Pheno 2005 Symposium, May 2, 2005

CKM Reflections: Results from Belle and Babar

- CP asymmetry in CKM
- B factories & experiments
- Measurements of sin $2\phi_1$
- Progress on sin 2φ₂
- Progress on sin $2\phi_3$
- Other CKM
- Summary

Kay Kinoshita University of Cincinnati Belle Collaboration CKM and CP Asymmetry

Complex coupling constant is CP-violating $CP\{ f g f \} = \overline{f'} g \overline{f} \neq \overline{f'} g^* \overline{f}$ (hermitian conjugate)

BUT to <u>observe</u> CP asym, need 2+ interfering amplitudes {T,P}: T=gA,P=g'A' -> |gA+g'A'| <u>cp</u>gA*+g'A'*| Equal only if <u>relative phase</u> of g,g'=0

Cabibbo-Kobayashi-Maskawa (CKM) matrix

Observable CP asymmetries

-> to observe, need process w. all 3 generations (<- B decays), interference between ≥2 processes

e.g., B ->
$$J/\psi$$
 K_s(Sanda/Bigi/Carter)

CP asymmetry from x-term(s) - no theoretical uncertainty: $\propto \arg(V_{td}^2) = 2\phi_1$ Bottom line: CP-dependent oscillation in time:

$$\frac{dN}{dt}(B \to f_{CP}) = \frac{1}{2}\Gamma e^{-\Gamma\Delta t}(1 + \eta_b \eta_{CP} \sin 2\phi_1 \sin(\Delta m \Delta t));$$

$$\eta_b = \begin{pmatrix} +1 \text{ if } B_{t=0} = B^0 \\ -1 \text{ if } B_{t=0} = \bar{B}^0 \end{pmatrix} \quad \eta_{CP} = \begin{pmatrix} -1 \text{ if } CP \text{ odd} \\ +1 \text{ if } CP \text{ even} \end{pmatrix}$$
K. Kinoshita

B production: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$

KEKB & Belle

K. Kinoshita

~13 nations, 57 institutes, ~400 persons

PEP-II & Babar

Charged tracking/vertexing

- 5-layer DSSD Si µstrip
- 40 layers (He-isobutane)
- Hadron identification
- tracker: dE/dx
- DIRC imaging Cerenkov Electron/photon
- CsI calorimeter

Muon/K

- Instrumented flux return
- ~11 nations, 80 institutes, ~650 persons

- $L_{\rm max} = 9.2 \times 10^{33} \, {\rm cm}^{-2} {\rm s}^{-1}$
- · Data (1999-4/2005)
- ∫Ldt = 250 fb⁻¹@{Y(45)+off(~10%)}
- (>2.5x10⁸ B events)

time-dependent CP analysis: overview

time-dependent CP analysis: overview

3) Continuum suppression:event parameters ("shape")

 5) Fit to ∆t distribution: unbinned maximum likelihood

4) Vertex reconstruction

B->{Charmonium}+K^{(*)0} -> $sin2\phi_1$

 $sin2\phi_1$ in time-dependent b->s - or new physics?

modes dominated by $b \rightarrow sqq$ penguins

in the absence of New Physics, $S = sin 2\phi_1$

Reconstruction of b->sqq

Time-dependent CP asymmetry:

Average "sin $2\phi_1$ " from *b->s* penguins

 $sin2\phi_1(b - sqq) =$ $\begin{cases} 0.39 \pm 0.11 (Belle) \\ 0.45 \pm 0.09 (BABAR) \end{cases}$

World Average $sin2\phi_1(b-sq\overline{q})=0.43 \pm 0.07$

(excluding $K_s K_s K_s$, $f_0 K_s$) 0.44 ± 0.08

Compare with ccs: sin2\phi_1(*b*->*c*cs) = 0.726 ± 0.037 CL = 2.1×10⁻⁴ (3.7\sigma)

statistics?

experimental systematics?

- theory corrections?
- new physics?

Average "sin $2\phi_1$ " from *b->s* penguins

15

PHENO 05

- new physics?
- K. Kinoshita

$sin2\phi_2$: B⁰-> $\pi^+\pi^-$

 $sin2\phi_2$: B⁰-> $\pi^+\pi^-$

 $sin2\phi_2$: B⁰-> $\pi^+\pi^-$

sin2φ₂: Β⁰->π⁺π⁻

Validation of results

- lifetime
- sidebands
- \cdot K π lifetime, mixing, CP asymmetry
- many subsamples consistent results
- time-integrated asymmetry
- statistics ensemble simulation study

 $sin2\phi_2$: B⁰-> $\rho^+\rho^-$

hep-ex/0505049 232M B evts

CP depends on polarization Longitudinal: CP = +1 Transverse: CP mixed

CP fit includes helicity:

 $f_L = 0.978 \pm 0.014^{+0.021}_{-0.029}$ $S_L = -0.33 \pm 0.24^{+0.08}_{-0.14}$

 $= -0.03 \pm 0.18 \pm 0.09$

Constraints on ϕ_2

Gronau & Rosner, PRD 65, 093012 (2002) $A(B^0 \to \pi^+ \pi^-) = -(|T|e^{i\delta_T}e^{i\phi_2} + |P|e^{i\delta_P})$ $A(\bar{B}^0 \to \pi^+ \pi^-) = -(|T|e^{i\delta_T}e^{-i\phi_2} + |P|e^{i\delta_P})$ $\delta \equiv \delta_P - \delta_T$ $-2|P/T|\sin(\phi_1+\phi_2)\sin\delta$ $\mathcal{A}_{\pi\pi} = \frac{1}{1 - 2|P/T|\cos(\phi_1 + \phi_2)\cos\delta + |P/T|^2}$ $S_{\pi\pi} = \frac{2|P/T|\sin(\phi_1 - \phi_2)\cos\delta + \sin 2\phi_2 - |P/T|^2\sin 2\phi_1}{2}$ $1 - 2|P/T|\cos(\phi_1 + \phi_2)\cos\delta + |P/T|^2$

Known: $sin2\phi_1 = 0.726 \pm 0.037$ Unknown: $|P/T|, \delta, \phi_2$ New constraints: A, S -> ϕ_2 not fully constrained (CL contours)

PHENO 05

ϕ_2 : isospin relations

Gronau & London, PRL 65, 3381 (1990)

Isospin-related final states, different T, P content :

-> solve & disentangle: $\mathcal{B}(B^0 \to \pi^+ \pi^-)$ $\mathcal{B}(B^0 \to \pi^0 \pi^0)$ $\mathcal{B}(B^+ \to \pi^+ \pi^0)$ + $\pi^+ \pi^-, \pi^0 \pi^0$ CP asymmetries

Also applies to $\rho\rho$

PHENO 05

 $A(B^+ \to D^0 K^+) = r e^{i(\delta - \phi_3)} A(B^+ \to \bar{D}^0 K^+) \quad (r \sim 0.1 - 0.2)$

IF $D^0, \overline{D}^0 \to K_S \pi^+ \pi^-$: $m_+ \equiv m_{K_*\pi^+}$ $m_- \equiv m_{K_*\pi^-}$ $A(\bar{D}^0 \to K_S \pi^+ \pi^-) = f(m_+^2, m_-^2) \to A(D^0 \to K_S \pi^+ \pi^-) = f(m_-^2, m_+^2)$ $M_{+} = A(B^{+} \to \bar{D}^{0}K^{+})[f(m_{+}^{2}, m_{-}^{2}) + re^{i(\delta - \phi_{3})}f(m_{-}^{2}, m_{+}^{2})]$ $M_{-} = A(B^{-} \to D^{0}K^{-})[f(m_{-}^{2}, m_{+}^{2}) + re^{i(\delta + \phi_{3})}f(m_{+}^{2}, m_{-}^{2})]$ $f(m_{\perp}^2,m_{-}^2)$ from continuum D^o PHENO 05

Belle: hep-ex/0411049 253 fb⁻¹ Babar: hep-ex/0504039 227 M B evts m² (GeV²/c⁴) m² (GeV²/c⁴ Dalitz plots -B+->DK (a) B⁻->DK (b) 2.5 unbinned ML fit for ϕ_3 , δ , r **Results** for B->DK 1.5 1.5 B->D*K B->DK* (K*->K_Sπ⁺) 0.5 0.5 0.5 1 1.5 2.5 0.5 1.5 2 2.5 2 3 1 X+(stat)+(sys)+(D model)+(nonresonant bq) m2 (GeV2/c4) m² (GeV²/c⁴) $\delta(^{\circ})$ $\phi_3(^\circ)$ rBelle average DKBelle $64 \pm 19 \pm 13 \pm 11$ $157 \pm 19 \pm 11 \pm 21$ (excl DK*): $0.21 \pm 0.08 \pm 0.03 \pm 0.04$ $114 \pm 41 \pm 8 \pm 10$ (68±15±13±11)° Babar < 0.19 (90%CL $70 \pm 44 \pm 10 \pm 10$ $D^{*0}K$ Babar average: $0.12^{+0.16}_{-0.11} \pm 0.02 \pm 0.04 \qquad 75 \pm 57 \pm 11 \pm 11$ $321 \pm 57 \pm 11 \pm 21$ Belle (70±26±10±10)° Babar $0.155 \pm {}^{+0.070}_{-0.077} \pm 0.040 \pm 0.020$ $303 \pm 34 \pm 14 \pm 10$ $73 \pm 35 \pm 10 \pm 10$ DK^*

Belle $0.25^{+0.17}_{-0.18} \pm 0.09 \pm 0.04 \pm 0.08 \ 112 \pm 35 \pm 9 \pm 11 \pm 8 \ 353 \pm 35 \pm 8 \pm 21 \pm 49$

Summary

B Factories 1999-2005:

- Total > 6.5 \times 10⁸ B pairs, results on ~ 5 \times 10⁸
- sin2 ϕ_1 via $\psi K^{(*)0}$ to ±5%
- alternative probes of sin2\$\ophi_1\$- sensitive to new physics penguin-dominated B -> sqq - suggestive!

PHENO 05

- sin2 ϕ_2 direct CP violation, π/ρ modes -> ±20°
- ϕ_3 : first constraints -> ±20°
- possible hints of b->dγ (+ other CKM) -> higher precision on sides

Next

- summer 2005 >450 fb⁻¹ Belle, >300 fb⁻¹ Babar
- multiple modes, techniques
- -> improving precision on angles <u>and</u> sides; CKM challenge is heating up - stay tuned!