# Belle and the Beast: Strange Beauty at the $\gamma(5 S)$ Resonance 



- B-factory and $\gamma(4 S)$ Resonance
- $r(5 S)$ Resonance and $B_{s}$ motivation Belle data prospects


Kay Kinoshita
University of Cincinnati
Belle Collaboration

B factory: $\quad e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$


Primary goal: study CP violation in weak decays of $B$ meson

- $L_{\max }=1.71 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (world record)
- Data (6/1999-3/2007)
- $\quad \int L d t=710 \mathrm{fb}^{-1} @\{\curlyvee(4 \mathrm{~S})+o f f(\sim 10 \%)\}$
- ( $>7.1 \times 10^{8} \mathrm{~B}$ events)
- $\quad \int L d t=24.6 \mathrm{fb}^{-1} @ \curlyvee(5 S)$

KEKB B-factory

Charged tracking/vertexing

- SVD:
(-7/03) 3-layer DSSD Si $\mu$ strip (152M B pairs) (8/03-) 4-layer (550+M
BB)
- CDC: 50 layers (Heethane)
Hadron identification
- CDC: $\mathrm{dE} / \mathrm{d} x$
- TOF: time-of-flight
- ACC: Threshold Cerenkov (aerogel)
Electron/photon
- ECL: CsI calorimeter Muon/K
- KLM: Resistive plate counter/iron



## ~13 countries, 55 institutes, ~400 collaborators

Weak force: under symmetry operations


How can an interaction violate CP?
Complex coupling constant
$C P\left\{\underset{f, g:, f^{\prime}}{ }\right\}=\overline{f^{\prime}} \mathfrak{g , \overline { f }} \neq \overline{\bar{f}^{\prime}} g^{*}, \bar{f}$ (hermitian conjugate)
Why is CP violation of interest?

- matter-antimatter asymmetry requires CP-violating interactions (Sakharov 1967)


## Standard Model $=12$ fermion flavors (+antifermion)

- 3 generations(distinguished only by mass)x2 typesx2 ea(strong \& EM couplings) (stable, but for weak interaction)
- leptons: ~universal coupling, no generation x-ing

- quarks: neutral current - ~universal, no generation x-ing
- quarks: charged current - all different, approx. generation-conserving

$$
\begin{aligned}
& U_{\star} \\
& \text { Inelegant!/ }
\end{aligned}
$$

Picture \{matrix of couplings\}

is universal \& generation-conserving

$$
\left.\begin{array}{c|ccc}
u & u & 1 & 0 \\
c & 0 \\
g_{F} \times & 0 & 1 & 0 \\
+ & 0 & 0 & 1
\end{array}\right)
$$

- $d^{\prime}, s^{\prime}$, b'are eigenstates resulting from perturbation by weak interaction, $\neq$ mass eigenstates $d, s, b$


GIM (Glashow-Iliopoulos-Maiani) mechanism 厄्explains

- suppression of flavor-changing neutral currents
- multiplicity of charged current couplings
- AND .......
for $>2$ generations, e.g. $3,\{9 \uparrow+9 q\}$ dof constrained by unitarity:

Unitarity conditions $\mathrm{V}_{\mathrm{ji}}{ }^{*} \mathrm{~V}_{\mathrm{jk}}=\delta_{\mathrm{ik}} \rightarrow 3$ real +1 imaginary free parameters

$$
\begin{aligned}
& \text { explicit parametrization(Wolfenstein): } \\
& \begin{array}{ccc}
1-\lambda 2 / 2 & \lambda & \lambda 3 \mathrm{~A}(\rho-i \eta) \\
-\lambda & 1-\lambda 2 / 2 & \lambda 2 \mathrm{~A} \\
\lambda 3 \mathrm{~A}(1-\rho-i \eta) & -\lambda 2 \mathrm{~A} & 1
\end{array}
\end{aligned}
$$

First 3rd-generation particle ( $\tau$ ) observed 1975

## Unitarity

Unitarity condition for $\{i=1, k=3\} \quad V_{u b}{ }^{*} V_{u d}+V_{c b}^{*} V_{c d}+V_{+b}^{*} V_{+d}=0$

$$
\begin{aligned}
& \begin{array}{cc}
\downarrow \\
-(\rho+\iota \eta) & -(1-\rho-\iota \eta)
\end{array}
\end{aligned}
$$



B-factories test self-consistency of UT

- fully constrained by 3 of $\{3$ angles, 3 sides $\}==>$ overconstrain

Inconsistency -> New Physics

Complex coupling constant is CP-violating

$$
C P\left\{\underline{f, g} g^{f^{\prime}}\right\}=\underline{f^{\prime}, g, \bar{f} \neq \overline{f^{\prime}} g^{*}, \bar{f}}=\left\{\underline{f, g} f^{\prime}\right\}^{\top}
$$

BUT to observe CP asym, need 2+ interfering amplitudes $\{T, P\}$ : $T=g A, P=g^{\prime} A^{\prime} \rightarrow\left|g A+g^{\prime} A^{\prime}\right| \xrightarrow{C P}\left|g A^{*}+g^{\prime} A^{\prime} *\right|$

Equal only if relative phase of $9, g^{\prime}=0$

AND for irreducibly complex weak coupling in CKM, need process w. all 3 generations
===>>> B Decays ===>>>

CP asymmetry in B decay: example
B $\rightarrow \mathrm{J} / \Psi \mathrm{K}_{\mathrm{s}}$ (Sanda/Bigi/Carter)
mixing+tree $\left(\alpha V_{t d}{ }^{* 2}\right)$
tree (real $V_{i j}$ ) $\propto V_{c b}{ }^{*} V_{c s}$

$$
\propto V_{t b}{ }^{* 2} V_{t d}{ }^{2} V_{c b} V_{c s}{ }^{*}
$$


identical hadronic processes
Bottom line: CP-dependent oscillation in time from $x$-term(s)

- no theoretical uncertainty: $\arg \left(\mathrm{V}_{\text {dd }}{ }^{2}\right)=2 \varphi_{1}<\beta$

$$
\begin{gathered}
\frac{d N}{d t}\left(B \rightarrow f_{C P}\right)=\frac{1}{2} \Gamma e^{-\Gamma \Delta t}\left(1+\eta_{b} \eta_{C P} \sin 2 \phi_{1} \sin (\Delta m \Delta t)\right) ; \\
\eta_{b}=\binom{+1 \text { if } B_{t=0}=B^{0}}{-1 \text { if } B_{t=0}=\bar{B}^{0}} \quad \eta_{C P}=\binom{-1 \text { if } C P \text { odd }}{+1 \text { if } C P \text { even }}
\end{gathered}
$$

B factory: $\quad e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$

$B_{2}$ decay
at $t=\Delta t$


## CP asymmetry



## Belle physics

$208 \pm 5$ papers published or in press (\#1 in 3/2001)
(CP asymmetry in $B$ decay, other $B$ decay, charm, tau, 2-photon)
Recent highlights

- evidence for $D^{0}$ mixing
- quantum entanglement (EPR)
- new charmonium-like states Y(3940), X(3872)
occasional overlap of topics,
e.g., discovery of new charmonium(-like) states in B decay.


Can we (competitively) study $B_{s}$ at the $Y(5 S)$ ? (FNAL, LHC)
Maybe...

- exclusive B pair events (quantum coherence), high trigger eff, clean $\gamma$ 's
- B-factory: high luminosity, established detector
$B_{s}$ studies
- Low CP-asymmetry in SM
-> sensitivity to New Physics
"SM CP violation is insufficient to explain baryon asymmetry"
Mod. Phys. Lett A9, 75 (1994); PRD 51, 379 (1995); Nucl.Phys. B287, 757 (1987)
- $\Delta \Gamma / \Gamma_{C P} / \Gamma=O(10 \%)$ in $S M$
-> differences in CP, flavor eigenstates
- Similarity/difference w (non-strange) B
-> quark-hadron duality,
fine-tune hadronic models
- $\mathrm{Y}(5 \mathrm{~S})$ spectroscopy:
$B_{(s)}$ event fractions (needed to evaluate prospects for $B_{s}$ ) $B_{s}{ }^{(*)}$ mass

Similarity w $\mathrm{B}_{\mathrm{u}, \mathrm{d}}$

- dominated by spectator process
- similar semileptonic widths
- D->D ${ }_{s}$ for many modes

difference
- CKM-favored AND flavor-neutral $C P=+1$ in heavy quark limit, $m_{c} \rightarrow \infty$ $\sim$ saturated by 2-body $D_{s}{ }^{(*)+} D_{s}{ }^{(*)}$ -

-> difference in widths of $C P= \pm 1$

$$
\frac{\Delta \Gamma_{C P}}{\Gamma} \approx \frac{2 \Gamma\left(B_{s} \rightarrow D_{s}^{(*)+} D_{s}^{(*)-}\right)}{\Gamma} \approx 0.1-0.2
$$

Aleksan, Dunietz, Kayser Z. Phys., C54, 653 (1992)

June 2005: 3-day "engineering" run

- to study $\Upsilon(5 S)$ properties, $B_{s}$ prospects
- test KEKB - $L_{\max } \sim 1.39 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- energy scan, 5 points, $30 \mathrm{pb}^{-1}$ each
- $1.86 \mathrm{fb}^{-1}$ at peak
- $4 \times$ largest previous sample (CLEO)
A. Drutskoy et al., PRL 98, 052001 (2007)
A. Drutskoy et al., hep-ex/0610003 submitted to PRD

June 2006: 20-day run

- $21.7 \mathrm{fb}^{-1}$ on resonance
- data analysis starting



Event shape parameter (Fox-Wolfram moments)

$$
\begin{gathered}
R_{2}=\frac{\sum_{i, j}\left|p_{i}\right|\left|p_{j}\right| P_{2}(\cos \theta)}{\sum_{i, j}\left|p_{i}\right|\left|p_{j}\right| P_{0}(\cos \theta)} \\
\text { 2-jet } e^{+} e^{-} \rightarrow q \bar{q} \bar{R}_{2}->1 \\
e^{+} e^{-} \rightarrow B \bar{B} \quad R_{2} \rightarrow 0
\end{gathered}
$$

## $B_{s}$ fraction in $Y(5 S)$ events

inclusive $D_{s}$ production

$$
\begin{gathered}
\text { (model estimate) } \\
(92 \pm 11) \%
\end{gathered}
$$

$\underline{\mathcal{B}}\left(\Upsilon(5 S) \rightarrow D_{s} X\right)=f_{s} \cdot \mathcal{B}\left(B_{s} \rightarrow D_{s} X\right)+\left(1-f_{s}\right) \cdot \mathcal{B}\left(B \rightarrow D_{s} X\right)$
$23.6 \pm 1.2 \pm 3.6) \%$
$f_{s}=(17.9 \pm 1.4 \pm 4.1) \%$
similar analysis using inclusive $D^{0}$ : $f_{s}=(18.1 \pm 3.6 \pm 7.5) \%$
combined:

$$
f_{s}=(18.0 \pm 1.3 \pm 3.2) \%
$$



## $B_{s} \bar{B}_{s}: B_{s}^{*} \bar{B}_{s} / B_{s} \bar{B}_{s}^{*}: B_{s}^{*} \bar{B}_{s}^{*}$

Readily reconstructed CKM-favored modes

$$
D_{s}^{-} \pi^{+}, D_{s}^{-} \rho^{+}, D_{s}^{*-} \pi^{+}, D_{s}^{*-} \rho^{+}, J / \psi \phi, J / \psi \eta
$$

Full reconstruction of $\mathrm{B}_{s}$ :

$$
\begin{aligned}
& D_{s}^{*-} \rightarrow D_{s}^{-} \gamma \quad D_{s}^{-} \rightarrow \phi \pi^{-}, K^{* 0} K^{-}, K_{S}^{0} K^{-} \\
& \quad \phi \rightarrow K^{+} K^{-}, K^{* 0} \rightarrow K^{+} K^{-}, K_{S}^{0} \rightarrow \pi^{+} \pi^{-} \\
& J / \psi \rightarrow \mu^{+} \mu^{-}, e^{+} e^{-} \\
& \rho^{+} \rightarrow \pi^{+} \pi^{0}, \pi^{0} \rightarrow \gamma \gamma, \eta \rightarrow \gamma \gamma
\end{aligned}
$$

Not reconstructed: $\quad B_{s}^{*} \rightarrow B_{s} \gamma$
$\rightarrow B_{s}$ candidate $E_{\text {cand }}, P_{\text {cand }}$ in cms of $\mathrm{e}^{+} e^{-}$

## $B_{s} \bar{B}_{s}: B_{s}^{*} \bar{B}_{s} / B_{s} \bar{B}_{s}^{*}: B_{s}^{*} \bar{B}_{s}^{*}$

Candidate reconstruction: energy, momentum of $B_{s}$ at $\gamma(5 S)$
$B_{s} \bar{B}_{s}$
$E_{B_{s}}=E_{\text {beam }}, p_{B_{s}}=\sqrt{E_{B_{s}}^{2}-M_{B_{s}}^{2}}$
-> Reconstruct candidates with

$$
\Delta E \equiv E_{\text {cand }}-E_{\text {beam }} \quad M_{\mathrm{bc}} \equiv \sqrt{E_{\text {beam }}^{2}-p_{c a n d}^{2}}
$$

$B_{s}^{*} \bar{B}_{s}, B_{s}^{*} \bar{B}_{s}^{*}$
$B_{s}$ energy is lower by $E_{\gamma} / 2(\sim 25, \sim 50) \mathrm{MeV}$
$\rightarrow \Delta E$ lower, $M_{b c}$ higher
Resolution does not change much




Combine 6 modes

| $\mathrm{B}_{S}{ }^{*} \mathrm{~B}_{S}{ }^{*}$ signal region |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Decay mode | $D_{s}^{-} \rightarrow \phi \pi^{-}$ | $K^{* 0} K^{-}$ | $K_{S}^{0} K^{-}$ | Sum |
| $B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}$ | 4 | 2 | 3 | 9 |
| $B_{s}^{0} \rightarrow D_{s}^{*-} \pi^{+}$ | 2 | 1 | 1 | 4 |
| $B_{s}^{0} \rightarrow D_{s}^{-} \rho^{+}$ | 2 | 1 | 0 | 3 |
| $B_{s}^{0} \rightarrow D_{s}^{*-} \rho^{+}$ | 2 | 2 | 0 | 4 |
| $B_{s}^{0} \rightarrow J / \psi \phi$ |  |  |  | 2 |
| $B_{s}^{0} \rightarrow J / \psi \eta$ |  |  |  | 1 |

Fit $\Delta E$ in $M_{b c}$ signal bands



Reconstructing $\mathrm{B}_{\mathrm{s}}$ candidates:


$$
\begin{aligned}
\Delta E & \equiv E_{\text {cand }}-E_{\text {beam }} \\
M_{\mathrm{bc}} & \equiv \sqrt{E_{\text {beam }}^{2}-p_{\text {cand }}^{2}}
\end{aligned}
$$

$$
\text { in } \mathrm{B}_{s}{ }^{*} \mathrm{~B}_{s}{ }^{*} \text { event, }\left\langle\mathrm{p}_{\mathrm{Bs}^{\prime}}\right\rangle=\mathrm{p}_{\mathrm{B}^{*}}
$$

$$
\Rightarrow M_{B_{s}^{*}}=\left\langle M_{\mathrm{bc}}\right\rangle
$$

$$
=(5411.7 \pm 1.6 \pm 0.6) \mathrm{Mev} / \mathrm{c}^{2}
$$

$$
\text { in } B_{s}{ }_{s} B_{s}{ }^{*} \text { event, }\left\langle E_{B s}\right\rangle=E_{\text {beam }}-\langle\Delta E\rangle
$$

$$
\Rightarrow M_{B_{s}}
$$

$$
=\left\langle\sqrt{\left(E_{\text {beam }}-\langle\Delta E\rangle\right)^{2}-p_{c a n d}^{2}}\right\rangle
$$

$$
=(5370 \pm 1 \pm 3) \mathrm{Mev} / \mathrm{c}^{2}
$$

$D_{s}{ }^{(*)+} D_{s}{ }_{s}^{(*)}$-: $\quad$ CKM favored, first sensitivity to

$$
\frac{\Delta \Gamma_{C P}}{\Gamma} \approx 2 \mathcal{B}\left(B_{s} \rightarrow D_{s}^{(*)+} D_{s}^{(*)-}\right) \approx 0.1-0.2
$$



Analyze 3 modes together; little background -> 2006 data: $\pm 30 \%$ (stat), (small sys. err.)

CDF 2007:
$\mathcal{B}\left(B_{s} \rightarrow D_{s}^{+} D_{s}^{-}\right)=(1.09 \pm 0.27 \pm 0.47) \%$
$\Delta E \quad(\mathrm{GeV})$ $\mathcal{B}$ (th.) \# cands UL (90\% CL) Est\#/20 $\mathrm{fb}^{-1}$

| $D_{s}^{+} D_{s}^{-}$ | $8.0 \times 10^{-3}$ | 0 | $6.7 \times 10^{-2}$ | 4 |
| :--- | :--- | :--- | :--- | :--- |
| $D_{s}^{*+} D_{s}^{-}$ | $2.0 \times 10^{-2}$ | 1 | $12.1 \times 10^{-2}$ | 4 |
| $D_{s}^{*+} D_{s}^{*-}$ | $1.9 \times 10^{-2}$ | 0 | $25.7 \times 10^{-2}$ | 3 |

$\gamma \gamma: \quad \mathcal{B}_{S M} \sim(0.4-1.0) \times 10^{-6}$

beyond SM: up to $5 \times 10^{-6}$
$\mathcal{B}<0.53 \times 10^{-4}(90 \% C L)$
[previous limit: $1.48 \times 10^{-4}$ ]
2006 data will probe $\sim 5 \times 10^{-6}$


## Belle 1999-

- $\mathrm{Y}(4 \mathrm{~S}): 7 \times 10^{8} \mathrm{~B} \overline{\mathrm{~B}}$

CP asymmetries, other B decay studies
-> overconstraining Unitarity Triangle charm, tau, 2-photon, ...

- $\curlyvee(5 S): 1 \times 10^{5} B_{s} \bar{B}_{s}$ results, $1 \times 10^{6}$ in process
inclusive $D_{s}$ rate $\rightarrow$ fraction of $B_{s}$
reconstruction of $B_{s}$ decays ->
dominance of $B_{s}{ }^{*} B_{s}{ }^{*}$
masses $B_{s}{ }^{*}, B_{s}$
hints of $D_{s}{ }^{\left({ }^{*}\right)}$, best limit on YY
clean data, high-luminosity machine ->
Belle will contribute to $B_{s}$

