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HISTORY AND PHILOSOPHY OF LOGIC, 18 (1997), 1-15 

Aristotle's Natural Deduction Reconsidered 
JOHN N. MARTIN 

Department of Philosophy, University of Cincinnati, P.O. Box 210374, Cincinnati. 
OH 452214374, USA 

John Corcoran's natural deduction system for Aristotle's syllogistic is reconsidered. Though Corcoran is no 
doubt right in interpreting Aristotle as viewing syllogisms as arguments and in rejecting Lukasiewicz's 
treatment in terms of conditional sentences, it is argued that Corcoran is wrong in thinking that the only 
alternative is to construe Barbara and Celarent as deduction rules in a natural deduction system. An 
alternative is presented that is technically more elegant and equally compatible with the texts. The abstract 
role assigned by tradition and Lukasiewicz to Barbara and Celarent is retained. The two 'perfect syllogisms' 
serve as 'basic elements' in the construction of an inductively defined set of valid syllogisms. The proposal 
departs from Lukasiewicz, and follows Corcoran, however, in construing the construction as one in natural 
deduction. The result is a sequent system with fewer rules and in which Barbara and Celarent serve as basic 
deductions. To compare the theory to Corcoran's, his original is reformulated in current terms and 
generalized. It is shown to be equivalent to the proposed sequent system, and several variations are 
discussed. For all systems mentioned, a method of Henkin-style completeness proofs is given that is more 
direct and intuitive than Corcoran's original. 

Introduction 
My goal in this paper is to reconsider John Corcoran's, now classic, work on the 

sy1logistic.l Corcoran's purpose was to argue against two key theses of the 
interpretation of Lukasiewicz (1957) and others: that syllogisms should be construed 
as conditional sentences in an object language of the form ( A  A B) + C ;  and that 
Aristotle's reduction of the valid syllogisms to the 'perfect syllogisms' should be 
viewed as axiomatic theory in which Barbara and Celarent serve as axioms and the 
valid syllogisms are derived by rules of inferences2 Corcoran (1972 and 1974) argues 
rather that a syllogism is a three-line argument with two premises and a single 
conclusion, and that Aristotle's reductions should be construed as derivations of a 
conclusion from premises understood as natural deductions ('perfect syllogisms') in 
which Barbara and Celarent serve, not as 'axioms', but as rules of natural deduction. 

1 See especially Corcoran (1972 and 1974). Smiley (1973) proposes essentially the same axiomatic system 
as does Corcoran. Both also provide completeness proofs of a non-standard sort. The proof advanced 
below, in contrast, follows the familiar steps of a Henkin proof, and is offered as part of the paper's 
general aim of stating Aristotle's natural deduction theory using the concepts that have now become 
standard in the field. It should be noted that Smiley (1973) remarks on the fact that the rule, Cut, is 
definable in terms of the more primitive rules. Mention should also be made of Thom (1981) who offers 
a rich proof theory that contains versions of the systems of Corcoran and Smiley, and makes a step in 
the direction of this paper by treating syllogisms as syntactic units. It does not, however, include a 
semantics. The concept of saturation used below is a version of Aristotle's ecthesis. Robin Smith 1983 
adds a natural deduction version of the rule to Corcoran's system: if z is some term new to X ,  Y and 
B, then from X F Zxy and Y,  Azx, Azy F B, deduce X, Y t B, and from X t Oxy and Y, Azx, Ezy F B, 
deduce X ,  Y F B, Saturation mandates the presence (not assured by validity) of some Azx,  Azy,  given 
that of lxy, and of some Azx, Ezy, given that of Oxy, much as the notion in first-order logic requires 
that of some A[t ] ,  given that 3xA[x]. See also Paul Thom 1976. For a general survey of natural 
deduction frameworks, including the sequent version used below, see Goran Sundholm 1983. 

2 See Lukasiewicz (1957); Sheperdson (1956); Smiley (1962). 
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2 John N. Martin 

Corcoran formalizes the relevant natural deduction theory and provides a soundness 
and completeness proof for the syllogistic under its usual set-theoretic interpretation. 

The purpose of my discussion here is threefold. 

1. I reformulate Corcoran's theory in a fashion that makes use of more recent 
developments in natural deduction theory. In doing so, I try to clarify the 
original discussion. At the same time I shall formulate the proof theory and 
semantics in somewhat more general terms. 

2. I argue that Corcoran's success in fact is conceptually consistent with the 
'axiomatic' construal of Barbara and Celarent. In particular, I show that 
Corcoran's theory is fully equivalent to a proposed natural deduction theory 
that retains all of Corcoran's natural deduction rules, with the exception of his 
rule versions of Barbara and Celarent. In the proposed system the two 'perfect 
syllogisms' function as 'basic deductions' from which all the valid syllogisms 
are derived, much as they usually have been understood in the history of logic. 
The possibility of this alternative becomes clear when the background theory is 
developed in a more current idiom. 

3. I offer what I think is a more direct and natural completeness proof of the 
relevant theories, using the usual Henkin method of extending consistent sets to 
saturated maximally consistent sets, and then defining for any maximally 
consistent set a model constructed from the sentences of the set that satisfies the 
set. 

I BACKGROUND IDEAS IN NATURAL DEDUCTION 
Syntax and semantics 

For the purposes of background theory of natural deduction, it is sufficient to 
define a syntax with set Sen of sentences as any structure, (El, ... ,En, Sen), 
containing a distinguished set of expressions, Sen, intended to represent a set of 
sentences. We shall let Syn range over syntaxes. Let A, .. . , E range over Sen, and 
X, . . . , Z over subsets of Sen. 

By an interpretation for a syntax, Syn = ( El,. . . , En, Sen ), is meant any function, 
R, such that, for some sets, u,, ... ,u,, R is a function from El u ... u En u Sen to 
u,, . . . , un U {T, F) such that: 

1. for i = 1 , .  . . n, if XEE, ,  then R(x) E U, and 
2. if A E Sen, then R(A) E {T, F). 

A language is identified with any pair (Syn ,9 )  such that W is some set of 
interpretations for Syn. Let R range over 9 ,  and L = ( Syn, 92 ) over the languages for 
Syn. Logical relations are defined relative to a language, L. Let L = ( Syn, 9 ) : 

R 'satisjies' X in L iff, for all A E  X, R(A) = T; 
Xis 'satisfiable' in L iff, for some R, R satisfies X; 
Xis 'unassailable' iff, for any R, there is some A E  X,  such that R(A) = T; 
*,A iff, for all R E  W, R satisfies X only if R(A) = T; 
FTd A iff 12( kL A. 

Proof theory 
Inductive sets 

Since this paper contrasts various attempts to define the notion of 'provable 
syllogism' in terms of axiom and natural deduction systems, it is useful to begin with 

D
ow

nl
oa

de
d 

by
 [

Jo
hn

 N
. M

ar
tin

] 
at

 1
2:

10
 2

5 
Se

pt
em

be
r 

20
12

 



Aristotle's natural deduction reconsidered 3 

concepts from the theory of induction. For present purposes it is sufficient to identify 
an inductive system with a structure ( B, C,{R,, . . . , R,} ) such that : 

1. B (the set of basic elements of the system) and C (the set constructed by the 
system) are at most denumerable sets; 

2. each R, (a construction rule of the system) is a finite relation on B U C; 
3. C is the least set X such that B c X, for any Ri, if Ri is an m + 1-place relation, 

(el ,..., e , + , ) ~ R a n d  (el ,..., e,)EC, thene,+,~C. 

Relative to an at most denumerable set B and a set of finitary relations {R,, . . . , R,) 
defined for tuples in B, a derivation (tree) relative to B and {R,, . . . , R,} is defined as any 
finite labelled tree II such that: 

1. Every leaf node of Il is labelled by an element in B. 
2. For any node, n, of I'I with immediate predecessor nodes m,, . . . , m,, : 

(a) each mi (for i d k) is labelled by some element ei, and 
(b) n is labelled by e and some rule R,, such that ( el, . . . , e,, e ) E Ri. 

If the leaf nodes of a deduction tree II are labelled, respectively, el,. . . , e,, its root node 
is labelled by e, and if {R,, . . . , R,} = {R I R is a finitary relation on Sen that labels some 
node of ll}, we say ll is a derivation (tree) of e from ( el,. . . , e, ) relative to {R,, . . . , R,). 
If, in addition, all the leaf nodes of Il are in B, then ll is called a proof (tree) of e from 
( el,. . . , e, ) relative to B and {R,, . . . , R,}. It is an elementary fact of induction theory 
that e E C for an inductive system ( B, C, {R,, . . . , R,} > iff there is some proof tree of e 
relative to B and some subset of {R,, ... , R,). 

Axiom systems 
For our purposes here, an axiom system may be identified with an inductive 

system, ( Ax, F, {R,, . . . , R,) ), such that for some syntax, Syn = ( El,. . . , En, Sen ), 
Ax and I- are subsets of Sen. 

Natural deduction systems 
By a deduction in Syn in meant any pair ( X, A ) such that A E Sen and Xis a finite 

subset of Sen. Here Xis called the 'premise set' of the deduction and A the 'conclusion'. 
It will suffice to define an 'inference rule' for Syn as any finitary relation on deductions 
in Syn. In addition, a special set, BD, of deductions is distinguished, called the 'set of 
basic deductions'. By a 'natural deduction system' for Syn is meant any inductive 
system ( BD, F ,  RL ) such that BD is a set of deductions distinguished for Syn, and 
RL is a set of derivation rules for Syn. The inductively defined relation t- is called 
the 'set of provable deductions' for Syn relative to BD and RL. We write Xt- A for 
( X, A ) E t-, and adopt the customary abbreviations: 

X , A F B  means XU {Alt-B; 
A,,. . . , A, F B means {Al,. . . , A,) F B; 
F A  means @ F A .  

It follows from induction theory that ( X, A ) is a provable deduction in ( BD, t-, RL ) 
iff there is some proof tree of Syn relative to BD and some subset of RL such that 
its root node is labelled by ( X, A ). 

In cases in which the notion of a uniform substitution, S, is defined for Syn, it is 
customary to define a derivation rule, R, for Syn by a tree diagram. If S(A) is the result 
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4 John N. Martin 

of uniformally substituting elements of Sen for sentence letters of A, the notion is 
extended to sets and deductions as follows: S(X) = {S(A) 1 A EX) and S(( X, A )) = 

( S(X), S(A) ). Then, the tree 

defines the relation R = {( dl, . . . , d,,, ) 1 for some uniform substitution S, dl = 
S(( XI, A1 )) & . . . & d,,, = S(( Y, B ))I. 

A relation, R, is said to be 'dej5nable' relative to rules R,, . . . , R, and is called a 
'derived rule' in ( BD, F, RL ), where {R,,. . . , k) G RL, iff there is a derivative tree ll 
of d,+, from dl,. . . , d, relative to BD and {R,, . . . , R,), and R = {S(d,), . . . , S(d,+,)( S is 
a uniform substitution for Sen). A natural deduction system, ( BD, F ,  RL), is said to 
be 'reducible' to a natural deduction system, (BD', F',  RL' ), iff BD G BD' and every 
R E  RL is a derivable rule in ( BD', F',  RL' ). Two systems are 'strictly equivalent' iff 
they are mutually reducible. Let two systems, ( BD, I-, RL ) and ( BD', F', RL' ), be 
called 'constructively equivalent' iff F = F'. 

I1 THE SYLLOGISTIC 
The syntax for the syllogistic 

An at most denumerable set of common nouns is posited: 

Terms = {t,, . . . , t,, . . .). 
Two notions of sentence, one narrow and one wide, are defined according to whether 
we abstract from Aristotle's restriction against allowing the same term to occur 
simultaneously as the subject and predicate of a sentence. (It follows from the more 
general forms of the completeness results below that the restriction is unnecessary and 
plays no significant theoretical role in the semantics or proof theory.) 

Sen' = { z  1 for some x, j~ E Terms, z = Axy or z = Exy or z = Zxy or z = Oxy). 

Sen- = { z  I for some x, y E Terms, x =k y and, z = Axy or z - Exy or 

z = Zxy or z = Oxy}. 

From this point, let Sen range over {Sen+, Sen-). A 'syllogistic syntax' is defined as any 
pair, ( Terms, Sen ) ; and let Syn range over syllogistic syntaxes. Let variables x, y, z 
range over Terms. A syntactic negation is introduced by eliminative definition: 

- Axy = ,,, Oxy - Exy = ,,, Zxy - Zxy = ,,, Exy - Oxy = ,,, Axy 

By an 'interpretation for a syntax, Syn' is meant any R such that, for some &, R is 
a function from Terms U Sen to 42 IJ {T, F} such that: 

1. If x E Terms, then R(x) E 42. 
2. If A E Sen, then R(A) E (T, F). 

A 'syllogistic language' is identified with any pair, ( Syn, W ), such that W is some 
set of interpretations for Syn. Let R range over 9, and L = ( Syn, 9 ) over 
the languages for Syn. Logical relations are defined relative to a language, L. Let 
L = (Syn,W). 
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Aristotle's natural deduction reconsidered 

R 'satisfies' X in L iff for all A EX, R(A) = T; 
Xis 'satisfiable' in L iff, for some R, R satisfies X; 
Xis 'unassailable' iff, for any R, there is some AE X, R(A) = T; 
X!=, A iff, for all R E  92, R satisfies X only if R(A) = T;  
+,A iff @!=,A. 

This study will be concerned only with a particular type of language in which terms 
are interpreted over non-empty sets-as in the accounts of Aristotle and Cor- 
coran-or, more abstractly, in which terms are assigned non-minimal elements of a 
special variety of semi-lattice. By an 'order theoretic model structure for Syn' is meant 
any structure, ( %, < , A ,  0 ), such that: 

1. ( 42, < ) is a partially ordered structure with least element 0; and 
2. ( 42, A ) is the meet semi-lattice determined by ( %, < ). 

Some direct properties of such model structures are now listed. Let ( %, < , A , 0 ) 
be such a structure and let x, y e a .  The properties numbered 4-7 are the semantic 
correlates of the trivial ('immediate') relations of the traditional square of opposition : 

1. x < y i f f x ~ y = x ;  
2. 42 is closed under A ,  and A is idempotent, commutative and associative; 
3. x A O = O ;  
4. x < y o n l y i f x ~ y ~ O , i f x + O ;  
5. x A y = 0 only if not (x < y), if x =l 0; 
6. not (x<yif f  not(x<y));  
7. n o t ( x ~ y + O i f f x ~ y = O ) .  

An 'order theoretic interpretation' of Syn relative to an order theoretic model 
structure, (42, < , A ,  0), is defined as any interpretation, R, of Syn mapping 
Terms u Sen to 42 u {T, F) such that: 

1. If x E Terms, R(x) E % and R(x) =I= 0. 
2. If A E Sen, then : 

(a) if A is some Axy, then R(A) = T iff R(x) < R(y); 
(b) if A is some Exy, then R(A) = T iff R(x) A R(y) = 0; 
(c) if A is some Zxy, then R(A) = T iff R(x) A R(y) + 0; 
(d) if A is some Oxy, then R(A) = T iff not (R(x) < R(y)). 

Let W+ be the set of all order-theoretic interpretations for Syn+, and 9- the set of 
order-theoretic interpretations for Syn-. Let an order-theoretic model structure (42, 
<, A ,O ) be called 'set theoretic' iff 42 is a family of sets, < is set inclusion in %, A is 
set intersection and 0 is the empty set. Let W j, be the restriction of a set of order- 
theoretic interpretations to those which are set theoretic. Then four languages-L+ = 
( Syn+ ; W+ ) and L- = S y n  ; 9- )-and their restrictions-Lj,+ = ( Syn+; W j,+ ) and 
L 4- ( Syn-; W j ,  )-may be distinguished. From this point, let W range over these 
four sets of interpretations and L over these four languages. 

The semantic version of the theory of 'immediate' inference follows trivially for all 
four languages : 
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6 John N.  Martin 

Theorem : 1. Axy k Zxy and Exy + Oxy ; 
2. {Axy,  Exy) is not satisfiable, and {Zxy, Oxy} is unassailable; 
3 .  Axy I= - Oxy, Oxy I= - Axy, Exy I= - Zxy, Zxy k= - Exy. 

Natural deduction concepts 
A series of rules necessary for the statement of Corcoran's original 1972 theory 

and for abstractions from it will be defined first. 

X  t- Exy 
C1: - 

X F  Exy 

X E A  Y t - - A  
RD: X U  Y - { B } t  - B  

ID : 
X I - B  

X t A x x  

The first three rules are used for deductions in Sen-. ID is added for deductions in Senf. 
The rule RD is a general version of reductio and may be partitioned into three disjoint 
subrelations : 

X B F A  Y k - A  
RD1: X , Y k - B  

X F A  Y E - A  
RD2: X , Y I - B  

RAI : 
X , - B t A  Y , - B E - A  

X , Y E B  

The first rule is said to 'discharge' B. The second is a version of ex falso quodlibet. The 
third is a version of Aristotle's rule reductio ad impossible and is said to 'discharge' - B. 

Three important additional rules are : 

Thinning : 
X k A  

X , Y I - A  

Cut : 
X k A  Y , A E B  

X , Y F B  

Transposition : 
X A F B  

X , - B F - A  

Theorem: 1. 
2 .  
3 .  
4. 
5. 
6. 
7. 
8. 

Thinning is definable in terms of RD1. 
Cut is definable in terms of RD1. 
Transposition is definable in terms of RD1. 
RD1 is definable in terms of Cut and Transposition. 
RD2 is definable in terms of Cut, Thinning and Transposition. 
RAI is definable in terms of RD1 and RD2. 
RD1 is definable in terms of RAI and Thinning. 
RD2 is definable in terms of RAI and Thinning. 
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Aristotle's natural deduction reconsidered 7 

Proof: Proofs of parts 2-8 are straightforward; part 1 is shown by induction on the 
nested subsets of Y = {B,, . . . , B,). 

Basis step. Let Y = {B,): 

XI-A X,B,-AI--A(basic) 
X, B I- A (RDI) 

Inductive step: Assume that X, B,, . . . , Bi I- A is definable. Then, X, B,, . .. , Bi+, F A  
is derived as follows: 

X, B,, . . . , B, F A  X, B,, . . . , B,, - A I- - A (basic) 
X, B,, . . . , Bi+, F A (RDI) 

Though it will be useful later to expand the set of basic deductions, I begin the 
discussion of natural deduction theories for the syllogistic by employing the definition 
of basic deduction that is standard in natural deduction theory. It is this notion that 
is appropriate for Corcoran's treatment. Let BD, be {( X, A ) I ( X, A ) is a deduction 
and A # X). 

Given the previous theorem, four equivalent natural deduction theories for Sen- 
may be defined as sufficient for the theory of immediate inference: 

IM1 = (BD,, I-,,{Cl, C2, RD)); 
1M2 = ( BD,, I-,, {Cl, C2, RD2, Cut, Transposition) ) ; 
1M3 = ( BD,, t-,, {Cl, C2, Thinning, Cut, Transposition) ) ; 
IM4 = ( BD,, I-,, {Cl, C2, Thinning, RAI) ) (Corcoran's system). 

Since the four systems are strictly equivalent, the four sets of provable deductions are 
co-extensive. 

Theorem: Let I- be the set of provable deductions relative to BD, and some rule, RL, 
that includes Cut. Then : 

Proof: 

A, I- A, (basic) . . . A, + A, (basic) 
A,, . . . , A, I- B (by assumed rule) 

e : Let A,, . . . ,A, I- B be provable by tree n. Then the following is a derivation tree 
that defines the required rule: 

A,, . . . , A, I- B (given) X, t- A, (given) 

X,, A,, . . . , A, t- B (Cut) X, I- A, (given) 

X,, X,, A,, . . . , A, I- B (Cut) X, F A, (given) 

X,, . . . , X,-, A,F B(Cut) X, I- A, (given) 

X,, ... , X, I- B (Cut) 
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8 John N. Martin 

Corcoran's natural deduction theory 
Corcoran's original theory is defined in terms of several additional rules which in 

standard theory would be defined now as follows: 

XF zxy 
Cl': - 

X t zyx 

X t- Axy 
C2' : 

X t- zyx 

X F  Exy 
C2" : 

X F o y x  

X k A z y  Y k A x z  
PSI : 

X ,  Y F Axy 

X F E z y  Y t - A x z  
PS2 : 

X, Y k Exy 

X k A z y  Y F Z x z  
PS3 : 

x ,  Y I- zxy 

XI-Ezy Yt-Zxz 
PS4: X , Y t - o x y  

Rules C1 and C1' are natural deduction versions of the traditional rules of simple 
conversion, and C2' and C2" are versions of conversion per accidens. Rules PS1-4 are 
versions of the traditional first figure syllogisms Barbara, Celarent, Darii and Ferio, in 
which the syllogisms are treated 'epitheoretically' as natural deduction rules. 

Theorem: Relative to the set BD,, 
1. C2' is definable in terms of C1, C2 and RAI and Thinning; 
2. Cl' is definable in terms of C1, Cut and Transposition; 
3. C2" is definable in term of C2', Cut and Transposition; 
4. both PS3 and PS4 are definable in terms of PS2. 

In his original presentation Corcoran 1972 develops the theory of immediate 
inference by taking as primitive natural deduction versions of the simple conversion of 
E-statements: conversion per accidens of A-statements; and argumentum per im- 
possible. He observes that simple conversion of I-statements and conversion per 
accidens of E-statements are then definable. He extends the theory to embrace the full 
syllogistic by adding versions of Barbara and Celarent treated as natural deduction 
rules, and observes that Darii and Ferio are then definable. 

In this presentation I depart from Corcoran in several ways. First, the modern 
statement of the theory demands that we make explicit that proof constructions begin 
with elements in the set BD, of basic deduction. The appeal to BD, is left implicit in 
Corcoran's presentation. Second, for the conversion rules I prefer to take C1 and C2 
as primitive, inasmuch as doing so demarcates by distinct rules the operations of 
conversion (C1) and subalternation (C2). 

Third, for the theory of immediate inference, I make explicit, in a way Corcoran 
does not, that RAI together with conversion rules are not sufficient. If RAI is taken as 
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Aristotle's natural deduction reconsidered 9 

primitive then Thinning must be added. The result is the theory IM4 which I propose 
as the formal reconstruction of Corcoran's theory of immediate inference. Equally, 
one of the alternative rules' sets of the strictly equivalent theories IM 1-3 could be used. 

Corcoran's main idea concerns how to extend the natural deduction theory of 
immediate inference so as to embrace the full syllogistic. His proposal consists of 
augmenting the rule set by adding Barbara and Celarent, treated as natural deduction 
rules. He observes that Darii and Ferio, also treated as natural deduction rules, then 
become definable. Accordingly, I take 

SYL, = ( BD,, kc, C 1, C2 Thinning, RAI, PS 1, PS2 ) 

as the formal version of Corcoran's full syllogistic theory. 

Corcoran's rejection of the traditional interpretation of Aristotle 
Corcoran's main conceptual claim, which is also a claim about how Aristotle 

should be interpreted, is that the tradition has been wrong to construe the reduction 
of valid syllogisms to Barbara and Celarent as some sort of implicit axiomatic theory 
in which Barbara and Celarent serve as 'axioms'. For my purposes here it will be use- 
ful to be more precise and divide the view that Corcoran criticizes into two theses : 

1. that syllogisms are object language sentences (of the form ( A  A B) -. C) ; 
2. that the set of valid syllogisms is to be construed as an axiom system, defined as 

the inductive closure of the basic sentences Barbara and Celarent under some 
inference rules. 

It is clear that if thesis 1 is false, so is thesis 2. Syllogisms cannot be axiomatized if 
they are not sentences. There is no question but that thesis 1 is controversial, and 
indeed implausible. Lukasiewicz (1957) explicitly argues that syllogisms are sentences 
rather than three-line arguments, and he does so in order to treat Aristotle's reductions 
as proofs in an axiom system. It is clear also that Lukasiewicz has not convinced many 
scholars that thesis 1 is true.3 Aristotle's text consistently treats syllogisms as 
consisting of three sentences, and the logical tradition from ancient through mediaeval 
times has done likewise. Moreover, historians of logic subsequent to Lukasiewicz 
generally have not found his axiomatization persuasive enough to reject the traditional 
reading. On the whole, then, most commentators agree with Corcoran in rejecting 
thesis 1 in favour of its alternative. 

1'. that syllogisms consist of three-line arguments in the object language. 

In rejecting thesis 1, however, Corcoran seems to think that he must reject also any 
inductive construction of the syllogisms from Barbara and Celarent as basic elements. 
In particular, he seems to reject this alternative to thesis 2: 

2'. that the set of valid syllogisms is to be construed as an inductive set, defined as 
the closure of the basic elements Barbara and Celarent are under some 
construction rules. 

He seems to reason as follows. Since syllogisms are arguments and not sentences, and 
since the valid syllogisms may be 'proven' as arguments in a natural deduction theory 

3 See, for example, Patzig (1968) and Rose (1968). In section 4.2, 'The Syllogistic', (Martin, 1987), the 
author offers a natural deduction version of the syllogistic in which the valid syllogisms are defined as 
a constructive set of arguments (rather than sentences); viz: the closure of basic deductions, including 
Barbara and Celarent, under natural deduction rules suggested by the Square of Opposition. The point 
of the discussion there, however, is more to illustrate natural deduction techniques than to interpret 
Aristotle. 
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10 John N. Martin 

in which Barbara and Celarent are not taken as basic deductions, Aristotle should not 
be construed as having intended Barbara and Celarent to serve as basic elements in a 
reduction. 

It is, however, difficult to accept Corcoran's conclusion. He is forced to depart 
from the standard reading in which Aristotle's notion of 'perfect syllogism' is 
understood to refer to the two basic syllogisms, Barbara and Celarent, distinguished 
for being particularly self-evident. He is forced also to construe the various reductions 
given by Aristotle, so that they are no longer step-wise reductions of syllogisms to 
Barbara and Celarent construed as basic syllogisms. Rather, he demands the reading, 
new to the tradition, that in the manner of natural deduction a reduction presupposes 
the premises of the syllogism to be 'reduced', and then derives the conclusion in the 
manner of a natural deduction using Barbara and Celarent as rules of deduction. 
Admittedly, Aristotle's text is terse and his explanations few, and Corcoran's reading 
is consistent with the text. 

What seems to have influenced Aristotelian scholars, however, is not the text, but 
a technical point. It is the perceived inconsistency of taking syllogisms as arguments 
and accepting Barbara and Celarent as basic elements in an inductive construction. 
Corcoran is supported in his view, moreover, by his technical success in developing a 
natural deduction construction of the valid syllogisms in which Barbara and Celarent 
are understood, not as basic deductions, but as natural deduction rules of construction. 

The point I want to make here is that any perceived inconsistency between 
syllogisms as arguments and the perfect syllogisms as basic elements in a construction 
is specious. It is perfectly possible to develop a natural deduction theory of the 
syllogism that conforms to both thesis 1' and thesis 2'. Indeed the resulting theory is 
fully equivalent, in the constructive sense, to Corcoran's 1974 natural deduction 
theory. 

Let BD, be BD, U { { A ,  B) I- C I either (for some x, y, x E Terms, A  = Azy, B = Axz 
and C = Axy) or (for some x, y ,x~Terms ,  A  = Ezy, B = Axz and C = Exy)}. Let 
SYL, = ( BD,, I-,, C1, C2, Thinning, RAI ). 

Theorem: SYL, is constructively equivalent to SYL,. 

Proof: SYL, is reducible to SYL,, because PS1 and PS2 are easily definable in SY L,. 
Thus t-, c I-,. Conversely it is straightforward to show that BS, c t-,, from 
which it follows by induction that t-, c t-,. . . 

I11 SOUNDNESS AND COMPLETENESS 
Corcoran's main metalogical result may be stated in terms of SYL, = ( BD,, F,, 

C1, C2, Thinning, RAI, PSI, PS2 ). He showed that SYL, is sound and complete for 
the syllogistic interpreted over sets, in the narrower syntax that does not allow the 
same terms to occur as both subject and predicate: 

Corcoran's Theorem: Relative to L $- = ( Syn-, 9 4-) and natural deduction theory 
( BD,, t-,, C1, C2, Thinning, RAI, PSI, PS2 ) for Syn-, the two 
relations k,,= and t-, are co-extensive. 

In what follows I offer what I think is a more direct and intuitive proof of the 
completeness theorem and of some generalizations from it. By using Henkin methods, 
the treatment shares the advantage of the earlier restatement of the general natural 
deduction framework, in that it helps situate syllogistic metalogic within the 

D
ow

nl
oa

de
d 

by
 [

Jo
hn

 N
. M

ar
tin

] 
at

 1
2:

10
 2

5 
Se

pt
em

be
r 

20
12

 



Aristotle's natural deduction reconsidered 11 

mainstream of current natural deduction theory. The relatively simple idea of the 
Henkin-style proof is to construct a model for a saturated maximally consistent set, M, 
by defining the extension of a term, x,  so that it includes the term x itself and all terms 
y that 'fall under it7, in the sense that the sentence Ayx is in M .  

The main result will be shown for L = ( Syn-, E )  and, due to the convenience 
of its larger set of primitive rules, for the system SYL, = ( BD,, F,, C1, C2, Thinning, 
RAI, PSI, PS2 ). The result holds equally well for the family of systems equivalent to 
SYL,, including SYL,. Subscripts will be employed only to avoid ambiguity in 
contexts where other languages are discussed. We employ without proof some 
standard syllogistic results: 

Theorem : 1. (Soundness) if X F A, then X k A. 
2. (Reducibility of three-premise syllogisms) If A, B, C, F D, then there is 

some E such that A, B F E and E, C F D. 

Soundness is proven by the standard induction. The second result is proven by a 
review of the small finite number of cases involved. (If Sen = SenC the number of cases 
is larger but still finite and manageable.) 

Definitions. Let X be a finite subset of Sen. 
XI-A means for some finite subset Y of X, Y F A. 
X is inconsistent means for some A, X F A and Xt- - A. 
Xis consistent means Xis not inconsistent. 

Theorem : 1. If X is inconsistent, then X F A. 
2. If X is finite, then Xis inconsistent iff, for some A, X F  A and X F - A. 
3. If X is finite, then X F  A iff X U { -  A) is inconsistent. 
4 . X t A i f f , f o r s o m e B , X , - A F B a n d X , - A F - B .  
5. IfA, ,..., An,Bt-C, then,forsomeD,A, ,..., A n F D a n d D , B F C .  

The first four results are standard and follow directly from the definitions. Result 5 
follows by induction using the reducibility to two of three-premised syllogisms. 

Dejinition: 1. If Sen = Sen-, y is 'new to X', means y does not occur in any A EX. 
2. If Sen = Sen+, y is 'new to X' means y does not occur in any A in X 

other than Ayy and Zyy. 

Theorem: For X = {A,, . . . ,A,), if X, B F C and X u {B) is consistent, then no term 
occurring in C is new to X U {B). 

Proof by induction : 
Basis step: Let X = { A , } .  Assume A,, B I- C and that {A, B) is consistent. Since A,, 

B t- C, then by an earlier theorem following is a proof tree: 

A,FA, B F B  
A,, B F  C 

But this obtains only if A, = C or B = C or the descent is by PSI or PS2. In all cases 
the theorem follows. 

Inductive step: Let X = {A,, . . . ,An). Assume: (1) that X = {A,, . . . ,An), B I- C and 
(2) that X U {B} is consistent. By (1) and an earlier theorem, there is a D such that the 
following is a derivation tree : 
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12 John N. Martin 

Moreover, by (2), both {A,,  . . . ,A,) and {D, B} are consistent, and the induction 
hypothesis applies to the two leaves of the tree. Hence all the terms in C are in either 
D or B, and hence in either X or B. . 
Corollary: If X U { A )  is consistent and there is some term occurring in B that is new 

to X U {A},  then X U { A ,  B}, is consistent. 
Dejinition : Xis 'maximally consistent' iff X is consistent and for any A ,  either A E X  or - A E X .  

Theorem: Let X be maximally consistent. Then: 
1 .  A ~ X i f f X t - A .  
2. A ~ X i f f  A $ X .  
3. If Axy E X ,  then Zxy E X 
4. If Exy E X ,  then Oxy E X 
5 .  Not both Axy and Exy are in X. 
6. Either Zxy or Oxy is in X.  

Dejinition : Xis a 'saturated maximally consistent' set iff X is maximally consistent and 
1 .  Zxy E X iff, for some z, Azx, Azy E X ;  
2. Oxy E X iff, for some z, Azx, Ezy E X.  

Lemma 1 :  Every consistent set is extendible to a saturated maximally consistent set. 

Proof: Let Sen be ordered in a series {A,}. A series {X i }  of subsets of Sen is defined 
inductively : 

X I  = x. 
If A ,  is some Axy or Exy: 

X,,, = X,  U {A,), if X,  U {A,) is consistent; 
= X,  otherwise. 

If A ,  is some Zxy : 

X,+, = X, U {A,, Azx, Azy}, if z is some term new to X,  u {A,}, and 
X, U {A,} is consistent; 

= X,  otherwise. 

If A ,  is some Oxy: 

X,,, = X,  u {A,, Azx, Azy}, if z is some term new to X,  U {A,}, and 
X,, U {A,} is consistent; 

= X, otherwise. 

Claim 1 : All Xi are consistent. 

Proof by induction. 

Basis step: By definition X ,  = X and Xis consistent. 
Inductive step : 

Case 1. A ,  is some Axy of Exy. 
Then either X,,, = X,  u {A,) and X,  U {A,} is consistent, or X,,, = X,  and X,  
is consistent. 

Case 2. A ,  is some Zxy. 
Then either X,  u {A,,} is consistent or it is not. Suppose first that is is not. Then 
XI,+, = X,, which is consistent. Suppose X ,  U {A,) is consistent. Then, for some 
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Aristotle's natural deduction reconsidered 13 

term, z, new to X, U {A,), X,,, = X, u {A,, Azx,  Azy). Since z of Azx and Azy is 
new to X, and to Zxy, it follows from an earlier theorem that X, U {Zxy, Azx)  and 
X, U {Zxy, Azy) are both consistent. Suppose for a reductio that X, U {A,, Azx,  
Azy) is inconsistent. Then, X,, Zxy, Axy  I- - Azy. Then, by a previous theorem, 
there is some B such that X,, Zxy t- B and B, Azx F Ozy. Moreover, since X, U 
{Zxy, Azx)  is consistent and X,, Zxy I- B, {B, Azx)  is consistent. But the only B such 
that both {B, Azx)  is consistent and B, Azx F Ozy is Ozy. But then Xn, Zxy t- Ozy. 
Since X, U {Zxy) is consistent by a previous theorem, z must occur in some sentence 
in X or in Zxy. Since it does not occur in Zxy, it must occur in X,, contrary to the 
earlier stipulation that z is new to X, and Zxy. Hence, X, U {A,, Azx,  Azy) is 
inconsistent. 

Case 3. A, is some Oxy. 
The argument is similar to Case 2. Either X, U {A,) is consistent or it is not. 
Suppose it is not. Then X,,, = X,, which is consistent. Suppose X, U {A,) is 
consistent. Then, for some term, z, new to X, U {A,}, X,,, = X, u {A,, Azx,  Ezy). 
Since z of Azx and Ezy is new to X, and to Oxy, it follows from an earlier theorem 
that X, U {Oxy,  Azx)  and X, U {Oxy,  Ezy) are both consistent. Suppose for a 
reductio that Xn U {A,, Azx,  Ezy) is inconsistent. Then, X,, Oxy, Axy F - Ezy. 
Then by a previous theorem, for some B, X,, Oxy t- Band B, Azx t- Zzy. Moreover, 
since X, U {Oxy,  Azx)  is consistent and Xn Oxy F B, {B, Azx)  is consistent. But the 
only B such that both {B, Azx)  is consistent and B, Azx F Zzy is Zzy. But then z is 
not new to X, and Zxy, contrary to the earlier stipulation. Hence: X, U {A,, Azx,  
Azy} is inconsistent. 

It follows from the three cases that Xn+, is consistent. Hence, by induction, all Xi 
are consistent. 

Claim 2: X G U {Xi).  This trivially follows because X = X,. 

Claim 3: {Xi )  is consistent. Proof is by standard reductio. 

Claim 4:  U {Xi)  is maximal. 
Proof is by reductio. Assume for some B, neither B E  U {Xi)  nor - B E  U {Xi}. By 
standard reasoning, it is easily shown that for some finite Y r X,  and some C, both 
Y,  A, t- C and Y,  A, t- - C. The following then is a proof tree: 

Y , A , F C  Y , A , E  - C 
Y t- - A, (RAI) 

Hence, X, t- - A, and X, I- - B. Reasoning likewise, X, t- - A,  and X, t- B. 
Hence X, is inconsistent, contradicting what was shown earlier. 

Claim 5 : U {Xi}  is saturated. 
We illustrate the case if Z x y ~  U {Xi )  then, for some z, Azx,  A z y ~  U {Xi).  Assume 
Z x y ~  u {Xi).  Then, for some n, Zxy = A,, and, since U {Xi)  is consistent, it follows 
that X, U {Zxy) is consistent and that, for some variable, z ,  new to Xn and Zxy, 
X,,, = X, U {A,, Zxy, Azx,  Azy) G U {Xi).  Hence, for some z, Azx,  Azy E U {Xi).  

Lemma 2 :  If X is a saturated maximally consistent set, then there is some R E  9- such 
that, for any A, A E X  iff R(A) = T. 

Proof: Let X be as specified. R is defined so as to be 9-. Let ( P(Terms), c ,  n , /a ) 
be the order-theoretic structure determined by the power set P(Terms) of Terms, the 
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14 John N. Martin 

set inclusion relation G on P(Terms), the meet operation n determined by G ,  and 
the least element @. Let R be a function from Terms U Sen- into B(Terms) U {T, F) 
such that : 

if x E Terms, R(x )  = { y E Terms 1 Ayx E X) 

for A E Sen-, 

if A is some Axy, R (A)  = T iff R(x)  E R(y )  

if A is some Exy, R(A)  = T iff R(x)  n R ( y )  = @ 

if A is some Zxy, R(A) = T iff R(x )  n R ( y )  + @, 

if A is some Oxy, R(A) = T iff R(x )  $ R(y )  

To show R e g - ,  it remains to show that for any x~Terms ,  R(x)  8 @. Since X is 
maximal, there are two cases : either Zxy E X or Exy E X. 

Case 1. Suppose Zxy E X. 

Since X is satisfiable, there is some z such that A z x ~  X. Hence z ~ R ( x )  and 
R(x)  + La. 

Case 2. Suppose Exy E X. 
Since X is closed under t-, O x y ~  X. Since X is satisfiable, for some z, Azx + X. 
Hence z E R(x)  =+ @. 

It is shown now that for any A, A E X  iff R(A)  = T. There are four cases: 

Case I : A is some Axy. * : Assume Axy E X. 
For an arbitrary z assume z E R(x) .  Then Azx E X. Since Azx, Axy F Azy and X 
is closed under F, A z y ~  X. Hence z ~ R ( y ) .  Since z is arbitrary, R(x)  G n (y ) .  
e: Suppose R(x)  G R ( y )  but (for reductio) that Axy$ X. Since X is maximal, 
O x y ~  X. Since A is saturated, there is some z such that Azx, E z y ~ x .  Hence 
z E R(x). Hence z E R ( y )  and Azy E X. But it follows from the facts that Ezy E X, 
Ezy t- Ozy, and X is closed under F ,  that O z y ~  X. But then X is inconsistent, 
contrary to the original assumption. 

Case 2. A is some Exy. - : Let Exy E X. 
Suppose z E R(x)  n R(y) .  Hence Azx, Azy E X. But Azx, Azy F Zxy. Hence Zxy E X 
and Xis inconsistent. Absurd. e : Let R(x)  n R ( y )  = @. Suppose Exy 4 X. Then 
Zxy E X and, for some z, Azx, Azy E X.  Thus z E R(x)  u R(y) .  Absurd. 

Case 3. A is some Zxy. * : Let Zxy E X. 
Hence, for some z, Azx, Azy E X. Thus, z E R(x)  n R(y )  ?= a. e : Suppose 
R(x)  n R ( y )  8 @. Then, for some z, z E R(x) ,  R(y) .  Hence Azx, Azy E X. Further, 
Azx, Azy F Zxy. Hence Zxy E X.  

Case 4. A is some Oxy. * : Let Oxy E X. 
Then, for some z, Azx, Ezx E X. Thus, z E R(x). Suppose (for reductio) z E R(y) .  
Then Azy E X. Hence Zzy E X. But then X is inconsistent, which is absurd. e : Let 
R(x)  - R ( y )  =I @. Suppose Oxy 4 X. Let z E R(x) ,  z $ R(y) .  Then, Azx E X, Azy 4 X. 
Hence Ozy E X. Hence Oxy E X. Absurd. . 

Theorem : If X != A, then X F A. 

Proof: Let X +  A. Then for some RE$%-, R satisfies X and R ( -  A) = T. Clearly 
X U { - A )  is inconsistent. For, if not, there is by Lemma 1 some maximally consistent 
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Aristotle's natural deduction reconsidered 15 

Y such that X s { -  A )  s Y. Then, by Lemma 2, there is some R E  9- such that R 
satisfies Y, including X U { -  A).  But then R satisfies X and - A contrary to the 
assumption. Since X U { -  A )  is inconsistent, there are some finite subsets Z and Z' 
and some B such that Z, - A F Band Z', - A F - B. Hence by RAI, Z, Z' t- A. Since 
Z U Z' is a finite subset of X,  X t- A. H 

The proof is easily adapted for L+ = ( Syn+, 9+ ) and SYL, = ( BD,, F,, C1, C2, 
Thinning, RAI, PSI, PS2, ID ), and its equivalents. 
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