Iowa State University, April 25, 2007

Belle and the Beast: Strange Beauty at the $\Upsilon(5S)$ Resonance

 B-factory and Y(4S) Resonance
 Y(5S) Resonance and B_s motivation Belle data prospects

Kay Kinoshita University of Cincinnati Belle Collaboration

Primary goal: study CP violation in weak decays of B meson

B factory:

the hardware

... the people

Aomori U. BINP Chiba U. Chonnam Nat'l U. U. of Cincinnati Ewha Womans U. Frankfurt U. Gyeongsang Nat'l U. U. of Hawaii Hiroshima Tech. IHEP, Beijing IHEP, Moscow

IHEP, Vienna ITEP Kanagawa U. KEK Korea U. Krakow Inst. of Nucl. Phys. Kyoto U. Kyungpook Nat'l U. EPF Lausanne Jozef Stefan Inst. / U. Ljubljana / U. of Maribor U. of Melbourne Nagoya U. Nara Women's U. National Central U National Taiwan U. National United U. Nihon Dental College Niigata U. Osaka U. Osaka City U. Panjab U. Peking U. U. of Pittsburgh Princeton U. Riken Saga U. USTC

Seoul National U. Shinshu U. Sungkyunkwan U U. of Sydney Tata Institute Toho U. Tohoku U. Tohuku Gakuin U. U. of Tokyo Tokyo Inst. of Tech. Tokyo Metropolitan U. Tokyo U. of Agri. and Tech. Toyama Nat'l College U. of Tsukuba VPI Yonsei U.

~13 countries, 55 institutes, ~400 collaborators

(authors vary, each paper)

CP Violation & weak force

Weak force: under symmetry operations

Why is CP violation of interest?

• matter-antimatter asymmetry requires CP-violating interactions (Sakharov 1967)

Standard Model = 12 fermion <u>flavors</u> (+antifermion)

- 3 generations(distinguished only by mass)x2 typesx2 ea(strong & EM couplings) (stable, but for weak interaction)
- leptons: ~universal coupling, no generation x-ing

- quarks: neutral current ~universal, no generation x-ing
- quarks: charged current all different, approx. generation-conserving

GIM (Glashow-Iliopoulos-Maiani) mechanism Explains

- suppression of flavor-changing neutral currents
- multiplicity of charged current couplings
- AND

... for >2 generations, e.g. 3, $\{9\Re + 91\}$ dof constrained by unitarity:

Unitarity conditions $V_{ji}^*V_{jk}=\delta_{ik} \rightarrow 3$ real + 1 imaginary free parameters

explicit parametrization(Wolfenstein):

$$1 - \lambda^2/2$$
 λ $\lambda^3 A(\rho - i\eta)$
 $-\lambda$ $1 - \lambda^2/2$ $\lambda^2 A$
 $\lambda^3 A(1 - \rho - i\eta) - \lambda^2 A$ 1
 $\lambda^3 A(1 - \rho - i\eta) - \lambda^2 A$ 1
(Kobayashi-Maskawa 1973)

First 3rd-generation particle (τ) observed 1975

Unitarity

Complex coupling constant is CP-violating

$$CP\{\underbrace{f \ g \ f'}\} = \overline{f'} \underbrace{g \ \overline{f}} \neq \overline{f'} \underbrace{g^{\star} \ \overline{f}} = \{\underbrace{f \ g \ f'}\}^{\mathsf{T}}$$

BUT to <u>observe</u> CP asym, need 2+ interfering amplitudes {T,P}: T=gA,P=g'A' -> |gA+g'A'| <u>CP</u>|gA*+g'A'*|

Equal only if <u>relative phase</u> of g,g'=0

AND for irreducibly complex weak coupling in CKM, need process w. all 3 generations

CP asymmetry in B decay: example

 $B \rightarrow J/\psi K_s(Sanda/Bigi/Carter)$

B-

identical hadronic processes

Bottom line: CP-dependent oscillation in time from x-term(s) - no theoretical uncertainty: $arg(V_{td}^2) = 2\phi_1 - \beta$

$$\frac{dN}{dt}(B \to f_{CP}) = \frac{1}{2}\Gamma e^{-\Gamma\Delta t}(1 + \eta_b \eta_{CP} \sin 2\phi_1 \sin(\Delta m \Delta t));$$

$$\eta_b = \begin{pmatrix} +1 \text{ if } B_{t=0} = B^0\\ -1 \text{ if } B_{t=0} = \bar{B}^0 \end{pmatrix} \quad \eta_{CP} = \begin{pmatrix} -1 \text{ if } CP \text{ odd}\\ +1 \text{ if } CP \text{ even} \end{pmatrix}$$

B factory: $e^+e^- ightarrow \Upsilon(4S) ightarrow Bar{B}$

 $\frac{1}{2}\Gamma e^{-\Gamma\Delta t}(1+\eta_b\eta_{CP}\sin 2\phi_1\sin(\Delta m\Delta t))$

12

Δt by asymmetric energy e⁺e⁻ ->Y(4S) (symmetric Y(4S): CLEO 1979-2001)

CP asymmetry

208±5 papers published or in press (#1 in 3/2001)

(CP asymmetry in B decay, other B decay, charm, tau, 2-photon)

Recent highlights

- evidence for D⁰ mixing
- quantum entanglement (EPR)
- new charmonium-like states Y(3940), X(3872)

occasional overlap of topics,

e.g., discovery of new charmonium(-like) states in B decay.

Looking to the future: $\Upsilon(5S)$ Resonance

Can we (competitively) study B_s at the Y(5S)? (FNAL, LHC)

Maybe...

- exclusive B pair events (quantum coherence), high trigger eff, clean γ 's
- B-factory: high luminosity, established detector

Y(5S) physics

B_s studies

Low CP-asymmetry in SM

-> sensitivity to New Physics

- "SM CP violation is insufficient to explain baryon asymmetry" Mod. Phys. Lett A9, 75 (1994); PRD 51, 379 (1995); Nucl.Phys. B287, 757 (1987)
- $\Delta\Gamma/\Gamma_{CP}/\Gamma=O(10\%)$ in SM
 - -> differences in CP, flavor eigenstates
- Similarity/difference w (non-strange) B
 - -> quark-hadron duality,
 - fine-tune hadronic models
- Y(5S) spectroscopy:
 - $B_{(s)}$ event fractions (needed to evaluate prospects for B_s) $B_s^{(*)}$ mass

B_s decays: outline

17

Similarity w $B_{u,d}$

- dominated by spectator process
 - similar semileptonic widths
 - $D \rightarrow D_s$ for many modes

difference

- CKM-favored AND flavor-neutral CP=+1 in heavy quark limit, m_c -> ∞
 - ~ saturated by 2-body $D_s^{(*)+}D_s^{(*)-}$ -> difference in widths of CP=±1

$$rac{\Delta\Gamma_{CP}}{\Gamma}pproxrac{2\Gamma(B_s
ightarrow D_s^{(*)+}D_s^{(*)-})}{\Gamma}pprox 0.1-0.2$$

Aleksan, Dunietz, Kayser Z. Phys., C54, 653 (1992)

data

June 2005: 3-day "engineering" run

- \cdot to study Y(5S) properties, B_s prospects
- test KEKB $L_{max} \sim 1.39 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- energy scan, 5 points, 30 pb⁻¹ each
- 1.86 fb⁻¹ at peak
- 4 x largest previous sample (CLEO)

A. Drutskoy et al., PRL 98, 052001 (2007) A. Drutskoy et al., hep-ex/0610003 submitted to PRD

June 2006: 20-day run

- 21.7 fb⁻¹ on resonance
- data analysis starting

Event count in 1.86 fb⁻¹

Event shape parameter (Fox-Wolfram moments) $R_{2} = \frac{\sum_{i,j} |p_{i}||p_{j}|P_{2}(\cos \theta)}{\sum_{i,j} |p_{i}||p_{j}|P_{0}(\cos \theta)}$ $2\text{-jet } e^{+}e^{-} \rightarrow q\bar{q} R_{2}\text{->1}$ $e^{+}e^{-} \rightarrow B\bar{B} R_{2}\text{->0}$

B_s fraction in Y(5S) events

0.2

 $x = p_{D_s} / \sqrt{E_{beam}^2 - M_{D_s}^2} \mathbf{X}(\mathbf{D}_s)$

0.4

0.8

0.6

Readily reconstructed CKM-favored modes

 $D_s^-\pi^+,\ D_s^-\rho^+,\ D_s^{*-}\pi^+,\ D_s^{*-}\rho^+,\ J/\psi\phi,\ J/\psi\eta$

Full reconstruction of B_s :

$$\begin{array}{ll} D_s^{*-} \rightarrow D_s^- \gamma & D_s^- \rightarrow \phi \pi^-, \ K^{*0} K^-, \ K_S^0 K^- \\ \phi \rightarrow K^+ K^-, \ K^{*0} \rightarrow K^+ K^-, \ K_S^0 \rightarrow \pi^+ \pi^- \\ J/\psi \rightarrow \mu^+ \mu^-, \ e^+ e^- \\ \rho^+ \rightarrow \pi^+ \pi^0, \ \pi^0 \rightarrow \gamma \gamma, \ \eta \rightarrow \gamma \gamma \end{array}$$

Not reconstructed: $B_s^*
ightarrow B_s \gamma$

->
$$B_s$$
 candidate E_{cand} , p_{cand} in cms of e^+e^-

$B_s\bar{B}_s:B_s^*\bar{B}_s/B_s\bar{B}_s^*:B_s^*\bar{B}_s^*$

Candidate reconstruction: energy, momentum of B_s at Y(5S) $B_s \overline{B}_s$

$$E_{B_s} = E_{beam}, \; p_{B_s} = \sqrt{E_{B_s}^2 - M_{B_s}^2}$$

-> Reconstruct candidates with $\Delta E \equiv E_{cand} - E_{beam}$ $M_{
m bc} \equiv \sqrt{E_{beam}^2 - p_{cand}^2}$

 $B_s^* \overline{B}_s, \ B_s^* \overline{B}_s^*$ B_s energy is lower by $E_{\gamma}/2$ (~25, ~50) MeV $\rightarrow \Delta E$ lower, M_{bc} higher Resolution does not change much

B_s candidates in 1.86 fb⁻¹

Combine 6 modes

B_s*B_s* signal region

Decay mode $D_s^- \rightarrow$	$\phi \pi^-$	$K^{*0}K^{-}$	$K^0_S K^-$	Sum
$B_s^0 \rightarrow D_s^- \pi^+$	4	2	3	9
$B_s^0 \rightarrow D_s^{*-} \pi^+$	2	1	1	4
$B_s^0 \rightarrow D_s^- \rho^+$	2	1	0	3
$B_s^0 \rightarrow D_s^{*-} \rho^+$	2	2	0	4
$B_s^0 \rightarrow J/\psi \phi$				2
$B_s^0 \rightarrow J/\psi \eta$				1

Fit ΔE in M_{bc} signal bands

$B_s^{(*)}$ mass

Reconstructing B_s candidates:

$$\Delta E \equiv E_{cand} - E_{beam}$$
 $M_{
m bc} \equiv \sqrt{E_{beam}^2 - p_{cand}^2}$

in $B_s^*B_s^*$ event, $\langle p_{Bs} \rangle = p_{B^*}$ $\Rightarrow M_{B_s^*} = \langle M_{bc} \rangle$

in
$$B_s^*B_s^*$$
 event, $\langle E_{Bs} \rangle = E_{beam} - \langle \Delta E \rangle$
 $\Rightarrow M_{B_s}$
 $= \left\langle \sqrt{(E_{beam} - \langle \Delta E \rangle)^2 - p_{cand}^2} \right\rangle$

Reconstructing B_s candidates:

 $\Delta E \equiv E_{cand} - E_{beam}$ $M_{
m bc} \equiv \sqrt{E_{beam}^2 - p_{cand}^2}$

in $B_s^*B_s^*$ event, $\langle p_{Bs} \rangle = p_{B^*}$ $\Rightarrow M_{B_s^*} = \langle M_{bc} \rangle$ =(5411.7±1.6±0.6) Mev/c²

in
$$B_s^* B_s^*$$
 event, $\langle E_{Bs} \rangle = E_{beam} - \langle \Delta E \rangle$
 $\Rightarrow M_{B_s}$
 $= \left\langle \sqrt{(E_{beam} - \langle \Delta E \rangle)^2 - p_{cand}^2} \right\rangle$
=(5370+1+3) Mev/c²

Searches for new modes

Searches for new modes

beyond SM: up to 5×10^{-6}

 $\sum_{i=1}^{3} 5.4$ $\sum_{i=1}^{3} 5.4$ $\sum_{i=1}^{3} 5.3$ $\sum_{i=1}^{3} \frac{1.86 \text{ fb}^{-1}}{1.86 \text{ fb}^{-1}}$ $\sum_{i=1}^{3} \frac{1.86 \text{ fb}^{-1}}{1.86 \text{ fb}^{-1}}$

5.5

 $\mathcal{B} < 0.53 \times 10^{-4} \ (90\% \ CL)$

[previous limit: 1.48×10^{-4}]

2006 data will probe ~ 5 x 10⁻⁶

Summary

Belle 1999-

Υ(45): 7 × 10⁸ BB
 CP asymmetries, other B decay studies

 -> overconstraining Unitarity Triangle charm, tau, 2-photon, ...
 Υ(55): 1 × 10⁵ B_sB_s results, 1 × 10⁶ in process inclusive D_s rate -> fraction of B_s reconstruction of B_s decays -> dominance of B_s*B_s* masses B_s*, B_s hints of D_s^(*), best limit on γγ clean data, high-luminosity machine -> Belle will contribute to B_s