



# Belle/Belle II collaboration

 $\mathcal{R}$ 



#### Belle hardware





Data (1999-2010)



## > 1 ab<sup>-1</sup> recorded by Belle

•Y(4S) 711 fb<sup>-1</sup> •sub-Y(4S) continuum ~100 fb<sup>-1</sup> •"Y(5S)" ~121 fb<sup>-1</sup> •Y(3S), Y(2S), Y(1S) ~34fb<sup>-1</sup> •"Y(5S)"+ scan ~31 fb<sup>-1</sup>

 $\int Ldt$  since 6/1999



- B pairs  $(7.7 \times 10^8 \text{ events})$
- charm (1.1 × 10<sup>9</sup> events)
- tau (~8 × 10<sup>8</sup> events)
- 2-photon events
- $B_s$  (~7 x 10<sup>6</sup> events)
- $\Upsilon$  (55) (~4 x 10<sup>7</sup> events)





## 423 articles published/submitted http://belle.kek.jp/bdocs/b\_journal.html

# Highlights

- CP violation in B decay
- Constraints on CKM; precision sin  $2\varphi_1$ ,  $|V_{cb}|$ ,  $|V_{ub}|$
- overconstraints on CKM; limits/hints on New Physics
- evidence for D<sup>0</sup> mixing
- new charmonium-like states Z(4430), Y(4660), Y(4008), X(4160), Y(3940), X(3872)
- new bottomonia, bottomonium-like Z<sub>b</sub>(10610), Z<sub>b</sub> (10650)
- Kobayashi & Maskawa 2008 Nobel

# Future: Super KEKB /Belle II

• to start ~ 2016

## The Upsilon Neighborhood





At/above the Y(10860) ["Y(5S)"]: B<sub>s</sub>, bottomonium physics
 ◇ B-factory detector: high luminosity, established detector, Y(4S) data for comparison; CLEAN events, energy definition, γ detection; high trigger efficiency

> on resonance - # events measured directly -> absolute BF's



#### 2005: 3-day "engineering" run

- basic Y(5S),  $B_s^{(*)}$  properties,
- test KEKB at Y(5S)
- 1.86 fb<sup>-1</sup> at peak (10869 MeV)
  - = 4 x largest previous sample (CLEO)

A. Drutskoy et al., PRL 98, 052001 (2007)

A. Drutskoy et al., PRD 76, 012002 (2007)

#### 2006: 20-day run

• + 21.7 fb<sup>-1</sup> on resonance

K.F. Chen et al., PRL 100, 112001 (2008)
J. Wicht et al., PRL 100, 121801 (2008)
R. Louvot et al., PRL 102, 021801 (2009)
A. Drutskoy et al., PRD 81, 112003(R)(2010)
R. Louvot et al., PRL 104, 231801 (2010)
C.-C. Peng et al., PRD 82, 072007 (R) (2010)
S. Esen et al., PRL 105, 201802 (2010)
J. Li et al., PRL 106, 121802 (2011)

#### 2007: scan 6 pts

• + 7.9 fb<sup>-1</sup> above resonance

K.F. Chen et al., PRD 82, 091106(R) (2010)

#### 10/08-12/10: extended run

- ~100 fb<sup>-1</sup> on resonance
- I. Adachi et al, PRL 108, 032001 (2012)
- A. Bondar et al, PRL 108, 122001 (2012)
- Y. Sato et al, PRL 108, 171801 (2012)
- J. Li et al, PRL 108, 181808 (2012)
- R. Mizuk at al, PRL 109, 232002 (2012)
- S. Esen et al, PRD 87, 031101(R) (2013)
- C. Oswald et al, PRD 87, 072008 (2013)
- E. Solovieva et al, PLB 726, 206 (2013)
- P. Krokovny et al, PRD 88, 052016 (2013)
- F. Thorne et al, PRD 88, 114006 (2013)
- A. Garmash et al, arXiv:1403.0992 [PRD]
- X. He et al, accepted PRL
- •~30 fb<sup>-1</sup> scan
  - (D. Santel)



# B<sub>s</sub> decay in Standard Model

- similar to non-strange B spectator decay -> quark-hadron duality correspondence btw final particle (D<->D<sub>s</sub>)
- dissimilarities  $\Delta\Gamma/\Gamma_{CP}/\Gamma=O(10\%)$ CP-asymmetry ~ 0



B

 In LHCb era: focus on final states w neutrals, absolute rates

## spectroscopy

- B<sub>s</sub><sup>(\*)</sup> mass
- $B_{(s)}^{(*)}(\pi)$  event fractions
- bottomonium, bottomonium-like states









# Anomalies of the Y(10860): some history



• 2005: charmonium-like particle at 4260 GeV found in

$$e^+e^- \rightarrow \gamma_{ISR} \ \pi^+\pi^- J/\psi$$
  $e^+e^- \rightarrow \pi^+\pi^- J/\psi$   
Babar PRL 95, 142001 (2005)  
Belle PRD 77, 011105 (R) (2008)  
CLEO PRD 74, 091104(R) (2006)

$$Y(4260) \to \pi^+\pi^- J/\psi$$

+ many more! (now called X by PDG)

 $Y \to \pi^+ \pi^- \psi(2S)$ 

Does(do) analogous state(s) exist in Upsilon region, observable in  $\Upsilon(5S)$  data?  $\diamond$  Search for

$$e^+e^- \rightarrow \Upsilon(1S/2S/3S)\pi^+\pi^-$$

 $\Upsilon(1S/2S/3S) \to \mu^+\mu^-$ 



12

 $e^+e^- 
ightarrow \Upsilon(1{
m S}/2{
m S}/3{
m S})\pi^+\pi^-$  PRL 100, 112001 (2008)

# 4 modes seen $\Upsilon(10860) \rightarrow \Upsilon(nS)h^+h^-$



## $\Upsilon(5S)$ expectation: width comparable to $\Upsilon(2S/3S/4S)$

| Process                                      | $\Gamma_{\rm total}$ | $\Gamma_{e^+e^-}$     | $\Gamma_{\Upsilon(1S)\pi^+\pi^-}$ |          |
|----------------------------------------------|----------------------|-----------------------|-----------------------------------|----------|
| $\Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-$    | $0.032~{ m MeV}$     | 0.612  keV            | $0.0060~{\rm MeV}$                |          |
| $\Upsilon(3S) \to \Upsilon(1S)\pi^+\pi^-$    | $0.020 { m MeV}$     | 0.443  keV            | $0.0009~{\rm MeV}$                |          |
| $\Upsilon(4S) \to \Upsilon(1S)\pi^+\pi^-$    | $20.5 { m MeV}$      | 0.272  keV            | $0.0019~{\rm MeV}$                |          |
| $\Upsilon(10860) \to \Upsilon(1S)\pi^+\pi^-$ | $110 { m MeV}$       | $0.31 \ \mathrm{keV}$ | $0.59 { m ~MeV}$                  | larger b |
|                                              |                      |                       |                                   | × 102    |

TO-

 $\Upsilon(10860) = \Upsilon(5S), Y_b, \text{ or something else?}$  $\rightarrow 12/07$ : energy scan, for  $e^+e^- \rightarrow \Upsilon(nS)h^+h^-$  scan near  $\Upsilon$  (10860) [PRD82, 091106 (2010)]





resonant substructure in  $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^$   $e^+e^- \rightarrow h_b(mP)\pi^+\pi^-$ 121 fb<sup>-1</sup> at  $\Upsilon$ (10860) peak

[PRL 108, 122001 (2012)]



# Resonant substructure $h_b(nP)\pi^{\pm}\pi^{\mp}$



probe: missing mass  $e^+e^- \rightarrow h_b(nP)\pi^{\pm}\pi^{\mp}$   $M_Z = MM(\pi) = \sqrt{E_Z^2 - p_Z^2}$  "Z" yield in MM( $\pi$ ) bins  $\Upsilon(5S) \rightarrow h_b(1P)\pi\pi$   $\Upsilon(5S) \rightarrow h_b(2P)\pi\pi$  $\int_{12000}^{5} \frac{12000}{44ta}$   $\int_{121.4 \text{ fb}^{-1}}^{5} \frac{1}{4}$   $\int_{12500}^{5} \frac{17500}{8000} \int_{12500}^{5} \frac{1}{4}$ 



Kinoshita

#### 2 new resonances: $Z_{b^{\pm}}(10610)$ , $Z_{b^{\pm}}(10650)$ , 5 modes eq. (18)



- Relative phases: Y (~0°), h<sub>b</sub> (~180°)
- Masses just above B\*B and B\*B\* thresholds
- angular analysis favors J<sup>P</sup>=1<sup>+</sup> [arXiv:1403.0992]
- Favors "meson molecule" hypothesis of  $Z_b$ 's

#### Further evidence: neutral partner





 $Z_b^{0}(10610)$  observed with 6.5 $\sigma$  significance

[PRD 88, 052016 (2013)]



121.4 fb<sup>-1</sup>

 $e^+e^- \rightarrow B^*B^{(*)}\pi^{\pm}$ 



arXiv:1209.6450 [hep-ex]

# What IS Z<sub>b</sub>?



#### many theories

- Meson molecule
  - [A.Bondar, et al., PRD 84, 054010 (2011)]
- Coupled channel resonances
   [I.V.Danilkin et al, arXiv:1106.1552]
- Cusp

[D.Bugg, Europhys.Lett. 96, 11002 (2011)]

Tetraquark

[M.Karliner & H.Lipkin, arXiv:0802.0649]

# Similar pattern in charmonium region

# Heavy quark exotica



| PDG13                   | State                  | m (MeV)              | $\Gamma$ (MeV)         | $J^{PC}$                                 | Process (mode)                                                                                 | Experiment $(\#\sigma)$                      | Year | Status |
|-------------------------|------------------------|----------------------|------------------------|------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------|------|--------|
| 10013                   | X(3872)                | $3871.68 {\pm} 0.17$ | < 1.2                  | $1^{++}/2^{-+}$                          | $B \rightarrow K (\pi^+ \pi^- J/\psi)$                                                         | Belle [36,37] (12.8), BABAR [38] (8.6)       | 2003 | OK     |
|                         |                        |                      |                        |                                          | $p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) +$                                                   | CDF [39–41] (np), D0 [42] (5.2)              |      |        |
| Many are unconfirmed    |                        |                      |                        |                                          | $B \rightarrow K (\omega J/\psi)$                                                              | Belle [43] (4.3), BABAR [23] (4.0)           |      |        |
|                         |                        |                      |                        | $B \rightarrow K (D^{*0}\overline{D}^0)$ | Belle [44,45] (6.4), BABAR [46] (4.9)                                                          |                                              |      |        |
| Primary characteristic: |                        |                      |                        |                                          | $B \rightarrow K (\gamma J/\psi)$                                                              | Belle [47] (4.0), BABAR [48,49] (3.6)        |      |        |
| hiah rate to guarkonia  |                        |                      |                        |                                          | $B \rightarrow K (\gamma \psi(2S))$                                                            | BABAR [49] (3.5), Belle [47] (0.4)           |      |        |
|                         |                        |                      |                        |                                          | $pp \rightarrow (\pi^+\pi^- J/\psi) +$                                                         | LHCb [50] (np)                               |      |        |
| Charmonium              | X(3915)                | $3917.4 \pm 2.7$     | $28^{+10}_{-9}$        | $0/2^{2+}$                               | $B \rightarrow K (\omega J/\psi)$                                                              | Belle [51] (8.1), BABAR [52] (19)            | 2004 | OK     |
| -like                   |                        | 1.0                  | 1.07                   | -9.1                                     | $e^+e^- \rightarrow e^+e^- (\omega J/\psi)$                                                    | Belle [53] (7.7), BABAR [23] (np)            |      |        |
| inte                    | X(3940)                | $3942^{+9}_{-8}$     | $37^{+27}_{-17}$       | ?**                                      | $e^+e^- \rightarrow J/\psi (DD^-)$                                                             | Belle [54] (6.0)                             | 2007 | NC!    |
| 7(3900)                 |                        |                      |                        |                                          | $e^+e^- \rightarrow J/\psi$ ()                                                                 | Belle [20] (5.0)                             |      |        |
|                         | G(3900)                | $3943 \pm 21$        | $52 \pm 11$            | 1                                        | $e^+e^- \rightarrow \gamma (DD)$                                                               | BABAR [55] (np), Belle [56] (np)             | 2007 | OK     |
| 7(3885)                 | Y(4008)                | $4008^{+121}_{-49}$  | $226 \pm 97$           | 1                                        | $e^+e^- \rightarrow \gamma(\pi^+\pi^- J/\psi)$                                                 | Belle [57] (7.4)                             | 2007 | NC!    |
| 2(0000)                 | $Z_1(4050)^+$          | $4051^{+24}_{-43}$   | 82-55                  | ?                                        | $B \rightarrow K (\pi^+ \chi_{c1}(1P))$                                                        | Belle [58] (5.0), BABAR [59] (1.1)           | 2008 | NC!    |
| Ź(4025)                 | Y(4140)                | $4143.4 \pm 3.0$     | $15_{-7}^{+11}$        | ?**<br>2 <sup>2</sup> +                  | $B \rightarrow K (\phi J/\psi)$                                                                | CDF [60,61] (5.0)                            | 2009 | NC!    |
|                         | X(4160)                | $4156_{-25}^{+25}$   | $139^{+113}_{-65}$     | 21+                                      | $e^+e^- \rightarrow J/\psi (DD^-)$                                                             | Belle [54] (5.5)                             | 2007 | NC!    |
| Z(4020)                 | $Z_2(4250)^+$          | 4248_45              | 177 - 72               | ?                                        | $B \rightarrow K (\pi^+ \chi_{c1}(1P))$                                                        | Belle [58] (5.0), BABAR [59] (2.0)           | 2008 | NC!    |
|                         | Y(4260)                | $4263_{-9}^{+6}$     | $95 \pm 14$            | 1                                        | $e^+e^- \rightarrow \gamma (\pi^+\pi^- J/\psi)$                                                | BABAR [62,63] (8.0)                          | 2005 | OK     |
|                         |                        |                      |                        |                                          | + - + - + - + - + - + - + - + - + - + -                                                        | CLEO [64] (5.4), Belle [57] (15)             |      |        |
|                         |                        |                      |                        |                                          | $e^+e^- \rightarrow (\pi^+\pi^- J/\psi)$<br>+ - $(0, 0, 0, 1/\psi)$                            | $\pi^{-}J/\psi$ CLEO [65] (11)               |      |        |
|                         | 1// 107 1)             | 1071 +8.4            | aa+22                  | o?+                                      | $e^+e^- \rightarrow (\pi^0\pi^0 J/\psi)$                                                       | CLEO [65] (5.1)                              | 0010 | NO     |
|                         | Y (4274)               | $4274.4_{-6.7}$      | $32_{-15}^{+15}$       | 2. to to to to                           | $B \rightarrow K (\phi J/\psi)$                                                                | CDF [61] (3.1)                               | 2010 | NC!    |
|                         | X (4350)               | 4350.6_5.1           | $13.3^{+10.0}_{-10.0}$ | 0/2**                                    | $e^+e^- \rightarrow e^+e^- (\phi J/\psi)$<br>+ - $(\phi J/\psi)$                               | Belle [66] (3.2)                             | 2009 | NCI    |
|                         | Y (4360)               | $4361 \pm 13$        | 74±18                  | 1                                        | $e^+e^- \rightarrow \gamma (\pi^+\pi^-\psi(2S))$                                               | BABAR [67] (np), Belle [68] (8.0)            | 2007 | OK     |
| Bottomonium-            | Z(4430)                | 4443-18              | 107 71                 | ·                                        | $B \rightarrow K (\pi^+ \psi(2S))$                                                             | Belle [09,70] (0.4), BABAR [71] (2.4)        | 2007 | NC!    |
|                         | X (4630)               | 4634_11              | $92_{-32}$             | 1                                        | $e^+e^- \rightarrow \gamma (\Lambda_c^+ \Lambda_c^-)$                                          | Belle [72] (8.2)                             | 2007 | NC!    |
| like                    | 7 (4060)               | 4064±12              | 48±15                  | 1                                        | $e^+e^- \rightarrow \gamma (\pi^+\pi^-\psi(2S))$<br>$\gamma (\pi^0) \rightarrow \pi^+ (\pi^0)$ | Delle [08] (5.8)<br>Delle [72 74] (16)       | 2007 | NCI    |
| Z_0(10610)              | Z_{b}(10010)           | 10607.2±2.0          | 18.4±2.4               | 1+                                       | $1(55) \rightarrow \pi^-(\pi^+[00])$<br>$\Upsilon(55) \rightarrow \pi^-(-^+(1\overline{1}))$   | Delle $[73,74]$ (10)<br>Delle $[72,74]$ (16) | 2011 | NCI    |
|                         | Z <sub>b</sub> (10650) | 10002.2±1.0          | 11.5±2.2<br>20.7+8.9   | 1                                        | $1(55) \rightarrow \pi^-(\pi^+[60])$<br>$a^+a^- \rightarrow (a^+a^-\Upsilon(aB))$              | Delle [75,74] (10)<br>Delle [75,76] (2.0)    | 2011 | NC     |
|                         | 19(10999)              | 10888.4±3.0          | 30.1-7.7               | 1                                        | $e \cdot e \rightarrow (\pi \cdot \pi - 1 (nS))$                                               | Bene [75,70] (2.0)                           | 2010 | NUI    |



# Anomalies of the $\Upsilon(10860)$

High rates to

 $\Upsilon(n\mathrm{S})\pi\pi$  $h_b\pi\pi$  $B^*B^{(*)}\pi$ 

Large fraction as  $Z_b\pi$ 

(X in PDG as of 2014)

-> reprise energy scan 121.4 fb<sup>-1</sup> @ 10.865±1GeV +15 x 1 fb<sup>-1</sup>, +61 x 50 pb<sup>-1</sup> @10.68-10.11.02  $\sigma(b\overline{b})$ 



#### Event count





Event shape parameter (Fox-Wolfram moments)  $R_{2} = \frac{\sum_{i,j} |p_{i}||p_{j}|P_{2}(\cos \theta)}{\sum_{i,j} |p_{i}||p_{j}|P_{0}(\cos \theta)}$  $2\text{-jet } e^{+}e^{-} \rightarrow q\bar{q} \ R_{2}\text{->}1$  $e^{+}e^{-} \rightarrow B\bar{B} \ R_{2}\text{->}0$ 

Contributions of initial-state radiation calculated, subtracted















 $\sigma(e^+e^- \to \Upsilon(nS)\pi^+\pi^-)$ 



- event-by-event efficiency correction over Dalitz space, (reduce model-dependence) first fit: as w R<sub>b</sub>  $\underline{PHSP}(E_{CM}) \times (|A_{NR}|^2 + |A_R + A_{5S}e^{i\phi_{5S}}BW(M_{5S}, \Gamma_{5S}) + A_{6S}e^{i\phi_{6S}}BW(M_{6S}, \Gamma_{6S})|^2)$
- Final fit (simultaneous for  $3 \Upsilon$ 's)
  - find  $|A_{NR}|$ ,  $|A_{R}|$  small -> set = 0
  - possible differences in substructure btw Y(5S), Y(6S)
     -> "decoherence coeffficient" = ke<sup>iδ</sup> (0<k<1)</li>
  - $PHSP(E_{CM}) \times |A_{5S}BW_{5S}|^2 + |A_{6S}BW_{6S}|^2 + 2kA_{5S}A_{6S}\Re[e^{i\delta}BW_{5S}BW_{6S}^*]$ 
    - (k consistent w 1)

$$\sigma(e^{+}e^{-} \rightarrow \Upsilon(nS)\pi^{+}\pi^{-})$$

$$R_{\Upsilon\pi\pi} \equiv \frac{\sigma(e^{+}e^{-} \rightarrow \Upsilon(nS)\pi^{+}\pi^{-})}{\sigma(e^{+}e^{-} \rightarrow \mu\mu)}$$

$$M_{5S} = 10891.1 \pm 3.2^{+0.6}_{-1.5}$$

$$\Gamma_{5S} = 53.7^{+7.1+0.9}_{-5.6-5.4}$$

$$M_{6S} = 10987.5^{+6.4+9.0}_{-2.5-2.1}$$

$$\Gamma_{6S} = 61^{+9}_{-19-20}$$

$$\Upsilon\pi\pi \ vs \ b\bar{b}$$

$$\Delta Mc^{2}=9.3 \pm 3.9 \ MeV$$

Indiana University, October 13, 2014

29

Contribution of bottomonium modes to  $\Upsilon$ (10860) resonance

 $PHSP(E_{CM}) \times |A_{5S}BW_{5S}|^2 + |A_{6S}BW_{6S}|^2 + 2kA_{5S}A_{6S}\Re[e^{i\delta}BW_{5S}BW_{6S}^*]$ 



=  $1.09\pm0.15$  with  $B^*B^{(*)}\pi$ ?? Appears to saturate b cross section w/o  $B^{(*)}$ ,  $B_s^{(*)}$  pairs

### Look again at fit $R_b$





### Look again at fit R<sub>b</sub>





Indiana University, October 13,

## Summary



## Rich structure in region of Y(10860) • $e^+e^- \rightarrow \{b\bar{b}\}\pi\pi$

New states  $Z_b^+(10610)$ ,  $Z_b^+(10650)$ Seen to decay to BB\*, B\*B\* Evidence for neutral  $Z_b$ 

- new questions raised by  $R_b$ ,  $R_{\Upsilon\pi\pi}$  vs  $E_{CM}$  what is  $\Upsilon(10860)$ ?
  - High rate to bottomonia,  $Z_b$ 's ->  $Y_b$ ?
  - masses from R<sub>b</sub>, R<sub>Ymm</sub> marginally consistent are the "Y(5S)" the same?
  - apparent paradox in rates -> doubt on R<sub>b</sub> "model"
- to be continued...

 $B^{(*)}_{(s)}$  modes vs  $E_{CM}$