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Subcritical bifurcation of a rotating elastic filament in a viscous
fluid by the immersed boundary method

Sookkyung Lim ∗, Charles S. Peskin
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA

Abstract

A bifurcation occurs when an elastic filament rotates in a viscous fluid at frequency ω (bifurcation parameter). We use
the immersed boundary (IB) method to study the interaction between the elastic filament and the surrounding viscous fluid
as governed by the incompressible Navier–Stokes equations, and to determine the nature of the bifurcation, which turns out
to be subcritical.
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1. Introduction

We consider an elastic and neutrally buoyant filament
having micro-architecture motivated by bacterial flagella
[1] in a fluid of viscosity µ, rotated at one end at frequency
ω with the other end free. It is composed of inner and
outer layers with motors on the outer layer at the bottom.
We assume that the fluid is governed by the Navier–Stokes
equations, at a very low but nonzero Reynolds number. The
immersed boundary (IB) method [2–4] is used to solve the
coupled equations of motion of the filament and the fluid.
This numerical method reveals two dynamical motions of
the rotating elastic filament depending on the rotation rate
ω and also on the initial bend: twirling, in which the
straight but twisted rod rotates about its centerline, and
overwhirling, in which the tip of filament “falls down” and
rotates around its motor axis in a steady bent state.

In the present paper we study a particular rotation rate
ω < ωc , where ωc is the critical frequency above which the
twirling motion is unstable [5]. For small initial bend, the
filament straightens out into a twirling motion, but for large
enough initial bend, the bend increases over time and the
filament goes into an overwhirling motion.

This bistability is characteristic of a subcritical bifurca-
tion [6]. In this respect, our results are contrary to those of
[5], where a supercritical bifurcation is claimed.
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2. Equations of motion

We describe the equations of motion in this section.
We regard the fluid as incompressible and viscous, and the
filament as an elastic structure immersed in this fluid.

Fe = −∂E

∂X
, (1)

Fmot = cTmot, (2)

F = Fe +Fmot, (3)

ρ

(
∂u
∂t

+ (u ·∇)u
)

+∇ p = µ∇2u+ f, (4)

∇ ·u = 0, (5)

f (x, t) =
∫

F(q,r ,s, t)δ(x−X(q,r ,s, t)) dq dr ds, (6)

∂X(q,r ,s, t )

∂t
= u (X(q,r ,s, t)) (7)

=
∫

u(x, t)δ(x−X(q,r ,s, t))dx. (8)

The structure equations (1)–(3) involve several unknown
functions of (q,r ,s, t), where (q,r ,s) are moving curvilin-
ear coordinates and t is the time. These unknown functions
are X(q,r ,s, t) which describes the motion of the structure
and its configuration at any time, Fe(q,r ,s, t) which is the
elastic force density (with respect to dq dr ds) derived from
X in the manner described by Eq. (1) and in more detail
below, and Fmot(q,r ,s, t) which is the motor force density
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acting in the tangential direction Tmot(q,r ,s, t) near the
bottom of the filament only.

In Eq. (1), ∂E/∂X is the variational derivative of the
elastic energy functional E[ ]. The variational derivative is
implicitly defined as follows:

lim
ε→0

d

dε
E[X+εY]

=
∫

∂E

∂X
(q,r ,s, t) ·Y(q,r ,s, t)dq dr ds. (9)

The fluid Eqs. (4) and (5) are the Navier–Stokes equa-
tions of a viscous incompressible fluid. They involve sev-
eral unknown functions of (x, t), where x = (x1, x2, x3) are
fixed cartesian coordinates. These unknown functions are
the fluid velocity vector u(x, t), the fluid pressure p(x, t),
and the applied force density f (x, t). The constant parame-
ters ρ and µ in the fluid equations are the fluid density and
the fluid viscosity, respectively.

We use the Navier–Stokes equations rather than the
Stokes equations even though the Reynolds number is
essentially zero and inertial effects are entirely negligible
in this application. The nature of our numerical scheme is
such that this does no harm (see below).

Finally, the interaction Eqs. (6)–(8) connect the La-
grangian and Eulerian variables. Both equations involve the
three-dimensional Dirac delta function

δ(x) = δ(x1)δ(x2)δ(x3) (10)

which expresses the local character of the interaction. The
first of the interaction equations describes the relationship
between the two corresponding force densities f (x, t)dx
and F(q,r ,s, t)dq dr ds. Eqs. (7) and (8) are the no-slip
condition of a viscous fluid, which says that the boundary
moves at the local fluid velocity. Each of the interaction
equations takes the form of an integral transformation in
which the kernel is δ(x−X(q,r ,s, t)).

3. Numerical method

The equations of motion are solved by the IB method
[3]. The algorithm for the numerical solution of Eqs. (1)–
(8) will be described in this section.

First, we discuss discretization. Let time proceed in
steps of duration 	t , and use a superscript n as the time
step index, so that un denotes the whole fluid velocity field
at time t = n	t , and similarly for all other variables.

The spatial discretization is different for Eulerian (fluid)
variables from that of the Lagrangian (structure) variables.
For the fluid variables such as u, p, and f, we use a fixed
periodic cubic lattice of mesh width h and period m in all
three space directions. This lattice, denoted gh,m is formally
defined as follows:

gh,m = {x : x = jh, j ∈ Z3
m} (11)

where

Zm = {0,1, . . . ,m −1} (12)

and arithmetic on Zm is understood to be modulo m.
Spatial discretization is based on a discrete elastic struc-

ture, i.e., a network of springs. Let the points of this struc-
ture be numbered in some arbitrary order k = 1,2, . . . , K .
Then Xn

k denotes the position at time step n of the im-
mersed boundary point whose label is k. Similarly, Fn

k is
the force applied to the fluid by that same boundary point,
at that time step. Note that Fn

k is a force, not a force density.
Thus

Fn
k ∼ F(q,r ,s,n	t)dq dr rmds. (13)

The elastic part, (Fe)n
k , of the discrete immersed bound-

ary force can be calculated from the discrete elastic energy
E(X1, . . . ,XK ) by differentiation:

(Fe)n
k = − ∂E

∂Xk
(Xn

1, . . . ,Xn
K ). (14)

This vector equation is shorthand for

(Fe)n
kα = − ∂E

∂Xkα

(Xn
1, . . . ,Xn

K ) (15)

where α = 1,2,3 is an index denoting the space direction.
To keep track of the topological structure of the dis-

cretized immersed elastic boundary, it is useful to introduce
the notion of a link table [2]. Let the elastic links that con-
nect some of the pairs of boundary points (but not all possi-
ble pairs!) be numbered in arbitrary order l = 1,2, . . . , lmax.
Let k1(l) and k2(l) be the indices of the points that are
connected by link l . (If k1(l) and k2(l) are interchanged, it
makes no difference.) Then link properties such as stiffness
and rest length can be regarded as functions of l , and the
elastic forces ((Fe)n

1 · · · (Fe)n
k ) can be much more efficiently

computed by an algorithm that loops over l than by an
algorithm that loops over k.

The elastic energy function that we use in this work is
as follows.

E(Xn) =
∑

l

S0

2

(||Xn
k1 (l) −Xn

k2 (l)||− L0(l)
)2

. (16)

Thus each link l represents a linear (Hookean) spring
with stiffness S0 (the same for all links, for simplicity)
and rest length L0(l). We choose a straight filament as
equilibrium configuration and set the rest length of each
elastic link equal to whatever length that link has in the
chosen configuration.

In addition to the elastic force (Fe)n
k which is derived

from E in the manner described above, we also apply
another force Fmot to the outer layer of the motor part
of the filament. Naturally, this force will vanish at all the
boundary points except for motor points, where it is given
by

(Fmot)
n
k = c(Tmot)

n
k (17)
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where Tn
mot is the unit tangent vector of the outer layer of

the motor part at time step n. Therefore the total force Fn

at time step n is the sum of elastic spring forces and motor
forces, i.e.,

Fn
k = (Fe)n

k + (Fmot)
n
k . (18)

Once the total force Fn
k is known, the next step of the IB

algorithm is to apply these forces to the computational grid
of the fluid:

f n(x) =
∑

k

Fn
kδh(x−Xn

k ) (19)

where x ∈ gh,m and δh is a smoothed approximation to the
three-dimensional Dirac δ-function.

The next step is to solve the following system of equa-
tions for (un+1, pn+1):

ρ

(
un+1 −un

	t
+

3∑
α=1

un
α D±

α un

)
+D0 pn+1 (20)

= µ

3∑
α=1

D+
α D−

α un+1 + f n , (21)

D0 ·un+1 = 0. (22)

Here, D0 is the central-difference approximation to ∇
defined by D0 = (D0

1 , D0
2 , D0

3) . The forward D+, the back-
ward D− and centered D0 difference operator are defined

Fig. 1. Twirling motion with small initial bend.

Fig. 2. Overwhirling motion with larger initial bend.

in the standard way. Thus D0 p approximates ∇ p and D0 ·u
approximates ∇ · u. The expression

∑3
α=1 D+

α D−
α , which

appears in the viscous term, is a difference approximation
to the Laplace operator, and the expression

∑3
α=1 uα D±

α ,
where uα D±

α is an upwind difference approximation to
uα∂/∂Xα , is an upwind difference approximation to u ·∇.

Now we use the Fast Fourier Transform algorithm [7]
to solve Eqs. (20)–(22) for the unknowns (un+1, pn+1).
Note that these are linear equations (nonlinear terms in-
volve known quantities at time level n only) with constant
coefficients on a periodic domain.

Once un+1(x) has been determined, the boundary points
are moved at the local fluid velocity in this new velocity
field. This is done by the following interpolation scheme:

Xn+1
k −Xn

k

	t
=
∑

x∈gh,m

un+1(x)δh(x−Xn
k )h3. (23)

4. Results, discussion, and conclusions

The results of this paper we all obtained by applying
a particular torque to the motor such that the angular
frequency of rotation during twirling was ω = 17.74 s−1.
This frequency was chosen because it is slightly below the
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critical frequency found in numerical experiments with the
initial condition shown in Fig. 1(a), in which the filament
is only slightly bent initially. Thus, at the frequency of
our study, the twirling state is linearly stable (stable to
small perturbations), but, at a slightly higher frequency,
the twirling state is linearly unstable. In other words, we
have positioned the bifurcation parameter just below the
bifurcation frequency.

The linear stability of the twirling state at the chosen
frequency is illustrated in Fig. 1, in which a small initial
bend relaxes to the twirling state, in which the filament
is straight. Fig. 2 reveals, however, that larger initial bend
leads to the state we call “overwhirling” in which the
overall bend of the filament is more than 180° and the tip
“falls down” below the motor. Since all parameters are the
same in Figs. 1 and 2, except for the initial conditions, this
demonstrates bistability: that the spinning elastic filament
in a viscous fluid has two stable dynamical states under
the same conditions. Such bistability when the bifurcation
parameter is below its critical value is the hallmark of a
subcritical bifurcation [6]. This result conflicts with [5], in
which it is stated that the bifurcation is supercritical.
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