

PANIC July 28, 2011

Superb prospects: Physics at Belle II/SuperKEKB

cf G. Varner, talk 3H-1 SuperKEKB & Belle II projects

Kay Kinoshita University of Cincinnati Belle II Collaboration

Primary goal: establish unitarity & complex phase of CKM matrix

Kobayashi & Maskawa (1973)

- propose 3rd generation of particles
- Explain CP violation in K, predict for B

Belle (1999-2010)

Primary goal: establish unitarity & complex phase of CKM matrix

Kobayashi & Maskawa (1973)

- propose 3rd generation of particles
- Explain CP violation in K, predict for B

B-Factories (1999-)

 CP asymmetry manifested in diverse processes in B decay
-> many measurements,
(over)constrain CKM found

(over)constrain CKM, found consistent with unitarity

Future: SuperKEKB/Belle II

Advantages of e^+e^- : γ , K_L detection; hermeticity -> neutrinos This talk: focus on prospects that are unique to high-lum e^+e^-

Why a Super-B-factory? Role of Flavor in SM history

Flavor - (i.e. wrt weak interaction) essential properties:

- L-R asymmetry
- unitarity of charged current coupling matrix
- 3 generations

Why a Super-B-factory? Role of Flavor in SM history

Flavor - (i.e. wrt weak interaction) essential properties:

- · L-R asymmetry
- unitarity of charged current coupling matrix
- 3 generations

Discovery & phenomenology

- maximal P violation [V-A]
- unitarity: $GIM \rightarrow charm$
- CP violation -> Kobayashi-Maskawa -> 3rd generation
- B mixing -> high mass t-quark (imperfect loop cancellation)

Why a Super-B-factory? Role of Flavor in SM history

Flavor - (i.e. wrt weak interaction) essential properties:

- · L-R asymmetry
- unitarity of charged current coupling matrix
- 3 generations

Discovery & phenomenology

- maximal P violation [V-A]
- unitarity: $GIM \rightarrow charm$
- CP violation -> Kobayashi-Maskawa -> 3rd generation
- B mixing -> high mass t-quark (imperfect loop cancellation)
- **Bottom line**: flavor in SM imposes cancellations & precise relationships that both test SM and constrain New Physics (NP) to higher mass scales
- "Unitarity triangle" [18 dof -> 4 dof]
- lepton universality

Search for Right-Handed Currents

Right-handed currents

in SM $B^0 \rightarrow X_s \gamma$ is ~flavor-specific (γ polarization) -> low CP-asymmetry, O(3%) O(0) for $B^0 \rightarrow X_d \gamma$

Atwood, Gronau, Soni (PRL 79, 185 (1997)) Atwood, Gershon, Hazumi, Soni (PRD 71, 076003 (2005))

```
\overline{b} \xrightarrow{\gamma_R} \gamma_L \\ b \xrightarrow{t} s
```

large asymmetry <-> right-handed current

Right-handed currents

in SM $B^0 \rightarrow X_s \gamma$ is ~flavor-specific (γ polarization -> low CP-asymmetry, O(3%) O(0) for $B^0 \rightarrow X_d \gamma$)	$\bar{b} \xrightarrow{\gamma_{L}} \underbrace{\bar{b}}_{b} \xrightarrow{t} \underbrace{\gamma_{L}}_{t} \underbrace{\gamma_{L}}_{t$	r ⊢s
Atwood, Gronau, Soni (PRL 79, 185 (1997)) Atwood, Gershon, Hazumi, Soni (PRD 71, 07600)	3 (2005	5)) b→sγ S _{CP}	HFAG
large asymmetry <->	K* \gamma	BaBar PRD 78 (2008) 071102 3 Belle PRD 74 (2006)'11104 5 Average HFAG correlated average	$-0.03 \pm 0.29 \pm 0.03$ $-0.32 \stackrel{+0.36}{_{-0.33}} \pm 0.05$ -0.16 ± 0.22
right-handed current	K _s π ⁰ γ	BaBar PRD 78 (2008) 071 T027 5 Belle PRD 74 (2006) 111 T04(F) Average HFAG correlated average	-0.17 ± 0.26 ± 0.03 -0.10 ± 0.31 ± 0.07 -0.15 ± 0.20
Current results: consistent with no RH currents (S<~30%)	K _s p ^o Y	BaBar PRD 79 (2009) 01 02 Average HFAG correlated average Belle PRL 101 (2008) 251601 2 Average HFAG correlated average	-0.18 +0.49 -0.46 ± 0.12 -0.18 ± 0.49 0.11 ± 0.33 +0.09 0.11 ± 0.34
	λφ ^s Υ -2	Belle arXiv:1104.5590	0.74 +0.72 +0.10 0.74 +1.05 +0.24

Right-handed currents

PANIC 2011

Search for CP Anomalies

CP asymmetry: "standard" $sin 2\phi_1$ ($sin 2\beta$)

for B -> $J/\psi K_s$

tree (real V_{ij}) $\propto V_{cb}^* V_{cs}$ $\frac{mixing}{tree} \propto V_{tb}^* V_{td}^2 V_{cb} V_{cs}^*$ well-measured rate $phase = \arg(V_{tb}^* V_{td}^2) = 2\varphi_1$ $\frac{d}{d} \frac{t}{t} \frac{b}{d} \frac{c}{c} \frac{c}{d} / \psi$ $\frac{d}{b} \frac{t}{t} \frac{d}{d} \frac{c}{s} K_S$ identical hadronic processes -> same |Amplitude| $V_{cb}^* V_{cs} \text{ real => zero phase difference}$

=> relative phase = $2\varphi_1$, CP asymmetry ~ sin $2\varphi_1$

CP asymmetry: "other" $sin 2\phi_1$

for b -> sss: identical reasoning

CP asymmetry: "other" $sin 2\phi_1$

for b -> sss: identical reasoning

Average "sin2 ϕ_1 " from *b->s* penguins

Naïve World Average $sin2\phi_1(b \rightarrow sq\overline{q}) = 0.64 \pm 0.04$

Compare to ccs: sin2\u03c6₁(b->ccs) = 0.679 ± 0.020

 $CL = 0.28 (1.1\sigma)$

Sensitivity to NP depends on

- statistics
- reduced systematics
- theory corrections

Leptons Precision measurement & Universality

$B^+ \rightarrow \tau^+ v_{\tau}$: constraints on charged Higgs

PANEC 2011

B Factories versus LHC (ATLAS) for the charged Higgs

U. Haisch, hep-ph/0805.2141; ATLAS curve added by Steve Robertson

Also see (MSSM),D. Eriksson,F.Mahmoudi⁰ and 0.Stal

$B \rightarrow \mu \nu$

SM: $B(B \rightarrow \tau \nu) = 1.6 \times 10^{-4}$ $B(B \rightarrow \mu \nu) = 7.1 \times 10^{-7}$ observation with ~5 ab⁻¹ $B(B \rightarrow e\nu) = 1.7 \times 10^{-11}$

$B \rightarrow \mu \nu$

SM: $B(B \rightarrow \tau \nu) = 1.6 \times 10^{-4}$ $B(B \rightarrow \mu \nu) = 7.1 \times 10^{-7}$ observation with ~5 ab⁻¹ $B(B \rightarrow e\nu) = 1.7 \times 10^{-11}$

PANIC 2011

$B \not \to D^{(\star)} \, \tau \, \nu$

Lepton universality via semileptonic decays

- Ratio (τ/μ) is sensitive to charged Higgs (similar to $B \rightarrow \tau v$)

$B \rightarrow D^{(\star)} \, \tau \, \nu$

Lepton universality via semileptonic decays

- Ratio (τ/μ) is sensitive to charged Higgs (similar to $B \rightarrow \tau v$)

 $B \rightarrow \tau X$ decays probe NP in different ways: $\cdot B \rightarrow \tau v$: H-b-u vertex

 $\cdot B \rightarrow D\tau v$: H-b-c vertex

PANEC 2011

Charm • Mixing/CP

D mixing/CP violation

what we need: Billions and **Billions** of B's!

SuperKEKB & Belle II (cf G. Varner, talk 3H-1)

Summary

 B-factories 1999-2010, >1.4×10⁹ B pairs: established CKM as source of CP asymmetry in weak interaction multiple measurements on CKM with increasing precision -> probe New Physics at ~ few hundred GeV scale
+ discoveries: D mixing, new hadronic states possible hints of NP: Kπ CP asymmetry, imperfect CKM fit

- ~10²X luminosity will probe significantly into >1 TeV mass scale precision CKM, CP, lepton universality, LFV
- SuperKEKB/Belle II well underway complementary to LHC in sensitivity