INFERENCES FROM INDIFFERENCE-ZONE SELECTION PROCEDURES

by

E. Jack Chen and W. David Kelton BASF Corporation University of Cincinnati

Outline:

- Introduction
- Statistical Analysis
- Experimental Results
- Conclusions

Indifference-Zone Selection:

Let μ_{i_l} be the l^{th} smallest of the μ_i 's, so that $\mu_{i_1} \leq \mu_{i_2} \leq \ldots \leq \mu_{i_k}$.

Let P(CS) denote the probability of correct selection, i.e., design i_1 is selected.

Want $P(CS) \ge P^*$ provided that $\mu_{i_2} - \mu_{i_1} \ge d^*$, where the minimal CS probability P^* and the "indifference" amount d^* are both specified by the user.

Indifference to designs whose $\mu_i - \mu_{i_1} < d^*$.

The Two-Stage Rinott Procedure:

Compute the first-stage sample means

$$\bar{X}_i(n_0) = \sum_{j=1}^{n_0} X_{ij}/n_0,$$

and marginal sample variances

$$S_i^2(n_0) = \frac{\sum_{j=1}^{n_0} (X_{ij} - \bar{X}_i(n_0))^2}{n_0 - 1}.$$

The number of additional simulation replications for each design in the second stage is $N_i - n_0$, where

$$N_i = \max(n_0, \lceil (hS_i(n_0)/d^*)^2 \rceil), \qquad (1)$$

where h (depends on k, P^* , and n_0) is a constant that solves Rinott's integral.

The Two-Stage Rinott Procedure:

Overall sample means

$$\bar{X}_i(N_i) = \sum_{j=1}^{N_i} X_{ij}/N_i.$$

Select the design with the smallest $\bar{X}_i(N_i)$ as the best one.

Based on the *least favorable configu*rations (LFC):

$$\mu_{i_l} = \mu_{i_1} + d^* \text{ for } l = 2, 3, \dots, k.$$

The number of replications is allocated proportionally to the estimated sample variances.

Statistical Analysis:

- Multiple Comparisons with a Control.
- Multiple Comparisons with the Best.
- Techniques to improve the efficiency of R&S Procedures.

Multiple Comparison with a Control:

For
$$l = 2, 3, ..., k$$
, let
$$d_{i_l} = \max(d^*, \mu_{i_l} - \mu_{i_1}),$$

$$Z_{i_l} = \frac{\bar{X}_{i_1} - (\bar{X}_{i_l} - d_{i_l})}{\sqrt{\sigma_{i_l}^2/N_{i_l} + \sigma_{i_1}^2/N_{i_1}}},$$

$$Q_{i_l} = \frac{h}{\sqrt{\sigma_{i_l}^2/S_{i_l}^2(n_0) + \sigma_{i_1}^2/S_{i_1}^2(n_0)}},$$
where $N_i > (h/d_i)^2 S_i^2(n_0)$.

where $N_i \ge (h/d_i)^2 S_i^2(n_0)$.

$$\mathbf{P(CS)} = \mathbf{P}[\bar{X}_{i_1} < \bar{X}_{i_l}, \text{ for } l = 2, 3, ..., k] \\
\geq \prod_{l=2}^{k} \mathbf{P}[\bar{X}_{i_1} < \bar{X}_{i_l}] \\
\geq \prod_{l=2}^{k} \mathbf{P}[Z_{i_l} < Q_{i_l}] \\
= E(\prod_{l=2}^{k} \mathbf{P}[Z_{i_l} < Q_{i_l} | S_1, S_2, ..., S_k]) \\
= E(\Phi^{k-1}(Q_{i_l})) \\
= P^*.$$

Multiple Comparison with a Control:

One tailed $1 - \alpha$ CI half-width

$$w_{i_l,i_1} = z_{1-\alpha} \sqrt{\sigma_{i_l}^2/N_{i_l} + \sigma_{i_1}^2/N_{i_1}}.$$

Rinott's procedure is derived based on

$$\frac{d^*}{\sqrt{\sigma_{i_l}^2/N_{i_l} + \sigma_{i_1}^2/N_{i_1}}} \ge Q_{i_l},$$

i.e.,

$$d^* \ge Q_{i_l} \sqrt{\sigma_{i_l}^2 / N_{i_l} + \sigma_{i_1}^2 / N_{i_1}}.$$

Since the critical constant h ensures $E(\Phi^{k-1}(Q_{i_l})) = P^*$. After the constant h is assigned a numeric value, $\Phi(Q_{i_l}) = (P^*)^{1/(k-1)} = 1 - \alpha$, thus, $Q_{i_l} = z_{1-\alpha}$. We then have the result

$$d^* \ge w_{i_l, i_1}.$$

Multiple Comparison with a Control:

The simultaneous upper one-tailed confidence intervals,

$$\mathbf{P}[\mu_i - \mu_{i_1} \in [0, \bar{X}_i - \bar{X}_{i_1} + d^*], \forall i] \ge P^*.$$

Let
$$\bar{X}_b = \min_{i=1}^k \bar{X}_i$$
.

$$\mathbf{P}[\mu_i - \mu_{i_1} \in [0, \bar{X}_i - \bar{X}_b + d^*]] \ge \mathbf{P}[\mu_i - \mu_{i_1} \in [0, \bar{X}_i - \bar{X}_{i_1} + d^*]].$$

$$\mathbf{P}[\mu_i - \mu_{i_1} \in [0, \bar{X}_i - \bar{X}_b + d^*], \forall i] \ge P^*.$$

Multiple Comparison with the Best:

Define the events

$$E = \{ \mu_{i} - \mu_{i_{1}} \leq \bar{X}_{i} - \bar{X}_{i_{1}} + d^{*}, \forall i \neq i_{1} \},$$

$$E_{L} = \{ \mu_{i} - \min_{j \neq i} \mu_{j} \geq (\bar{X}_{i} - \min_{j \neq i} \bar{X}_{j} - d^{*})^{-}, \forall i \},$$

$$E_{U} = \{ \mu_{i} - \min_{j \neq i} \mu_{j} \leq (\bar{X}_{i} - \min_{j \neq i} \bar{X}_{j} + d^{*})^{+}, \forall i \},$$

$$E_{T} = \{ \mu_{i} - \min_{j \neq i} \mu_{j} \in$$

$$[(\bar{X}_{i} - \min_{j \neq i} \bar{X}_{j} - d^{*})^{-}, (\bar{X}_{i} - \min_{j \neq i} \bar{X}_{j} + d^{*})^{+}], \forall i \}.$$

$$(z)^- = \min(0, z)$$
 and $(z)^+ = \max(0, z)$.

Edwards and Hsu (1983) show that if $P[E] \ge P^*$ and $E \subset E_L \cap E_U$, then $P[E_T] \ge P^*$.

These MCB CIs are the same as those established in Nelson and Matejcik (1995).

The Adjusted ETSS Procedure:

• Under the LFC $\mu_i - \mu_{i_1} = d^* \geq w_{ii_1}$ $\forall i \neq i_1$, and

$$\mathbf{P}[\bar{X}_i - \bar{X}_{i_1} \ge \mu_i - \mu_{i_1} - d^*] \ge (P^*)^{1/(k-1)}.$$

• ETSS attempts to obtain $\mu_i - \mu_{i_1} = d_i \ge w_{ii_1}$ and

$$\mathbf{P}[\bar{X}_i - \bar{X}_{i_1} \ge \mu_i - \mu_{i_1} - d_i] \ge (P^*)^{1/(k-1)}.$$

- If $\mu_i \mu_{i_1} > d^*$, then $\mu_i \mu_{i_1} d^* > \mu_i \mu_{i_1} d_i = 0.$
- Let $\bar{X}_b(n_0) = \min_{i=1}^k \bar{X}_i(n_0)$ and $U(\bar{X}_b(n_0))$ be the one-tailed upper P^* confidence limit of μ_b .
- Let

$$\hat{d}_i = \max(d^*, \bar{X}_i(n_0) - U(\bar{X}_b(n_0))).$$

• For i = 1, 2, ..., k, let $N_i = \max(n_0, \lceil (hS_i(n_0)/\hat{d}_i)^2 \rceil). \tag{2}$

The Adjusted ETSS Procedure:

The simultaneous upper one-tailed confidence intervals,

$$\mathbf{P}[\mu_i - \mu_{i_1} \in [0, \max_{j \neq i} (\bar{X}_i - \bar{X}_j + w_{i,j})^+], \forall i] \ge P^*.$$

The simultaneous MCB CIs,

$$\mathbf{P}[\mu_{i} - \min_{j \neq i} \mu_{j} \in [\max_{j \neq i} (\bar{X}_{i} - \bar{X}_{j} - w_{i,j})^{-}, \max_{j \neq i} (\bar{X}_{i} - \bar{X}_{j} + w_{i,j})^{+}], \forall i]$$

$$\geq P^{*}.$$

If we replace $w_{i,j}$ by $\max(d_i, d_j)$, these CIs will still hold since $w_{i,j} \leq \max(d_i, d_j)$.

Using CRNs:

$$\mathbf{P(CS)} = \mathbf{P}[\bar{X}_{i_1} < \bar{X}_{i_l}, \text{ for } l = 2, 3, ..., k] \\
\geq \prod_{l=2}^{k} \mathbf{P}[\bar{X}_{i_1} < \bar{X}_{i_l}] \\
\geq \prod_{l=2}^{k} \mathbf{P}[Z_{i_l} < Q_{i_l}] \\
= E(\prod_{l=2}^{k} \mathbf{P}[Z_{i_l} < Q_{i_l} | S_1, S_2, ..., S_k]) \\
= E(\prod_{l=2}^{k} \Phi(Q_{i_l})) \\
= E(\Phi^{k-1}(Q_{i_l})) \\
= P^*.$$

The first inequality no longer holds when CRNs are used.

Using CRNs:

• By the *Bonferroni* inequality

$$\mathbf{P(CS)} = \mathbf{P}[\bar{X}_{i_1} < \bar{X}_{i_l}, \text{ for } l = 2, 3, \dots, k]$$

$$\geq 1 - \sum_{l=2}^{k} (1 - \mathbf{P}[\bar{X}_{i_1} < \bar{X}_{i_l}]).$$

• If we find the constant h so that

$$\mathbf{P}[\bar{X}_{i_1} < \bar{X}_{i_l}] \ge P = (1 - \frac{1 - P^*}{k - 1}),$$

then $\mathbf{P(CS)} \ge P^*.$

- CRNs can be used to increase $P[\bar{X}_{i_1} < \bar{X}_{i_l}]$ and P(CS) without any further assumptions.
- For example, if k = 10 and $P^* = 0.95$, use

$$(1 - \frac{1 - P^*}{k - 1})^{k - 1} = 0.951097$$

to find the constant h.

• If h is obtained with k = 10 and $P^* = 0.95$, we state that $P(CS) \ge 0.948852$, i.e., $1 - (k-1)(1 - (P^*)^{1/(k-1)})$.

Proposition:

Perform all pairwise comparisons to eliminate inferior designs.

Let

$$P = 1 - (1 - P^*)/(k - 1)$$

and

$$w_{ij} = t_{P,r-1} \sqrt{S_i(r)^2/r + S_j(r)^2/r}.$$

If

$$\bar{X}_i > \bar{X}_j + w_{ij},$$

then we don't reject the null hypothesis that $\mu_i > \mu_j$ at confidence level P.

Probability of incorrectly eliminate design i_1 is no more than 1 - P.

Sequentialize the selection procedure to avoid relying heavily on the firststage information.

The Sequentialized ETSS Procedure:

- 1. Initialize the set I to include all k designs. Simulate $r = n_0$ replications or batches for each design $i \in I$. Set the iteration number j = 0, and $N_{1,j} = N_{2,j} = \ldots = N_{k,j} = n_0$, where $N_{i,j}$ is the sample size allocated for design i at the j^{th} iteration. Let $\bar{X}_{i,j}$ denote the sample mean of design i at the j^{th} iteration.
- 2. Let $\bar{X}_{b,j} = \min_{i \in I} \bar{X}_{i,j}$. For all $i \in I$, compute $\hat{d}_{i,j} = \max(d^*, \bar{X}_{i,j} U(\bar{X}_{b,j}))$, where $U(\bar{X}_{b,j})$ is the upper one-tailed P^* confidence limit of μ_b at the j^{th} iteration, and compute

$$\delta_{i,j+1} = \lceil ((hS_i(r))/\hat{d}_{i,j})^2 - r)^+ \rceil.$$

3. Set j = j + 1 and the incremental sample size at the j^{th} iteration $\delta_j = \min_{i \in I} \{\delta_{i,j} | \delta_{i,j} > 0\}$.

- 4. If $i \neq b$ and $\delta_{i,j} = 0$, delete design i from I.
- 5. Perform all pairwise comparisons and delete inferior design i from I.
- 6. For all $i \in I$, simulate additional δ_j samples and set $r = r + \delta_j$. If there is more than one element in I, go to step 2.
- 7. Return the values b and \bar{X}_b , where $\bar{X}_b = \min \bar{X}_i$, $1 \le i \le k$ and i was not eliminated by all pairwise comparisons.

Experimental Results:

Increasing mean with equal variances. $X_{ij} \sim \mathcal{N}(i, 6^2), i = 1, 2, ..., 10.$

LFC with equal variances. $X_{1j} \sim \mathcal{N}(0, 6^2)$ $X_{ij} \sim \mathcal{N}(1, 6^2), i = 2, 3, ..., 10.$

The indifference amount d^* is set to 1.0.

Table 1: $\hat{P}(CS)$ for Experiment 1

	$P^* = 0.90$		$P^* = 0.95$		
n_0	20	30	20	30	
$\hat{P}(\mathbf{CS})$	0.9866	0.9868	0.9956	0.9939	
PSC	0.9390	0.9355	0.9674	0.9677	
PC2	1.0000	1.0000	1.0000	1.0000	
PC3	0.9886	0.9896	0.9941	0.9954	
PC4	0.9912	0.9901	0.9953	0.9951	
PC5	0.9886	0.9880	0.9942	0.9950	
PC6	0.9892	0.9892	0.9957	0.9949	
PC7	0.9912	0.9883	0.9931	0.9958	
PC8	0.9876	0.9904	0.9948	0.9947	
PC9	0.9886	0.9882	0.9945	0.9935	
PC10	0.9899	0.9872	0.9948	0.9948	

PSC is the percentage of the simultaneous CIs contain the true value.

$$\mathbf{PC}l = \mathbf{P}[\mu_{i_l} - \mu_{i_1} \in [0, \bar{X}_{i_l} - \bar{X}_b + d^*]], \text{ for } l = 2, 3, \dots, k.$$

Table 2: $\hat{P}(CS)$ for Experiment 2

	$P^* = 0.90$		$P^* = 0.95$	
n_0	20	30	20	30
$\hat{P}(\mathbf{CS})$	0.9866	0.9868	0.9956	0.9939
PP2	0.9866	0.9868	0.9956	0.9939
PP3	1.0000	1.0000	1.0000	1.0000
PP4	1.0000	1.0000	1.0000	1.0000
PP5	1.0000	1.0000	1.0000	1.0000
PP6	1.0000	1.0000	1.0000	1.0000
PP7	1.0000	1.0000	1.0000	1.0000
PP8	1.0000	1.0000	1.0000	1.0000
PP9	1.0000	1.0000	1.0000	1.0000
PP10	1.0000	1.0000	1.0000	1.0000

$$\mathbf{PP}l = \mathbf{P}[\bar{X}_{i_l} > \bar{X}_{i_1}], \text{ for } l = 2, 3, \dots, k.$$

Table 3: $\hat{P}(CS)$ and Sample Sizes for Experiment 3

	$P^* = 0.$	90	$P^* = 0.95$	
Procedure	$\hat{P}(CS)$	\overline{T}	$\hat{P}(\mathbf{CS})$	\overline{T}
$\overline{ ext{Rinott(20)}}$	0.9326 4	259	0.9650	5412
${ m ETSS}(20)$	0.6834 1	820	0.7318	2317
$\mathbf{ETSS}_{a}(20)$	$0.8735 \ 3$	347	0.9346	4640
$\mathrm{SARS}(20)$	$0.9529 \ 3$	840	0.9800	5165
$\mathrm{SAMC}(20)$	0.9363 2	731	0.9705	3820
$\overline{\mathrm{Rinott}(30)}$	$0.9320 \ 4$	057	0.9655	5120
$\mathrm{ETSS}(30)$	0.7662 2	013	0.8029	2516
$\mathbf{ETSS}_a(30)$	0.8976 3	326	0.9530	4520
$\mathrm{SARS}(30)$	$0.9475 \ 3$	655	0.9773	4872
SAMC(30)	0.9338 2	730	0.9742	3705

ETSS is the Enhanced Two-Stage Selection Procedure.

 $ETSS_a$ is the adjusted ETSS.

SARS is the sequentialized ETSS.

SAMC is SARS with multiple comparisons.

Conclusions:

- MCC and MCB CIs can be constructed by the outcomes of indifference-zone selection procedures.
- The CI half-with constructed by Rinott's procedure is d^* .
- The CI half-with constructed by ETSS and its variants is $\max(d_i, d_j)$.
- The tight CI half-with obtained by Rinott's procedure comes at a cost.
- Improve the efficiency by taking into account sample means.
- The sequentialized ETSS improve both efficiency and P(CS).
- Using CRNs can improve P(CS).