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Indifference-zone-selection procedures have been widely studied and applied to determine

the required sample sizes for selecting a good design from k alternatives. However, efficiency

is still a key concern for application of simulation to ranking and selection problems. In this

paper, we present a new approach that can further enhance the efficiency of indifference-

zone-selection procedures. Our approach determines a highly efficient number of simulation

replications or samples and significantly reduces the total simulation effort. An experimental

performance evaluation demonstrates the efficiency of the new procedure.

Subject classifications: Simulation: Sample size allocation, Simulation: Indifference-zone

selection, Simulation: Statistical analysis

Discrete-event simulation (DES) has been widely used to estimate some measure of per-

formance defined over a stochastic system and to compare alternative system designs or

operating policies. When evaluating k alternative system designs, we would like to select

one as the best, while ensuring the probability of correctly selecting the best is sufficiently

high. Simulation studies of this kind are often referred as simulation optimization, i.e., we

use simulation as an aid for optimizing stochastic complex systems where their performance

measure cannot be easily obtained through analytical means and therefore must be estimated

via stochastic simulation.
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While DES has many advantages for modeling complex systems, efficiency is still a key

concern when performing simulation experiments (Law and Kelton 2000). Since the objec-

tive is to select the good designs rather than to obtain an accurate estimate of the best

performance measure, it is advantageous to use ordinal comparison for selecting a good de-

sign. The underlying philosophy is to rank estimators through ordinal comparison while the

precision of the estimates are still poor, see Ho (1992) for detail of ordinal optimization. It

is known that “order” converges exponentially fast (Dai 1996) while “value” converges at

rate 1/
√

n (Kushner and Clark 1978), where n is the length or number of replications of

the simulation experiments. We achieve this goal by using a class of Ranking and Selection

(R&S) procedures.

One crucial element in R&S procedures is the event of “correct selection” (CS) of the

true best system. In a stochastic simulation, the possibility of CS, denoted by P(CS),

increases as the sample sizes become larger. Most indifference-zone-selection procedures are

directly or indirectly based on Dudewicz and Dalal’s (1975) or Rinott’s (1978) indifference-

zone-selection procedures. However, these procedures determine the number of additional

replications based on a conservative least favorable configuration (LFC) assumption and do

not take into account the value of sample means. If the accuracy requirement is high, and

if the total number of designs in a decision problem is large, then the total simulation cost

can easily become prohibitively high. For an overview of earlier methods of R&S see Law

and Kelton (2000).

Some new approaches, such as Optimal Computing Budget Allocation (OCBA) (Chen et

al. 2000b) and the Enhanced Two-Stage Selection (ETSS) procedure (Chen and Kelton 2000)

incorporate first-stage sample mean information with sample variance in determining the

number of additional replications. In numerical testing, both OCBA and ETSS procedures

demonstrate a significant reduction in computing effort compared to Rinott’s procedure. The

basic idea of those procedures is that to ensure a high probability of correctly selecting a good

design, a larger portion of the computing budget should be allocated to those designs that are

critical in the process of identifying good designs. Overall simulation efficiency is improved

as less computational effort is spent on simulating non-critical designs and more is spent on

critical designs. There are several other new approaches aimed at improving the efficiency

of ranking and selection, Chick and Inoue (2001) use a Bayesian framework for constructing

ranking and selection procedures. Nelson et al. (2001) develop selecting procedures when
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the number of alternative is large. Goldsman et al. (2002) using all pairwise comparisons to

eliminate inferior designs at early iterations to reduce overall sample sizes.

In this paper, we focus on those procedures which intend to allocate simulation trials to

designs in a way that maximizes P(CS) within a given computing budget. Previous researches

have examined various approaches for efficiently allocating a fixed computing budget across

design alternatives, in particular, Chen (1995), Chen et al. (2000a), and Chen et al. (2000b).

However, those procedures are developed without including the idea of indifference zone.

Until now, traditional indifference-zone-selection procedures and optimal computing budget

allocations have been treated as two completely separate approaches. Chen and Kelton

(2000) demonstrate that these two classes of approaches obtain every similar results. In this

paper, we examine the relationship between the indifference amount and the sample size

allocation and develop a optimal approach for solving the budget allocation problem with

indifference zone. The proposed approach is simple, general, practical and complementary

to other techniques.

The rest of this paper is organized as follows. In Section 1, we provide background for

the proposed procedure. In Section 2, we present our methodologies and proposed procedure

for computing budget allocation. In Section 3, we give our empirical-experimental results.

In Section 4, we give concluding remarks.

1 BACKGROUND

First, some notation:

Xij: the observation from the jth replication or batch of the ith design,

Ni: the final number of replications or batches for design i,

r: the intermediate number of replications or batches for design i,

µi: the expected performance measure for design i, i.e., µi = E(Xij),

X̄i(r): the running sample mean for design i, i.e.,
∑r

j=1 Xij/r,

X̄i: the final sample mean for design i, i.e.,
∑Ni

j=1 Xij/Ni,

σ2
i : the variance of the observed performance measure of design i from one replication or

batch, i.e., σ2
i = Var(Xij),
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S2
i (Ni): the sample variance of design i with Ni replications or batches, i.e., S2

i (Ni) =∑Ni
j=1(Xij − X̄i)

2/(Ni − 1).

Let µil be the lth smallest of the µi’s, so that µi1 ≤ µi2 ≤ . . . ≤ µik . Our goal is to select

a design with the smallest expected response µi1 using stochastic simulation.

1.1 Optimal Computing Budget Allocation (OCBA)

Let design b denote the design having the smallest sample mean performance measure, i.e,

X̄b = min1≤i≤k X̄i, the probability of correct selection

P(CS) = P[design b is actually the best design].

Chen et al. (2000b) propose OCBA that is based on a fixed total computing budget T =∑k
i=1 Ni and attempts to maximize P(CS). The sequential procedure utilizes the information

of both the means and variances obtained from each iteration to allocate incremental sample

size for each design.

Based on a Bayesian model, they develop an Approximate Probability of Correct Selection

(APCS) as a lower bound of P(CS). That is,

P(CS) ≥ 1−
k∑

i=1,i6=b

P[X̄b > X̄i].

The right hand side of the above equation is the APCS. They show that for a fixed number

of replications or batches, the APCS can be asymptotically maximized when

Ni

Nj

=

(
σi/δi,b

σj/δj,b

)2

, i, j ∈ {1, 2, . . . , k}, and i 6= j 6= b, (1)

Nb = σb

√√√√√ k∑
i=1,i6=b

N2
i

σ2
i

, (2)

where δi,b = X̄i − X̄b, and σi is the standard deviation of the response of design i.

1.2 Indifference-Zone-Selection Procedures

Even though our goal is to select a design with the smallest expected response µi1 , in practice

however, if µi1 and µi2 are very close together, we might not care if we mistakenly choose

design i2, whose expected response is µi2 . The “practically significant” difference d∗ (a

positive real number) between a best and a satisfactory design is called the indifference
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zone in the statistical literature and represents the smallest difference about which we care.

Therefore, we want a procedure that avoids making a large number of replications or batches

to resolve differences less than d∗. That is, we want P(CS) ≥ P ∗ provided that µi2−µi1 ≥ d∗,

where the minimal CS probability P ∗ and the “indifference” amount d∗ are both specified

by the user.

In the ordinal optimization literature, a broader sense of P(CS) is defined as the alignment

probability. Briefly, the “good enough” subset G of the design space Θ is the set of top-g

designs and the selected subset S is a subset of Θ in which the members are selected by the

designer using certain evaluation criteria as the outcome for certain designs. The alignment

probability is the probability that among the set S we have at least g′(≤ g) of the member of

G, i.e., P[|G∩S| ≥ g′], where |S| is the cardinality of the set S and g′ is called the alignment

level. Note that 1 ≤ g′ ≤ min(|G|, |S|). The set of designs i such that µi < µi1 + d∗

can be viewed as the “good enough” subset G in ordinal optimization. As we increase the

indifference amount, we relax our selection criteria, i.e., goal softening in ordinal optimization

literature, and can significantly reduce our computation burden.

1.3 An Enhanced Two-Stage Selection (ETSS) Procedure

Chen and Kelton (2000) propose an ETSS procedure based on the assumption that we know

the true mean of designs under consideration and takes into account not only the sample

variances but also the difference between sample means across designs when determining

sample sizes. While the observed P(CS)’s of the ETSS procedure are slightly lower than

Rinott’s procedure, in most cases, they are still higher than the specified P ∗.

Let n0 be the number of initial replications or batches and X̄b(n0) = min1≤i≤k X̄i(n0).

The first-stage sample means X̄i(n0) =
∑n0

j=1 Xij/n0, marginal sample variances

S2
i (n0) =

∑n0
j=1(Xij − X̄i(n0))

2

n0 − 1
,

and the estimated-controlled distance

d̂i = max(d∗, X̄i(n0)− X̄b(n0)), (3)

for i = 1, 2, . . . , k are computed. Based on the number of initial replications or batches n0,

the sample variance estimate S2
i (n0) and the difference of means estimator d̂i obtained from
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the first stage, the number of additional simulation replications or batches for each design

in the second stage is Ni − n0, where

Ni = max(n0, d(hSi(n0)/d̂i)
2e), for i = 1, 2, . . . , k, (4)

where dze is the smallest integer that is greater than or equal to the real number z, and

h (which depends on k, P ∗, and n0) is a constant which solves Rinott’s (1978) integral

(h can be calculated by the FORTRAN program rinott in Bechhofer et al. (1995), or can

be found from the tables in Wilcox (1984)). We then compute the overall sample means

X̄i =
∑Ni

j=1 Xij/Ni, and select the design with the smallest X̄i as the best one.

The difference between ETSS and Rinott’s procedure is that ETSS uses d̂i instead of a

fixed indifference-amount d∗ in equation (4). This is because Ronott’s procedure computes

sample sizes based on the LFC, while ETSS assumes the mean for all designs are known and

takes into account the information of sample means when computing sample sizes. Since

d̂i ≥ d∗, the sample size Ni allocated by ETSS will be no more than by Rinott’s procedure.

2 METHODOLOGIES

In this section we examine a sample size allocation strategy to obtain the APCSIZ (approx-

imate P(CS) with indifference-zone). The APCSIZ is derived with the assumption that we

know the true mean and variance of the performance measure. As with most indifference-

zone-selection procedures, we require the input data are i.i.d. normal. Many performance

measures of interest are taken over some averages of a sample path or a batch of samples.

Thus, the simulation output tends to be normally distributed in many applications. If the

nonnormality of the samples is a concern, users can use batch means (see Law and Kel-

ton 2000) to obtain sample means that are essentially i.i.d. normal. Moreover, Chen et al.

(2000b) demonstrate that OCBA is robust to the normality assumption.

2.1 Problem Statement

We wish to choose N1, N2, . . . , Nk such that P(CS) is maximized, subject to a limited com-

puting budget T, i.e.,

maxN1,...,Nk
P(CS)

s.t.
k∑

i=1

Ni = T.

Ni ∈ N, i = 1, 2, . . . , k.
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Here N is the set of non-negative integers and N1 + N2 + . . . + NK denotes the total com-

putational cost assuming the simulation times for different designs are roughly the same.

To solve the problem, we must be able to estimate P(CS). There exists a large literature

on assessing P(CS) based on classical statistical models (e.g. Banks 1998 gives an excellent

survey on available approaches). However, estimating P(CS) via Monte Carlo simulation is

time-consuming, consequently, most P(CS) assessment procedures are mainly developed for

problems with small number of designs.

To facilitate the derivation of our approximation of P(CS), we assume the means and

variances are known. Let φ(x) and Φ(x) denote the probability density and distribution

function, respectively, of the standard normal distribution. Without lost of generality, as-

sume µi1 + d∗ ≤ µi2 ≤ . . . ≤ µik , the corresponding variances are σ2
il
. Furthermore, let

δil = µil − µi1 . Then

P(CS) = P[X̄i1 < X̄il , for l = 2, 3, . . . , k]

= P[X̄i1 − X̄il + δil < δil , for l = 2, 3, . . . , k]

≥ Πk
l=2P[X̄i1 − X̄il + δil < δil ]

= Πk
l=2Φ(δil/

√
σ2

il
/Nil + σ2

i1/Ni1).

The inequality follows from Slepian’s inequality (Tong 1980) since the values Xi1 −Xil are

positively correlated. The last equality follows from that the variate

Zil =
X̄i1 − X̄il + δil√
σ2

il
/Nil + σ2

i1/Ni1

has a N (0, 1) distribution, where N (µ, σ2) denotes the normal distribution with mean µ and

variance σ2.

Let

Yil = δil/
√

σ2
il
/Nil + σ2

i1/Ni1 .

Theoretically, the following optimization problem can provide a tighter bound of P(CS):

maxN1,...,Nk
Πk

l=2Φ (Yil)

s.t.
k∑

i=1

Ni = T.

Ni ∈ N, i = 1, 2, . . . , k.
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However, because of its complexity there is no known analytical solutions of this optimization

problem. The OCBA of Chen et al. (2000b) consider the following optimization problem:

maxN1,...,Nk

k∑
l=2

Φ (Yil)

s.t.
k∑

i=1

Ni = T.

Ni ∈ N, i = 1, 2, . . . , k.

They solved this optimization problem asymptotically with some assumptions. Section 1.1

summarized their results.

Furthermore, the ratios obtained by OCBA will stay the same if we consider the following

optimization problem:

minN1,...,Nk

k∑
i=1

Ni

s.t.
k∑

l=2

Φ (Yil) = k − 2 + P ∗.

Ni ∈ N, i = 1, 2, . . . , k.

That is, we want to minimize the sample sizes that achieve the specified minimal P(CS), P ∗.

2.2 A Heuristic Indifference-Zone Allocation Rule

Indifference-zone procedures seek to avoid allocating extra samples to rank designs differ less

than d∗. Let dil = max(d∗, |µil −mink
j=1,j 6=l µij |) for l = 1, 2, . . . , k, and let

Dil = dil/
√

σ2
il
/Nil + σ2

i1/Ni1 . (5)

By the Bonferroni inequality (Law and Kelton 2000),

P(CS) = P[X̄i1 − X̄il + dil < dil , for l = 2, 3, . . . , k]

≥ 1−
k∑

l=2

(1− P[X̄i1 − X̄il + dil < dil ])

= 1−
k∑

l=2

(1− Φ(Dil))

= 2− k +
k∑

l=2

Φ(Dil).
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We use the approximate probability of correct selection with indifference zone (APCSIZ) to

estimate P(CS). That is,

APCSIZ = 2− k +
k∑

l=2

Φ(Dil) = P ∗.

Thus, to achieve P ∗, we need to have
∑k

l=2 Φ(Dil) = P ∗ + k − 2. Since both OCBA and

OCBAIZ are based on maximizing the lower bound of P(CS), which is derived from the Bon-

ferroni inequality, we can use common random numbers to increase Φ(Dil) for l = 2, 3, . . . , k

and APCSIZ. We will derive our allocation rule heuristically based on minimizing the sam-

ple sizes. Since the purpose of budget allocation is to improve simulation efficiency, we

need a relatively fast and inexpensive way of estimating P(CS) within the budget allocation

procedure. Efficiency is more crucial than estimation accuracy in this setting.

Let

P = 1− 1− P ∗

k − 1
.

We assume that the optimal is obtained when Φ(Dil) = P, for l = 2, 3, . . . , k. Or similarly,

Dil = zP , for l = 2, 3, . . . , k, where zP is the P quantile of the standard normal distribution.

It follows from (??) that

dil = zP

√
σ2

il
/Nil + σ2

i1/Ni1 = wil , (6)

where wil is the one-tailed P confidence interval half-width and is depended on the confidence

level, variance and sample sizes. Hence, if we want to achieve Φ(Dil) = P , the sample

sizes Nil and Ni1 should be large enough such that wil = dil . For any l 6= 1, (5) holds if

Nil = 2(zP σil/dil)
2 and Ni1 = 2(zP σi1/dil)

2. We conveniently set

Ni = d2(zP σi/di)
2e, for i = 1, 2, . . . , k. (7)

Note that dil ≥ di2 = di1 , for l = 3, 4, . . . , k. So dil ≤ wil , and APCSIZ ≥ P ∗.

We summary the result as follows:

Proposition 1. Given a total number of simulation samples T to be allocated to k competing

designs and their known means and variances are µ1, µ2, . . . , µk, and σ2
1, σ

2
2, . . . , σ

2
k respec-

tively, the Approximate Probability of Correct Selection with Indifference Zone (APCSIZ)

will be near optimal when

Ni

Nj

=

(
dj

di

)2 (
σi

σj

)2

, i, j ∈ {1, 2, . . . , k}. (8)
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Where Ni is the number of samples allocated to design i and di = max(d∗, |µi−mink
j=1,j 6=i µj|).

Remark 1. We assume the optimal sample sizes to achieve P(CS) ≥ P ∗ is when Φ(Dil) = P

and satisfy (6). These two assumptions may not be true, however, they are reasonable

approaches and can simplify the computation effort.

Remark 2. If Dil > Di2 , then the allocated sample sizes are larger than necessary. That

is, if dil > di2 , then fewer samples than those computed by (6) will be enough to achieve

Φ(Dil) = P . Even though we assume that optimal is reached when Dil = Di2 for l =

2, 3, . . . , k, the allocated sample size will result in Dil ≥ Di2 for l 6= 2, which may be closer

to the true optimal.

Remark 3. Since di1 = di2 ,
N1

N2

=
(

σ1

σ2

)2

regardless of the number of alternatives, k. This result is different from OCBA of Chen et

al. (2000b), which is not based on the indifference-zone, and when k = 2 will allocate sample

sizes to each design so that
N1

N2

=
σ1

σ2

.

Remark 4. The sample sizes allocated by the ETSS procedure approximately satisfy the

ratio of (7).

With Proposition 1, we now present a cost-effective sequential approach based on the

concept described earlier to select the best design from k alternatives with a given computing

budget. In our procedure, we use mean and variances estimators X̄i(r) and Si(r) to compute

the ratio of equation (7) and the estimator of di is d̂i = max(d∗, |X̄i(r)−mink
j=1,j 6=i X̄j(r)|).

We use the equation S2
i (r) = (

∑r
j X2

ij/r−X̄i(r)
2
)r/(r−1) to compute the variance estimator,

therefore, we are only required to store the triple (r,
∑r

j=1 Xij,
∑r

j X2
ij), instead of the entire

sequences (Xi1, Xi2, . . . , Xir).

Initially, n0 simulation replications for each k design are conducted to get some informa-

tion about the performance of each design during the first stage. As simulation proceeds,

the sample means and sample variances of each design are computed from the data already

collected up to that stage. According to this collected simulation output, an incremental

computing budget for each iteration, ∆l is distributed to each design based on the ratio of

equation (7), where l is the iteration number. Ideally, each new replication should bring

us closer to the optimal solution. The procedure will be iterated repeatedly until we have

exhausted the pre-determined computing budget T . The algorithm is summarized as follows.
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A Sequential Algorithm for Optimal Computing Budget Allocation with In-

difference Zone (OCBAIZ):

1. Simulate n0 replications or batches for each design. Set l = 0, N l
1 = N l

2 = . . . = N l
k =

n0, and T = T − kn0.

2. Set l = l + 1. Increase the computing budget (i.e., number of additional simulations)

by ∆l and compute the new budget allocation, N l
1, N

l
2, . . . , N

l
k, using Proposition 1.

3. Simulate additional max(0, N l
i − N l−1

i ) replications or batches for each design i, i =

1, 2, . . . , k.

4. T = T −∆l. If T > 0, go to step 2.

5. Return the values b and X̄b, where X̄b = min1≤i≤k X̄i.

As simulation evolves, design b, which is the design with the smaller sample mean, may

change from iteration to iteration, although it will converge to the optimal design as the l

goes to infinity. In addition, we need to select the initial number of simulations, n0, and

the one-time increment, ∆l. A suitable choice for n0 is between 5 and 20 (Law and Kelton

2000, Bechhofer et al. 1995). Also, with a small ∆l, we need to iterate the computation

procedure in step 2 many times. On the other hand, with a large ∆l, we are putting too

much confidence on the mean and variance estimators of early iterations and can result in

waste of computation time to obtain an unnecessarily high confidence level of non-critical

designs. Instead of using a fixed ∆l for every iteration, we suggest computing ∆l dynamically

at each iteration

∆l = min(T, max(k, dT/2e)).

Thus, the sequential procedure allocates incremental sample sizes aggressively at earlier

iterations and become less aggressive as the procedure proceeds and the computing budget

becomes scarce. This way we will be able to reduce the number of iterations of step 2 without

the risk of putting too much resources to simulate non-critical designs. If users do not enter

the indifference amount d∗, we will set d∗ = X̄s(r) − X̄b(r), where X̄b(r) = mink
i=1 X̄i(r),

and X̄s(r) = mink
i=1,i6=b X̄i(r). Note that in this case d∗ becomes a random variable since

X̄i(r) changed from iteration to iteration. Furthermore, if the user does not specify the value

of d∗ and X̄s(r) − X̄b(r) is small (less than the unknown d∗), then the OCBAIZ procedure
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will not be able to fully reduce the sample size of design i whose mean µi − µi1 < d∗. In

general, OCBAIZ will allocate a greater proportion of the simulation budget to the estimated

best design with a smaller d∗. An example implementation of this algorithm is listed in the

Appendix A.

3 EMPIRICAL EXPERIMENTS

Chen et al. (2000b) present the numerical results of OCBA and other commonly used R&S

procedures. They demonstrate that OCBA is more efficient in terms of sample size allocation.

In this section we present some empirical results obtained from simulations using the OCBA

and OCBAIZ. Since it has been shown that OCBA is a very efficient procedure for selecting

the best design, we focus only on the comparison of OCBA and OCBAIZ procedures in

this paper. In particular, we compare the level of empirical P(CS) which can be obtained

by applying OCBA and OCBAIZ. Because OCBA does not use indifference-amount, the

indifference amount d∗ in OCBAIZ is set to X̄s(r)− X̄b(r) at each iteration for all cases so

that we can compare these two procedures fairly.

3.1 Experiment 1 Equal Variances

There are ten alternative designs in the selection subset. Suppose Xij ∼ N (i, 62), i =

1, 2, . . . , 10. We want to select a design with the minimum mean: design 1. We set the

number of initial replications n0 = 20. The computing budgets are ranged from 400 to 1200

with increment size 100. Furthermore, 10,000 independent experiments are performed to

estimate the actual P(CS) by P̂ (CS): the proportion of the 10,000 experiments in which we

obtained the correct selection.

Figure 1 lists the results of experiment 1. OCBA obtains slightly higher P̂ (CS) than

OCBAIZ does when the computing budgets are 500, 600, 700, and 1200. Tables 1 and 2

list the detailed simulation replications allocated for each design under different computing

budgets. Note that the sum of the average computing budget of each design may not equal to

the total computing budget T in these tables because of rounding. The number of additional

simulation replications decreases as the differences δi,b = X̄i− X̄b(> 0) increase. This makes

sense because as δi,b increases, it is more likely that we will conclude µi > µb. In other

words, as the observed difference of sample means across alternatives δi,b increases, it is less

likely that we will conclude µi < µb. In this setting, the OCBA algorithm allocates more

12



Figure 1
P̂ (CS) and Sample Sizes for Experiment 1

Table 1
Detailed Sample Sizes of OCBA of Experiment 1

Design 400 500 600 700 800 900 1000 1100 1200
1 104 144 183 221 260 298 335 373 410
2 90 127 164 201 238 275 311 348 383
3 48 61 72 84 96 107 119 130 142
4 30 36 41 47 53 59 65 70 76
5 23 26 29 33 36 39 42 46 49
6 21 22 24 26 28 30 32 34 36
7 20 21 21 22 24 25 26 28 29
8 20 20 20 21 21 22 23 24 25
9 20 20 20 20 20 21 21 22 22
10 20 20 20 20 20 20 20 21 21
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Table 2
Detailed Sample Sizes of OCBAIZ of Experiment 1

Design 400 500 600 700 800 900 1000 1100 1200
1 99 137 174 211 247 284 321 356 393
2 92 129 167 204 241 278 315 351 388
3 49 62 74 87 98 110 122 135 146
4 31 37 43 49 55 61 67 73 79
5 24 27 31 34 37 41 44 48 51
6 21 23 25 27 29 31 33 35 38
7 20 21 22 23 24 25 27 28 30
8 20 20 21 21 22 23 24 24 26
9 20 20 20 20 21 21 22 22 23
10 20 20 20 20 20 20 21 21 21

Table 3
Detailed Sample Sizes of OCBA of Experiment 2

Design 400 500 600 700 800 900 1000 1100 1200
1 93 127 161 194 228 261 293 326 358
2 83 116 150 182 217 251 284 318 351
3 50 63 75 88 100 111 123 136 147
4 34 41 47 54 61 67 74 81 88
5 27 32 36 41 44 49 54 58 62
6 24 27 30 33 36 39 43 46 49
7 22 24 26 29 31 34 36 39 42
8 21 23 24 26 28 30 32 34 36
9 21 22 23 24 26 28 29 31 33
10 20 21 22 23 24 26 27 29 30

computing budget to the best design, i.e., design 1, than OCBAIZ does. In both procedures,

inferior designs, for instance designs 8 through 10, are almost always excluded from further

simulation, i.e., Ni ≈ n0.

3.2 Experiment 2 Increasing Variances

This is a variation of experiment 1. All settings are preserved except that the variance of each

design increases as the mean increases. Namely, Xij ∼ N (i, (6+(i−1)/2)2), i = 1, 2, . . . , 10.

The results are in Figure 2 and Tables 3 and 4. Since most designs have larger vari-

ances than in experiment 1, P̂ (CS) are not as good. OCBA obtains slightly higher P̂ (CS)

than OCBAIZ when the computing budget T = 800, and 1100, Both OCBA and OCBAIZ
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Figure 2
P̂ (CS) and Sample Sizes for Experiment 1

Table 4
Detailed Sample Sizes of OCBAIZ of Experiment 2

Design 400 500 600 700 800 900 1000 1100 1200
1 86 117 148 178 209 238 267 297 326
2 84 119 153 187 223 256 290 325 358
3 51 65 78 92 103 115 128 140 152
4 36 42 49 56 63 71 78 84 92
5 28 33 37 42 47 52 56 61 66
6 25 28 31 34 38 41 45 48 52
7 23 25 27 30 32 35 38 41 44
8 22 23 25 27 29 31 34 36 38
9 21 22 24 25 27 29 30 32 34
10 20 21 23 24 25 27 28 30 32
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procedures allocate relatively more additional simulation replications for designs with larger

variances. Both procedures take into consideration the difference between sample means, so

Ni < Nj even when Si(n0) > Sj(n0). Note that in this setting, OCBAIZ generally allocates

more samples to design 2 than design 1, since d1 = d2 and design 2 has a larger variance.

Chen and Kelton (2000) indicate that procedures that take into account the difference be-

tween sample means have the most significant reduction in the number of replications or

batches (compared to Rinott’s procedure) when the inferior alternatives have larger vari-

ances. In such a case, Rinott’s procedure tends to allocate most computing resource to

inferior designs and so is inefficient.

3.3 Experiment 3 Decreasing Variances

This is another variation of experiment 1. All settings are preserved except that the variance

of each design decreases as the mean increases. Namely, Xij ∼ N (i, (6 − (i − 1)/2)2),

i = 1, 2, . . . , 10.

The results are in Figure 3 and Tables 5 and 6. Since most designs have smaller variance,

P̂ (CS) are better than in setting 1. When the computing budget T = 600, 700, 800, 900, and

1100, OCBAIZ obtains slightly higher P̂ (CS) than OCBA does. Both OCBA and OCBAIZ

procedures allocate less additional simulation replications for designs that are clearly inferior

in this setting, i.e., large sample means with small variances. Since inferior designs have

smaller variances, we are confident to exclude those designs from further simulations. For

instance, designs 7 through 10, are always excluded from further simulation, i.e., Ni = n0.

This suggests that we should use a smaller initial sample size. In this setting, the OCBAIZ

algorithm allocates more computing budget to the best design, i.e., design 1, than OCBA

does.

The experiments indicate that the computing budget also experience the effect of dimin-

ishing returns. For example, P̂ (CS) increases by more than 0.03 in these experiments when

the computing budget is increased from 400 to 500, while the increase in P̂ (CS) is no more

than 0.006 when the computing budget is increased from 1100 to 1200. Thus, if the objective

is to minimize sample sizes and the given P ∗ is a small value, then analysts should consider

a higher P ∗ since the marginal cost is small.
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Figure 3
P̂ (CS) and Sample Sizes for Experiment 3

Table 5
Detailed Sample Sizes of OCBA of Experiment 3

Design 400 500 600 700 800 900 1000 1100 1200
1 114 159 203 247 291 335 378 422 465
2 95 134 174 213 253 292 330 370 409
3 43 54 65 76 86 96 109 117 128
4 25 29 33 37 41 45 50 54 58
5 20 21 22 24 26 27 29 31 33
6 20 20 20 20 21 21 22 22 23
7 20 20 20 20 20 20 20 20 20
8 20 20 20 20 20 20 20 20 20
9 20 20 20 20 20 20 20 20 20
10 20 20 20 20 20 20 20 20 20
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Table 6
Detailed Sample Sizes of OCBAIZ of Experiment 3

Design 400 500 600 700 800 900 1000 1100 1200
1 115 160 204 249 293 338 382 426 471
2 94 132 171 210 248 286 324 362 400
3 44 55 66 76 87 98 108 119 129
4 25 29 33 38 42 46 51 55 59
5 20 21 23 24 26 28 30 32 34
6 20 20 20 20 21 21 22 23 23
7 20 20 20 20 20 20 20 20 20
8 20 20 20 20 20 20 20 20 20
9 20 20 20 20 20 20 20 20 20
10 20 20 20 20 20 20 20 20 20

4 CONCLUSIONS

We have developed a highly efficient procedure to identify a good design out of k alternatives.

The purpose of this technique is to further enhance the efficiency of ranking and selection

in simulation experiments. The objective is to maximize the simulation efficiency, expressed

as P(CS) within a given computing budget. The incremental sample sizes at an iteration

and for each design are computed dynamically according to the sample means, the sample

variances, and the available computing budget at each iteration. Our procedure allocates

replications in such a way that optimally improves P(CS).

The performance difference between OCBA and OCBAIZ is minor. However, the incre-

mental sample sizes for each design at each iteration are easier to compute in OCBAIZ than

OCBA. Moreover, OCBAIZ is able to explore the information of the indifference amount and

estimate the total sample size for each design when the objective is to minimize computing

budget given a required minimal P(CS), which can improve the computation efficiency. Both

OCBA and OCBAIZ are based on the Bonferroni inequality and are valid with the variance

reduction technique of common random numbers. While ordinal optimization can converge

exponentially fast, our simulation budget allocation procedure provides a way to further im-

prove overall simulation efficiency. The techniques presented in this paper can be considered

as a pre-processing step that precedes any other optimization or search techniques.
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APPENDIX A: An example implementation of OCBA

void ocba(float* s_mean,float* s_var,int nd,int* n,int add_budget,int* an,int
iz, float d)
/* s_mean[i]: sample mean of design i, i=0,1,..,nd-1

s_var[i]: sample variance of design i, i=0,1,..,nd-1
nd: the number of designs
n[i]: number of simulation replication of design i, i=0,1,..,nd-1
add_budget: the additional simulation budget
an[i]: additional number of simulation replication assigned to design i,

i=0,1,..,nd-1
iz: a boolean to indicate whether to use indifference zone
d: the indifference amount */

{
int i,j;
int b, s;
int t_budget,t1_budget;
int more_alloc; /* 1:Yes; 0:No */
int *morerun;
float ratio_s, temp, temp1;
float *ratio;

morerun = (int *) calloc(nd, sizeof(int));
ratio = (float *) calloc(nd, sizeof(float));

t_budget=add_budget;
for (i=0; i<nd; i++) t_budget+=n[i];
b=0;
for (i=1;i<nd;i++) /* search the best design */

if (s_mean[i] < s_mean[b]) b=i;

if (b==0) s=1; else s=0;
for (i=0;i<nd;i++) /* search the second best design */

if (s_mean[i] < s_mean[s] && i!=b)
s=i;

ratio[s]=1.0;
for (i=0;i<nd;i++)

if (i!=s && i!=b) {
if (iz) { /* use indifference zone */

temp=s_mean[s]-s_mean[b];
if (temp < d) temp=d;
temp1=s_mean[i]-s_mean[b];
if (temp1 < d) temp1=d;
temp/=temp1;

} else /* ocba */
temp=(s_mean[s]-s_mean[b])/(s_mean[i]-s_mean[b]);

ratio[i]=temp*temp*s_var[i]/s_var[s];
} /* calculate ratio of Ni/Ns*/

if (iz) { /* use indifference zone */
ratio[b] = s_var[b]/s_var[s];

} else { /* ocba */
temp=0;
for(i=0;i<nd;i++) if(i!=b) temp+=(ratio[i]*ratio[i]/s_var[i]);
ratio[b]=sqrt(s_var[b]*temp); /* calculate Nb/Ns */

};

for(i=0;i<nd;i++) morerun[i]=1;
t1_budget=t_budget;
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do{
more_alloc=0;
ratio_s=0.0;
for(i=0;i<nd;i++) if(morerun[i]) ratio_s+=ratio[i];
for(i=0;i<nd;i++) if(morerun[i]) {

an[i]=(int)(t1_budget/ratio_s*ratio[i]);
/* disable thoese design which have been run too much */
if(an[i]<n[i]) {

an[i]=n[i];
morerun[i]=0;
more_alloc=1;

}
}
if (more_alloc) {

t1_budget=t_budget;
for(i=0;i<nd;i++) if(!morerun[i]) t1_budget-=an[i];

}
} while(more_alloc); /* end of WHILE */

/* calculate the difference */
t1_budget=an[0];
for(i=1;i<nd;i++) t1_budget+=an[i];
an[b]+=(t_budget-t1_budget); /* give the difference to design b */
for(i=0;i<nd;i++) an[i]-=n[i];

} /* ocba */
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Chen, C. H., J. Lin, E. Yücesan, and S. E. Chick. 2000b. Simulation Budget Allocation for

Further Enhancing the Efficiency of Ordinal Optimization. Journal of Discrete Event

Dynamic Systems, 10(3), 251–270.

Chick, S. E., K. Inoue. 2001. New Two-Stage and Sequential Procedures for Selecting The

20



Best System. Operations Research, 49, 732-743.

Dai, L., 1996. Convergence Properties of Ordinal Comparison in the Simulation of Discrete

Even Dynamic Systems. Journal of Opt. Theory and Applications, 91(2), 363–388.

Dudewicz, E. J., S. R. Dalal. 1975. Allocation of Observations in Ranking and Selection

with Unequal Variances. Sankhya, B37, 28–78.

Goldsman, D., S-H. Kim, W. S. Marshall, and B. L. Nelson. 2002. Ranking and Selec-

tion for Steady-State Simulation: Procedures and Perspectives, INFORMS Journal on

Computing 4 (1), 2–19.

Ho, Y. C., R. S. Sreenivas, and P. Vakili. 1992. Ordinal Optimization of DEDS. Journal of

Discrete Event Dynamic Systems, 2, 61–68.

Kushner, H. J., D. S. Clark. 1978. Stochastic Approximation for Constrained and Uncon-

strained Systems. New York: Springer-Verlag.

Law, A. M, W. D. Kelton. 2000. Simulation Modeling and Analysis. Third ed. New York:

McGraw-Hill.

Nelson, B. L, J. Swann, D. Goldsman, and W. Song. 2001. Simple Procedures for Select-

ing the Best Simulated System when the Number of Alternative is Large. Operations

Research, 49, 950-963.

Rinott, Y., 1978. On Two-stage Selection Procedures and Related Probability Inequalities.

Communications in Statistics, A7, 799-811.

Tong, Y. L. 1980. Probability Inequalities in Multivariate Distributions. New York: Aca-

demic Press.

Wilcox, R. R., 1984. A Table for Rinott’s Selection Procedure. Journal of Quality Technol-

ogy, 16(2), 97-100.

21


