

Symmetry of Physical Laws

In an interaction-free universe (relativistic QM)

- massless particles
- symmetric in transformations

P(r<->-r), C(particle<-> antiparticle), T(t<->-t)

Add interactions: emission/absorption of field quantum

U Michigan, April 19, 2004

Weak interaction

- the only known force that
 - allows particle to change identity (flavor)
 - violates P symmetry (maximally)
 - right-handed particles, left-handed antiparticles.
 - (no coupling to LH particles, RH antiparticles)
 - ... but preserves CP symmetry (mostly)
 - small CP asymmetry
 - .. but to y2k, seen only in K_L (1963)

Hadronic modes, including Charge conjugation × Parity Violating (CPV) modes

Г9	$3\pi^{0}$		(21.11 ± 0.23) %
Γ10	$\pi^+\pi^-\pi^0$		(12.57 ± 0.19) %
Γ11	$\pi^+\pi^-$	CPV	$(2.081\pm0.026) \times 10^{-3}$
Γ12	$\pi^0\pi^0$	CPV	(9.40 ± 0.13) $ imes 10^{-4}$

3

Why is it of interest?

• matter-antimatter asymmetry in universe requires CP-violating interactions (Sakharov 1967)

What is source of CP asymmetry in K_L ? in universe?

• ... a possible clue in weak coupling strengths...

Standard Model = 12 fermion flavors (+antifermion)

- 3 generations(distinguished only by mass) ×2 types×2 ea(strong & EM couplings)
- stable, but for weak interaction
 weak couplings:

Z⁰ "neutral current"

			Generation		
	type	Q/lel	1	2	3
d	lepton	-1	e	μ	τ
	(no strong)	0	Ve	$ u_{\mu}$	ν_{τ}
	quark	+2/3	U p	Charm	t ruth
	(strong)	-1/3	down	S trange	beauty

quarks: neutral current - ~universal, no generation x-ing

current"

not seen

• quarks: charged current - all different, approx. generation-conserving

Elegance restored: GIM mechanism Picture $\frac{1}{\nu_{\mu}}$ • charged-current interaction ~ $g_F \times \frac{v_e}{v_e}$ v_{τ} b no generation x-ing, universal coupling q_F • quark mass/flavor defined by strong force, perturbed by weak: d', s', b'(weak) are linear combinations of d, s, b (strong) Cabibbo-Kobayashi-Maskawa (CKM) matrix d' s' b' 1sbcomplexbpreserves metric= unitary " orthogonality Explains (Glashow-Iliopoulos-Maiani)

- suppression of flavor-changing neutral currents
- multiplicity of charged current couplings
- AND

 $\begin{array}{c} \hline CKM \ CP \ phenomenology \\ \hline CP \ asymmetry - requires \geq 3 \ generations \\ -> \ to \ observe, \ need \ process \ w. \ all \ 3 \ (<-B \ decays), \\ interference \ between \geq 2 \ processes \\ -> \ to \ test, \ probe \ different \ angles \ w \ different \ decays \\ \hline 1.0 \ (\rho,\eta) \qquad \begin{array}{c} B \ factory \ programer \ are \ all \ asymmetric \ are \$

$$\eta_b = \begin{pmatrix} +1 \text{ if } B_{t=0} = B^0 \\ -1 \text{ if } B_{t=0} = \bar{B}^0 \end{pmatrix} \qquad \eta_{CP} = \begin{pmatrix} -1 \text{ if } CP \text{ odd} \\ +1 \text{ if } CP \text{ even} \end{pmatrix}$$

This is only the cleanest, simplest - "golden mode" K. Kinoshita

U Michigan, April 19, 2004

10

e.g. B -> $J/\psi\pi^0$ 2 paths, different phases, + mixing

K. Kinoshita

<u>B production: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$ </u>

not least, the people

VOLUME 86, NUMBER 12

PHYSICAL REVIEW LETTERS

19 MARCH 2001

19 March 2001

VOLUME 86. NUMBER 12

PHYSICAL REVIEW LETTERS

Measurement of the *CP* Violation Parameter $\sin 2\phi_1$ in B_d^0 Meson Decays

A. Abashian,⁴⁴ K. Abe,⁸ K. Abe,³⁶ I. Adachi,⁸ Byoung Sup Ahn,¹⁴ H. Aihara,³⁷ M. Akatsu,¹⁹ G. Alimonti,⁷ K. Aoki,⁸ K. Asai,²⁰ M. Asai,⁹ Y. Asano,⁴² T. Aso,⁴¹ V. Aulchenko,² T. Aushev,¹² A. M. Bakich,³³ E. Banas,¹⁵ S. Behari,⁸ P.K. Behera,⁴³ D. Beiline,² A. Bondar,² A. Bozek,¹⁵ T.E. Browder,⁷ B.C.K. Casey,⁷ P. Chang,²³ Y. Chao,²³ B. G. Cheon, ³² S.-K. Choi,⁶ Y. Choi,³² Y. Doi,⁸ J. Dragic,¹⁷ A. Drutskoy,¹² S. Eidelman,² Y. Enari,¹⁹ R. Enomoto,^{8,10} C. W. Everton, ¹⁷ F. Fang, ⁷ H. Fujii,⁸ K. Fujimoto, ¹⁹ Y. Fujita,⁸ C. Fukunaga,³⁹ M. Fukushima, ¹⁰ A. Garmash,^{2,8} A. Gordon,¹⁷ K. Gotow,⁴⁴ H. Guler,⁷ R. Guo,²¹ J. Haba,⁸ T. Haji,³⁷ H. Hamasaki,⁸ K. Hanagaki,²⁹ F. Handa,³⁶ K. Hara,²⁷ T. Hara,²⁷ T. Haruyama,⁸ N. C. Hastings,¹⁷ K. Hayashi,⁸ H. Hayashii,²⁰ M. Hazumi,²⁷ E. M. Heenan,¹⁷ Y. Higashi,⁸ Y. Higashino,¹⁹ I. Higuchi,³⁶ T. Higuchi,³⁷ T. Hirai,³⁸ H. Hirano,⁴⁰ M. Hirose,¹⁹ T. Hojo,²⁷ Y. Hoshi,³⁵ K. Hoshina.⁴⁰ W.-S. Hou,²³ S.-C. Hsu,²³ H.-C. Huang,²³ Y.-C. Huang,²¹ S. Ichizawa,³⁸ Y. Igarashi,⁸ T. Iijima.⁸ H. Ikeda,⁸ K. Ikeda,²⁰ K. Inami,¹⁹ Y. Inoue,²⁶ A. Ishikawa,¹⁹ H. Ishino,³⁸ R. Itoh,⁸ G. Iwai,²⁵ M. Iwai,⁸ M. Iwamoto,³ H. Iwasaki,⁸ Y. Iwasaki,⁸ D. J. Jackson,²⁷ P. Jalocha,¹⁵ H. K. Jang,³¹ M. Jones,⁷ R. Kagan,¹⁵ H. Kakuno,³⁸ J. Kaneko,³⁸ J. H. Kang,⁴⁵ J. S. Kang,¹⁴ P. Kapusta,¹⁵ K. Kasami,⁸ N. Katayama,⁸ H. Kawai,³ H. Kawai,³⁷ M. Kawai,⁸ N. Kawamura,¹ T. Kawasaki,²⁵ H. Kichimi,⁸ D. W. Kim,³² Heejong Kim,⁴⁵ H. J. Kim,⁴⁵ Hyunwoo Kim, 14 S. K. Kim, 31 K. Kinoshita, 5 S. Kobayashi, 30 S. Koike, 8 S. Koishi, 38 Y. Kondo, 8 II. Konishi, 40 K. Korotushenko,²⁹ P. Krokovny,² R. Kulasiri,⁵ S. Kumar,²⁸ T. Kuniya,³⁰ E. Kurihara,³ A. Kuzmin,² Y.-J. Kwon,⁴⁵ M. H. Lee,⁸ S. H. Lee,³¹ C. Leonidopoulos,²⁹ H.-B. Li,¹¹ R.-S. Lu,²³ Y. Makida,⁸ A. Manabe,⁸ D. Marlow,²⁶ T. Matsubara,³⁷ T. Matsuda,⁸ S. Matsui,¹⁹ S. Matsumoto,⁴ T. Matsumoto,¹⁹ Y. Mikami,³⁶ K. Misono,¹¹ K. Miyabayashi,²⁰ H. Miyake,²⁷ H. Miyata,²⁵ L. C. Moffitt,¹⁷ A. Mohapatra,⁴³ G. R. Moloney,¹⁷ G. F. Moorhead,¹⁷ N. Morgan,⁴⁴ S. Mori,⁴² T. Mori,⁴ A. Murakami,³⁰ T. Nagamine,³⁶ Y. Nagasaka,¹⁸ Y. Nagashima,²⁷ T. Nakadaira,³⁷ T. Nakamura,³⁸ E. Nakano,²⁶ M. Nakao,⁸ H. Nakazawa,⁴ J. W. Nam,³² S. Narita,³⁶ Z. Natkaniec,¹⁵ K. Neichi,³⁵ S. Nishida,¹⁶ O. Nitoh,⁴⁰ S. Noguchi,²⁰ T. Nozaki,⁸ S. Ogawa,³⁴ T. Ohshima,¹⁹ Y. Ohshima,³⁸ T. Okabe,¹⁹ T. Okazaki,²⁰ S. Okuno,¹³ S. L. Olsen,⁷ W. Östrowicz,¹⁵ H. Ozaki,⁸ P. Pakhlov,¹² H. Palka,¹⁵ C. S. Park,³¹ C. W. Park,¹⁴ H. Park,¹⁴

L.S. Peak, ³³ M. Peters,⁷ L. E. Pitlonen,⁴⁴ E. Prebys,²⁹ J. L. Rodriguez,⁷ N. Root,² M. Rozanska,¹⁵ K. Rybicki,¹⁵ J. Ryuko,²⁷ H. Sagawa,⁸ S. Saitoh,³ Y. Sakai,⁸ H. Sakamoto,¹⁶ H. Sakaue,²⁶ M. Satapathy,⁴³ N. Sato,⁸ A. Satpathy,⁸⁵ S. Schrenk,⁵ S. Sermenov,¹² Y. Settai,⁴ M. E. Seviori,¹⁷ H. Shibuya,³⁴ H. Shwartz,² A. Sidorov,² V. Sidorov,² J. S. Sidorov,² S. Saitoh,⁴² A. Sugiyama,¹⁰ K. Sumisawa,²⁷ T. Sumiyoshi,⁸ J. Suzuki,⁸ J.-L. Suzuki,³

K. Suzuki,³ S. Suzuki,⁹ S. Y. Suzuki,⁸ S. K. Swain,⁷ H. Tajima,³⁷ T. Takahashi,²⁶ F. Takasaki,⁸ M. Takita,²⁷ K. Tamati,⁸ N. Tamata,²³ J. Tanaka,¹⁷ M. Tanaka,⁸ Y. Tanaka,¹⁸ G. N. Taylor,¹⁷ Y. Teramoto,⁵⁶ M. Tomoto,¹⁹ T. Tomura,³⁷ S. N. Tovey,¹⁷ K. Trabelsi,⁷ T. Tsuboyama,⁸ Y. Taujita,⁴² T. Tsukamoto,⁸ S. Uchana⁸ K. Ueno,³³ N. Ujiie,⁸ Y. Unno,⁸ S. Uno,⁹ Y. Ushiroda,¹⁶ Y. Usov,² S. F. Vahsen,²⁹ G. Varner,⁷ K. F. Varvell,³³ C. C. Wang,²³ C. H. Wang,²⁴ M. Z. Wang,²⁵ T. J. Wang,¹¹ Y. Watanabe,³⁵ E. Won,³¹ B. D. Yabsley,⁸ Y. Yamada,⁸ M. Yamagu,⁵⁶ A. Yamaguchi,⁵⁶ H. Yamabita,²⁵ W. Yamashita,²⁴ K. Yamauchi,⁸ S. Yanaka,³⁵ M. Yokoyama,³⁷ K. Yusu,³⁶ H. Yuta,¹ C. C. Zhang,¹¹ H. W. Zhao,⁸

J. Zhang,42 Y. Zheng,7 V. Zhilich,2 and D. Zontar42 ¹Aomori University, Aomori ²Budker Institute of Nuclear Physics, Novosibirsk ³Chiba University, Chiba ⁴Chuo University, Tokyo ⁵University of Cincinnati, Cincinnati, Ohio Gyeongsang National University, Chinju ⁷University of Hawaii, Honolulu, Hawai ⁸High Energy Accelerator Research Organization (KEK), Tsukuba ⁹Hiroshima Institute of Technology, Hiroshima ¹⁰Institute for Cosmic Ray Research, University of Tokyo, Tokyo Institute of High Energy Physics, Chinese Academy of Sciences, Beijing ²Institute for Theoretical and Experimental Physics, Moscow 13 Kanagawa University, Yokohama 14 Korea University, Seoul ¹⁵H. Niewodniczanski Institute of Nuclear Physics, Krakow ¹⁶Kyoto University, Kyoto ¹⁷University of Melbourne, Victoria

0031-9007/01/86(12)/2509(6)\$15.00 © 2001 The American Physical Society

iety 2509 DOI: 10.1103/PhysRevLett.86.2509

PACS numbers: 11.30.Er, 12.15.Hh, 13.25.Hw

274 authors, 45 institutions

¹⁸Nagasaki Institute of Applied Science, Nagasaki

¹⁹Nagoya University, Nagoya

²⁰Nara Women's University, Nara

²¹National Kaohsiung Normal University, Kaohsiung ²²National Lien-Ho Institute of Technology, Miao Li

²³National Taiwan University, Taiper

24 Nihon Dental College, Niigata

²⁶Osaka City University, Osaka

27 Osaka University, Osaka

²⁸Panjab University, Chandigarh

29 Princeton University, Princeton, New Jersey

³⁰Saga University, Saga

³¹Seoul National University Seoul

32 Sungkyunkwan University, Suwon

³³University of Sydney, Sydney NSW ³⁴Toho University, Funabashi

35 Tohoku Gakuin University, Tagajo

36Tohoku University, Sendai

³⁷University of Tokyo, Tokyo ³⁸Tokyo Institute of Technology, Tokyo

¹⁹Tokyo Metropolitan University, Tokyo

40 Tokyo University of Agriculture and Technology, Tokyo

⁴¹Toyama National College of Maritime Technology, Toyama

⁴²University of Tsukuba, Tsukuba

⁴³Utkal University, Bhubaneswer
⁴⁴Virginia Polytechnic Institute and State University, Blacksburg, Virginia

45 Yonsei University, Seou

(Received 9 February 2001)

 $\sin 2\beta$) based on a 10.5 fb⁻¹ data sample collected at the Y(4S) resonance with the Belle detector at the

KEKB asymmetric e^+e^- collider. One neutral *B* meson is reconstructed in the $J/\psi K_3$, $\psi(25)K_3$, $\chi_c K_5$, $\eta_c K_5$, $J/\psi K_4$, or $J/\psi m^2$ (*P*-eigenstate decay channel and the flavor of the accompanying *B* meson is identified from its charged particle decay products. From the asymmetry in the distribution of the time interval between the two *B*-meson decay points, we determine $\sin(2\phi_1 = 0.58 \pm 0.32 \pm 0.316)$ (Syst).

We present a measurement of the standard model CP violation parameter $\sin 2\phi_1$ (also known as

²⁵Niigata University, Niigata

many nations

(numbers vary, every paper)

15

K. Kinoshita

U Michigan, April 19, 2004

Belle physics results

78±2 papers published or in press (1st in 3/2001) 54 abstracts submitted to XXI Lepton-Photon (Fermilab 2003)

18 - CP asymmetry in B decay
25 - B decay non-CP

Υ**(4S)**

8 - charm hadrons

2 - tau

Physics topics overlap in many analyses, e.g., discovery of new charmonium states in B decays.

Recent highlights in CP

Beauty: CP and related

- time-dependent CP measurements

 update of J/ψK_s (φ₁)
 with J/ψπ⁰(~φ₁), D^{*+}π⁻(2φ₁+φ₃), φK_s(φ₁), π⁺π⁻(~φ₂)
- evidence/observation
 - B-> K*I⁺I⁻, π⁰π⁰, D⁺D⁻, π⁰ρ⁰
- new method for ϕ_3 : Dalitz plot analysis D⁰K⁺ {D⁰->K_s $\pi^+\pi^-$ }

Charm:

• difference of CP lifetimes in D (y_{CP})

time-dependent CP analysis: overview

time-dependent CP analysis: overview

3) Continuum suppression event parameters, likelihood ratio

5) Fit to ∆t distribution: unbinned maximum likelihood

4) Vertex reconstruction

BELLE-CONF-0353

чп

Measurement of sin2 ϕ_1

world average from {cc}K

 $sin2\phi_1$ (Belle 2003, 140 fb⁻¹) =0.733±0.057±0.028

sin2\$\operatorname{4}_1\$ (BaBar 2002, 81 fb^{-1}) = 0.741 \pm 0.067 \pm 0.033

More time-dependent $sin2\phi_1$ - or new physics?

modes dominated by b->sqq penguins

 K^+, I

in the absence of New Physics, $S = sin 2\phi_1$

26

Reconstruction of b->sgg

K. Kinoshita

П

Time-dependence:

B⁰-> $\pi^+\pi^-$ reconstruction issues

... less clean than B^o->J/ ψ K_s:

- "physics bkg" B⁰->K⁺ π^- => hadron ID, kinematics dE/dx, TOF, Aerogel – "positive ID" ϵ_{π} =91%, ϵ_{K} =10%
- continuum => event shape {qq "jet-like" vs BB "spherical") Fisher discriminant from modified Fox-Wolfram moments B candidate direction relative to beam axis Construct Likelihood ratio LR=L_{BB}/[L_{BB}+L_{qq}], 2 selections: LR > 0.86 {ε_{BB}=53%, ε_{qq}=5%} 0.86 > LR > LR_{min} (cut depends on flavor tag classification)

30

U Michigan, April 19, 2004

However... 臣¥ 1.5 Belle results Belle "Study of CP-Violating 1 42/fb 78/fb Asymmetries in B⁰ -> $\pi^+\pi^-$ Decays" {PRL 89, 071801 (2002)} HFAGBabar 0.5 (42 fb⁻¹ ~45M B pairs) 81/fb "Evidence for CP-Violating 56/fb 113/fb 0 Asymmetries in $B^0 \rightarrow \pi^+\pi^-$ Decays HFAG ... heavy flavor averaging group {PRD 68, 012001 (2003)} $A = 0.37 \pm 0.16$ -0.5 (78 fb⁻¹ ~85M B pairs) S = -0.56±0.20 $\chi^2 = 6.1 \rightarrow CL = 0.047 (2\sigma)$ -1 ... also note that physical region is $\sqrt{S_{\pi\pi}^2+A_{\pi\pi}^2}\leq 1$ -1.5 -1 -0.5 0.5 1 0 1.5 Sππ

K. Kinoshita

- additional data 78 fb⁻¹ -> 140 fb⁻¹
- signal fraction 1d -> 2d (ΔE , M_{bc}) fit: improved robustness
- improved continuum suppression
- new independent analysis: binned maximum likelihood in Δt different resolution functions, blind

 no CP asymmetry observed where none expected

- many subsamples consistent results
- independent selection with binned fit gives ~same result
- ensemble simulation study confidence of unphysical result is reasonable

Belle in 2004:

LILL

Summary

- KEKB *luminosity* 1.20x10³⁴cm⁻²s⁻¹ (design: 1x10³⁴); >220M B pairs
- $sin2\phi_1$ is now a "precision" measurement
- first results on alternative probes of sin2 ϕ_1 (or new physics!) B->J/ $\psi \pi^0$ - penguin may be small (need more data) surprise deviation in B-> ϕK_s - 3.5 σ - hints of new physics? consistency with SM in other b->sss
- developing sensitivity to φ_2, φ_3
 - B-> $\pi^+\pi^-$ first evidence of direct CP violation?
- observations/hints in many modes, possibly CP in future
 Next
- 500 fb⁻¹ by 2005
- Luminosity > design
- the CP challenge: heating up stay tuned!

35