

Goodness-of-fit tests for unbinned maximum likelihood

B.D. Yabsley (Virginia Tech) & K. Kinoshita (U. Cincinnati)

PHYSTAT, SLAC, 8th September 2003

Belle & other exp'ts make increasing use of unbinned fits:

- e.g. CPV params $(A_{\pi\pi}, S_{\pi\pi})$:
 - $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$
 - use $\Delta t \approx \Delta z / \beta \gamma c$; $\sigma_{\Delta z}$ varies
 - $S/B \sim 1 \Longrightarrow$ bin by flavour-tagging quality continuum suppression variable
 - \mathcal{P}_i in $\mathcal{L} = \prod_i \mathcal{P}_i$ depends on fractions $f_{\pi\pi}$, $f_{\kappa\pi}$, $f_{q\overline{q}}$ $(f_{\pi\pi} + f_{\kappa\pi} + f_{q\overline{q}} = 1)$
 - only 760 events

binning is impractical \implies UML

 \dots the \mathcal{L} value itself seems to have no power to discriminate against a bad fit

Heinrich's analytic example:

- data: $\delta(x x_0)$
- fit to $\frac{1}{\alpha} \exp(-x/\alpha)$
- α floats ("compound hypothesis")
- fit finds $\alpha = x_0$
- $-2 \ln \mathcal{L}_{\max} = 2N(1 + \ln x_0)$
- expectation for a true exponential, constant α , is $2N(1 + \ln \alpha)$
- $\Longrightarrow \delta$ "looks like" exp

the discrimination power of the \mathcal{L} disappears when its parameter(s) float

(see also Kinoshita (2002))

 \mathcal{L} depends on the aggregate \mathcal{P}_i of the points, <u>not where they are</u>

- apply a binned χ^2 test to projections of the fit?
 - sensitive to shape differences
 - but fictitious (e.g. what is the n.d.f?) \implies hard to quantify
 - what about correlations between quantities?
 - what about the multi-dimensional case (e.g. amplitude analysis) \implies no intuitive backup
- apply a <u>binning-free goodness-of-fit test</u> to compare
 (a) the data, to (b) the fitted model [this is "obvious"]

Kay: develop a test for the purpose: $\longrightarrow 2^{nd}$ half of talk

Bruce: take an existing test off-the-shelf and apply it

- I use the energy test os Aslan & Zech [hep-ex/0203010]
- this works for an arbitrary number of dimensions

 \implies applicable to HEP problems

Inspired by the electrostatic energy between distributions of positive charge (say f_0) and negative charge (say f):

$$\phi = \frac{1}{2} \int \int \left[f(\mathbf{x}) - f_0(\mathbf{x}) \right] \left[f(\mathbf{x}') - f_0(\mathbf{x}') \right] R(\mathbf{x}, \mathbf{x}') d\mathbf{x} d\mathbf{x}'$$

Model by N data pts (\mathbf{x}_i) & M theory pts (\mathbf{y}_j) with $M = 10 \cdot N$ (say):

$$\phi_{NM} = \frac{1}{N^2} \sum_{j>i} R(|\mathbf{x}_i - \mathbf{x}_j|) - \frac{1}{NM} \sum_{i,j} R(|\mathbf{x}_i - \mathbf{y}_j|)$$

Gives χ^2 -like discrimination in 1D & 2D (presum^{ly} in multi-D)

Choice of weight $R(\mathbf{x}, \mathbf{x}')$:

- logarithmic
- power law
- Gaussian

G.o.f. tests for UML fits

Yabsley & Kinoshita

An analytic study of the energy test

Heinrich's example is simple enough to implement on paper but not for Aslan & Zech's weight f^{ns} ; I use $R(\mathbf{x}, \mathbf{x}') = \exp(-\beta |\mathbf{x} - \mathbf{x}')|$

Leave in the constant omitted by $A\&Z \longrightarrow E(exp) = 0$

For exp fitted to $\delta(x - \frac{1}{\alpha})$, after some tedious arithmetic . . .

$$\phi = 1 + \frac{1}{\alpha^3(\alpha + \beta)} - \frac{2}{\alpha} \left(\frac{\exp(-\beta/\alpha)}{(\beta - \alpha)} (1 - \exp(-(\beta - \alpha)/\alpha)) + \frac{e^{-1}}{(\beta + \alpha)} \right)$$

= self-repulsⁿ of data + self-repulsⁿ of th^y - attractⁿ of data and th^y

For
$$\beta \gg \alpha, \ \phi \rightarrow 1 + \frac{1}{\alpha^3 \beta} - \frac{2e^{-1}}{\alpha \beta}$$

> 0

3

A linear distribution with a contamination thrown in ...

This is the first of a graded set of examples leading up to pseudo-B⁰ $\rightarrow \pi^0\pi^0$ analysis . . .

Correlation between fitted param. and measure

An Unbinned Goodness-of-Fit Test Based on the Random Walk

Test statistic

 flat distribution
 null rejection power
 flattening
 compound hyopthesis
 multidimensional extension: speculations

Kay Kinoshita University of Cincinnati Belle Collaboration

Expectations for K₁

Vector sum:

3

sensitive to overall distortions

at $\Delta \phi \sim \pi$

- insensitive to higher order distortions:

PHYSTAT2003,9/8/03

• no binning, scale, data ordering

for sensitivity to higher order, could use

$$K_k = rac{|\mathcal{F}(k)|^2}{N}$$
 $\mathcal{F}(k) = \sum_{i=1}^N e^{ik\phi_i}$

here, examine only k=1

Flat null hypothesis

rejection: e.g. from Aslan & Zech hep-ex/0203010

Null hypotheses

Flat null: alternative hypotheses from Aslan & Zech

Function	Re	γ^2 12 bins		
	N = 10	N = 100	N = 1000	(N=100)
$\mathcal{A}_1(X) ~=~ 0.3 + 1.4 X$	0.117	0.824	1.00	~0.81
$\mathcal{A}_2(X) = 0.7 + 0.3 [n_2 e^{-64(X-0.5)^2}]$	0.152	0.910	1.00	~0.85
$\mathcal{A}_3(X) = 0.8 + 0.2 [n_3 e^{-256(X-0.5)^2}]$	0.102	0.672	1.00	~0.81

Non-flat null

- Generate according to fixed PDF,
- Flatten " same " "
- ullet Check: ensemble distributionof K1 is consistent with e^{-K_1}

Compound hypotheses: rejection power

Hypothesis: $PDF = f(X; \alpha)$

 Toy MC: generate expts for PDF= f(X; α₀) fit ith expt to f(X; α)-> α_{max,i} flatten, null PDF = f(X; α_{max,i}) find K₁ -> ensemble K₁ distribution

Alternate hypothesis: PDF=g(X)

 Toy MC: generate expts for PDF= g(X) fit jth expt to f(X; α)-> α_{max,j} flatten, null PDF = f(X; α_{max,j}) find K₁ -> ensemble K₁ distribution

Compound hypothesis: data-parameter correlation

The issue:

Some "goodness-of-fit" params found to correlate w. Data (fitted param) -> not GOF.

 α vs K₁: exp fit to exp linear fit to exp Δ no obvious correlation alpha-vs-K1 alpha-vs-K1

some examples

Form	Generated	Fitted	$K_1 \; (\text{Decay Constant})^{-1} \; (\chi^2/ndf)$			
			N = 10	N = 100	N = 1000	
$(1-\alpha) + \alpha(2X)$	lpha=0.7	α		-	$1.28 \pm 0.07 \ (70/67)$	
$(1-\alpha) + \alpha [n_2 e^{-64(X-0.5)^2}]$	lpha=0.3	α	-	$1.90 \pm 0.06 \ (230/80)$	$1.94 \pm 0.09 \ (223/65)$	
$(1-\alpha) + \alpha [n_3 e^{-256(X-0.5)^2}]$	lpha=0.2	α	—	$1.56 \pm 0.05 \ (203/82)$	$1.56 \pm 0.07 \; (82/68)$	
$n_4 e^{-10 X/lpha}$	lpha=1.0	α	$1.23 \pm 0.01 (147/133)$	$1.28 \pm 0.04 \ (68/85)$	$1.28 \pm 0.06 \ (75/76)$	
$n_5 e^{-[X-(0.5+\alpha_2)]^2/2(\alpha_1/8)^2}$	$\alpha_1 = 1.0,$	α_1	$1.36 \pm 0.01 \; (176/131)$	$1.38 \pm 0.05 \ (93/85)$	$1.50 \pm 0.07 \; (56/65)$	
	$lpha_2=0$	$lpha_2$	$1.22 \pm 0.01 \ (154/135)$	$1.25 \pm 0.04 \ (122/96)$	$1.28 \pm 0.06 \ (73/72)$	
		$lpha_1, lpha_2$	$1.84 \pm 0.019 \ (148/90)$	$2.00 \pm 0.065 ~(53/59)$	$2.13 \pm 0.095 \ (47/47)$	

Observations

- still resemble exponential decay
- "decay constant" varies w fitted function, parameter (not simple as χ^2 /ndf) BUT approx. consistent for N=10->1000! => consistency over changes, in parameter, N.
- $\boldsymbol{\cdot}$ very amenable to determination via toy MC

To be developed

- K₁ in 1-d, no ordering of data -> amenable to multi-d?
 Look at 2-d
- Data on unit circle -> 2-d toroid in 4-d: what is corresponding vector algebra?
- More obvious: projections extend Fourier formalism

$$\mathcal{F}(k_1, k_2) = \sum_{i=1}^{N} e^{i(k_1 \phi_{i1} + k_2 \phi_{i2})}$$

k₁=0 or k₂=0 corresponds to projection onto ϕ_2 or ϕ_1 (k₁,k₂)= (1,1), (1,-1), etc. " other axes Develop statistic from orthogonal projections?

- binning-free goodness-of-fit test needed for unbinned maximum likelihood fits of Belle data
 - must accommodate compound hypotheses, multi-d data.
- 2 studies:
 - Aslan/Zech energy test, extends naturally to multi-d examined behavior under compound hypothesis analytic, Monte Carlo
 - K₁ statistic, may extend to multivariate consistency of distribution over different parameter values, N generality for HEP is good, power comparable to χ^2

