

CKM: matrix of W-quark couplings -3×3, unitary
One condition of unitarity:

Represented in
complex plane as
"unitarity triangle"

2 paths, each w/wo mixing:

mixing+ "

$$
\square \mathrm{V}_{\mathrm{tb}}^{* 2} \mathrm{~V}_{\mathrm{td}}{ }^{2} \mathrm{~V}_{\mathrm{tb}} \mathrm{~V}_{\mathrm{td}}^{*} \quad q=\binom{+1 \text { if } B_{t=0}=B^{0}}{- \text { if } B_{t=0}=\bar{B}^{0}}
$$

Bottom line: CP-asymmetric time-dependent rate from x-terms

$$
\frac{d N}{d t}\left(B \rightarrow f_{C P}\right)=\frac{1}{2} \Gamma e^{-\Gamma \Delta t}\left(1+q \cdot\left[\mathcal{A}_{\pi \pi} \cos (\Delta m \Delta t)+\mathcal{S}_{\pi \pi} \sin (\Delta m \Delta t)\right]\right)
$$

Uncertainty: relative amplitudes of Tree, Penguin

- if T dominates,
- if P, T comparable, Direct CP violation

$$
\begin{array}{ll}
A_{\pi \pi}=0, S_{\pi \pi}=\sin 2 \square_{2} & b \\
A_{\pi \pi} \neq 0, S_{\pi \pi} \sim \sin \left(2 \square_{2}+2 \square\right) \cdot 2 /\left(\left|\left.\right|_{1}\right|^{2}+1\right) \\
& \begin{array}{ll}
\text { difference of } \\
& \neq 1 \text { if direct } C P \\
\text { strong phase } & \text { violation }
\end{array}
\end{array}
$$

Previous Belle result \{PRL 89, 071801 (2002) ($42 \mathrm{fb}^{-1} \sim 45 \mathrm{M}$ B pairs)

$$
\begin{array}{r}
S_{\pi \pi}=-1.21+0.38+0.16 \\
-0.27-0.13 \\
A_{\pi \pi}=+0.94+0.25+0.09 \\
-0.31-0.09
\end{array}
$$

Each 2.9 f from zero: note physical region is

$$
\sqrt{S_{\pi}^{2}+A_{\pi \pi}^{2}} \leq 1
$$

Now:

- more data - $78 \mathrm{fb}^{-1}$
- improved analysis - tracking.

It resolution, event selection

- statistical analysis
(total $126 \mathrm{fb}^{-1}, \sim 1.3 \times 10^{8} \mathrm{~B}$ events)

$\square \dagger$ by asymmetric $e^{+} e^{-}->$(4S) $\{[\square=0.425\}$

$$
\begin{aligned}
& \text { first B decay } \\
& (t=0), \text { break } C P
\end{aligned}
$$

As with $\sin 2[$ via J/पK:

- reconstruct CP mode
- tag flavor
- reconstruct vertices
- unbinned max. likelihood fit to \square

Charged tracking/vertexing

- SVD: 3-layer DSSD Si μ strip
- CDC: 50 layers (He-ethane)

Hadron identification

- CDC: $\mathrm{dE} / \mathrm{dx}$
- TOF: time-of-flight
- ACC: Threshold Cerenkov (aeroge|)

Electron/photon

- ECL: CsI calorimeter

Muon/KL

- KLM: Resistive plate counter/iron

DPF, April 5, 2003

the people

Volume 86, Number 12
PHYSICAL REVIEW LETTERS
19 March 2001

Volume 86, Number 12 Physical review letters 19 MARCH 2001

Measurement of the $C P$ Violation Parameter $\sin 2 \phi_{1}$ in B_{d}^{0} Meson Decays
A. Abashhan, ${ }^{44}$ K. Abe. ${ }^{8}$ K. Abe. ${ }^{36}$ I. Adachi, ${ }^{8}$ Byoung Sup Ahn, ${ }^{14}$ H. Ailara, ${ }^{34}$ M. Akatsu, ${ }^{19}$ G. Alimonti, ${ }^{7}$ K. Aoki, ${ }^{8}$
 B. G. Cheon, ${ }^{2}$ S. S. K. Choi, ${ }^{10}$ Y. Choi, ${ }^{32}$ Y. Doi, ${ }^{8}$ J. Dragic, ${ }^{17}$ A Drutskoy, ${ }^{12}$ S. Eidelman, ${ }^{2}$ Y. Enari, ${ }^{19}$ R. Enomoto, ${ }^{8}, 10$ C. W. Everton, ${ }^{17}$ F Fang. ${ }^{7}$ H. Fujiji, ${ }^{8}$ K. Fujimoto, ${ }^{19}$ Y. Fujita, ${ }^{8}$ C. Fukunaga, ${ }^{39}$ M. Fukushima, ${ }^{19}$ A. Garmash, ${ }^{2,8}$
 K. Hara, ${ }^{27}$ T. Hara, ${ }^{27}$ T. Haruyama, N.C. Hastings, ${ }^{17}$ K. Hayashi, ${ }^{8}$ H. Hayashii, ${ }^{29}$ M. Hazumi, ${ }^{27}$ E. M. Heenan, ${ }^{17}$

 M. Iwamoto. ${ }^{3}$ H. Iwasakk ${ }^{8}$ Y. Iwasaki, ${ }^{8}$ D.J. Jackson. ${ }^{27}$ P. Jalocha, ${ }^{15}$ H.K. Jang. ${ }^{3 /}$ M. Jones. ${ }^{7}$ R. Kagan, ${ }^{1}$

 K. Koroushenko, ${ }^{29}$ P. Krckovny, ${ }^{2}$ R. Kulasiri, ${ }^{5}$ S. Kumar, ${ }^{28}{ }^{28}$ T. Kuniya, ${ }^{39}$ E. Kurihara, ${ }^{3}$ A. Kuzmin, ${ }^{2}$ Y-J. Kwon, ${ }^{45}$ M. H. Lee, ${ }^{8}$ S. H. Lcce., ${ }^{31}$ C. Leonidopoulos. ${ }^{29}$ H.-B. Li, ${ }^{11}$ R.-S. La. ${ }^{23}$ Y. Makida, ${ }^{8}$ A. Maadabe ${ }^{8}$ D. Marlow, ${ }^{3}$

J. Zhang, ${ }^{\text {² }}{ }_{1}$ Y. Zheng, ${ }^{7}$ V. Zhilich, ${ }^{2}$ and D. Żontant ${ }^{4}$

${ }^{5}$ University of Cincinnati, Cincinnait Oh

QHirostima I Institute of Technology, Hirsshima
${ }^{10}$ IIsstutut for Cosmic Ray Rescarch, University of Tokyo, Tokyo

${ }^{2}$ Nuta Women's University, Nara
many nations

31 Scoul National Lniversity,

${ }^{35}$ Thohoku Cakuin University Tagus
TTOHoku University, Senda
${ }^{3}$ University of Totyo, Tok

 in 2) ased on a
 dennificed from its charged particle decay products. From the asymmetry in the distribution of the time

W| $\|_{8 \cdot, \pi \pi^{2} \pi-\text { reconstruction }}$

final selection:
$\square E=E^{*}{ }_{\text {cand }}-E^{*}$ beam $: 0 \pm 0.057 \mathrm{GeV}\left(\mathrm{E}^{\star}\right.$ beam $=\mathrm{s}^{1 / 2 / 2)}\{\mathrm{K} \pi$ shift $-45 \mathrm{MeV}\}$
$M_{b c}=\left(E^{*} \text { beam }^{2}-p^{*} \text { cand }^{2}\right)^{1 / 2}: 5.271-5.287 \mathrm{GeV} / c^{2}$ (Beam-constrained)
... but less clean than $B^{0}->J / \square K_{s}$:

- "physics bg" $\mathrm{B}^{0}->\mathrm{K}^{+} \pi^{-} \Rightarrow$ hadron ID, kinematics
$d E / d x$, TOF, Aerogel - "positive ID" $\square_{\pi}=91 \%, \square_{k}=10 \%$
- continuum => event shape \{qq "jet-like" vs BB "spherical")

Fisher discriminant from modified Fox-Wolfram moments
B candidate direction relative to beam axis
Construct Likelihood ratio $L R=L_{B B} /\left[L_{B B}+L_{q q}\right]$, 2 selections:
$L R>0.825\left\{\square_{B B}=53 \%, \square_{q q}=5 \%\right\}$
$0.825>L R>L R_{\min }$ (cut depends on flavor tag classification)

Flavor tagging: same as for $\sin 2 \square_{1}$
\# high-p lepton (p*>1.1 GeV): b->|-

\# net K charge $b->K^{-}$
\# medium-p lepton, b->c-> ${ }^{+}$
\# soft $\pi b->C\left\{D^{*}+>D^{0} \pi^{+}\right\}$
\# hard $\pi \mathrm{b}->\{\mathrm{c}\} \pi-\mathrm{X}$

* multidimensional likelihood, [P99\%
- wrong-tag fraction w classify events based on expected \underline{w} (MC) - 6 bins.
(B^{0} mixing amplitude in data) $=>$
- effective efficiency
$=[(1-2 \underline{w})$: net $(28.8 \pm 0.5) \%$

Check for flavor bias

Look where zero asymmetry expected:

Same technique as with $\sin 2 \square_{1}$

- unbinned maximum likelihood fit
- resolution function event-by-event: tracking, misreconstruction, physics, approximation of $\square t=\square z / \square[\mathbb{C}$
- wrong tag fraction w, backgrounds

Fit for $A_{\pi \pi}, S_{\pi \pi}$:
root
$\frac{d N}{d t}\left(B \rightarrow f_{C P}\right)=\frac{1}{2} \Gamma e^{-\Gamma \Delta t}\left(1+q \cdot\left[\mathcal{A}_{\pi \pi} \cos (\Delta m \Delta t)+\mathcal{S}_{\pi \pi} \sin (\Delta m \Delta t)\right]\right)$
Diluted

$$
\frac{d N}{d t}\left(\Delta t_{\pi \pi}\right)=\frac{1}{2} \Gamma e^{-\Gamma \Delta t}\left[1 \pm\left(1-2 w_{i}\right)(S \sin (\Delta m \Delta t)+A \cos (\Delta m \Delta t))\right]
$$

$+K \pi\left(\operatorname{set} A_{k \pi}^{d t}=0\right)$

$$
\frac{d N}{d t}\left(\Delta t_{K \pi}\right)=\frac{1}{2} \Gamma e^{-\Gamma \Delta t}\left[1 \pm\left(1-2 w_{i}\right)\left(A_{K \pi} \cos (\Delta m \Delta t)\right)\right]
$$

+resolution + bg

||| Fit Results: statistical analysis

- MC ensemble - 30k expts, 760 events ea, $A_{\pi \pi}=0.569, S_{\pi \pi}=-0.822$ probability of being outside physical boundary $=60.1 \%$
" further (in [) from (0,0) $=16.6 \%$

DPF, April 5, 2003

- Feldman-Cousins frequentist approach.
- Acceptance regions from MC ensembles.
- Systematic errors included.
- Confidence Level (CL) calculated at each point.

- $S_{\pi \pi}, A_{\pi \pi}$ depend on 4 parameters:
$\square_{2}, \quad \square_{1}\left[21.3^{\circ}-25.9^{\circ}\right], \quad|P / T|[0.15-0.45], \quad \square$
-> plot confidence contours in (\square_{2}, \square)for various $|P / T|$

From other CKM (CKM fitter group, 2002): $78.3^{\circ} \leq \square_{2} \leq 121.6^{\circ}$ (95% C.L.)
=> consistent

Summary

Belle, 2000-2:

- peak $L=9.5 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ - nearly at design $\left(1 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$
- passed $100 \mathrm{fb}^{-1}$ in Oct. 2002
- with $78 \mathrm{fb}^{-1}$ on (4S), sensitive to large values of $\sin 2 \square_{2}$
- measure CP asym in $\mathrm{B}^{0}->\pi^{+} \pi^{-}$
constraints on \square_{2}, consistent with other CKM constraints.
hint of direct CP non-conservation
result submitted to PRD.
Next
- ->150 fb-1 by summer, $500 \mathrm{fb}^{-1}$ by 2005
- Luminosity >@ design
- the CP challenge: stay tuned on \square_{2}

