

measurement of $|V_{cb}|$ via semileptonic B decay

• $|V_{cb}| \sim$ "side" of the Unitarity Triangle; tests Standard Model by alternative route to (ρ, η)

- measurement precision limited by understanding of hadronic components
- inclusive semileptonic B decay:
 - Theoretically attractive: minimal hadronics, small uncertainty
 - Experimentally: high rate -> amenable to detailed dissection

APS-DPF 2006 + JPS 2006

Theory of inclusive semileptonic B decay

- Well understood at tree level
- Treatment in 2 regimes:
 "short distance": perturbative approach
 "long distance" nonperturbative

- Degrees of freedom: hadronic recoil (X) 4-vector/polarization -> M_x, momentum
- well-separated "small" corrections, described by Heavy Quark Expansion (HQE):

$$\begin{split} \Gamma_{sl}(B \to X_c \ell \nu) &= \frac{G_F^2 m_b^5}{192 \pi^3} |V_{cb}|^2 |(1 + A_{ew}) A_{nonpert} A_{pert}| \\ & \inf 1/m_b & \inf \alpha_s \\ & \inf 0(1/m_b^3) & \text{to } O(\alpha_s^2) \end{split}$$

Nonperturbative parameters of HQE

- $A_{nonpert}$ expressed in terms of OPE, to $1/m_b^3$
- Coefficients at each order depend on definition of m_b : several schemes; we use
 - Kinetic running mass (P. Gambino, N. Uraltsev, Eur. Phys. J C34, 181 (2004)) parameters: (7 dof) $m_b, m_c, \mu_{\pi}^2, \mu_G^2, \tilde{\rho}_D^3, \rho_{LS}^3, |V_{cb}|$
 - 15 mass

(C. Bauer, Z. Ligeti, M. Luke, A. Manohar, M. Trott, PRD70, 094017) parameters: (7 dof) $\Lambda(m_b), \lambda_1, \rho_1, \mathcal{T}_{1-3}, |V_{cb}|$

Strategy

APS-DPF 2006 + JPS 2006

K. Kinoshita

Event/flavor/momentum tag: full B reconstruction

- Fully reconstruct one B ("tag")
 - High purity of correct tags
 - identify flavor of tag -> opp to other B
 - Reconstruct momentum -> know CMS of recoil
 - Low efficiency, but plenty of data at Belle!

- "signal" B = remainder of event
 - E_1 in rest frame of signal B
 - E₁ moments: electrons,
 p*^B>0.4 GeV/c
 - M_X: electrons+muons, all remaining particles (X), missing 4-momentum consistent with neutrino (m_{miss}²<3 GeV²/c⁴)

Observed electron energy spectrum

- B⁺, B⁰ analyzed separately, tag in modes $D^{(*)}{\pi/\rho/a_1}$
 - N_{tag} B⁺: 63,185±621, B⁰: 39,504±392
- recover photons from FSR/bremsstrahlung (E<1 GeV, angle w. e < 0.05)
 B±: require e charge consistent with flavor

Back to the source

- Derive "root" spectrum, to compare with theory:
 - Subtract backgrounds including b->u
 - Unfold detector resolution/effects
 - Correct for final state radiation (PHOTOS)
- Combine B[±], B⁰

Moments of electron spectrum

 Moments (0-4) for many cuts:
 E₁>0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 GeV

Hadronic mass spectrum M_X

distribution for several different E₁ cuts entries / 0.333 GeV²/c⁴ entries / 0.333 GeV²/c $E_1^* > 1.1 \text{ GeV}$ $E_1^* > 0.7 \text{ GeV}$ data $B \to X_{\rm o} l \nu$ $B \rightarrow X \hat{J} v$ fake/secondary combinatorial $E_1^* > 1.5 \text{ GeV}$ $E_1^* > 1.9 \text{ GeV}$ $M_X^2 (GeV^2/c^4)$ M_X^2 (GeV²/c⁴)

•

Hadronic mass spectrum

 $4.403 \pm 0.036 \pm 0.052$ $1.494 \pm 0.173 \pm 0.327$ $20.88 \pm 0.48 \pm 0.77$ $0.515 \pm 0.061 \pm 0.064$ $4.144 \pm 0.028 \pm 0.022$ $17.69 \pm 0.28 \pm 0.23$

Global fits

- Use lepton, M_X^2 moments, + moments of photon from B->X_s γ
- χ^2 minimization, including correlations (remove points: highly correlated or w no theoretical prediction as yet)

	1S scheme	kinetic scheme
	$n=0E_{\rm min}=0.6,1.0,1.4$	$n=0E_{ m min}=0.4,0.8$
Lepton moments $\langle E_{\ell}^n \rangle_{E_{\min}}$	$n = 1 E_{\min} = 0.6, 0.8, 1.0, 1.2, 1.4$	$n=1\ E_{\min}=0.4,\ 0.8,\ 1.0,\ 1.2\ 1.4$
	$n=2~E_{ m min}=0.6,1.0,1.4$	$n=2~E_{\min}=0.4,~0.8,~1.0,~1.2~1.4$
	$n=3\;E_{\min}=0.8,1.2$	$n=3\;E_{\min}=0.4,0.8,1.0,1.2\;1.4$
Hadron moments $\langle M_X^{2n}\rangle_{E_{\min}}$	$n=1\ E_{\rm min}=0.7,1.1,1.3,1.5$	$n=1\ E_{\rm min}=0.7,\ 0.9,\ 1.1,\ 1.3$
	$n=2E_{ m min}=0.7,0.9,1.3$	$n=2E_{ m min}=0.7,0.9,1.1,1.3$
Photon moments $\langle E_{\gamma}^n\rangle_{E_{\min}}$	$n=1\;E_{\min}=1.8,2.0$	$n=1\ E_{\rm min}=1.8,1.9,2.0$
	$n=2\;E_{ m min}=1.8,2.0$	$n=2\ E_{\rm min}=1.8,1.9,2.0$

Global fit - kinetic scheme

 χ^2 /dof =17.8/24

Global fit - kinetic scheme

15

Correlations illustrate power of combining different moments

Fit to all published values (Buchmuller, Flacher PRD73:073008 (2006))

parameter	Belle (preliminary)	Buchmüller & Flächer
$m_b \; ({\rm GeV}/c^2)$	4.564 ± 0.076	$4.590 \pm 0.025 \pm 0.030$
$m_c \; ({\rm GeV}/c^2)$	1.105 ± 0.116	$1.142 \pm 0.037 \pm 0.045$
$\mu_{\pi}^2 ~({ m GeV^2})$	0.557 ± 0.091	$0.401 \pm 0.019 \pm 0.035$
$\mu_G^2 \; (\text{GeV}^2)$	0.358 ± 0.060	$0.297 \pm 0.024 \pm 0.046$
$\tilde{ ho}_D^{3}$ (GeV ³)	0.162 ± 0.053	$0.174 \pm 0.009 \pm 0.022$
$ ho_{LS}^{\overline{2}}$ (GeV ³)	-0.174 ± 0.098	$-0.183 \pm 0.054 \pm 0.071$
$\mathcal{B}(B \to X_c \ell \nu) \ (\%)$	10.59 ± 0.16	$10.71 \pm 0.10 \pm 0.08$
$ V_{cb} \times 10^3$	$41.93 \pm 0.65 \pm 0.48 \pm 0.63$	$41.96 \pm 0.23 \pm 0.35 \pm 0.59$
	$lpha_s$ Γ_{SL}	, HQE Γ_{SL}

Global fit - 15 scheme

Belle

1

Belle preliminary

1.2

1

preliminary

(Bauer et al., PRD70, 094017(2004)): $|V_{cb}| = (41.5 \pm 0.4_{fit} \pm 0.1_{\tau}) \times 10^{-3}$

2006 APS-DPF 2006 + JPS 500 0.1k 0.16 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.16 0.14 0.16 0.14 0.16 0.08 0

201 0.12 → 0.11 → 0.11 0.11 0.11

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.06

0.04

0.02

0.4

BR

0.4 0.6 0.8

0.6 0.8

Summary

- $|V_{cb}|$: currently, best precision via inclusive semileptonic B decays
 - Full reconstruction tag allows study w very low bg, in cms of B
 - HQE parametrizes nonperturbative effects to $O(1/m_b^3)$ via shape of E_1 , M_X distributions
 - Mature experiment; well understood bg subtraction, unfolding
 - Shapes represented by moments w varying E₁ cuts
 - global fit of parametrized HQE to measured moments
 - good consistency between 2 schemes
 - Constrain HQE parameters
 - -> lower theory uncertainty on $|V_{ub}|$ as well as $|V_{cb}|$
 - Belle: |V_{cb}|=(41.93±0.65±0.48±0.63)×10⁻³ (kinetic scheme)
 - <2% uncertainty, agrees w fit to published results</p>
- References
 - Electron moments hep-ex/0610012
 - M_X² moments Belle-CONF-0668 (available soon at <u>http://belle.kek.jp/conferences/ICHEP2006/</u>)
 - B-> sy moments hep-ex/0508005
 - Global fits Belle-CONF-0669