thus arise, let us say that an A-chain is true if it is empty or com- 
posed entirely of true wffs. Either way, if Aa- b is true so is Aab. We note 
that any A-chains contained in X are true, since by hypothesis every mem- 
bers of Xis true; also that Acd is true since by hypothesis its contradictory, 
P,, is false. We shall show that Aab must also be true, contradicting the 
hypothesis that it, viz. PI, is false. 

Subcase (i- iii) : Let Ae - b be the reverse of Ab - e, that is, if Ab - e = 
Abbl, Ablbz, . . . , Ab,e let Ae-b=Aeb,,,,..., Ab,b. If Ab-e is empty 
Ae- b is also empty and so is true. If Ab - e is not empty its tlrst member 
Abbl cannot belong to Aa - c, otherwise this true A-chain would have a 
true subchain Aa- b, and Aab would be true, contrary to hypothesis. 
Likewise Abb, cannot belong to Ad-e, otherwise this would contain a 
true subchain Ad-b, and the truth of Aa- c, Acd and Ad-b would imply 
the truth of Aab. Hence Abbl must belong to the remaining A-chain listed 
in (iii), Af- b. This therefore has a true subchain Ab, -b and so AbTb is 
true. But since if AbIb is true and Aab is false Aab, must be false, we can 
repeat for Abl - e the argument so far given for Ab - e, and so on until we 
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have successively established the truth of AbIb, Ab,b,, . . . , Aeb,. Thus 
whether Ab-e is empty or not, Ae- b is true. But the truth of Aa- c, 
Acd, Ad-e, Ae - b implies the truth of Aab. 

Subcase (i-iv) is similar. We show that if Ab - e is not empty its mem- 
bers cannot belong to Aa- e but must all belong to Af - c, Ad-b, and we 
thereby show as before that Ae - b is true. But the truth of Aa - e, Ae- b 
implies the truth of Aab. 

Subcases (ii-iii) and (ii-iv) are the mirror images of (i-iv) and (i-iii). In 
subcase (ii-iii), for example, we show that if Af-a is not empty then (but 
this time working backwards from its last member) its members cannot 
belong to Af- b but must all belong to Aa-c, Ad-e. We thereby show 
that the reverse chain Aa -fis true; but the truth of Aa -f, Af - b implies 
the truth of Aab. 

Case 2: Pi is lab and P, is Ecd. By Theorem 2, X, P,, P,, e must be of 
the form Aa - c, Ab - d, lab, Ecd or else Ab - c, Aa - d, lab, Ecd. Let Q be 
Aef; then X must be either (i) Aa - c, Ab - e, Af - d or (ii) Aa - e, Af - c, 
Ab - d or (iii) Ab - c, Aa- e, Af - d or (iv) Ab - e, Af - c, Aa- d. By the 
same theorem X, Pi, Pz, Q must be of the form AC-a, Ad-b, Icd, Eab or 
else Ad-a, AC-~, Icd, Eab. Xmust therefore be either (v) AC-~, Ad-e, 
Af-b or (vi) AC-~, Af-a, Ad-b or (vii) Ad-a, AC-e, Af-b or (viii) 
Ad-e, Af-a, AC-~. There are thus sixteen cross-combinations to con- 
sider, for each of which we shall show that lab must be true, contradicting 
the hypothesis that it, viz. Pi, is false. 

Subcase (i-v) : If Ab - e is empty the reverse chain Ae- b is also empty 
and so true. If Ab - e is not empty its first member Abb, cannot belong to 
AC-~, otherwise this would have a true subchain Ab-a, which would 
imply the truth of Aba and hence of lab. Likewise it cannot belong to 
Ad-e, otherwise this would have a true subchain Ad-b, and the truth of 
AC-~, Ad-b, Icd would imply the truth of lab. Hence Abbl must belong 
to the remaining chain listed in (v), Af- b. This therefore has a true sub- 
chain Abl - b and so Ab,b is true. But since if Ab,b is true and 
Iub is false lab, must be false, we can repeat for Ab, -e the argument 
so far given for Ab-e, and so on until we have established the truth of 
each member of Ae - b. But the truth of AC-~, Ad-e, Ae - b, Icd implies 
the truth of lab. Interchanging a and b in this proof turns it into a proof of 
subcase (iii-viii), interchanging c and d turns it into a proof of subcase 
(iv-vii), and interchanging both pairs turns it into a proof of (ii-vi). 
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Subcase (i-vi) : Here the truth of Af - a, Af - d, Ad-b directly implies 
the truth of lab. Subcases (i-vii), (ii-v), (ii-viii), (iii-vi), (iii-vii), (iv-v), 
and (iv-viii) are similar. 

Subcase (i-viii): Here the truth of Aa- c, AC-b directly implies the 
truth of lab. Subcases (ii-vii), (iii-v) and (iv-vi) are similar. 

In Theorem 8 an assertion about syllogistic validity is made to follow 
from an assumption about truth-values. In common with all similar 
results, the theorem can be strengthened by weakening its hypothesis, so 
that it is no longer assumed that the wfIs involved actually have the truth- 
values in question, but merely the possibility of their having those truth- 
values. In the present case the weakened hypothesis will thus be that X, 
P r, . . . , P. is satisfiable. This implies that there is some assignment of 
values in which each member of X would be true and each Pi false. All we 
then need to do is to read ‘true’ and ‘false’ throughout the present proof 
as meaning true or false in this assignment of values, and the proof will 
go through without further change.* 

Glare College, Cambridge 

NOTES 

1 J. Lukasiewicz, 1957, Aristotle’s syllogistic, 2nd ed., Oxford. 
a There is more than one kind of per impossibile argument. The one illustrated is the 
‘hypothetical’ version, in which the falsity of the ‘impossibile’ (here, the truth of Q) 
is presupposed as a ‘hypothesis’ rather than posited as a premiss. 
a For example, the first distinction is flatly contradicted by Aristotle’s statement that 
“the falsity is established in reductions ad impossibile by an ostensive syllogism” 
(41a32). The second distinction is incompatible with the whole of An. Pr., Book 2, 
Chapters 11-14; e.g., it would be nonsense to say of a per impossibile conditional that 
it ‘posits what it wishes to refute’ (62b29), or to say that a universal afbrmative cannot 
be proved by a per impossibile first figure conditional (61b9), if ‘per impossibile’ 
referred to the manner of establishing the conditional in question. 
4 An. Pr. 24b23. Compare the distinction between ‘valid’ and ‘satisfactory’ arguments 
in J. F. Bennett, ‘Entailment,’ Philosophical Review 78 (1969). 219, 231ff. 
5 G. Patzig, 1968, Aristotle’s theory of the syllogism, Dordrecht, follows tukasiewicz 
in treating syllogisms as conditionals in the propositional calculus, but on second 
thoughts Patzig indicates a preference for the approach of K. Ebbmghaus, 1964, ‘Ein 
formales Modell der Syllogistik des Aristoteles,’ Hypomnemuta 9. This is still to treat 
syllogisms as conditionals, but as conditionals set in Lorenzen’s ‘operative logic’, in 
which they are established in natural deduction fashion. The resulting system does not 
have all the non-Aristotelian moods of Lukasiewicz’s, but it does have those described 
in the next paragraph. 
o An Pr. 41b36. I read the terminology of ‘whole’ and ‘part’ at 42alO as a variation on 
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the terminology of ‘major’ and ‘minor’ used earlier in the explanation of the syllogistic 
figures. 
7 P. T. Geach, 1963, ‘Aristotle on conjunctive propositions’, Ratio 5, 39ff. 
s (Added in proof.) Since this article was written I have learnt of concurrent work by 
Prof. J. P. Corcoran (to appear in Journal of Symbolic Logic, Archiv fiir Geschichte 
der Philosophic and Mind.) Corcoran’s approach to the syllogistic is very similar to 
that advocated here, but his treatment is independent and distinctive and provides 
further strong support for the new approach. 


