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Abstract
• You have some simulation models – how 

should you use, experiment with them?
• Introduce ideas, issues, challenges solutions, 

opportunities
• Careful up-front planning of  experiments 

saves time, effort in the end
– And gets you better, more results
– Efficient estimates of effects of inputs on outputs

• Discuss traditional experimental design in 
simulation context, and broader issues of 
planning simulation experiments
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Introduction
• Real meat of simulation project – running 

model(s), understanding results
• Need to plan ahead before doing runs

– Just trying different models, model configurations 
haphazardly is inefficient way to learn

– Careful planning of runs
• Improves efficiency

– Both computational and statistical
» Really just two sides of the same coin

• Suggests further experimentation



4

x Y

Introduction (cont’d.)

• Experimental design traditionally refers to physical 
experiments
– Origins in agriculture, laboratory experiments

• Can recycle most such traditional methods into 
simulation experiments
– Will discuss some of this

• Also discuss different situation in simulation, both 
broader and more specific
– Overall purpose, what the outputs are, random-number 

use, effects of input changes on output, optimum-seeking
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Introduction (cont’d.)

• Example questions in simulation experiment
– What model configurations, versions to run?

• What are the input factors?
• How should they be varied?
• Use the same or different random numbers across 

configurations?
– Run length?
– Number of runs?
– Interpretation, analysis of output?
– How to make runs most efficiently?
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Introduction (cont’d.)

• Purpose here is to call attention to issues, and 
how to deal with them
– Not a lot of technical details

• See WSC Proceedings paper for this talk for 
many references to books, papers with 
complete “do-it-yourself” operational details
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Purpose of the Project?
• Maybe obvious, but be clear, specific about 

ultimate purpose of project
– Answer can point different ways for design
– Failure to ask/answer will leave you adrift –

unlikely that you’ll reach solid conclusions, 
recommendations

• Even if there’s just one model in one 
configuration, or a very few fixed cases
– Still questions on run length, number of runs, 

random-number allocation, output analysis
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Purpose of the Project? (cont’d.)

• But if there’s more general interest in how 
changes in inputs affect outputs
– Clearly, questions on which configurations to run
– Plus all the single/few scenario questions above
– Especially in optimum-seeking, need to take care 

in deciding which configurations to try, ignore
• Goals, strategies often evolve or become 

more ambitious (or less ...) during project
– In designed experiments, can use results from 

early experiments to help choose later ones
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Cycle Goal

1. Early Validation

2. Next Screening

3. Middle Sensitivity Analysis, Understanding

4. Middle Predictive Models

5. Later Optimization, Robust Design
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Output Performance Measures?

• Think ahead about what you want out of your 
simulations

• Most simulation software produces lots of 
default output
– Time-based measures, counts
– Economic-based measures (cost, value added)
– You can specify or create more
– Often get averages, minima, maxima

• Easier to ignore things you have than to get 
things you don’t have (to state the obvious ...)

– But extraneous output can significantly slow runs
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Output Performance Measures? (cont’d.)

• One fundamental question for output 
measures – time frame of simulation/system
– Terminating (a.k.a. transient, short-run, finite-

horizon)
• There’s a natural way to start and stop a run
• Start/stop rules set by system and model, not by you
• Need to get these right – part of building a valid model

– Steady-state (a.k.a. long-run, infinite-horizon)
• Outputs defined as a limit as simulation run length → ∞
• No natural way to start – system has already been 

running forever
• In theory, never stop run – but you must decide how to
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Output Performance Measures? (cont’d.)

• Regardless of time frame, need to decide 
what aspects of output you want
– In stochastic simulation, outputs are observations 

from (unknown) probability distributions
• Ideally, estimate the whole distribution – ambitious goal

– Usually get summary measures of output 
distributions

• Means (maybe too much focus on these)
• Extrema
• Variance, standard deviation
• Quantiles of output distribution

– Output desired can affect model, data structure
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How to Use Random Numbers?

• Most simulation models are stochastic
– Random inputs from probability distributions

• Simulation software has ways to generate
observations from input distributions
– Rely on random-number generator

• Algorithm to produce a sequence of values that appear 
independent, uniformly distributed on [0, 1]

– RNGs are actually fixed, recursive formulae 
generating the same sequence

– Will eventually cycle, and repeat same sequence
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How to Use Random Numbers? (cont’d.)

• Obviously, want “good” RNG
– LONG cycle length

• An issue with old RNGs on new machines ...
– Good statistical properties
– Broken into streams, substreams within streams
– RNG design is complicated, delicate

• With a good RNG, can ignore randomization
of treatments (model configurations) to cases 
(runs) – a concern in physical experiments
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How to Use Random Numbers? (cont’d.)

• RNG is controllable, so randomness in 
simulation experiment is controllable – useful?
– Controlling carefully is one way to reduce 

variance of output, without simulating more
• Part of designing simulation experiments is to 

decide how to allocate random numbers
– First thought – independent (no reuse) throughout

• Certainly valid and simple statistically
• But gives up variance-reduction possibility
• Usually takes active intervention in simulation software

– New run always starts with same random numbers – override
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How to Use Random Numbers? (cont’d.)

• Better idea when comparing configurations
– Re-use random numbers across configurations – common 

random numbers
– Differences in output more likely due to differences in 

configurations, not because the random numbers bounced 
differently (they didn’t)

– Probabilistic rationale:
Var (A – B) = Var(A) + Var(B) – 2 Cov(A, B)

– Hopefully, Cov(A, B) > 0 under CRN
• Usually true, though (pathological) exceptions exist

– Must synchronize RN use across configurations
• Use same RNs for same purposes
• Use of RNG streams, substreams helpful
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… 15            1          12            3 

… arrival    service    arrival    service

… 15            1          12            3 

… 15         12

… 1            3 …

Separate ‘arrival’ and 
‘service’ streams

… arrival    arrival    service    service
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Sensitivity of Outputs to Inputs?

• Simulation models involve input factors
– Quantitative – arrival rate, number of servers, pass/fail 

probabilities, job-type percentages, ...
– Qualitative – queue discipline, topology of part flow, shape 

of process-time distribution, ...
• Controllable vs. uncontrollable input factors

– In real system, usually have both
• Number of servers, queue discipline – controllable
• Arrival rate, process-time-distribution – uncontrollable

– In simulation, everything is controllable
• Facilitates easy “what-if” experimentation
• Advantage of simulation vs. real-world experimentation
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Sensitivity of Outputs to Inputs? (cont’d.)

• Input factors presumably have some effect on 
output – what kind of effect?
– Sign, magnitude, significance, linearity, ...

• Mathematical model of a simulation model:
Output1 = f1(Input1, Input2, ...)
Output2 = f2(Input1, Input2, ...)

M

• Common goal – estimate change in an output 
given a change in an input
– Partial derivative
– But we don’t know f1, f2, ... (why we’re simulating)
– Now discuss different estimation strategies

f1, f2, ... represent
simulation model
itself
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Classical Experimental Design
• Has been around for ~80 years

– Roots in agricultural experiments
• Terminology

– Inputs = Factors
– Outputs = Responses

• Estimate how changes in factors affect 
responses

• Can be used in simulation as well as physical 
experiments
– In simulation, have some extra opportunities
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Classical Experimental Design (cont’d.)

• Two-level factorial designs
– Each input factor has two levels (“–”, “+” levels)
– No general prescription for setting numerical 

levels
• Should be “opposite” but not extreme or unrealistic

– If there are k input factors, get 2k different 
combinations of them ... 2k factorial design

– Run simulation at each combination
• Replicate it?  Replicate whole design?

– Get responses R1, R2, ..., R2k

– Use to learn about effects of input factors
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Classical Experimental Design (cont’d.)

• Design matrix for k = 3 (with responses):

• Main effect of a factor:  average change in 
response when factor moves from “–” to “+”
– Main effect of factor 2:

(– R1 – R 2 + R 3 + R 4 – R 5 – R 6 + R 7 + R 8)/4

R8+++8

R7++–7

R6+–+6

R5+––5

R4–++4

R3–+–3

R2––+2

R1–––1

ResponseFactor 3Factor 2Factor 1Run (i)
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Classical Experimental Design (cont’d.)

• Two-way interaction:  does the effect of one 
factor depend on the level of another?
– “Multiply” sign columns of the two factors, apply to 

response column, add, divide by 2k–1

– Interaction between factors 1 and 3:
(+R 1 – R 2 + R 3 – R 4 – R 5 + R 6 – R 7 + R 8)/4 

– If an interaction is present, cannot interpret main 
effects of involved factors in isolation
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Classical Experimental Design (cont’d.)

• Example: car maintenance/repair shop
– Kelton, Sadowski, Sturrock, Simulation With 

Arena, 3rd ed., 2004, McGraw-Hill, Chapt. 6
– Outputs:

• Daily profit
• Daily Late Wait Jobs = Cars/day that are “late” for 

customers waiting
– Inputs:

• Max Load = max hours/day that can be booked
• Max Wait = max number of customer-waiting cars/day 

that can be booked
• Wait allowance = hours padded to predicted time in 

system for waiting customers
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• 23 factorial design
– 100 replications per design point
– Used Arena Process Analyzer to manage runs:

– Main effects on Daily Profit:  +157, –4, 0
• Implication:  should set Max Load to its “+” value
• Other two factors don’t matter

– Interactions on Daily Profit:  –5 (1x2), others 0

Classical Experimental Design (cont’d.)

Link to
spreadsheet

- - - + - -

- - +
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Classical Experimental Design (cont’d.)

• Other limitations of 2k factorial designs:
– Implicitly assumes a particular underlying 

regression model
• Linear in main effects, product-form interactions
• Can generalize to more complex designs

– What if k is large (coming soon ...)?
– Responses are random variables, so what about 

statistical significance of effects estimates?
• Can replicate whole design, say, n times
• Get n i.i.d. estimates of effects
• Form confidence intervals, tests for expected effects

– If confidence interval misses 0, effect is statistically significant
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Which Inputs Are Important?
• With many factors, probably just a few are important 

... screen out the others
– Could theoretically do via main effects in 2k factorial 

designs, but, we have:
• Barton’s theorem:

If k is big, then 2k is REALLY big
– Too many factor combinations (and runs)

• Remedies:
– Fractional factorial designs – run just a fraction (1/2, 1/4, 

1/8, etc.) of the full 2k

– Specialized factor-screening designs
• Drop some (most?) factors, focus on the rest
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Response Surfaces
• Most experimental designs are based on an 

algebraic regression model
– Output = dependent (Y) variable
– Inputs = independent (x) variables
– For example, with k = 2 inputs, full quadratic form:

Y = β0 + β1x1 + β2x2 + β3x1x2 + β4x1
2 + β5x2

2 + ε
• A regression model of the simulation model –

a metamodel
– In k = 2 example, also called a response surface
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Response Surfaces (cont’d.)

• Estimate the model (β coefficients) by making runs, 
do a regression of Y on x’s
– Which runs to make?  Many methods in literature

• Uses of response surfaces in simulation
– Literally take partial derivatives to estimate effects

• Any interactions would be naturally represented
– Proxy for the simulation

• Explore a wide range of inputs quickly, then simulate intensively in 
regions of interest

• Optimize response surface as approximation for model
• Limitations, cautions

– Regression-model form
– Variation in response-surface estimates
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Optimum Seeking
• May have one output performance measure 

that’s by far the most important
– Bigger is better – throughput, profit
– Smaller is better – queueing delays, cost

• Look for a combination of input factors that 
optimizes (maximizes or minimizes) this

• Like a math-programming formulation
– Max or min output response over inputs
– Subject to constraints on inputs, requirements on 

other outputs
– Search through the input-factor space
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Optimum Seeking (cont’d.)

• Example: car maintenance/repair shop

Maximize Daily Profit
Subject to 20 ≤ Max Load ≤ 40

1 ≤ Max Wait ≤ 7
0.5 ≤ Wait Allowance ≤ 2.0
Daily Late Wait Jobs < 0.75

Objective function is the simulation model

Constraints on the 
input control 
(decision) variables

An output requirement, 
not an input constraint

Could also have constraints on linear 
combinations of input control variables 
(but we don’t in this problem)
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Optimum Seeking (cont’d.)

• This is a difficult problem
– Many input factors – high-dimensional search 

space
– Cannot “see” objective function clearly – it’s an 

output from a stochastic simulation
– May be time-consuming to “evaluate” the 

objective function – have to run the whole 
simulation each time

• So, cannot absolutely guarantee to “optimize 
your simulation”

• Still, it may well be worth trying to get close
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Optimum Seeking (cont’d.)

• Heuristic search methods (TABU, Genetic, Pattern) can 
“move” the model from one input-factor point to 
another, use response data to decide on future 
moves

• Several have been linked to simulation-modeling 
software:

• User must also specify starting point, stopping 
conditions (can be problematic)

Your
simulation

model

Heuristic-
search

packageOutput
response

Input
factors
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Optimum Seeking (cont’d.)

• Example: car 
maintenance/
repair shop

• OptQuest 
optimum-
seeker with 
Arena
modeling
software

• Ran for 20
minutes
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Conclusions
• Designing simulation experiments deserves 

your attention
– Capitalize on your (substantial) modeling effort
– Unplanned, hit-or-miss course of experiments 

unlikely to yield much solid insight
• There are several formal experimental-design 

procedures that are quite amenable to 
simulation experiments
– Simulation experiments present unique 

opportunities not present in physical experiments
• Uses computer time – cheaper than your time
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