Strange Beauty and Other Beasts: At and Above the $\mathrm{Y}(5 \mathrm{~S})$ with Belle

- Belle/KEKB, Y(4S) Resonance, B meson - $Y(5 S)$ Resonance and B_{s} motivation
Belle data \& results prospects

Kay Kinoshita
University of Cincinnati
Belle Collaboration

The people

Belle collaboration

... the Physics $e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B} \quad$ (mostly)

Primary goal: study CP violation in weak decays of B meson Data (6/1999-12/2008) $\cdot \int L d t=\sim 820$ fb-1@\{ $\{(4 S)+o f f(\sim 10 \%)\}$ -($88 \times 10^{8} \mathrm{~B}$ events)

- CP asymmetry in B decay
- B decays
- charm
- tau
- 2-photon
- addressing CP, CKM, QCD, HQ spectroscopy, ...
occasional overlap of topics e.g., new charmonium(-like) states in B decay.
- ... and now, $\mathrm{Y}(10860)$, "5S"
- B_{s} decays \& CP, search for New Physics
- Upsilon, B_{s} spectroscopy

$$
B_{q}=\left\{B_{d}^{0}, B_{u}^{+}\right\}
$$

B_{s} produced copiously in pp(bar) collisions (FNAL, LHC) could B-factories (competitively) study B_{s} at the $Y(5 S)$?
pro's (A. Drutskoy)

- MUCH cleaner, better energy definition, event efficiency, clean γ 's
- B-factory: high luminosity, established detector, compare w $\mathrm{Y}(4 \mathrm{~S})$
B_{s} studies
- Low CP-asymmetry in SM
-> sensitivity to New Physics (NP)
"SM CP violation is insufficient to explain baryon asymmetry"
Mod. Phys. Lett A9, 75 (1994); PRD 51, 379 (1995); Nucl.Phys. B287, 757 (1987)
- $\Delta \Gamma_{C P} / \Gamma=O(10 \%)$ in $S M$
-> differences in CP, flavor eigenstates
- Absolute B_{s} branching fractions
- Similarity/difference w (non-strange) B
-> quark-hadron duality,
fine-tune hadronic models
- $\mathrm{B}_{\mathrm{s}}{ }^{(*)}$ mass
$\gamma(5 S)$ spectroscopy
- $\mathrm{B}_{(s)}{ }^{\left({ }^{*}\right)}(\pi)$ event fractions
- Other bottomonium-like states?

Similarity to $\mathrm{B}_{\mathrm{u}, \mathrm{d}}$

- dominated by spectator process
- similar semileptonic widths
- D->D ${ }_{s}$ for many modes

difference
- CKM-favored AND flavor-neutral $C P=+1$ in heavy quark limit, $m_{c} \rightarrow \infty$ \sim saturated by 2-body $D_{s}{ }^{(*)+} D_{s}{ }^{(*)}$ -

-> difference in widths of $C P= \pm 1$

$$
\frac{\Delta \Gamma_{C P}}{\Gamma} \approx \frac{2 \Gamma\left(B_{s} \rightarrow D_{s}^{(*)+} D_{s}^{(*)-}\right)}{\Gamma} \approx 0.1-0.2
$$

Aleksan, Dunietz, Kayser Z. Phys., C54, 653 (1992)
What about CP violation? ... need to look at weak couplings

Unlike leptons, which exhibit no generation-xing couplings
Weak couplings of quarks look anomalous:

- neutral current - universal, generation-conserving
- charged current - approx. generation-conserving, but different
Z^{0} "neutral current"
\&----> not seen
$\mathrm{W}^{ \pm}$charged current"

\longleftrightarrow suppressed

Weak charged-coupling matrix for quarks

GIM (Glashow-Iliopoulos-Maiani) picture
universal \& generation-conserving

$$
\begin{aligned}
& \text { "weak eigenstates," } \\
& \mathrm{d}^{\prime} \quad \mathrm{s}^{\prime} \quad \mathrm{b}^{\prime} \leftarrow \rightleftharpoons \begin{array}{l}
\text { "weak eigenstates, } \\
\neq \text { mass eigenstates } \mathrm{d}, \mathrm{~s}, \mathrm{~b}
\end{array} \\
& \left.g_{F} \times \begin{array}{c}
u \\
{ }_{i} \\
+
\end{array} \left\lvert\, \begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right.\right) \quad\left(\begin{array}{l}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\mathcal{M}\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)\left(\begin{array}{c}
\text { Cabibbo-Kobayashi- } \\
\begin{array}{c}
\text { Maskawa (CKM) } \\
\text { matrix }
\end{array} \\
\hline
\end{array}\right.
\end{aligned}
$$

Weak couplings of quarks: CKM matrix
Linear transformation between 2 complete sets of eigenstates

$$
\left(\begin{array}{l}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right]=\mathcal{M}\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right] \quad \text { preselegance ORestaikedy }
$$

C.aplains

- suppression of flavor-changing neutral currents
- multiplicity of charged current couplings
- AND
$\{9 \uparrow+9 q\}$ dof constrained by unitarity
--> 4 free parameters, incl. 1 irreducible imaginary par \dagger
Unitarity conditions $\mathrm{V}_{\mathrm{ji}}{ }^{*} \mathrm{~V}_{\mathrm{jk}}=\delta_{\mathrm{ik}}$

$$
\begin{aligned}
& \text { explicit parametrization(Wolfenstein): } \\
& \left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & \lambda 3 A(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & \lambda^{2} A \\
\lambda^{3} A(1-\rho-i \eta)-\lambda^{2} A & 1
\end{array}\right) \\
& \text { irreducibly } \\
& \text { complex }
\end{aligned}
$$

Irreducible complexity follows from unitarity for >2 generations --> proposed as explanation of CP violation in K_{L}
(Kobayashi-Maskawa 1973)

CP asymmetry in B_{s}-> $\mathrm{J} / \psi \eta$

Analogous to $B \rightarrow J / \Psi K_{s}$ (Sanda/Bigi/Carter)
tree (real $V_{i j}$) $\propto V_{c b}{ }^{*} V_{c s}$

CP-dependent oscillation in time from x-term(s)

- no theoretical uncertainty: $\arg \left(\mathrm{V}_{+\mathrm{b}}{ }^{* 2} \mathrm{~V}_{t s}{ }^{2}\right)=0$
\Rightarrow No mixing-mediated $C P$ violation in $S M \rightarrow$ any $C P$ asymmetry is NP ... something for the future...

Why is non-CKM CP violation of interest?

- matter-antimatter asymmetry of the universe requires

CP-violating interactions (Sakharov 1967)

- CP asymmetry in CKM is insufficient

June 2005: 3-day "engineering" run

- to study $\mathrm{Y}(5 \mathrm{~S})$ properties, B_{s} prospects
- test KEKB - $\mathrm{L}_{\text {max }} \sim 1.39 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- energy scan, 5 points, $30 \mathrm{pb}^{-1}$ each
- $1.86 \mathrm{fb}^{-1}$ at peak
. $4 \times$ larges \dagger previous sample (CLEO)
A. Drutskoy et al., PRL 98, 052001 (2007)
A. Drutskoy et al., PRD 76, 012002 (2007)

Event count

$(3.01 \pm 0.02 \pm 0.16) \times 10^{5}$ events $^{2} / \mathrm{fb}^{-1}$

Event shape parameter (Fox-Wolfram moments)

$$
\begin{gathered}
R_{2}=\frac{\sum_{i, j}\left|p_{i}\right|\left|p_{j}\right| P_{2}(\cos \theta)}{\sum_{i, j}\left|p_{i}\right|\left|p_{j}\right| P_{0}(\cos \theta)} \\
\text { 2-jet } e^{+} e^{-} \rightarrow q \bar{q} \mathrm{R}_{2^{2}->1} \\
e^{+} e^{-} \rightarrow B \bar{B} \quad \mathrm{R}_{2} \rightarrow>0
\end{gathered}
$$

Fundamentals

B_{s} fraction in $\gamma(5 S)$ events inclusive D_{s} production $\underline{\mathcal{B}\left(\Upsilon(5 S) \rightarrow D_{s} X\right)}=f_{s} \cdot \mathcal{B}\left(B_{s} \rightarrow D_{s} X\right)+\left(1-f_{s}\right) \cdot \mathcal{B}\left(B \rightarrow D_{s} X\right)$

$$
f_{s}=(17.9 \pm 1.4 \pm 4.1) \%
$$

similar analysis using inclusive D^{0} : $f_{s}=(18.1 \pm 3.6 \pm 7.5) \%$
combined:

$$
f_{s}=(18.0 \pm 1.3 \pm 3.2) \%
$$

$$
x=p_{D_{s}} / \sqrt{E_{\text {beam }}^{2}-M_{D_{s}}^{2}} \mathbf{X}\left(\mathbf{D}_{\mathbf{s}}\right)
$$

$\bar{B}_{s} \rightarrow D_{s}^{+} \pi^{-}, D_{s}^{+} K^{-}$

R. Louvot, J. Wicht, O. Schneider, et al. PRL 102, 021801 (2009)
B_{s} a $\Upsilon(5 s)$: mix of $\quad B_{s} \bar{B}_{s}: B_{s}^{*} \bar{B}_{s} / B_{s} \bar{B}_{s}^{*}: B_{s}^{*} \bar{B}_{s}^{*}$
Candidate reconstruction: energy, momentum $\rightarrow \Delta E, M_{b c}$
$B_{s} \bar{B}_{s}$

$$
E_{B_{s}}=E_{\text {beam }}
$$

$$
p_{B_{s}}=\sqrt{E_{B_{s}}^{2}-M_{B_{s}}^{2}}
$$

$$
\begin{aligned}
& B_{s}^{*} \rightarrow B_{s} \gamma \\
& \Delta M \equiv M_{B_{s}^{*}}-M_{B_{s}} \approx 50 \mathrm{MeV} / c^{2} 5.322^{-}
\end{aligned}
$$

$$
B_{s}^{*} \bar{B}_{s}
$$

$$
E_{B_{s}} \approx E_{b e a m}-\Delta M / 2
$$

$$
\begin{aligned}
& B_{s}^{*} \rightarrow B_{s} \gamma \\
& \Delta M \equiv M_{B^{*}}-M_{B_{3}} \approx 50 \mathrm{MeV} / c^{2} \cdot 5.32-D_{s}^{-} \rightarrow \phi \pi^{-}, K^{* 0} K^{-}, K_{S}^{0} K^{-}
\end{aligned}
$$

$$
\Delta E \equiv E_{c a n d}-E_{\text {beam }}
$$

$$
B_{s}^{*} \bar{B}_{s}^{*}
$$

$$
E_{B_{s}} \approx E_{b e a m}-\Delta M
$$

$$
\left\langle E_{B s}\right\rangle=E_{\text {beam }}-\langle\Delta E\rangle
$$

$$
\Rightarrow M_{B_{s}}
$$

$$
=\left\langle\sqrt{\left(E_{\text {beam }}-\langle\Delta E\rangle\right)^{2}-p_{c a n d}^{2}}\right\rangle
$$

$$
\begin{aligned}
& \left\langle\mathrm{P}_{\mathrm{BS}^{\prime}}\right\rangle=\mathrm{P}_{\mathrm{B}^{*}} \\
& \Rightarrow M_{B_{s}^{*}}=\left\langle M_{\mathrm{bc}}\right\rangle
\end{aligned}
$$

significance $=2.7 \sigma$

$B_{s} B_{s}$
significance 1.1σ

$B_{s} * B_{s} *$ only (statistics)

$B_{S}{ }^{*} B_{S}{ }^{*}$

results $D_{s}^{-} \pi^{+}, D_{s}^{-} K^{+}$

Belle, $23.6 \mathrm{fb}^{-1} \quad$ PDG
$\mathcal{B}\left(B_{s} \rightarrow D_{s} \pi\right) \quad\left(3.67_{-0.33-0.42}^{+0.35+0.43}\right) \times 10^{-3} \quad(3.0 \pm 0.7) \times 10^{-3}$
$f_{B_{s}^{*} B_{s}^{*}}$
$f_{B_{s}^{*} B_{s}}$
$f_{B_{s} B_{s}}$
$m_{B_{s}}$
$m_{B_{s}^{*}}$
$\mathcal{B}\left(B_{s} \rightarrow D_{s} K\right)\left[2.4_{-1.0}^{+1.2} \pm 0.3(\mathrm{sys}) \pm 0.3\left(f_{s}\right)\right] \times 10^{-4}$
$\xlongequal{\underline{\frac{\mathcal{B}\left(B_{s} \rightarrow D_{s} K\right)}{\mathcal{B}\left(B_{s} \rightarrow D_{s} \pi\right)}}}$
$\left[6.5_{-2.9}^{+3.5}\right] \%$
$(10.7 \pm 2.1) \%$

$$
f_{B_{s}^{*} B_{s}^{*}} \equiv \frac{\sigma\left(e^{+} e^{-} \rightarrow B_{s}^{*} \bar{B}_{s}^{*}\right)}{\sigma\left(e^{+} e^{-} \rightarrow B_{s}^{(*)} \bar{B}_{s}^{(*)}\right)} \quad f_{B_{s}^{*} B_{s}} \equiv \frac{\left.\sigma\left(e^{+} e^{-} \rightarrow B_{s}^{*} \bar{B}_{s}+B_{s} \bar{B}_{s}^{*}\right)\right)}{\sigma\left(e^{+} e^{-} \rightarrow B_{s}^{(*)} \bar{B}_{s}^{(*)}\right)}
$$

Searches for radiative modes of B_{s}

J. Wicht, et al.

PRL 100, 121801 (2008)

Searches for new modes of B_{s}

YY: difficult for hadron machines

$\mathcal{B}_{S M} \sim(0.4-1.0) \times 10^{-6}$
beyond SM: up to 5×10^{-6}

$23.6 \mathrm{fb}^{-1}$

$$
\mathcal{B}=\left(57_{-15}^{+18}(\text { stat })_{-11}^{+12}(\text { sys })\right) \times 10^{-6}
$$

First observation
$\frac{\Delta \Gamma_{C P}}{\Gamma}$ via $\mathcal{B}\left(B_{s} \rightarrow D_{s}^{(*)+} D_{s}^{(*)-}\right)$
 PRELIMINMARY
S. Esen, presented at JPS meeting March 2009

CKM favored, first sensitivity to

$$
\frac{\Delta \Gamma_{C P}}{\Gamma} \approx 2 \mathcal{B}\left(B_{s} \rightarrow D_{s}^{(*)+} D_{s}^{(*)-}\right) \approx 0.1-0.2
$$

Analyze 3 modes together $23.6 \mathrm{fb}^{-1}$

$D_{s}{ }^{\left({ }^{*}\right)+} D_{s}{ }^{(*)}-2-d$ extended unbinned maximum likelihood fit

$D_{S}^{+D_{S}^{-}}$
$\mathcal{B}\left(B_{s} \rightarrow D_{s} D_{s}\right)$
$=\left(1.0_{-0.3-0.2}^{+0.4+0.2}\right) \%$
$\operatorname{CDF}(2007):$
$(1.1 \pm 0.3 \pm 0.5) \%$

Events/ 10 MeV

$D_{s}{ }^{*} D_{s}{ }^{-}$
$\mathcal{B}\left(B_{s} \rightarrow D_{s}^{*} D_{s}\right)$
$=\left(2.6_{-0.6-0.5}^{+0.7+0.5}\right) \%$

$D_{S}^{*}+D_{S}^{*-}$
$\mathcal{B}\left(B_{s} \rightarrow D_{s}^{*} D_{s}^{*}\right)$
$=\left(2.5_{-0.9-0.6}^{+1.1+0.6}\right) \%$
${ }^{\Delta} T \cap T A L: B\left(B_{s} \rightarrow D_{S}^{(*)} D_{s}^{(*)}\right)=\left(6.1_{-1}^{+1.4+0.8}\right) \%$
$\left.D_{s}{ }^{(}\right)+D_{s}{ }^{(*)}-2-d$ extended unbinned maximum likelihood fit

$$
\begin{aligned}
& D_{s}{ }^{+} D_{s}{ }^{-} \\
& \mathcal{B}\left(B_{s} \rightarrow D_{s} D_{s}\right) \\
& =\left(1.0_{-0.3-0.2}^{+0.4+0.2}\right) \% \\
& \text { CDF(2007) : } \\
& (1.1 \pm 0.3 \pm 0.5) \% \\
& =\left(12.2_{-2.2}^{+2.8+1.6}\right) \% \\
& D_{s}{ }^{*}+D_{s}{ }^{-} \\
& \mathcal{B}\left(B_{s} \rightarrow D_{s}^{*} D_{s}\right) \\
& =\left(2.6_{-0.6-0.5}^{+0.7+0.5}\right) \% \\
& \text { PDG: } \frac{\Delta \Gamma_{C P}}{\Gamma}=\left(6.9_{-6.2}^{+5.8}\right) \% \\
& \text { TeVatron } \\
& D_{s}{ }^{*}+D_{s}{ }^{*-} \\
& \mathcal{B}\left(B_{s} \rightarrow D_{s}^{*} D_{s}^{*}\right) \\
& =\left(2.5_{-0.9-0.6}^{+1.1+0.6}\right) \%
\end{aligned}
$$

TOTAL : $\mathcal{B}\left(B_{s} \rightarrow D_{s}^{(*)} D_{s}^{(*)}\right)=\left(6.1_{-1.1-0.8}^{+1.4+0.8}\right) \%$

$$
B^{(*)} \bar{B}^{(*)}(\pi)(\pi)
$$

pRelillyMarl

A. Drutskoy, presented at Rencontres de Moriond, 3/09

$$
\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}}^{-} \pi^{+} \text {and } \mathrm{B}^{0} \rightarrow \mathrm{D}^{-} \pi^{+}
$$

- reconstruction methods well-established at $\Upsilon(4 S)$ - relative rates of event types give insight into hadronization
- account for all events at $\Upsilon(5 S)$

$Y(5 S)$ decays to B^{0} and B^{+}mesons

Preliminary results, shown first time

$$
\begin{array}{lc}
B^{+}->J / \psi K^{+} & f(X)=N(X) / N(b b) \\
B^{+}->D^{0}(K \pi) \pi^{+} & f\left(B^{+}\right)=(67.7 \pm 3.6 \pm 4.8) \% \\
B^{+}->D^{0}(K 3 \pi) \pi^{+} & f\left(B^{0}\right)=(70.4 \pm 5.2 \pm 6.2) \% \\
B^{0}->J / \psi K^{* 0} & 5.1 \\
B^{0}->D^{-}\left(K+\pi^{-} \pi^{-}\right) \pi^{+} & \\
\text {Sum of } 5 \text { modes } & f\left(B^{+/ 0}\right)=\left(68.6 \pm \frac{3.9}{2.9} \pm 5.0\right) \%
\end{array}
$$

I am still working to decompose 3- and 4-body channels.
$M_{b c}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

$Y(5 S)$ decays

Decay channel fractions per $b \bar{b}$-pair:

BB:	$5.1 \pm 0.9 \pm 0.4 \%$	
B*B:	$12.6 \pm 1.2 \pm 1.0 \% \longleftarrow$	Simult.
fit of 5		
B B $B^{*}:$	$34.7 \pm 1.8 \pm 2.7 \%$	B modes

$B C^{(*)} B^{(*)} \pi(\pi): \quad 17.0 \pm{ }_{1.5}^{1.6} \pm 2.7 \%$
Sum $B^{+/ 0:} \quad 68.6 \pm 2.9 \pm 5.0 \%$
Sum B_{s} : $19.5 \pm{ }_{2.2}^{3.0 \%}$ (PDG, Belle + CLEO).

Not observed : ~10\%? from $B_{s}: f\left(B_{s}{ }^{*} B_{s}{ }^{*}\right)=\left(90.1 \pm 4.0{ }_{4}^{3.8} \pm 0.2\right) \%$ $f\left(B_{s}{ }^{*} B_{s}\right)=\left(7.3 \pm{ }_{3.0}^{3.3} \pm 0.1\right) \%$ $f\left(B_{s} B_{s}\right)=\left(2.6 \pm{ }_{2.5}^{2.6}\right) \%$
$\Upsilon(1,2,3 S) \pi^{+} \pi^{-}: 1.9 \pm 0.2 \%$
(3+4)-body fraction: 0.3% : L.Lellouch et al Nucl Phys B405:55,1993
$\sim 0.03 \%$: Yu. Simonov et al hep-ph:0805.4518
Large fraction of (3+4)-body $\mathrm{B}^{+/ 0}$ decays $=>$ not predicted by theory

There is some room for transitions to bottonium (within large errors)

$\Upsilon(10860)=\Upsilon(5 S) ?$

K.-F. Chen, W.-S. Hou, M. Shapkin, A. Sokolov, et al. PRL 100, 112001 (2008)

- recently found in $e^{+} e^{-}$collisions:

$$
e^{+} e^{-} \rightarrow \gamma_{I S R} \pi^{+} \pi^{-} J / \psi \quad e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi
$$

New charmonium-like particle at 4260 GeV Babar PRL 95, 142001 (2005) Belle PRD 77, 011105 (R) (2008) CLEO PRD 74, 091104(R) (2006)

Others

$$
Y \rightarrow \pi^{+} \pi^{-} \psi(2 S)
$$

+more - than predicted!

- recently found in $e^{+} e^{-}$collisions:

$$
e^{+} e^{-} \rightarrow \gamma_{I S R} \pi^{+} \pi^{-} J / \psi \quad e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi
$$

New charmonium-like particle at 4260 MeV
Babar PRL 95, 142001 (2005) Belle PRD 77, 011105 (R) (2008) CLEO PRD 74, 091104(R) (2006)

Others

$$
Y \rightarrow \pi^{+} \pi^{-} \psi(2 S)
$$

+more - than predicted!

Belle Discovers More "New Particles"
A Y_{b} state ?: Observation of an anomalously large rate for
Upsilon(5S) \rightarrow Upsilon(1,2S) $\pi^{+} \pi{ }^{-}$
K.F.Chen et al, arXiv:0710.2577 (submitted to PRL.)

Z(4430): A charged charmonium-like resonant structure
SK. Choi, SL Otsen et al, arXiv:0708.1790 (submitted to PRL)
Press release (English., Japanese) CERN Courier article Y(4660): X. L. Wang et at, PRL. 99, 142002 (2007) (arXiv:0707 3699) Y(4008): C.Z. Yuan et al, PRL. 99, 182004 (2007) (arXiv:0707.2541) X(4160): P. Pakhlov et al, arXiva0708.3812 (submitted to PRL.) psi(4415)->DD ${ }_{2}$: G.Pakhlova et al, arXiv.0708.3313 (to appear in PRL.)

Does(do) analogous state(s) Y_{b} exist in Upsilon region? [W.S. Hou, PRD 74, 017504 (2006)]

Does(do) analogous state(s) Y_{b} exist in Upsilon region? [W.S. Hou, PRD 74, 017504 (2006)]
-> look for: $\mu^{+} \mu^{-} h^{+} h^{-}$

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow \Upsilon(1 S) \pi^{+} \pi^{-} X \\
& e^{+} e^{-} \rightarrow \Upsilon(2 S) \pi^{+} \pi^{-} X
\end{aligned}
$$

Is the $\Upsilon(10860)$ purely $\Upsilon(5 S)$?

4 modes seen $\Upsilon(10860) \rightarrow \Upsilon(n S) h^{+} h^{-}$

Process	$\sigma(\mathrm{pb})$	$\mathcal{B}(\%)$	$\Gamma(\mathrm{MeV})$
$\Upsilon(1 S) \pi^{+} \pi^{-}$	$1.61 \pm 0.10 \pm 0.12$	$0.53 \pm 0.03 \pm 0.05$	$0.59=0.04 \pm 0.09$
$\Upsilon(2 S) \pi^{+} \pi^{-}$	$2.35 \pm 0.19 \pm 0.32$	$0.78 \pm 0.06 \pm 0.11$	$0.85 \pm 0.07 \pm 0.16$
$\Upsilon(3 S) \pi^{+} \pi^{-}$	$1.44_{-0.45}^{+0.55} \pm 0.19$	$0.48_{-0.15}^{+0.18} \pm 0.07$	$0.52-0.20$
$\Upsilon(1 S) K^{+} K^{-}$	$0.185_{-0.041}^{+0.048} \pm 0.028$	$0.0611_{-0.014}^{+0.016} \pm 0.010$	$0.067_{0}^{+0.017} \pm 0.10$

Expectation: $\Upsilon(5 S)$ width comparable to $\gamma(2 S / 3 S / 4 S)$

Process	$\Gamma_{\text {total }}$	$\Gamma_{e^{+} e^{-}}$	$\Gamma_{\Upsilon(1 S) \pi^{+} \pi^{-}}$
$\Upsilon(2 S) \rightarrow \Upsilon(1 S) \pi^{+} \pi^{-}$	0.032 MeV	0.612 keV	0.0060 MeV
$\Upsilon(3 S) \rightarrow \Upsilon(1 S) \pi^{+} \pi^{-}$	0.020 MeV	0.443 keV	0.0009 MeV
$\Upsilon(4 S) \rightarrow \Upsilon(1 S) \pi^{+} \pi^{-}$	20.5 MeV	0.272 keV	0.0019 MeV
$\Upsilon(10860) \rightarrow \Upsilon(1 S) \pi^{+} \pi^{-}$	110 MeV	0.31 keV	0.59 MeV

larger by $>10^{2}$

Conclusion: not pure $\mathrm{Y}(5 \mathrm{~S})$?
12/07: energy scan, measure

$$
e^{+} e^{-} \rightarrow \Upsilon(n S) h^{+} h^{-}
$$

$\sqrt{s}(\mathrm{GeV})$	$\mathcal{L}\left(\mathrm{fb}^{-1}\right)$
10.8275	1.68
10.8825	1.83
10.8975	1.41
10.9275	1.14
10.9575	1.01
11.0175	0.86

$Y(\mathrm{nS}) \pi \pi$ Resonant Shapes

A x^{2} fit to the measured cross sections: (7 energjes $\times 3$ states $=21$ points)

KEB and Belle at $\Upsilon(10860)$

- 23 days, $23.6 \mathrm{fb}^{-1}, 1.3 \mathrm{M} \mathrm{B}_{\mathrm{s}}$ events
- $8 \mathrm{fb}^{-1}$ near and above $\curlyvee(10860)$
- Beast(s)
anomalous $\curlyvee(n s) \pi \pi, \sim 10^{2} X$ expectation at $\curlyvee(10860)$
$Y(n s) \pi \pi$ rate peaks ~ 20 MeV above hadronic peak
-> $Y(10860)$: not pure $Y(5 S)$?
$B^{(*)} B^{(*)}(\pi)(\pi)+B_{s}{ }^{(*)} B_{s}{ }^{(*)}+Y(n s) \pi \pi \neq 100 \%$?
- Strange beauty
large sample of $B_{s} \rightarrow D_{s} \pi$, evidence $D_{s} K$ $\mathrm{B}_{s}{ }^{*} \mathrm{~B}_{s}{ }^{*}$ rate, masses of $\mathrm{B}_{s}{ }^{*}, \mathrm{~B}_{s}$
best limit on $\mathrm{B}_{\mathrm{s}}->$ YY
first observation of $B_{s} \rightarrow \varphi \gamma$
absolute measurement $B\left(B_{s} \rightarrow D_{s}{ }^{(*)} D_{s}{ }^{(*)}\right)\left(\sim \Delta \Gamma_{c P} / 2 \Gamma\right)$
- more to come ...

October 2008- end 2009 extended run on peak $->\sim 100 \mathrm{fb}^{-1}$

