Goodness-of-fit tests

for unbinned maximum likelihood

B.D. Yabsley (Virginia Tech) \& K. Kinoshita (U. Cincinnati)

PHYSTAT, SLAC, 8th September 2003

Belle \& other exp'ts make increasing use of unbinned fits:
e.g. CPV params $\left(A_{\pi \pi}, S_{\pi \pi}\right)$:

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Upsilon(4 S) \rightarrow \mathrm{B} \overline{\mathrm{B}}$
- use $\Delta t \approx \Delta z / \beta \gamma c ; \sigma_{\Delta z}$ varies
- $S / B \sim 1 \Longrightarrow$ bin by flavour-tagging quality continuum suppression variable
- \mathcal{P}_{i} in $\mathcal{L}=\prod_{i} \mathcal{P}_{i}$ depends on fractions $f_{\pi \pi}, f_{\kappa \pi}, f_{q \bar{q}}$ $\left(f_{\pi \pi}+f_{\kappa \pi \pi}+f_{q \bar{q}}=1\right)$
- only 760 events
binning is impractical \Longrightarrow UML

... the \mathcal{L} value itself seems to have no power to discriminate against a bad fit

Heinrich's analytic example:

- data: $\delta\left(x-x_{0}\right)$
- fit to $\frac{1}{\alpha} \exp (-x / \alpha)$
- α floats ("compound hypothesis")
- fit finds $\alpha=x_{0}$
- $-2 \ln \mathcal{L}_{\text {max }}=2 N\left(1+\ln x_{0}\right)$
- expectation for a true exponential, constant α, is $2 N(1+\ln \alpha)$
- $\quad \Longrightarrow \delta$ "looks like" exp

the discrimination power of the \mathcal{L} disappears when its parameter(s) float
(see also Kinoshita (2002))
\mathcal{L} depends on the aggregate
\mathcal{P}_{i} of the points,
not where they are
- apply a binned χ^{2} test to projections of the fit?
- sensitive to shape differences
- but fictitious (e.g. what is the n.d.f?) \Longrightarrow hard to quantify
- what about correlations between quantities?
- what about the multi-dimensional case (e.g. amplitude analysis) \Longrightarrow no intuitive backup
- apply a binning-free goodness-of-fit test to compare (a) the data, to (b) the fitted model [this is "obvious"]

Kay: develop a test for the purpose: $\longrightarrow 2^{\text {nd }}$ half of talk
Bruce: take an existing test off-the-shelf and apply it

- I use the energy test os Aslan \& Zech [hep-ex/0203010]
- this works for an arbitrary number of dimensions \Longrightarrow applicable to HEP problems

The energy test
Inspired by the electrostatic energy between distributions of positive charge (say f_{0}) and negative charge (say f):

$$
\phi=\frac{1}{2} \iint\left[f(\mathrm{x})-f_{0}(\mathrm{x})\right]\left[f\left(\mathrm{x}^{\prime}\right)-f_{0}\left(\mathrm{x}^{\prime}\right)\right] R\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathbf{d x d} \mathrm{x}^{\prime}
$$

Model by N data pts (x_{i}) \& M theory pts $\left(\mathrm{y}_{j}\right)$ with $M=10 \cdot N$ (say):

$$
\phi_{N M}=\frac{1}{N^{2}} \sum_{j>i} R\left(\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|\right)-\frac{1}{N M} \sum_{i, j} R\left(\left|\mathbf{x}_{i}-\mathbf{y}_{j}\right|\right)
$$

Gives χ^{2}-like discrimination in $1 \mathrm{D} \& 2 \mathrm{D}$ (presum ${ }^{l y}$ in multi-D)

Choice of weight $\left.R\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right)$:

- logarithmic
- power law
- Gaussian

An analytic study of the energy test
Heinrich's example is simple enough to implement on paper but not for Aslan \& Zech's weight $\mathrm{f}^{n s}$; I use $\left.R\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\exp \left(-\beta \mid \mathbf{x}-\mathrm{x}^{\prime}\right) \mid\right)$

Leave in the constant omitted by $A \& Z \longrightarrow E(\exp)=0$

For exp fitted to $\delta\left(x-\frac{1}{\alpha}\right)$, after some tedious arithmetic ...

$$
\phi=1+\frac{1}{\alpha^{3}(\alpha+\beta)}-\frac{2}{\alpha}\left(\frac{\exp (-\beta / \alpha)}{(\beta-\alpha)}(1-\exp (-(\beta-\alpha) / \alpha))+\frac{e^{-1}}{(\beta+\alpha)}\right)
$$

$=$ self-repuls ${ }^{n}$ of data + self-repuls ${ }^{n}$ of th $^{y}-$ attract n of data and th ${ }^{y}$

$$
\text { For } \begin{aligned}
\beta \gg \alpha, \phi & \rightarrow 1+\frac{1}{\alpha^{3} \beta}-\frac{2 e^{-1}}{\alpha \beta} \\
& >0
\end{aligned}
$$

The working example

A linear distribution with a contamination thrown in ...

easy to discriminate against fixed slope

harder to discriminate with floating slope

we pretend not to see the true distribution

This is the first of a graded set of examples leading up to pseudo- $\mathrm{B}^{0} \rightarrow \pi^{0} \pi^{0}$ analysis ...

\mathcal{B}
 Correlation between fitted param. and measure(e)

The empirical study is a work in progress ...

4n Unemined Goochessaon'flit ast.
Bassel oif hie Pehcon Wills

- Test statistic

flat distribution null rejection power flattening compound hyopthesis

- multidimensional extension: speculations

Kay Kinoshita
University of Cincinnati
Belle Collaboration
map to circle: $\square_{i}=2 \pi Y_{i}$
if flat PDF, 2-d random walk!

$$
\begin{aligned}
d Y & =f(X) d X \\
\Rightarrow \quad Y_{i} & =\int_{X_{1}}^{X_{i}} f(X) d X
\end{aligned}
$$

on interval [0,1]

statistic: $K_{1} \equiv \frac{\left|\sum_{i=1}^{N} \vec{z}_{i}\right|^{2}}{N}$ (appears in von Mises test)

$$
\begin{aligned}
\mathcal{F}(k=1) & =\int_{0}^{2 \pi} d \phi \sum_{i=1}^{N} e^{i k \phi} \delta\left(\phi-\phi_{i}\right) \\
& =\sum_{i=1}^{N} e^{i \phi_{i}}
\end{aligned}
$$

Vector sum:

- sensitive to overall distortions at $]_{\sim} \sim \pi$
- insensitive to local fluctuations (equal
 weight for all \square regions)
- insensitive to higher order distortions:

- no binning, scale, data ordering
for sensitivity to higher order, could use

$$
K_{k}=\frac{|\mathcal{F}(k)|^{2}}{N} \quad \mathcal{F}(k)=\sum_{i=1}^{N} e^{i k \phi_{i}}
$$

here, examine only $k=1$

rejection: e.g. from Aslan \& Zech hep-ex/0203010 alternative $f(X)=0.3+1.4 X$

Flat null: alternative hypotheses from Aslan \& Zech

Non-flat null

- Generate according to fixed PDF,
- Flatten " same " "
- Check: ensemble distributionof K_{1} is consistent with $e^{-K_{1}}$

I|| Compound hypotheses: rejection power
Hypothesis: PDF = $f(X ; \square)$

- Toy MC: generate expts for PDF $=f\left(X ; \square_{0}\right)$
fit $i^{\text {th }}$ expt to $f(X ; \square)->\square_{\text {max, }}$
flatten, null PDF $=f\left(X ; \square_{\text {max }}\right)$
find $K_{1} \rightarrow$ ensemble K_{1} distribution
Alternate hypothesis: $P D F=g(X)$
- Toy MC: generate expts for PDF $=g(X)$
fit $\mathrm{j}^{\text {th }}$ expt to $f(\mathrm{X} ; \mathrm{\square})>\square_{\text {max, }}$
flatten, null PDF $=f\left(X ; \square_{\text {max }, j}\right)$
find $K_{1} \rightarrow$ ensemble K_{1} distribution

||||Compound hypothesis: example

Hypothesis: Exponential, Float decay const ($\mathrm{N}=100,1000$)

Alternate:	
$g(X)=2(1-X)$	7500
	2000

\square^{2} : fit w. 20 bins
PRELIMINARY: somewhat more powerful than \square^{2} for low N

The issue:
Some "goodness-of-fit" params found to correlate w. Data (fitted param) -> not GOF.

some examples

Form	Generated Fitted	K_{1} (Decay Constant) ${ }^{-1}\left(\chi^{2} / n d f\right)$			
			$N=10$	$N=100$	$N=1000$
$(1-\alpha)+\alpha(2 X)$	$\alpha=0.7$	α	-	-	$1.28 \pm 0.07(70 / 67)$
$(1-\alpha)+\alpha\left[n_{2} e^{-64(X-0.5)^{2}}\right]$	$\alpha=0.3$	α	-	$1.90 \pm 0.06(230 / 80)$	$1.94 \pm 0.09(223 / 65)$
$(1-\alpha)+\alpha\left[n_{3} e^{-256(X-0.5)^{2}}\right]$	$\alpha=0.2$	α	-	$1.56 \pm 0.05(203 / 82)$	$1.56 \pm 0.07(82 / 68)$
$n_{4} e^{-10 X / \alpha}$	$\alpha=1.0$	α	$1.23 \pm 0.01(147 / 133)$	$1.28 \pm 0.04(68 / 85)$	$1.28 \pm 0.06(75 / 76)$
$n_{5} e^{-\left[X-\left(0.5+\alpha_{2}\right)\right]^{2} / 2\left(\alpha_{1} / 8\right)^{2}}$	$\alpha_{1}=1.0$,	α_{1}	$1.36 \pm 0.01(176 / 131)$	$1.38 \pm 0.05(93 / 85)$	$1.50 \pm 0.07(56 / 65)$
	$\alpha_{2}=0$	α_{2}	$1.22 \pm 0.01(154 / 135)$	$1.25 \pm 0.04(122 / 96)$	$1.28 \pm 0.06(73 / 72)$
		α_{1}, α_{2}	$1.84 \pm 0.019(148 / 90)$	$2.00 \pm 0.065(53 / 59)$	$2.13 \pm 0.095(47 / 47)$

Observations

- still resemble exponential decay
- "decay constant" varies w fitted function, parameter (not simple as $\square^{2} / n d f$) BUT approx. consistent for $N=10->1000$! => consistency over changes, in parameter, N.
- very amenable to determination via toy MC

To be developed

- K_{1} in 1-d, no ordering of data \rightarrow amenable to multi-d?

Look at 2-d

- Data on unit circle -> 2-d toroid in 4-d: what is corresponding vector algebra?
- More obvious: projections - extend Fourier formalism
$\mathcal{F}\left(k_{1}, k_{2}\right)=\sum_{i=1}^{N} e^{i\left(k_{1} \phi_{i 1}+k_{2} \phi_{i 2}\right)}$
$k_{1}=0$ or $k_{2}=0$ corresponds to projection onto \square_{2} or \square_{1}
$\left(k_{1}, k_{2}\right)=(1,1),(1,-1)$, etc. " other axes
Develop statistic from orthogonal projections?
- binning-free goodness-of-fit test needed for unbinned maximum likelihood fits of Belle data
- must accommodate compound hypotheses, multi-d data.
- 2 studies:
- Aslan/Zech energy test, extends naturally to multi-d examined behavior under compound hypothesis analytic, Monte Carlo
- K_{1} statistic, may extend to multivariate consistency of distribution over different parameter values, N generality for HEP is good, power comparable to \square^{2}

