XXV Physics in Collision, Prague, July 2005

Sides of "The" Unitarity Triangle: Results from Belle and Babar

- B factories & experiments
- Update on measurements
 |V_{td}|
 |V_{cb}|
 |V_{ub}|
- Conclusion & Summary

Kay Kinoshita University of Cincinnati Belle Collaboration

Introduction

Cabibbo-Kobayashi-Maskawa (CKM) matrix

Unitarity conditions $V_{ii}^*V_{ik}=\delta_{ik}$ -> 4 free parameters explicit parametrization(Wolfenstein): $\begin{pmatrix} 1 - \lambda^{2}/2 & \lambda & \lambda^{3}A(\rho - i\eta) \\ -\lambda & 1 - \lambda^{2}/2 & \lambda^{2}A \\ \lambda^{3}A(1 - \rho - i\eta) & -\lambda^{2}A & 1 \end{pmatrix}$ irreducibly -> CP violation **PIC 05**

Objective of B-factories: test self-consistency of CKM

- Any 3 of {3 angles, 3 sides} fully constrains triangle
- Relevant magnitudes: $|V_{ub}|$, $|V_{cb}|$, $|V_{td}|$

B production: $e^+e^- \to \Upsilon(4S) \to B\bar{B}$

KEKB & Belle

K. Kinoshita

~13 nations, 57 institutes, ~400 persons

PEP-II & Babar

Charged tracking/vertexing

- 5-layer DSSD Si µstrip
- 40 layers (He-isobutane)
- Hadron identification
- tracker: dE/dx
- DIRC imaging Cerenkov Electron/photon
- CsI calorimeter

Muon/K

- Instrumented flux return
- ~11 nations, 80 institutes, ~650 persons

- $L_{\rm max} = 9.2 \times 10^{33} \, {\rm cm}^{-2} {\rm s}^{-1}$
- · Data (1999-4/2005)
- ∫Ldt = 262 fb⁻¹@{Y(4S)+off(~10%)}
- (>2.6x10⁸ B events)

Approach to measuring $|V_{ii}|$

Decay rates: $\Gamma \propto \Sigma$ select mode(s):

single dominant mechanism

- single unknown |V_{ii}|
- minimal hadronic uncertainty Experiment

unavoidable, limiting factor

continuing improvements

Statistics -> rare decays, restricted kinematic regions, detailed examination.

Theory

HQET, SCET, lattice, ...

ratios - compare decays, "same" proc.

PIC 05

$$\frac{\Gamma(b \to d\gamma)}{\Gamma(b \to s\gamma)} \propto \left|\frac{V_{td}}{V_{ts}}\right|^2$$

Ratio -> reduced theory error ~10%

- inclusive measurement preferred by theory large (~30X) bg from b->sγ, similar kinematics
- exclusive B-> {ρ/ω}γ experimentally feasible full reconstruction of decay exploit
 - exclusive pair production of B • narrow resolution of collision energy $\Delta E = E^*_{cand} - E^*_{beam} = 0 (E^*_{beam} = s^{1/2}/2)$ $\sigma \sim 10-50 \text{ MeV}, \text{ depends on mode}$ $M_{bc} (Beam-constrained mass)$ $M_{bc} = (E^*_{beam}^2 - p^*_{cand}^2)^{1/2}$

Semileptonic b->c decays (no new results since Winter)

Exclusive modes (form factors)

Semileptonic b->c decays

hep-ex/0404017

Inclusive - opposite fully reconstructed B

- moments of E_1 , M_X distributions
 - fit for params in "kinetic mass" scheme
 - $\rightarrow |V_{cb}| = (41.4 \pm 0.4 \pm 0.4 \pm 0.6) \times 10^{-3}$

```
(Gambino&Uraltsev
hep-ph/0401063)
```

hep-ex/0408139 preliminary

- moments of E_1 , M_X distributions (140 fb⁻¹)
- update in progress

Bauer et al, PRD70, 094017(2004) (hep-ph/0408002)

Global fit analysis: moments in the "<u>15" scheme</u> PRL 82, 277 (1999); PRD 59, 074017 (1999); Using data from BaBar, Belle, CDF, CLEO & Delphi PRD 60, 114027 (1999)

 $|V_{cb}| = (41.4 \pm 0.6 \pm 0.1(\tau_B)) \times 10^{-3}$

Inclusive semileptonic b->u decays

Experimental methods

- inclusive lepton spectrum -> "endpoint"
- lepton + semi-inclusive hadronic
- lepton + "neutrino"
- w/wo (full reconstruction) tagging

Issues

- huge bg from b->c
- $\boldsymbol{\cdot}$ uncertainties on X_u, X_c
- Relevant kinematic variables
 Theory: 4-mom., polarization of W
 uncertainties vary w. region
 {OPE, HQET, SF, ...}
 Expt: lepton mom., missing E&p, M_X
 (not 1-to-1)

Recent improvements

- "shape function" relate X:
 b->ulv, b->sy, b->clv
- Variables balance theoretical & exp'tal relevance: q², M_X, P₊=E_X-|P_X|
- direct |V_{ub}| from partial rate Lange,Neubert,Paz, hep-ph/0504071

HQET parameters for V_{ub} : spectrum of b->sy

HQET parameters from fit to E_{γ} spectrum from b->sy ~~~ b q 7000 0.4 χ^2 /ndf=4.320/9 Shape=exp 6000 m_b=4.52 $\mu_{\pi}^{2} = 0.27$ 5000 2000 hotons/(100Me/) 3000 2000 1000 0.3 μ_{π^2} a=0.146 _b=-3.2572 0.2 c=0.094594 1000 d=-20.41 0 e=0.60793 -1000 0.1 2.2 2.4 2.6 2.8 1.8 2 3 1.64.5 4.45 E_v (GeV) m_b

shape: Lange, Paz & Neubert hep-ph/0504071 (LNP)

Belle fit (hep-ex/0506057) $m_{\rm b}(SF)=4.52~GeV/c^2;$ μ_{π}^{2} (SF)=0.27 GeV²/c²

 $\Delta \chi^2 = 1.0$

Shape=exp

17

HQET parameters for V_{ub}: HFAG

Fit for moments to data: b->sy and b->clnu Kinetic Scheme (Gambino&Uraltsev hep-ph/0401063)

Translated to Shape Function Scheme (Neubert Phys.Lett.B612:13-20,2005): $m_b(SF)=(4.60+-0.04)GeV/c^2;$ $M_{\pi}^2(SF)=(0.20+-0.04)GeV^2/c^2$

http://www.slac.stanford.edu/xorg/hfag/semi/lp05/globalFit.html

Lepton momentum endpoint

- $|V_{ub}|$: theory uncertainties
- exclusive modes
- inclusive: shape function
- cuts maximize q² acceptance
- endpt region 1.9-2.6 GeV/c
 to minimize err (expt+th)
- shape function: fit to b->s
- $\Delta B \rightarrow |V_{ub}|$ via LNP

- endpt region 2.0-2.6 GeV/c
- shape function: b->s from CLEO (also w Belle fit)
- ΔB -> $|V_{ub}|$ via

Uraltsev Int. J. Mod. Phys. A14, 4641 (1999); Hoang, Ligeti, Manhar PRD 59, 074017 (1999)

Momentum (GeV/c)

Exploring M_X, q^2, P_+

Full reconstruction tag + lepton + M_{\star}

- high signal purity -> higher p₁ acceptance
- explore phase space -> reduce sys errors
- cuts to reduce theory uncertainty

(q²>8.0 Gev²/c², M_x<1.7 GeV/c²; Bauer, Ligeti & Luke, Phys.Rev.D64:113004 (2001)

• direct $\Delta B \rightarrow |V_{ub}|$ (LNP)

Exploring M_X, q², P₊

$$P_{+}=E_{X}-P_{X}$$

 $P_{-}=E_{X}+P_{X}$

Exploring M_X, q^2, P_+

hep-ex/0506036

el

endpoint $e^{\pm} + v$ reconstruction

• ∆B for cuts in rest frame of B E_e>2.0 GeV

 s_h^{max} < 3.5 GeV² ({max hadronic

recoil mass}²)

• direct $\Delta B \rightarrow |V_{ub}|$ via LNP

Summary of $|V_{ub}|$ measurements

 $(|V_{ub}| \text{ as reported}; \text{ errors}: \pm(\text{experimental }) \pm(\text{theory})$ Belle reference $\Delta B \times 10^4$ $|V_{ub}| \times 10^{3}$ Endpoint (29M BB) hep-ex/0504046 $8.47 \pm 0.37 \pm 1.53$ $5.08 \pm 0.47 \pm 0.49$ $1.9 < p_{\ell} < 2.6 \text{ GeV/c}$ Full reconstruction tag $(p_{\ell}^* > 1 \text{ GeV}/c)$ hep-ex/0505088 $M_X < 1.7 \text{ GeV}/c^2, q^2 > 8 \text{ GeV}^2/c^2$ $8.41 \pm 1.14 \pm 0.69$ $4.93 \pm 0.33 \pm 0.57$ $M_X < 1.7 \; {\rm GeV}/c^2$ $12.4 \pm 1.5 \pm 0.8$ $4.35 \pm 0.25 \pm 0.46$ $P_{+} < 0.66 \; {\rm GeV}/c$ $11.0 \pm 1.5 \pm 1.2$ $4.56 \pm 0.30 \pm 0.59$ Babar Endpoint (88M BB) hep-ex/0408075 $2.0 < p_{\ell}^* < 2.6 \text{ GeV/c}$ $4.80 \pm 0.29 \pm 0.53$ $3.94 \pm 0.25 \pm 0.42$ E_e, ν reconstruction (88M BB) hep-ex/0506036 $\tilde{E}_e > 2.0 \text{ GeV}, \, \tilde{s}_h^{max} < 3.5 \text{ GeV}^2$ $3.54 \pm 0.33 \pm 0.34$ $3.95 \pm 0.26^{+0.63}_{-0.49}$ Full reconstruction tag $(p_{\ell}^* > 1 \text{ GeV}/c)$ hep-ex/0507017 $8.7 \pm 1.3 \pm 0.1$ $4.65 \pm 0.34 \pm 0.49$ $M_X < 1.7 \text{ GeV}/c^2, q^2 > 8 \text{ GeV}^2/c^2$ Warning! Can't compare $|V_{ub}|$ directly - different methods & inputs

23

PIC 05

Roundup of $|V_{ub}|$ via inclusive semileptonic: HFAG

Many results, hard to compare

- shape function, HQ parameter fits Belle/Babar/CLEO data parametrizations: SF, kinetic schemes fits included: b->clv and/or b->s
- kinematic cuts vary
- ΔB -> $|V_{ub}|$ new results: dust may not have settled
- need unified presentation -->HFAG http://www.slac.stanford.edu/xorg/hfag
 - * Common theoretical input •HQET parameters from global fit to moments of b->clv and/or b->sy (3 combos)
 - BLNP hep-ph/0504071
 - * Correlated b-XIv modeling errors

Final unification ...

PIC 05

Roundup ... at the moment,

... still under discussion ...

Exclusive semileptonic

LCSR1: Ball&Zwicky, PRD71, 014015 (2005) LCSR2: Ball&Zwicky, PRD71, 014029 (2005) LQCD1:Shigemitsu&al, hep-lat/0408019 LQCD2: Okamoto&al, hep-lat/0409116 ISGWII: Scora&Isgur, PRD52, 2783 (1995)

0 5 40 45 00 05				
a ² (GeV ²)		q^2 Range	$= \Delta \zeta$	$ V_{ub} $
4 (2007)		(GeV^2)	(ps^{-1})	(10^{-3})
	π FF			
(low q² only)	LCSR1	0 - 15	5.1 ± 1.3	$3.27 \pm 0.16 \pm 0.19 \pm 0.10^{+0.53}_{-0.36}$
CD (biab a^2)	LQCD1	15 - 25	$1.5 {\pm} 0.4$	$4.92 \pm 0.25 \pm 0.29 \pm 0.15^{+0.76}_{-0.52}$
(CD (nigh q ²)	LQCD2	15 - 25	$2.0 {\pm} 0.5$	$4.16 \pm 0.22 \pm 0.24 \pm 0.12^{+0.72}_{-0.47}$
	LCSR1	0 - 25	7.7 ± 2.3	$3.40 \pm 0.13 \pm 0.20 \pm 0.10^{+0.67}_{-0.42}$
Y	LQCD1	0 - 25	5.7 ± 1.7	$4.00 \pm 0.14 \pm 0.23 \pm 0.12^{+0.78}_{-0.49}$
45	LQCD2	0 - 25	$6.1{\pm}2.1$	$3.82 \pm 0.14 \pm 0.22 \pm 0.11^{+0.88}_{-0.52}$
	ρ FF			
$ V_{ub} $ (10 ⁻³)	LCSR2	0 - 15	12.7	$2.82 \pm 0.18 \pm 0.30 \pm 0.18$
	ISGW II	0 - 25	14.2	$2.91 \pm 0.12 \pm 0.33 \pm 0.19$
$4.73 \pm 0.85 \pm 0.27^{+0.74}_{-0.50}$	LCSR2	0 - 25	17.2	$2.85 \pm 0.14 \pm 0.32 \pm 0.19$
$3.87 \pm 0.70 \pm 0.22^{+0.85}_{-0.51}$				PIC 05 26

Exclusive semileptonic

Tag by exclusive semileptonic B->D^(*)In; require kinematic consistency

 π^+ lv; hep-ex/0506064 (211 fb⁻¹)

bins of q^2

FF calculation	q^2 range	$\Delta \zeta \ ({\rm ps}^{-1})$	$ V_{ub} $ (10 ⁻³)
Ball-Zwicky [2]	$< 16 {\rm GeV^2}$	5.44 ± 1.43	$3.1 \pm 0.4_{\rm stat.} \pm 0.2_{\rm syst0.3FF}^{+0.5}$
HPQCD [3]	$> 16 { m GeV^2}$	1.29 ± 0.32	$3.3 \pm 1.1_{\rm stat.} \pm 0.5_{\rm syst0.3FF}^{+0.5}$
FNAL [4]	$> 16 {\rm GeV^2}$	1.83 ± 0.50	$2.7 \pm 0.9_{\text{stat.}} \pm 0.4_{\text{syst.}-0.3} \text{FF}$
Ball-Zwicky [2]	full	7.74 ± 2.32	$2.9 \pm 0.4_{\rm stat.} \pm 0.2_{\rm syst0.4FF}^{+0.6}$
HPQCD [3]	full	5.70 ± 1.71	$3.4 \pm 0.4_{\rm stat.} \pm 0.2_{\rm syst0.4FF}^{+0.7}$
FNAL [4]	full	6.24 ± 2.12	$3.3 \pm 0.4_{\rm stat.} \pm 0.2_{\rm syst0.4FF}^{+0.8}$

 π^{0} lv; hep-ex/0506065 (81 fb⁻ⁱ)

Roundup of $|V_{ub}|$ via exclusive semileptonic: HFAG

From avg ΔB (q²> 16 GeV²) LQCD2-> $|V_{ub}| = (3.75 \pm 0.27 \pm 0.64 - 0.42) \times 10^{-3}$ LQCD1 -> $|V_{ub}| = (4.45 \pm 0.32 \pm 0.69 - 0.47) \times 10^{-3}$ 1st err: experimental 2nd err: normalization uncertainty in form factor calculation.

CKM status

Summary

B Factories 1999-2005:

- Total > 7.3 × 10⁸ B pairs
- CKM Unitarity Triangle precision measurement of sides -> overconstraint
- $|\dot{V}_{td}|$ first evidence for b->d -> ±13%
- $|V_{cb}|$ continued progress, p_l/M_X moments -> <±2%!
- |V_{ub}| <u>many</u> semileptonic measurements, progress on theory (inclusive <u>and</u> exclusive modes) higher precision <±10% but accuracy?(under discussion)
 Next
- complete unfinished LPO5 abstracts -> EPS
- continue interaction w theorists
- more data
- -> improving precision on sides as well as angles;
 - CKM challenge is heating up stay tuned!