

CP results from Belle

Kay Kinoshita University of Cincinnati

Beauty2000, Sept. 13-18, 2000

Belle Collaboration

~250 physicists, 51 institutions, many nations

Aomori University Budker Institute of Nuclear Physics Chiba University Chuo University University of Cincinnati Frankfurt University Gyeongsang National University University of Hawaii Hiroshima Institute of Technology Hiroshima College of Maritime Tech. IHEP, Beijing ITEP, Moscow Joint Crystal Collaboration Group Kanagawa University KEK Korea University Krakow Institute of Nuclear Physics Kyoto University University of Melbourne Mindanao State University Nagasaki Institute of Applied Science Nagoya University Nara Woman's University National Central University National Kaoshing University

National Lien-Ho College of Tech. and Commerce National Taiwan University Nihon Dental College Niigata University Osaka University Osaka City University Panjab University Princeton University Saga University Seoul National University University of Science and Tech. of China Sugiyama Woman's College Sungkyunkwan University University of Sydney Toho University Tohoku University Tohoku-gakuin University University of Tokyo Tokyo Institute of Technology Tokyo Metropolitan University Tokyo University of Agriculure and Technology Toyama National College of Maritime Technology University of Tsukuba Utkal Univesity Virginia Polytechnic Institute and State University Yonsei University

\sim CP violation in B Decays at the $\Upsilon(45)$

Direct CP: asymmetry of B, B BR's

- $B \rightarrow D^0 K^-$, $D^0 \rightarrow K^+ K^-$ (ϕ_3)
- $B \rightarrow K\pi$, $\pi\pi$, $KK(\phi_2, \phi_3)$

These are rare decays - for CP, first need

- detection in significant numbers
- good PID to separate suppressed from unsuppressed modes

Charged tracking/vertexing - SVD: 3-layer DSSD Si µstrip - CDC: 50 layers (He-ethane) Hadron identification - CDC: dE/dx - TOF: time-of-flight SVD CDC ACC: Threshold Cerenkov (aerogel) PID (Aerogel) TOF **Electron/photon** Csl KL/µ ECL: CsI calorimeter Superconducting Solenoid Muon/KL KLM: Resistive plate counter/iron

Results on

 Time-dependent asymmetry CP tags (ϕ_1) $\mathbf{J}/\psi \mathbf{K}_{s} \quad \psi' \mathbf{K}_{s} \quad \chi_{c1} \mathbf{K}_{s} \quad \mathbf{J}/\psi \pi^{0} \quad \mathbf{J}/\psi \mathbf{K}_{L}$

 $\ell^+\ell^- \pi^+\pi^- \ell^+\ell^- \pi^+\pi^- J/\psi\gamma \pi^+\pi^- \ell^+\ell^ \pi^0\pi^0$ J/ $\psi\pi^+\pi^-$

/+/-

- + flavor tag (lepton, K)
- observation of $J/\psi K_1(1270)$
- polarization of J/ψK*

Beauty2000, Sept. 13-18, 2000

Candidates

- J/ψ: tighter cuts than ψK_s,
 1.42<p*<2.00 GeV/c
- K_L within 45° of expected lab direction
- Calculate momentum in CMS (p*) of B cand, (assume B at rest in CMS)
- fit to signal+bg

- Mainly "physics": J/ψK*, ...
- $\boldsymbol{\cdot}$ shapes estimated via MC

$\swarrow \psi K_L$ Indirect CPV (cont)

K_L: KLM/ECL clusters w/o track >1 KLM superlayers Angular resolution: 3° (1.5° if ECL hit)

Flavor of other B by tagging

- high-p lepton (p*>1.1 GeV): $b \rightarrow \ell^-$, $\overline{b} \rightarrow \ell^+$
- net K charge: b \rightarrow K⁻, \overline{b} \rightarrow K⁺
- (medium-p lepton, soft π)
- Significance of CP asymmetry depends on
- tagging efficiency
- wrong-tag fraction w (measured)

Tagging summary Indirect CPV (cont)

 $\int \mathcal{L} dt = 6.2 \, fb^{-1}$

	Decay mode	#	est. bg	#
		cands		tagged
CP=-1	J/ ψ K s, K s->π ⁺ π ⁻	70	3.4±1.0	40
	J/ ψ K s, K s->π ⁰ π ⁰	4	0.3±0.1	4
	ψ (2S)K ₅, ψ (2S)->I⁺I ⁻	5	0.2±0.1	2
	ψ(2S)K _s , ψ(2S)->J/ψπ ⁺ π ⁻	8	0.6±0.3	3
	$\chi_{c1}K_{s}$	5	0.8±0.4	3
CP=+1	J/ψK _L	102	47.6±4.8	42
	Ϳ Ϳ/ψπ ^ο	10	0.6±0.3	4
	Total	204		98

Fitting

- distribution in $\Delta t \sim \Delta z / \beta \gamma c$
- unbinned max. likelihood fit, includes
 - signal root distribution (analytic)
 - wrong tag fraction (const)
 - background: right & wrong tag (MC, parametrized)
 - detector & tagging resolution (parametrized,evt-by-evt)

Same fit method, but flavor-specific mode

- $B \rightarrow D^* \ell^+ v$, $D^- \ell^+ v$ + flavor tag (2 separate)
- separate same-, opp-flavor events
- fit to Δz : outputs wrong tag fraction for B⁰(w), B⁻(w⁺), mixing (Δm_d), resolution function

Asymmetry due to mixing

$$\begin{split} A_{mix} &= \frac{N_{opp}(\Delta t) - N_{same}(\Delta t)}{N_{opp}(\Delta t) + N_{same}(\Delta t)} = (1 - 2w) \mathrm{cos}(\Delta m_d \Delta t) \\ \texttt{"effective tagging efficiency"} \ \varepsilon_{\mathsf{eff}}\texttt{=}(1\texttt{-}2w)^2 \varepsilon_{\mathsf{tag}} \end{split}$$

Wrong tag fraction Measuring/fitting Δz (cont)

Tag		ε _{tag} (%)	w(%)	ϵ_{eff} (%)				
high-p* lep	ton	14.2±2.1	7.1±4.5	10.5±2.7				
Kaon		27.9±4.2	19.9±7.0	10.1±4.9				
med-p* lep	ton	2.9±1.5	29.2±15.0	0.5	$\int \mathcal{L}_{dt} = 5.1 \text{fb}^{-1}$			
soft π		7.0±3.5	34.1±15.0	0.7				
Total		52.0		21.2	$\stackrel{1}{\square} \stackrel{1}{\square} \stackrel{1}$			
MC values					0.6 PRELIMINARY -			
					0.4			
$\Delta m_d = 0.49 \pm 0.026 \text{ ps}^{-1}$								
	(PDG: 0.472±0.017 ps⁻¹)							
Proper decay time (ps) Beauty2000, Sept. 13-18, 2000								

Resolution function

- Double Gaussian, parameters calculated eventby-event, includes effects of
 - detector resolution
 - poorly measured tracks
 - bias from e.g. charm
 - approximation of $\Delta t = \Delta z / \beta \gamma c$
- form, params determined by
 - Monte Carlo
 - fits for $D^0 \rightarrow K^-\pi^+$, $B \rightarrow D^* \ell \nu$ lifetimes

 Δt used in other measurements, serve as checks B⁰ mixing w. dileptons MINARY $\Delta m_d = 0.456 \pm 0.008 \pm 0.030 \text{ ps}^{-1}$ [∠dt=5.1 fb⁻¹ (PDG2000: 0.472±0.017 ps⁻¹) • B lifetimes Reconstructed B + flavor tag vertex $B \rightarrow DX$ semileptonic+hadronic, ψX modes. **PRELIMINARY** $\tau_0 = 1.50 \pm 0.05 \pm 0.07$ ps (PDG2000: 1.548±0.032 ps) $\int \mathcal{L} dt = 5.1 \, \text{fb}^{-1}$ **PRELIMINARY** τ_{+} =1.70±0.06±0.11 ps (PDG2000: 1.653±0.028 ps)

Δt resolution Measuring and fitting Δz (cont)

B^o mixing w. dileptons Same sign

- 2 primaries, mixed event
- Primary+2ndary, unmixed & B+B-
- Backgrounds

Opposite sign

- 2 primaries, unmixed & B+B-
- Primary+2ndary, mixed&unmixed
- Backgrounds

Asymmetry in signal (2 primaries)

$$\frac{N_{opp}-N_{same}}{N_{opp}+N_{same}}$$

Not quite, but...

- still developing additional modes, tagging methods
- expect much more $\int \mathcal{L} dt$ in the next year

If helicity = $|0,0\rangle$, CP=+1 for $B^0 \rightarrow J/\psi K^*$, $K^{*0} \rightarrow K_s \pi^0$ Reconstruct w. $J/\psi \rightarrow \ell^+ \ell^-$, $K^* \rightarrow K^+ \pi^-$, $K_s \pi^+$, $K^+ \pi^0$ 176 candidates, fit decay angle distributions $\int \omega dt = 5.1 \text{ fb}^{-1}$

 $\rightarrow \Gamma_{L}/\Gamma$ =0.52±0.06±0.04

Transversity

 $\rightarrow |A_{\perp}|^2 = 0.27 \pm 0.11 \pm 0.05$

Conclude: CP=+1 dominates

Transversity

 $\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{tr}} = \frac{3}{8} (1 + \cos^2\theta_{tr}) (1 - |A_{\perp}|^2) + \frac{3}{4} |A_{\perp}|^2 \sin^2\theta_{tr}$

Penguins, CPV, new physics, PRELIMINARY							
Mode	Yield	Signifi -cance	3	BR×10 ⁵	ULx10 ⁵		
K⁺π⁻	25.6 ^{+7.5} -6.8±3.8	4.4	0.28±0.04	$1.74^{+0.51}$ -0.46±0.34	-		
$\pi^{\star}\pi^{-}$	9.3 ^{+5.7} -5.1 ±2	1.9	0.28±0.04	0.63 ^{+0.39} -0.35±0.16	1.65		
K⁺K⁻	0.8 ^{+2.1} -0.8	-	0.20±0.03	-	0.6		
K ⁰ π⁻	5 .7 ^{+3.4} -2.7 ± 0.6	2.4	0.13±0.02	$1.66^{+0.98}$ -0.78±0.24	3.4		
K ⁰ K ⁺	0.0 ^{+0.5} -0.0	-	0.11±0.02	-	0.8		
$K^{+}\pi^{0}$	32.3 ^{+9.4} -8.4 ^{+2.4} -2.2	5.0	0.31	1.88 ^{+0.55} -0.49±0.23	-		
$K^0\pi^0$	5 .4 ^{+5.7} -4.4 ^{+1.0} -1.1	1.3	0.30	0.33 ^{+0.35} -0.27±0.07	1.0		
$\pi^{+}\pi^{0}$	10 .8 ^{+4.8} -4.0 ^{+0.7} -0.5	3.9	0.19	2.10 ^{+0.93} -0.78±0.25	-		
	Beauty2000, Sept. 13-18, 2000				30		

Direct CP modes: $B \rightarrow K\pi$, $\pi\pi$

Direct CP modes: $B \rightarrow K\pi$, $\pi\pi$

Results on

- sin $2\phi_1$: 6.2 fb⁻¹, 98 tagged events
- first observation of $B \rightarrow \psi K_1(1270)$
- polarization of ψK^* : CP=+1 dominates
- Other modes w CP possibilites: $D^{(*)}K$, $K\pi$, $\pi\pi$

Next

- More CP modes, flavor tags to be added
- KEKB resumes Oct. 1 w. higher currents