
-Weak interaction: CP, CKM matrix
-B(eauty) mesons \& CP asymmetry
-B production: $e^{*} e^{-}$-> (4S) at KEKB

- Belle experiment Highlights for 2003
Selected CP \& other results (preliminary)
- Plans

Kay Kinoshita
University of Cincinnati Belle Collaboration

Why is it of interest?

- matter-antimatter asymmetry in universe requires CP-violating interactions (Sakharov 1967)
Weak interaction - the only known force that
- violates CP symmetry (a little)
.. but to 1998, only in K (1963)
- violates P symmetry (maximally)
... but preserves CP symmetry (mostly) right-handed particles, left-handed antiparticles. no coupling to LH particles, RH antiparticles.
- allows particle to change identity (flavor)

What is source of CP asymmetry in K_{L} ? in universe?
... step back, look at weak coupling strengths...

||| Weak coupling strengths

Standard Model = 12 fermion flavors (+antifermion)

+ strong, EM, weak forces,
unification of EM+weak
3* generationsx2 typesx2 ea,
stable, but for weak interaction
*generations distinguished only by mass

Couplings:

- no generation x-ing, except \dagger charged-current quark
- leptons: ~same quarks: all different, approx generation-conserving

		Generatior		
type	Q/le\|	1	2	3
lepton	-1	e	μ	\square
(no strong)	0	\square_{e}	\square_{μ}	\square_{\square}
quark	$+2 / 3$	u_{p}	$C_{\text {harm }}$	$t_{\text {truth }}$
(strong)	$-1 / 3$	$d_{\text {own }}$	Strange	beauty 2

Oicture

- strong doublets, generations "degenerate," perturbed by weak force: new doublets $\begin{array}{ccc}u^{\prime} & c & c^{\prime} \\ d^{\prime} & \quad b^{\prime}\end{array}$
no generation x-ing, universal W-coupling ($=g_{F}$, seen in leptons)
$d^{\prime}, s^{\prime}, b^{\prime}$ are linear combinations of d, s, b :

$$
\left.\left.\left(\begin{array}{l}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\underset{\left(\begin{array}{l}
\text { a } \\
s \\
b
\end{array}\right)}{\begin{array}{c}
\text { complex } \\
\text { preserves metric } \\
\text { " orthogonality }
\end{array}}\right\} \begin{array}{c}
\text { Cabibbo-Kobayashi-Maskawa (CKM) matrix }
\end{array}\right\}=\text { unitary }
$$

Cexplains (Glashow-Iliopoulos-Maiani)

- suppression of flavor-changing neutral currents
- multiplicity of charged current couplings
- AND
 4 free parameters, incl. 1 irreducible imaginary part
>>> જの OFontuon

(Kobayashi-Maskawa 1973)
First 3rdgeneration particle ($\mathbb{\square}$) seen 1975

Toshihide Maskawa

KEK, August 13, 2003

CP asymmetry - due to ≥ 3 generations
-> need process w. all 3 (occurs with many B decays), interference in ≥ 2 processes (but not too many)
-> probe different angles w different decays

tree (real $V_{i j}$) + mixing+tree $\left(\mu V_{t d}{ }^{* 2}\right)$

(no cc of hadronic phase under CP)

CP asymmetry from x-term(s) - no theoretical uncertainty: $\mu \arg \left(\mathrm{V}_{+d}{ }^{2}\right)=2 \square_{1}$

$$
\begin{gathered}
\frac{d N}{d t}\left(B \rightarrow f_{C P}\right)=\frac{1}{2} \Gamma e^{-\Gamma \Delta t}\left(1+\eta_{b} \eta_{C P} \sin 2 \phi_{1} \sin (\Delta m \Delta t)\right) \\
\eta_{b}=\binom{+1 \text { if } B_{t=0}=B^{0}}{-1 \text { if } B_{t=0}=\bar{B}^{0}} \quad \eta_{C P}=\binom{-1 \text { if } C P \text { odd }}{+1 \text { if } C P \text { even }}
\end{gathered}
$$

This is only the cleanest, simplest - "golden mode"
$\|\|$ CP phenomenology: variations
IIe.g. $\mathrm{B} \rightarrow \mathrm{J} / \square \pi^{0} 2$ paths, different phases, + mixing

(relative amplitudes, strong phase not known)
mixing+ "
$\square V_{\mathrm{tb}}{ }^{* 2} \mathrm{~V}_{\mathrm{td}}{ }^{2} \mathrm{~V}_{\mathrm{cb}} \mathrm{V}_{\mathrm{cd}}{ }^{*}$
mixing+ "

$$
\square V_{t b}^{* 2} V_{t d}{ }^{2} V_{t b} V_{t d}^{*}
$$

Bottom line: "direct" CP asymmetry possible $q=\binom{+1$ if $B_{t=0}=B^{0}}{-1$ if $B_{t=0}=\bar{B}^{0}}$

$$
\begin{aligned}
\frac{d N}{d t}\left(B \rightarrow f_{C P}\right)= & \frac{1}{2} \Gamma e^{-\Gamma \Delta t}\left(1+q \cdot\left[\mathcal{A}_{-\pi} \cos (\Delta m \Delta t)+\mathcal{S}_{\pi-\pi} \sin (\Delta m \Delta t)\right]\right) \\
& \text { "direct" asym }
\end{aligned}
$$

Charged tracking/vertexing

- SVD: 3-layer DSSD Si μ strip
- CDC: 50 layers (He-ethane)

Hadron identification

- CDC: dE/dx
- TOF: time-of-flight
- ACC: Threshold Cerenkov (aeroge ()

Electron/photon

- ECL: CsI calorimeter Muon/KL
- KLM: Resistive plate counter/iron

PHYSICAL REVIEW LETTERS
19 March 2001

```
VOLume 86, Number 12
physical review letters
```


Measurement of the $\boldsymbol{C P}$ Violation Parameter $\sin 2 \phi_{1}$ in \boldsymbol{B}_{d}^{0} Meson Decays


``` K. Asaii \({ }^{33}\) M. Asai, \({ }^{4}\) Y. Asano, \({ }^{42}\) T. Aso, \({ }^{41}\) V. Aulchenko. \({ }^{2}\) T. Aushever \({ }^{12}\) A. M. Bakich. \({ }^{33}\) E. Banas, \({ }^{15}\) S. Behari, \({ }^{8}\) B.G. Cheon, \({ }^{32}\) S. K. Choi, \({ }^{6}\) Y. Choi, \({ }^{32}\) Y. Doi, \({ }^{8}\) J. Dragic, \({ }^{17}\) A. Drutskoy, \({ }^{12}\) S. Fidelman, \({ }^{2}\) Y. Enari, \({ }^{19}\) R. Enomoto, \({ }^{8,10}\)
```



``` M. Iwamoto, \({ }^{3}\) H. I wasaki, \({ }^{8}\) Y. Iwasaki, \({ }^{8}\) D. J. Jackson \({ }^{27}\) P. Jallocha \({ }^{15} \mathrm{H}\) H. Kang. \({ }^{31}\) M. Jones. \({ }^{7}\) R. Kagan, \({ }^{12}\)
```



``` K. Korousherko, \({ }^{29}\) P. Krokovny, \({ }^{2}\) R. Kulasiri, \({ }^{5}\) S. Kumar, \({ }^{28}\) T. Kuniya \({ }^{39}\) E. Kurihara, \({ }^{3}\) A. Kuzzain, \({ }^{2}\) Y-J. Kwon, \({ }^{45}\) M. H. Lee, \({ }^{8}\) S. H. Lcc. \({ }^{31}\) C. Leonidopoulos. \({ }^{29}\) H.-B. Li, \({ }^{14}\) R.-.S. Lu. \({ }^{23}\) Y. Makida, \({ }^{8}\) A. Madabue \({ }^{8}{ }^{8}\) D. Marloww \({ }^{29}\) T. Matsubara, \({ }^{37}\) T. Matsuda, \({ }^{8}\) S. Matsui \({ }^{19}\) S. Malsumato, \({ }^{4}\) T. Matsumnto \({ }^{19}{ }^{19}\) Y. Mikami. \({ }^{36}\). \({ }^{36}\) K. Misono, \({ }^{19}\)
```



``` T. Nakamura, \({ }^{38}\) E. Nakañ, \({ }^{26}\) M Nakao, \({ }^{8}\) H. Naka7awa, \({ }^{5}\) J. W. Nam \({ }^{32}\) S. Narita, \({ }^{36}\) Z. Narkaniec, \({ }^{15}\) K. Neichi, \({ }^{35}\)
```



``` S. Schrenk, \({ }^{5}\) S. Semenov, \({ }^{12}\) Y. Seltaii \({ }^{4}\) M. F. Sevior, \({ }^{17}\) H. Shibuya, \({ }^{34}\) B. Shwartz, \({ }^{2}\) A. Sidorov, \({ }^{2}\) V. Sidorov, \({ }^{2}\) J.B. Singl, \({ }^{28}\) S. Staniě, \({ }^{42}\) A. Sugi, \({ }^{19}\) A. Sugiyama, \({ }^{\prime \prime}\) K. Sumisawa, \({ }^{2,2}\) T. Sumiyoshi, \({ }^{8}\) J. Suzukki, \({ }^{8}\) J.I. Suuuk;,
```



``` N. Ujiie, \({ }^{8} \mathrm{Y}\). Unno, \({ }^{3}\) S. Uno, \({ }^{8}\) Y. Ustirioda, \({ }^{16}\) Y. Usov, \({ }^{2}\) S. E. Vahsen, \({ }^{29}\) C. Varrer, \({ }^{7}\) K. E. Varvell, \({ }^{13}\) C. C. Wang, \({ }^{23}\)
```



``` A. Yamaguchi, \({ }^{36}\) H. Yamaguchi, \({ }^{8}\) H. Yamamote, \({ }^{7}\) T. Yananakaka, \({ }^{27}\) H. Yammanka \({ }^{8}\) Y. Yamaoka, \({ }^{8}\) Y. Yamashitata \({ }^{24}\) M. Yamauchi, \({ }^{8}\) S. Yanaka, \({ }^{38}\) M. Yokoyama \({ }^{37}\) K. Yossida, \({ }^{19}\) Y. Yusa, \({ }^{36}\) H. Yuta, \({ }^{1}\) C.C. Zhang, \({ }^{11}\) H. W. Zhao, \({ }^{8}\)
\begin{tabular}{|c|}
\hline \multirow[t]{13}{*}{\begin{tabular}{l}
\({ }^{1}\) Aomori I/niversity. Aomori \\
\({ }^{2}\) Budker Instume of Nuclear Physics, Novosibirsk \\
\({ }^{\text {Chiba Universigy, Chiha }}\) \\
\({ }^{5}\) University of Cincinnat, Cincimasi, Ohio \\
\({ }^{6}\) Gyeongsang National Universiry, Chinju \\
'University of Hawail, Honolula, Hawaii \\
\({ }^{8}\) High Encrgy Accelerator Research Organization (KEK), Tsiikuba \\
\({ }^{9}\) Hiroshima Institute of Technology, Hiroshima \\
\({ }^{13}\) Institute for Cosmic Ray Research, University of Tokyo, Tokyo \\
\({ }^{1}\) Institute of High Energy Physics, Chinese Academy of Sciences, Bei, \\
Institute for Theoretical and Experimental Physics, Moscow \\
\({ }^{3}\) Kanagawa University, Yokohama \\
\({ }^{14}\) Korea University Seout \\
\({ }^{15}\) H. Niewodniczanski Institute of Nuclear Physics, Krakow \\
\({ }^{16}\) Kyoto University. Kyoto \\
me, Victoria
\end{tabular}} \\
\hline \\
\hline
\end{tabular}
9 MARCH 2001
``` -


Nany nations

27 Osaka University, osaka

*S Sosaga University, Suga

TThooku Gakkin University, Tagajo

sh Yonse Dhiversit, Stemil
(Received 9 February 2001)
We present a measurement of the standard model \(C P\) violation paramereer sin2 \(\phi\), (also known a.s

DOI: 10.1003 Phy:Revict. 86.2509

18 - CP asymmetry in \(B\) decay 25 - B decay non-CP

8 - charm hadrons

Physics topics overlap in many analyses, e.g., discovery of new charmonium states in \(B\) decays.

2 - tau

CP and related
- time-dependent CP measurements update of \(\mathrm{J} / \square \mathrm{K}_{s}\left(\square_{1}\right)\) with \(J / \square \pi^{0}\left(\sim \square_{1}\right), D^{*} \pi^{-}\left(2 \square_{1}+\square_{3}\right), ~ \square K_{s}\left(\square_{1}\right)\)
- evidence/observation
\[
\text { B-> }\left.\left.K^{\star}\right|^{+}\right|^{-}, \pi^{0} \pi^{0}, D^{+} D^{-}, \pi^{0} \square^{0}
\]
- new method for \(\square_{3}\) : Dalitz plot analysis
\[
D^{0} K^{+}\left\{D^{0}->K_{s} \pi^{+} \pi^{-}\right\}
\]

Charm
- new processes/ particles
new excited \(D_{s}\) states
new charmonium
first radiative: \(D^{0}->\square \square\)
- difference of CP lifetimes in D (\(y_{C P}\))
~3\% background

Kinematics for final selection: exploit
- exclusive pair production of \(B\)
- narrow resolution of collision energy
\(\square E=E_{\text {cand }}^{\star} E^{\star}{ }_{\text {beam }}=0\left(E_{\text {beam }}^{\star}=s^{1 / 2} / 2\right)\)
[~10-50 MeV, depending on mode
\(M_{b c}\) (Beam-constrained mass)

\[
M_{b c}=\left(E^{\star}{ }_{\text {beam }}{ }^{2}-p^{*}{ }_{\text {cand }}{ }^{2}\right)^{1 / 2}
\]

\section*{Time dependent measurements:}
\(\sin 2 \square_{1}:\{c h a r m o n i u m\}+K_{s} \operatorname{tag}(C P=-1)\)
BELLE-CONF-0353
Fully reconstructed

\begin{tabular}{lrr}
\hline Mode & \(N_{\text {ev }}\) & \multicolumn{1}{c}{ Purity } \\
\hline\(J / \psi\left(\ell^{+} \ell^{-}\right) K_{S}^{0}\left(\pi^{+} \pi^{-}\right)\) & 1997 & \(0.976 \pm 0.001\) \\
\(J / \psi\left(\ell^{+} \ell^{-}\right) K_{S}^{0}\left(\pi^{0} \pi^{0}\right)\) & 288 & \(0.82 \pm 0.02\) \\
\(\psi(2 S)\left(\ell^{+} \ell^{-}\right) K_{S}^{0}\left(\pi^{+} \pi^{-}\right)\) & 145 & \(0.93 \pm 0.01\) \\
\(\psi(2 S)\left(J / \psi \pi^{+} \pi^{-}\right) K_{S}^{0}\left(\pi^{+} \pi^{-}\right)\) & 163 & \(0.88 \pm 0.01\) \\
\(\chi_{c 1}(J / \psi \gamma) K_{S}^{0}\left(\pi^{+} \pi^{-}\right)\) & 101 & \(0.92 \pm 0.01\) \\
\(\eta_{c}\left(K_{S}^{0} K^{-} \pi^{+}\right) K_{S}^{0}\left(\pi^{+} \pi^{-}\right)\) & 123 & \(0.72 \pm 0.03\) \\
\(\eta_{c}\left(K^{+} K^{-} \pi^{0}\right) K_{S}^{0}\left(\pi^{+} \pi^{-}\right)\) & 74 & \(0.70 \pm 0.04\) \\
\(\eta_{c}(\bar{p}) K_{S}^{0}\left(\pi^{+} \pi^{-}\right)\) & 20 & \(0.91 \pm 0.02\) \\
\hline All with \(\xi_{f}=-1\) & 2911 & \(0.933 \pm 0.002\) \\
\hline \hline\(J / \psi\left(\ell^{+} \ell^{-}\right) K^{* 0}\left(K_{S}^{0} \pi^{0}\right)\) & 174 & \(0.93 \pm 0.01\) \\
\hline & KEk, August 13, 2003
\end{tabular}

[2332 events, purity ~0.60]

\section*{Flavor tagging: all remaining_particles}

\# high-p lepton (\(p^{\star}>1.1 \mathrm{GeV}\)): b->-
\# net K charge b->K-
\# medium-p lepton, \(b->c->I^{+}\)
\# soft \(\pi b->c\left\{D^{*+}->D^{0} \pi^{+}\right\}\)
\# hard \(\pi b->\{c\} \pi^{-} X\)
* multidimensional likelihood, [P99\%
- wrong-tag fraction w classify events based on expected \(\underline{w}\) (MC) - 6 bins.

 (actual \(\underline{w}-B^{0}\) mixing amplitude in data) 敛。
- effective efficiency
\[
=[(1-2 \underline{w}): \text { net }(28.7 \pm 0.5) \%
\]

Flavor-specific \(B^{0}\) (\(B->D^{*} \mid \square\))
mixing amplitude \(\langle->\underline{w}\)

KEK, August 13, 2003
\(\left\|\|_{\square z:}\right.\) vertex reconstruction

Constrained to measured IP in \(\mathrm{r}-\mathrm{\square}\)
- \(\square_{\square+} \sim 1.43 \mathrm{ps}\) (rms)
- Overall eff. = 87\%

Validate resolution via lifetime
\(\square_{B 0}=1.551 \pm 0.018 \mathrm{ps}\)
(PDGO2: 1.542 \(\pm 0.016\))

\section*{Fitting \(\quad \dagger\) distribution}
\# use data wherever possible to validate
\# unbinned maximum likelihood fit, includes
- signal root distribution (analytic)
- wrong tag fraction (const)
flavor-specific tags -> w, mixing oscillation \(\left(\square m_{d}\right)\)
- background: right \& wrong tag (MC, parametrized)
- detector \& tagging \(\square\) z resolution
```

parametrized,evt-by-evt - params from lifetime fits,

```
 validate by measuring \(\square_{B}, ~ \square b, \square m_{d}\)
accounts for detector resolution, poorly measured tracks,
 physics (e.g. charm), approximation of \(\square t=\square z / \square \square \subset\)

Checks- separate opp CP tags, verify null signal for flavor-specific tags

BELLE-CONF-0353
KEK, August 13, 2003

\section*{Separate CP odd/even}

Raw asymmetry (all r-bins)

\(C P=-1\) sample \(\sin 2 \mathrm{D}_{1}=0.73 \pm 0.06\)
\(C P=+1\) sample (\(B^{0} \rightarrow J / \square K_{L}\)) \(\sin 2 \square_{1}=0.80 \pm 0.13\)

BELLE-CONF-0353

KEK, August 13, 2003

\section*{\(\left\|\left\|\|_{\text {Latest average from }\{c c\}}\right.\right.\)}

\(\sin 2 \square_{1}\) (Belle 2003, \(140 \mathrm{fb}^{-1}\)) \(=0.733 \pm 0.057 \pm 0.028\)
\(\sin 2 \square_{1}\left(B a B a r ~ 2002,81 \mathrm{fb}^{-1}\right)\) \(=0.741 \pm 0.067 \pm 0.033\)
\(\sin 2 \square_{1}\) (NEW World Av.)
\(=0.736 \pm 0.049\)

KEK, August 13, 2003

\section*{\(\left|\left|\left|\mid b->\{c \bar{c} d\}\right.\right.\right.\) decays: \(B->J / \square \square^{0}(C P=+1)\)}

\(S=-0.72 \pm 0.42\) (stat. only)
(expect -sin2 \(\square_{1}\) if penguin is small)

BELLE-CONF-0342
KEK, August 13, 2003

\# Yield: \(24.3 \pm 6.0\)
\# Significance: 5.0
\# Efficiency: \(7.95 \%\)
\# \(\mathrm{B}=(2.46 \pm 0.61 \pm 0.42) \times 10^{-4}\)

May be used in the future for time-dependent CP asymmetry measurements
\(\left\|\|\right.\) More time-dependent \(\sin 2 \square_{1}\) - or new physics
modes dominated by b->sqā penguins
In the absence of New Physics, \(S=\sin 2 \square_{1}\)

KEK, August 13, 2003

\section*{Time-dependence in b->s penquins:}

3rd error: due to uncertainty in \(C P\) content.
\[
(A=-0.01 \pm 0.16 \pm 0.04)
\]

BELLE-CONF-0344
\(\left[\sin 2 \square_{1}(\right.\) world average \(\left.)=0.736 \pm 0.049\right]\)
KEK, August 13, 2003

\section*{b->s penquins: search for new physics}

In the absence of New Physics, \(S=\sin 2 \square_{\text {leff }}=\sin 2 \square_{1}\)

[Current \(\sin 2 \square_{1}\) (world average) \(=0.736 \pm 0.049\)]
KEK, August 13, 2003

\section*{Feldman-Cousins treatment including systematic from CP in the background finds this value ruled out at \(99.95 \% \mathrm{CL}\) or 3.5 [}
\(\|\|\) systematic uncertainties
\begin{tabular}{|l|c|c|}
\hline & \(S\) & \(A\) \\
\hline Fitting near \(|S|=1\) & +0.06 & - \\
\hline backgnd \(K^{+}+K^{-} K_{s}, f 0(980) K_{s}\) & -0.00 & +0.00 \\
\hline 0.08 & \(\pm 0.04\) \\
\hline background fraction-other & \(\pm 0.05\) & \(\pm 0.04\) \\
\hline Vertex algorithm & \(\pm 0.02\) & \(\pm 0.05\) \\
\hline Total & +0.09 & \(\pm 0.07\) \\
\hline
\end{tabular}

Correlation between \(A\) and \(S ? A=-0.15 \pm 0.29 \pm 0.07\)
If \(A\) is fixed to zero, \(S=-0.99 \pm 0.50\)
\(\|_{\text {bugar result }} \mathrm{K}_{\mathrm{c}}\)
(\(A=0.38 \pm 0.37 \pm 0.12\))

\(\sin 2 \square_{\text {leff }}=+0.45 \pm 0.43 \pm 0.07\)
> \(81 \mathrm{fb}^{-1}: \sin 2 \square_{\text {leff }}=-0.18 \pm 0.51 \pm 0.09\) ,
> \(110 \mathrm{fb}^{-1}: \sin 2 \square_{\text {leff }}=+0.45 \pm 0.43 \pm 0.07\)

Data size increased and was reprocessed. Extensive checks with data and Toy MC. The large change is attributed to a 1 statistical fluctuation.
\begin{tabular}{lrr}
\hline Systematic uncertainty due to & \(S\) & \(C\) \\
\hline Fit bias & 0.04 & 0.05 \\
Event yield & 0.01 & 0.05 \\
Parametrization of \(\Delta t\) resolution & 0.03 & 0.02 \\
Background composition \(/ C P\) asymmetry & 0.03 & 0.05 \\
\(m_{E S}\) background parameterization & 0.02 & 0.05 \\
Uncertainties in the SVT alignment & 0.01 & 0.01 \\
Beamspot position & 0.01 & 0.01 \\
PDFs for the event yield in signal and background & 0.004 & 0.04 \\
Potential S-wave contamination & 0.002 & 0.015 \\
\(B^{0} / \overline{B^{0}}\) efficiency difference & 0.002 & 0.02 \\
Doubly-Cabibbo-suppressed decays & 0.009 & 0.027 \\
\hline Total & 0.07 & 0.12 \\
\hline \hline
\end{tabular}

Ill observation of \(8.0 . \pi m_{n} 0\)
Gronau, London PRL 65, 3381 (1990): isospin analysis of \(B->\pi \pi\) to obtain \(\square_{2}\) without time-dependence \(\pi^{0} \pi^{0}\) is most difficult step.

KEK, August 13, 2003
||I Charm: observation of new charmonium state

\section*{Observation of first radiative D decay}

\[
\mathrm{D}^{0} \rightarrow \mathrm{P}\left(\mathrm{D}^{->K^{+}} \mathrm{K}^{-}\right)
\]
- large bg from \(D^{0}->\square \pi^{0}\) (also first observation) distinguish by [--VKK helicity angle distribution
\[
B=\left[2.60_{-0.61-0.17}^{+0.70+0.15}\right] \times 10^{-5}
\]

BELLE-CONF-0346

\section*{Summary}

Belle in August 2003:
- KEKB \(L=1.06 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}<-\) @design! \(\left(1 \times 10^{34} \mathrm{~cm}^{-2} s^{-1}\right)\)
- 152M B pairs: \(\sin 2 \square_{1}\) has become a "precision" measurement
- first results on alternative probes of \(\sin 2 \square_{1}\) (or new physics!) \(B->J / \square \pi^{0}\) - penguin may be small (need more data) surprise deviation in \(B->\square K_{s}-3.5 \square\) - hints of new physics? consistency with SM in other b->sss
- developing sensitivity to \(\square_{2}, \square_{3}\)
- observations/hints in many modes, possibly CP in future
- large charm sample - new states, modes, searches for NP

Next
- \(500 \mathrm{fb}^{-1}\) by 2005
- Luminosity >@ design
- the CP challenge: just getting started - stay tuned!```

