> Reflections on Beauty: CP Asymmetries at Belle

- Weak interaction: CP, CKM matrix
- B(eauty) mesons \& CP asymmetry
- B production: $e^{+} e^{-}->$(4S) at KEKB
- Belle experiment

Highlights in CP
Selected results

- Plans

Kay Kinoshita
University of Cincinnati
Belle Collaboration

In an interaction-free universe (relativistic QM)

- massless particles
- symmetric in transformations
$P(r<->-r), C($ particle<一> antiparticle), $T(t<->-t)$
Add interactions: emission/absorption of field quantum
- vertex contains symmetry (or asymmetry) info interaction strength/probability

$$
\mu(\text { "charge" } g)^{2} \mu \text { "coupling constant" }
$$

- mass $\neq 0$ via self-interaction

Forces: Strong, Electromagnetic, Weak, Gravitational

$$
\text { coupling ~ 10-5, quanta } \mathrm{W}^{ \pm}, Z^{0}
$$

- the only known force that
- allows particle to change identity (flavor)
- violates P symmetry (maximally)
right-handed particles, left-handed antiparticles.
(no coupling to LH particles, RH antiparticles)
... but preserves CP symmetry (mostly)
- small CP asymmetry
.. but to y2k, seen only in K_{L} (1963)
Hadronic modes, including Charge conjugation \times Parity Violating (CPV) modes

Γ_{9}	$3 \pi^{0}$	
Γ_{10}	$\pi^{+} \pi^{-} \pi^{0}$	
Γ_{11}	$\pi^{+} \pi^{-}$	$(21.11 \pm 0.23) \%$
Γ_{12}	$\pi^{0} \pi^{0}$	$C P V$
$C P V$	$(2.57 \pm 0.19) \%$	

Why is it of interest?

- matter-antimatter asymmetry in universe requires CP-violating interactions (Sakharov 1967)

What is source of CP asymmetry in K_{L} ? in universe?

- ... a possible clue in weak coupling strengths...

Weak coupling strengths

\#

Standard Model = 12 fermion flavors (+antifermion)

- 3 generations(distinguished only by mass)×2 typesx2 ea(strong \& EM couplings)
- stable, but for weak interaction weak couplings:
- leptons: ~universal,

		Generation		
type	Q/le\|	1	2	3
lepton	-1	e	μ	\square
(no strong)	0	\square_{e}	\square_{μ}	\square
quark	$+2 / 3$	U_{p}	$c_{\text {Charm }}$	$\dagger_{\text {ruth }}$
(strong)	$-1 / 3$	$d_{\text {own }}$	Strange	beauty 2

Z ${ }^{0}$ "neutral current"

- quarks: neutral current - ~universal, no generation x-ing
- quarks: charged current - all different, approx. generation-conserving

I'nelegant!!
dㄴ․․․
K. Kinoshita

|||| Ales

Picture

no generation x-ing, universal coupling g_{F}

- quark mass/flavor defined by strong force, perturbed by weak:
$d^{\prime}, s^{\prime}, b^{\prime}$ (weak) are linear combinations of d, s, b (strong)

$$
\left[\begin{array}{l}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right]=\mathcal{M}\left[\begin{array}{l}
d \\
s \\
b
\end{array}\right]\left[\begin{array}{r}
\text { Cabibbo-Kobayashi-Maskawa (CKM) matrix } \\
\text { complex } \\
\text { preserves metric } \\
\text { " orthogonality }
\end{array}\right\} \equiv \text { unitary }
$$

Explains (Glashow-Iliopoulos-Maiani)

- suppression of flavor-changing neutral currents
- multiplicity of charged current couplings
- AND
.. for >2 generations, e.g. $3,\{9 R+9 q\}$ dof constrained by unitarity: 4 free parameters, incl. 1 irreducible imaginary part \rightarrow CPViolation $>$ > (Kobayashi-Maskawa 1973)

||| CKM CP phenomenology
CP asymmetry - requires ≥ 3 generations
-> to observe, need process w. all 3 ($<-\mathrm{B}$ decays), interference between ≥ 2 processes
-> to test, probe different angles w different decays

||| manifestation of complex coupling

e.g. B $\rightarrow \mathrm{J} / \square \mathrm{K}_{s}$ for $\sin 2 \mathrm{Z}_{1}$ (Sanda/Bigi/Carter)
"indirect" CP asymmetry
tree (real $V_{i j}$) + mixing+tree $\left(\mu V_{\text {td }}{ }^{*}\right.$)

(no cc of hadronic phase under CP)

CP asymmetry from x-term(s) - no theoretical uncertainty: $\mu \arg \left(\mathrm{V}_{+d}{ }^{2}\right)=2 \square_{1}$ Bottom line: CP-dependent oscillation in time:

$$
\frac{d N}{d t}\left(B \rightarrow f_{C P}\right)=\frac{1}{2} \Gamma e^{-\Gamma \Delta t}\left(1+\eta_{b} \eta_{C P} \sin 2 \phi_{1} \sin (\Delta m \Delta t)\right)
$$

$$
\eta_{b}=\binom{+1 \text { if } B_{t=0}=B^{0}}{-1 \text { if } B_{t=0}=\bar{B}^{0}} \quad \eta_{C P}=\binom{-1 \text { if } C P \text { odd }}{+1 \text { if } C P \text { even }}
$$

This is only the cleanest, simplest - "golden mode"

CP phenomenology: variation

1 e.g. $\mathrm{B} \rightarrow \mathrm{J} / \square \pi^{0} 2$ paths, different phases, + mixing

Bottom line: "direct" CP asymmetry possible $q=\binom{+1$ if $B_{t=0}=B^{0}}{-1$ if $B_{t=0}=\bar{B}^{0}}$

$$
\left.\frac{d N}{d t}\left(B \rightarrow f_{C P}\right)=\frac{1}{2} \Gamma e^{-\Gamma \Delta t}(1+q \div \mathcal{A} \cos (\Delta m \Delta t)+\mathcal{S} \sin (\Delta m \Delta t)]\right)
$$

relation to \square_{1} depends on T/P relative amplitudes, strong phase (not known)

$\square \dagger$ by asymmetric energy $e^{+} e^{-}$->
(symmetric (4S): CLEO 1979-2001)
What else is needed?

- $>10^{7}$ B's just to get started - KEKB - hadron (K/ π) ID - dE/dx, aerogel(Cerenkov), time-of-flight
 2nd decay • <<200 μm vertexing -

K. Kinoshita

$\mathrm{IW}_{\text {The oetector }}$

Charged tracking/vertexing

- SVD: 3-layer DSSD Si μ strip
- CDC: 50 layers (He-ethane)
1.5 T superconducting solenoid

Hadron identification

- CDC: $\mathrm{dE} / \mathrm{d} x$
- TOF: time-of-flight
- ACC: Threshold Cerenkov (aerogel)
Electron/photon
- ECL: CsI calorimeter

Muon $/ K_{1}$
KLM: Resistive plate counter/iron

not least, the people

Volume 86, Number 12 PHYSICAL REVIEW LETTERS
19 MARCH 2001

```
Volume 86. Number 12
physical review letters
Measurement of the \(\boldsymbol{C P}\) Violation Parameter \(\sin 2 \phi_{1}\) in \(\boldsymbol{B}_{d}^{0}\) Meson Decays
```



``` B.G. Cheon, \({ }^{32}\) S. K. Choi, \({ }^{6}\) Y. Choi, \({ }^{32}\) Y. Doi, \({ }^{8}\) J. Dragic, \({ }^{17}\) A Drutskoy, \({ }^{17}\) S. Fidelman, \({ }^{2}\) Y. Enari, \({ }^{19}\) R. Enomoto, \({ }^{8,10}\) C. W. Everton, \({ }^{77}\) F. Fang, \({ }^{7}\) H. Fujii, \({ }^{8}\) K. Fujimoto, \({ }^{19}\) Y. Fujitu, \({ }^{8}\) C. Fukunaga, \({ }^{3,}\) M. Fukushima, A. Garmash, A. Gordon \({ }^{17}\) K. Gotow, \({ }^{44}\) H. Guler, \({ }^{7}\) R. Guo, \({ }^{21}\) J. Haba, \({ }^{8}\) T. Hai. \({ }^{77}\) H. Hamasaki, \({ }^{8}\) K. Hauagakiki, \({ }^{29}\) F. Handa, \({ }^{3}\)
```



``` K. Koroushenko, \({ }^{29}\) P. Krokovny, \({ }^{2}\) R. Kulasiri, \({ }^{5}\) S. Kumar, \({ }^{28}{ }^{28}\) T. Kuniya \({ }^{39}\), \({ }^{30}\) E. Kurihara, \({ }^{3}\) A. Kuzmin, \({ }^{2}\) Y.J. Kwon \({ }^{45}\)
```



``` T. Nakamura, \({ }^{38}\) E. Nakarno, \({ }^{26}\) M. Nakao, \({ }^{8}\) H. Nakazawa, \({ }^{4}\) J. W. Nam, \({ }^{32}\) S. Narita, \({ }^{36}\) Z. Natkaniec. \({ }^{15}\) K. Neichi, \({ }^{35}\)
```



``` S. Okuno, \({ }^{13}\) S. L. Olsen, \({ }^{\text {? }}\) W. Ostrowicz, \({ }^{15}\) H. Ozaki, \({ }^{8}\) P. Pakhlov, \({ }^{12}\) H. Palka, \({ }^{15}\) C. . S. Park, \({ }^{31}\) C. W. Park \({ }^{14}{ }^{14}\) H. Parkk,
```



``` S. Schrenk, \({ }^{\text {S }}\) S. Semenov, \({ }^{12}\) Y. Setrai, \({ }^{4}\) M. E. Sevior, \({ }^{17}\) H. Shibuya, \({ }^{34}\) B. Shwartz, \({ }^{2}\) A. Sidorov, \({ }^{2}\) V. Sidorov, \({ }^{2}\) J.B. Singh, \({ }^{28}\) S. Stanici, \({ }^{42}\) A. Sugi, \({ }^{19}\) A. Sugiyama, \({ }^{17}\) K. Sumisawa, \({ }^{27}\) T. Sumiyoshi, \({ }^{8}\) J. Suzuki, \({ }^{8}\) J.I. Suzuk;,
```



``` N. Ujiii, \({ }^{8} \mathrm{Y}\) Unno, \({ }^{3}\) S. Uno, \({ }^{8}\) Y. Ustirioda, \({ }^{16}\) Y Usov, \({ }^{2}\) S F. Vahisen \({ }^{29}\) C. Varrer, \({ }^{7}\) K. E. Varvell, \({ }^{33}\) C.C. Wang, \({ }^{23}\) C. H. Wang. \({ }^{22}\) M.Z. Wang. \({ }^{23}\) II J. Wang. \({ }^{.11}\) Y Watanabe. \({ }^{38}\) E. Wono, \({ }^{31}\) B. D. Yabsley, \({ }^{8}\) Y. Yamada, \({ }^{8}\) M. Yamagat \({ }^{36}\)
```



```
\[
\begin{aligned}
& \begin{array}{l}
\text { Thiba Universis, Chibe } \\
{ }^{1} \text { Chuo Universty: Tokyo }
\end{array} \\
& { }^{6} \text { Universily of Cinciinarit Cincivinati, Ohiin }
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{l}
9 \text { Hirsshima Insititut of Techaology, Hirsshima } \\
{ }^{10} \text { Instutute for Cosmic Ray Research, University of Tokvo, Tokvo }
\end{array} \\
& \text { Insthutc of Htgh Energy Phusics, Chinese Academy of Sciences, Beijing }
\end{aligned}
\]
\[
\begin{aligned}
& { }^{1 " U n i v e r s i t y ~ o f ~ M e l i b u u r n e, ~ W i c t o r i a ~}
\end{aligned}
\]
9 MARCH 2001
```


274 authors, 45 instifutions

	many nations
x^{2}	
${ }^{\text {a }}$	
为	(numbers vary,
and	every

DOI: 10.1 | 103 3. Phy hevelcet. 86.2509

Belle physics results

1

78 ± 2 papers published or in press (1st in $3 / 2001$)
54 abstracts submitted to XXI Lepton-Photon (Fermilab 2003)

18 - CP asymmetry in B decay
25 - B decay non-CP
8 - charm hadrons

1 - QCD
Physics topics overlap in many analyses, e.g., discovery of new charmonium states in B decays.

Beauty: CP and related

- time-dependent CP measurements update of $J / \square K_{s}\left(\square_{1}\right)$ with $\mathrm{J} / \square \pi^{0}\left(\sim \square_{1}\right), D^{*+} \pi^{-}\left(2 \square_{1}+\square_{3}\right), \square K_{s}\left(\square_{1}\right), \pi^{+} \pi^{-}\left(\sim \square_{2}\right)$
- evidence/observation

$$
\text { B-> } K^{*}|+|=\pi^{0} \pi^{0}, D^{+} D^{-}, \pi^{0} \square^{0}
$$

- new method for \square_{3} : Dalitz plot analysis $D^{0} K^{+}\left\{D^{0}->K_{s} \pi^{+} \pi^{-}\right\}$

Charm:

- difference of CP lifetimes in D ($y_{C P}$)

time-dependent $C P$ analysis: overview

1) CP final state reconstruction exploit

- exclusive pair production of B
- narrow resolution of collision energy

$$
\square E=E_{\text {cand }}-E_{\text {beam }}^{\star}=0\left(E_{\text {beam }}^{\star}=s^{1 / 2 / 2}\right)^{\text {in }}
$$

प~10-50 MeV, depending on mode
 $M_{b c}$ (Beam-constrained mass)

$$
M_{b c}=\left(E_{\text {beam }}{ }^{2}-p^{\star}{ }_{\text {cand }}{ }^{2}\right)^{1 / 2}
$$

2) Flavor tagging: sign of other b all remaining particles in the event
high-p lepton (p*>1.1 GeV): b->1-
 net K charge $b->K^{-}$ medium-p lepton, b->c-> ${ }^{+}$

soft π b->c\{ $\left.D^{*}+>D^{0} \pi^{+}\right\}$
hard $\pi b->\{c\} \pi^{-} X$

- multidimensional likelihood, 『 ${ }^{\text {P9 }}$ 99\%
- incorrect tag reduces \square net (28.7 ± 0.5)\%

3) Continuum suppression event parameters, likelihood ratio

4) Vertex reconstruction

5) Fit to $\bar{\square} \dagger$ distribution: unbinned maximum likelihood

BELLE-CONF-0353

Fully reconstructed

Mode	$N_{\text {ev }}$	Purity
$J / \psi\left(\ell^{+} \ell^{-}\right) K_{S}^{0}\left(\pi^{+} \pi^{-}\right)$	1997	0.976 ± 0.001
$J / \psi\left(\ell^{+} \ell^{-}\right) K_{S}^{0}\left(\pi^{0} \pi^{0}\right)$	288	0.82 ± 0.02
$\psi(2 S)\left(\ell^{+} \ell^{-}\right) K_{S}^{0}\left(\pi^{+} \pi^{-}\right)$	145	0.93 ± 0.01
$\psi(2 S)\left(J / \psi \pi^{+} \pi^{-}\right) K_{S}^{0}\left(\pi^{+} \pi^{-}\right)$	163	0.88 ± 0.01
$\chi_{c 1}(J / \psi \gamma) K_{S}^{0}\left(\pi^{+} \pi^{-}\right)$	101	0.92 ± 0.01
$\eta_{c}\left(K_{S}^{0} K^{-} \pi^{+}\right) K_{S}^{0}\left(\pi^{+} \pi^{-}\right)$	123	0.72 ± 0.03
$\eta_{c}\left(K^{+} K^{-} \pi^{0}\right) K_{S}^{0}\left(\pi^{+} \pi^{-}\right)$	74	0.70 ± 0.04
$\eta_{c}(\bar{p}) K_{S}^{0}\left(\pi^{+} \pi^{-}\right)$	20	0.91 ± 0.02
All with $\xi_{f}=-1$	2911	0.933 ± 0.002
$J / \psi\left(\ell^{+} \ell^{-}\right) K^{* 0}\left(K_{S}^{0} \pi^{0}\right)$	174	0.93 ± 0.01

$\left\|\left\|\|_{\text {Measurement of } \sin 2 \square_{1}}\right.\right.$

K. Kinoshita
$\sin 2 \square_{1}$ (Belle 2003, $140 \mathrm{fb}^{-1}$) $=0.733 \pm 0.057 \pm 0.028$
$\sin 2 \square_{1}\left(B a B a r ~ 2002,81 ~ f b^{-1}\right)$ $=0.741 \pm 0.067 \pm 0.033$
$\sin 2 \square_{1}$ (World Av.)
$=0.736 \pm 0.049$

㧫 $b->\{c \bar{c}$ d $\}$ decays: $B->J / \square^{0}(C P=+1)$

tree : + penguin

(relative amplitudes, strong phase not known) expect $S=-\sin 2 \square_{1}$ if penguin is small

K. Kinosnita

$\sin 2 \square_{1}($ World $A v)=.0.736 \pm 0.049$
BELLE-CONF-0342+
U Michigan, April 19, 2004
modes dominated by b->sq̄̄ penguins

in the absence of New Physics, $S=\sin 2 \square_{1}$
K. Kinoshita

Reconstruction of b->sgg
$140 \mathrm{fb}^{-1}$

$\left[\sin 2 \square_{1}(\right.$ world avg $\left.)=0.736 \pm 0.049\right]$ differs by $3.5 \square \quad$ PRL 91, 261602 (2003)

```
sin}2\mp@subsup{\square}{2}{}:\mp@subsup{B}{}{0}->\mp@subsup{\pi}{}{+}\mp@subsup{\pi}{}{-
```

2 paths, each w/wo mixing:

mixing+"

$$
\mu V_{+b}{ }^{*} V_{t d}{ }^{2} V_{+b} V_{t d}{ }^{*}
$$

$\square_{2}=a r g V_{+d} V_{+b}{ }^{*} V_{u b}^{*}{ }^{*}$

Bottom line: $A_{C P}$ may include direct $C P$ violation

$$
\frac{d N}{d t}\left(B \rightarrow f_{C P}\right)=\frac{1}{2} \Gamma e^{-\Gamma \Delta t}\left(1+q \cdot\left[\mathcal{A}_{\pi \pi} \cos (\Delta m \Delta t)+\mathcal{S}_{\pi \pi} \sin (\Delta m \Delta t)\right]\right)
$$

- if T dominates, $A_{\pi \pi}=0, S_{\pi \pi}=\sin 2 \square_{2}$
- if P, T comparable, $\mathrm{A}_{\pi \pi} \neq 0, S_{\pi \pi} \sim \sin \left(2 \square_{2}+2 \square\right) \cdot 2 /\left(|\square|^{2}+1\right)$ difference of $\quad \uparrow \neq 1$ if direct $C P$ strong phase

$\mathrm{B}^{0}->\pi^{+} \pi^{-}$reconstruction issues

... less clean than $B^{0}->J / \square K_{s}$:

- "physics bkg" $\mathrm{B}^{0}->\mathrm{K}^{+} \pi^{-}$=> hadron ID, kinematics $\mathrm{dE} / \mathrm{dx}$, TOF, Aerogel - "positive ID" $\square_{\pi}=91 \%, \square_{k}=10 \%$
- continuum => event shape \{qq "jet-like" vs BB "spherical")

Fisher discriminant from modified Fox-Wolfram moments
B candidate direction relative to beam axis
Construct Likelihood ratio $L R=L_{B B} /\left[L_{B B}+L_{q q}\right]$, 2 selections:
$L R>0.86\left\{\square_{B B}=53 \%, \square_{q q}=5 \%\right\}$
$0.86>L R>L R_{\min }$ (cut depends on flavor tag classification)

Belle results
"Study of CP-Violating
Asymmetries in B^{0}-> $\pi^{+} \pi^{-}$Decays" \{PRL 89, 071801 (2002)\} (42 fb ${ }^{-1}$ ~45M B pairs) "Evidence for CP-Violating Asymmetries in $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-}$Decays "
\{PRD 68, 012001 (2003)\} (78 fb ${ }^{-1} \sim 85 \mathrm{M}$ B pairs)

- additional data $78 \mathrm{fb}^{-1}$-> $140 \mathrm{fb}^{-1}$
- signal fraction 1d -> 2d ($\square E, M_{b c}$) fit: improved robustness
- improved continuum suppression
- new independent analysis: binned maximum likelihood in $\square \dagger$ different resolution functions, blind

Validation of result

- many subsamples - consistent results
- no CP asymmetry observed where none expected

- independent selection with binned fit gives ~same result
- ensemble simulation study confidence of unphysical result is reasonable
 Evidence for Direct CP Violation in $\mathrm{B}^{0}->\pi^{+} \pi^{-}$ Decays," submitted to PRL

U Michigan, April 19, 2004
K. Kinoshita Evidence for direct CP violation (3.2])

H/Hsumnery
Belle in 2004:

- KEKB luminosity $1.20 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (design: 1×10^{34}); $>220 \mathrm{M}$ B pairs
- $\sin 2 \square_{1}$ is now a "precision" measurement
- first results on alternative probes of $\sin 2 \square_{1}$ (or new physics!) $B->J / \square \pi^{0}$ - penguin may be small (need more data) surprise deviation in $B->\square K_{s}-3.5 \square$ - hints of new physics? consistency with SM in other b->sss
- developing sensitivity to \square_{2}, \square_{3}

$$
\text { B }>\pi^{+} \pi^{-} \text {- first evidence of direct CP violation? }
$$

- observations/hints in many modes, possibly CP in future

Next

- $500 \mathrm{fb}^{-1}$ by 2005
- Luminosity > design
- the CP challenge: heating up - stay tuned!

