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Indifference-Zone Selection:

Let p;, be the [t smallest of the [;’S, SO
that ,Lbz'l S ,LL@'2 S S ,LLZ'k.

Let P(CS) denote the probability of
correct selection, i.e., design i is se-
lected.

Want P(CS) > P* provided that p;, —
i, = d*, where the minimal CS proba-
bility P* and the “indifference” amount
d* are both specified by the user.

Indifference to designs whose p; — p;, <

d*.



The Two-Stage Rinott Procedure:

Compute the first-stage sample means

ng
Xi(ng) = = Xij/mo,
and marginal sample variances

$2(ng) = =0 (X5 — Xz'(no))z.

ng — 1

The number of additional simulation
replications for each design in the sec-
ond stage is N; — ng, where

N; = max(ng, [(hSj(ng)/d*)*]), (1)

where h (depends on k, P*, and ny) is a
constant that solves Rinott’s integral.



The Two-Stage Rinott Procedure:

Overall sample means

_ N;
Xi(N;) = jngzj/Nz'-

Select the design with the smallest X;(N;)
as the best one.

Based on the least favorable configu-
rations (LFC):

,uz-l:,uilwtd* for [ =2,3,... k.

The number of replications is allocated
proportionally to the estimated sample
variances.



Statistical Analysis:

e Multiple Comparisons with a Con-
trol.

e Multiple Comparisons with the Best.

e Techniques to improve the efficiency
of R&S Procedures.



Multiple Comparison with a Control:

For [ =2,3,...,k, let

Qil:J

dil — HlED((d*, :uil o :uil)a
7. XZ _ <XZ _dil>
(2 2 N 2 N )
JUZZ/ i + i /Niy
h
o7,/ S5 (no) + o7, /S5, (no)

where N; > (h/d;)?S%(ng).

P(CS)

[V

| [V

P[Xil < XZ
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, for 1 =23,... K

P[Xil < XZZ]

[=2

PZ; < Q)]
1=
k

E<Z£2P[Zil < Qil’Sb '927 IR Sk])

E@" Q)
P*.



Multiple Comparison with a Control:

One tailed 1 — a CI half-width
wil,il — Zl—OzJ /NZZ - o /NZ

Rinott’s procedure is derived based on

J*
> Qi
J /Nzl‘|’(7 /Nz K

i.e.,

d* > Q07 /Niy + 73 /Ny,

Since the critical constant h ensures
E(@k_l(Qil)) = P*. After the constant
h is assigned a numeric value, ®(Q); ) =

(P*)l/(k_1> =1—a, thus, Q; = 21_,. We
then have the result

ES
d Z wzlall'



Multiple Comparison with a Control:

The simultaneous upper one-tailed con-
fidence intervals,

P[MZ — My € [OvXZ - Xil + d*],\V/Z] > P
Let X} = minf 1 X
Plu; — piy € [0, X; — Xp +d7] >

|
Pl — i, € 0.X; — X, +d°

P[,uz- — Uiy € [O,XZ' — Xb + d*],Vi] > P*.



Multiple Comparison with the Best:

Define the events
E:{,uz'—,uz'l<X‘—X‘ —I—d* \V/Z il},
Er = min X; mmX —d*) ", Vi),
L — {Nz pi=r /{7 ( ot ) }
Err={u;,—min w; X;:—min X,;+d")", Vi,
U {Mz j;éi'u]_<zj7£i j ) }

) Ep = {pi — minjz p; €
[(X; — minjz; X; — d*)7, (X; — minjz X; + d*) "], Vi}.

(z)” = min(0, z) and (2)" = max(0, z).

Edwards and Hsu (1983) show that if
P|F] > P*and F C E;NE};, then P Ep| >
P*.

These MCB Cls are the same as those
established in Nelson and Matejcik (1995).



The Adjusted ETSS Procedure:

e Under the LFC p; — p;, = d* > wy,
\4) # il, and

P[Xz _XZj > [ — My _d*] > (P*)l/(k_D‘
e ETSS attempts to obtain u; — Hiy =

CZZ' Z wiil and

PIX; — X, > p; — iy — di) > (PF)Y/ L),

11 —
o If 11; — p;, > d*, then
pi — piy — d* > pi — gy — d; = 0.

o Let Xb(no) — minle Xz(n()) and U(Xb(no))
be the one-tailed upper P* confidence
limit of ;.

e Let

d; = max(d", X;(ng) — U(Xy(np))).
ekor:=1,2 ...k, let
N; = max(ny, [(hSi(ng)/d;)*1).  (2)
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The Adjusted ETSS Procedure:

The simultaneous upper one-tailed con-
fidence intervals,

The simultaneous MCB Cls,

- Plyy—mingyp e
[max;ji(Xi — Xj — wij)™, maxj(X; — X+ wi )], Vi)
> P*.

If we replace w; ; by max(d;,d;), these
CIs will still hold since w; ; < max(d;, d;).
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Using CRNs:

P(CS)

P[Xil < XZ
k
z

k
II

, for 1 =23,... K
P[Xil < XZZ]

[V

[=2

[V

PZ; < Q)]
1=
k

E( £2P[ZZZ < Qil’Sb '927 IR Sk])

[

k

The first inequality no longer holds when
CRNs are used.
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Using CRNs:

e By the Bonferront inequality
P(CS) = P[X;, < X;, for 1 =2,3,... K

I _ _
> 1 - l§2(1 _ P[X’Ll < XZZD

e If we find the constant / so that
_ _ 1— P*
P[)Q1 <X7;l] ZP:(l— 1 ),
then P(CS) > P*.
e CRNs can be used to increase P[)_(Z-l <

X;] and P(CS) without any further
assumptions.

e For example, if £ = 10 and P* = 0.95,
use

1 — P*
(1-- 1)16—1:0.951097

to find the constant h.

e If / is obtained with £ = 10 and P* =
0.95, we state that P(CS) > 0.948852,
ie., 1 — (k—1)(1 — (PY/ k=1,
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Proposition:

Perform all pairwise comparisons to elim-
inate inferior designs.

Let
P=1—(1=P9/(k=1)
and
wij = tpy_1,Si(r)2/r + S;(r)2/r.
If

X’i > X] + Wi,
then we don’t reject the null hypothe-
sis that u; > u; at confidence level P.

Probability of incorrectly eliminate de-
sign 71 is no more than 1 — P.

Sequentialize the selection procedure
to avoid relying heavily on the first-
stage information.
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The Sequentialized ETSS Procedure:

1. Initialize the set I to include all k de-
signs. Simulate r = ng replications or
batches for each design i € I. Set the
iteration number j = 0, and N;; =
NQ,j — ... = Nk,j = 1), where Ni,j is
the sample size allocated for design
i at the ;' iteration. Let X; ; denote
the sample mean of design : at the

9 th jteration.

2. Let Xb,j — minielXZ-’j. For all 2 € I,
Compute dAZJ — max(d*, XZJ — U(ijj)),
where U(X} ;) is the upper one-tailed

P* confidence limit of yy at the ;"
iteration, and compute

i1 = [((BSi(r)/d; j)” — ).

3.S5et 7 = 7 +1 and the incremental
sample size at the j iteration 0j =
mine 1{d; j10; j > 0}.
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If ¢ # b and 9; ; = 0, delete design i
from 1.

. Perform all pairwise comparisons and
delete inferior design i from /.

. For all 7 € I, simulate additional ¢,
samples and set r = r + 0,. If there
is more than one element in /, go to
step 2.

. Return the values b and X}, where
Xb — minX,;, 1 <i<k and i was not
eliminated by all pairwise compar-
isons.
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Experimental Results:

Increasing mean with equal variances.
Xi; ~N(i,6%), i=1,2,...,10.

LFC with equal variances. X1; ~ N (0,6°)
Xi; ~N(1,6%), i=2,3,...,10.

The indifference amount d* is set to 1.0.
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Table 1: P(CS) for Experiment 1

P* =0.90 P* =0.95
ng 20 30 20 30
P(CS) 0.9866 0.9868 0.9956 0.9939
PSC  0.9390 0.9355 0.9674 0.9677
PC2 1.0000 1.0000 1.0000 1.0000
PC3 0.9886 0.9896 0.9941 0.9954
PC4 0.9912 0.9901 0.9953 0.9951
PC5 0.9886 0.9880 0.9942 0.9950
PC6 0.9892 0.9892 0.9957 0.9949
PC7 0.9912 0.9883 0.9931 0.9958
PC8 0.9876 0.9904 0.9948 0.9947
PC9 0.9886 0.9882 0.9945 0.9935
PC10 0.9899 0.9872 0.9948 0.9948

PSC is the percentage of the simulta-
neous Cls contain the true value.

PCl = P[,u@'l — My € [O’Xil — Xb + d*“, for
1=2.3.... k.
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Table 2: P(CS) for Experiment 2

P* =0.90 P* =0.95
ng 20 30 20 30
P(CS) 0.9866 0.9868 0.9956 0.9939
PP2 0.9866 0.9868 0.9956 0.9939
PP3  1.0000 1.0000 1.0000 1.0000
PP4 1.0000 1.0000 1.0000 1.0000
PP5 1.0000 1.0000 1.0000 1.0000
PP6 1.0000 1.0000 1.0000 1.0000
PP7 1.0000 1.0000 1.0000 1.0000
PP8 1.0000 1.0000 1.0000 1.0000
PP9 1.0000 1.0000 1.0000 1.0000
PP10 1.0000 1.0000 1.0000 1.0000

PPl =P[X; > X;], for [ =2,3,... k.
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Table 3: P(CS) and Sample Sizes for Experiment 3

P*=10.90

P*=10.95

Procedure P(CS)

T

P(CS)

T

Rinott(20) 0.9326
ETSS(20) 0.6834
ETSS,(20) 0.8735
SARS(20) 0.9529
SAMC(20) 0.9363

4259
1820
3347
3840
2731

0.9650
0.7318
0.9346
0.9800
0.9705

5412
2317
4640
5165
3820

Rinott(30) 0.9320
ETSS(30) 0.7662
ETSS,(30) 0.8976
SARS(30) 0.9475
SAMC(30) 0.9338

4057
2013
3326
3655
2730

0.9655
0.8029
0.9530
0.9773
0.9742

5120
2516
4520
4872
3705

ETSS is the Enhanced Two-Stage Se-

lection Procedure.

ETSS, is the adjusted ETSS.
SARS is the sequentialized ET'SS.
SAMC is SARS with multiple compar-

i1Isons.
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Conclusions:

e MCC and MCB ClIs can be constructed
by the outcomes of indifference-zone
selection procedures.

e The CI half-with constructed by Rinott’s
procedure is d*.

e The CI half-with constructed by ETSS
and its variants is max(d;, d;).

e The tight CI half-with obtained by
Rinott’s procedure comes at a cost.

e Improve the efficiency by taking into
account sample means.

e The sequentialized ETSS improve both
efficiency and P(CS).

e Using CRNs can improve P(CS).
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