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Abstract

We present a new approach for forecasting waiting times for entities moving through dynamic

stochastic systems that allows for state-of-the-art look-ahead computations to forecast future

waiting times better. The method is based on geometric Brownian motion and may be

combined with any global dispatching rule to improve performance of dynamic systems.

The classical job-shop scheduling problem (JSP) is considered as a benchmark to assess the

effectiveness of the presented approach. A probability estimate is computed to detect how

likely a given job will accumulate any more waiting time on its remaining way through the

system. The proposed method is therefore called No-Queuing probability. A simulation

study shows that the performance of global dispatching rules can be improved significantly

by adding the introduced No-Queuing probability to the dispatching equation. This paper

makes a first attempt at presenting a way to account for structured uncertainty in stochastic

systems. We introduce stochastic processes as one way to model and finally incorporate

system dynamics into the dispatching decision.

1 Introduction

The classical job-shop scheduling problem (JSP) involves a set of jobs, each of which requires

a set of machines for a certain period of time for processing. Each job consists of a sequence

of operations that represent the production steps of the jobs. Each operation needs a certain

machine for a certain time called the processing time. Once an operation is started, no

interruptions are allowed until completion, i.e., there is no preemption. Job-processing times

and their corresponding machine requirements represent the job routing. Each machine has

a capacity of one, i.e., it can process one and only one operation at a time (Kutanoglu and

Wu 1999). The scheduling objective is to optimize a company-related objective function.
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The three common types of factory control algorithms are dispatching, scheduling, and

pull algorithms (Baker 1998). Since pull algorithms are triggered by the demand side, strictly

speaking, they forbid the optimization of any predefined target function and delegate factory

control to the market.

A scheduling algorithm for a given planning horizon determines when which jobs will use

which factory resources (Baker 1998). These algorithms, also referred to as offline scheduling

(Sabuncuoglu and Hommertzheim 1992, Sabuncuoglu and Karabuk 1998), consider a manu-

facturing system as a closed system with complete knowledge of all the jobs to be scheduled.

Monolithic optimization models are run on a centralized processor to solve the JSP with

respect to the overall system (Dewan and Joshi 2001). Scheduling jobs in manufacturing-

shop floors is NP-hard (Morton and Pentico 1993, Pinedo 1995). This is true even when

dealing with a system in which everything is static and deterministic (Lee et al. 1997).

Hence, the solution space of real-life shop configurations does not allow calculation of op-

timal schedules. There have been various attempts to find near-optimal solutions (Lee et

al. 1997, 2002; Rai et al. 2002). Unfortunately, all centrally derived schedules are exposed

to massive perturbations. As a result of various uncertainties and dynamics present in the

production system, the schedule often becomes obsolete almost the moment it is released

for execution (Wu et al. 1999). All together, scheduling can be very tedious with offline

methods because of the difficulty of generating the schedule and updating it in a dynamic

manufacturing environment (Stecke and Solberg 1981).

Dispatching algorithms tackle the problem much differently. A dispatching rule, in gen-

eral, is used to select the next job from a set of waiting jobs to be processed at a machine when

the machine becomes idle (Jayamohan and Rajendran 2000). Because scheduling decisions

are obviously delayed until the last moment, dispatching algorithms are also referred to as

real-time scheduling (Hutchinson 1991), online scheduling (Sabuncuoglu and Hommertzheim

1992, Sabuncuoglu and Karabuk 1998), or ad hoc scheduling (Kutanoglu and Wu 1999). Ob-

viously, dispatching rules distribute shop-floor control equally across the various subunits of

a manufacturing system and, thus, achieve control-system robustness through fault-tolerance

ability of the control architecture (Duffie and Piper 1986, 1987; Duffie et al. 1988; Duffie

1990; Duffie and Prabhu 1994; Siwamogsatham and Saygin 2004).

This paper concentrates on the use of dispatching algorithms to improve job-shop per-

formance. The objective is to minimize the mean flow time across all jobs.
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2 Literature Review

Motivated by the promise of improved reliability and extensibility, as well as the poten-

tial for increased tolerance to uncertainty in data and knowledge (Smith and Davis 1981,

Davis and Smith 1983, Malone et al. 1983, Shaw and Whinston 1985, Shaw 1988, Duffie

1990, Upton et al. 1991, Lin and Solberg 1992), leading US manufacturers and government

agencies are claiming now that agile manufacturing is the future (Baker 1998). In a dis-

tributed system there is no organizational hierarchy—the structure is flat with a single level

of control with each control point in a level operating autonomously and communicating in

a peer-to-peer relationship (Dewan and Joshi 2002). Distributed scheduling is characterized

by a collective rather than centralized approach to decision making with loosely coupled

decentralized problem solvers motivated by their local objectives and constraints (Dewan

and Joshi 2001). Although distribution of information and decision-making responsibility

through implementation of local dispatching policies leads to system robustness (Duffie 1990,

Valkenaer et al. 1994), distributed scheduling is myopic and the quality of the resulting so-

lutions may not be as good as in the case of centralized methods (Sabuncuoglu and Karabuk

1998). Consequently, we are interested in mechanisms that allow resource scheduling to be

locally autonomous yet also aligned with global interests (Kutanoglu and Wu 1999). More

sophisticated models involving the co-operative solution of problems by a set of decentral-

ized and loosely connected intelligent problem-solving agents point in that direction (Suresh

and Chaudhuri 1993, Pechoucek et al. 2002, Dewan and Joshi 2002, Babayan and He 2004,

Siwamogsatham and Saygin 2004, Srinivas et al. 2004).

However, global dispatching algorithms are yet a more sophisticated way to increase the

quality of dispatching decisions from an overall perspective. While the scheduling decisions

are still made autonomously by every part of the system, global knowledge, such as the av-

erage waiting time at remote parts of the system, is considered. In general, dispatching rules

can be classified into two broad categories: local policies, which use information pertaining to

the immediate neighborhood of the decision point in space and time, and global dispatching

rules, which incorporate additional information from remote parts of the production system.

The latter have proven more effective as they do a better job in balancing the line output

while achieving the performance measure of interest (Dabbas and Fowler 2003). Various

researchers present rich reports on most of the dispatching rules being used for job-shop

scheduling (Conway 1965, Conway et al. 1967, Panwalkar and Iskander 1977, Blackstone et
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al. 1982, Haupt 1989). Since dispatching rules are normally intended to minimize work-in-

process inventory or tardiness costs, it is a customary practice to minimize flow-time-related

and tardiness-related measures of performance since the associated inventory and tardiness

costs are assumed to be directly proportional to the time periods of flow time and tardiness

of jobs (Blackstone et al. 1982). So far, no rule has been found to perform uniformly well

for all criteria relating to flow times and tardiness. The SPT rule is still considered to be

the most effective local dispatching rule in minimizing mean flow times (Dabbas and Fowler

2003). In general, it has been noted that process-time-based rules fare better under tight

load conditions, while due-date-based rules perform better under light load conditions (Con-

way 1965, Rochette and Sadowski 1976). Recently, many researchers have proposed global

dispatching rules that outperform SPT in terms of flow-time minimization (Raghu and Ra-

jendran 1993; Lu et al. 1994; Lin 1996; Holthaus and Rajendran 1999, 2000; Hung and

Chang 2002). The basic intuition underlying highly effective dispatching rules is to forecast

future system states in order to determine the expected waiting time of the various jobs.

3 Waiting-Time Prediction

If there were a way to get a good picture of future system status, we would just have to

dispatch those jobs that are most likely to accumulate the least additional waiting time on

their remaining way through the system in order to minimize mean flow times across all

jobs. Refer to the term that computes an estimate of the future system status as the look-

ahead component of a dispatching rule. The simplest way to formulate such a look-ahead

component is to follow a martingale approach: if the system is not expected to change over

the short run, the future system status is best represented by the current system status.

Raghu and Rajendran (1993) as well as Holthaus and Rajendran (1999) proposed a look-

ahead component that relies on such intuition. The latter used the total work stored in the

next queue (WINQ) as an estimate of the future waiting time of a given job. The proposed

dispatching rule is global by nature and is very effective in terms of minimizing mean flow

times. Although it requires minimum computational effort, it might lead to suboptimal

results, since production systems are exposed to perturbations so that a martingale approach

might no longer be appropriate. Lu et al. (1994), Lin (1996), and Hung and Chang (1999,

2002) rely on an iterative simulation approach, exponential smoothing, and an empirical

queuing approach, respectively, to predict future waiting times efficiently and accurately.
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We share common ground with previous research since we assume that forecasting waiting

times allows for more effective dispatching in a distributed-scheduling environment.

3.1 Nature of Volatility

We assume that the transportation times and set-up times within a production side are

trivial, the inter-arrival times between jobs are exponentially distributed, and the processing

times for every work step within the machining sequence of a given job are drawn from a

uniform distribution, and that we know when the job is released to the shop floor.

Like many other social systems, a shop floor is heavily related to various factors in the

environment. Even if utilization rates stay stable, a change in factors such as the product

mix, item due-dates, quality-control procedures, priority listings, or lot sizes challenge shop-

floor control. Indeed, all aforementioned factors lie within the control of the company’s

management. However, there are enough external factors such as traffic, weather, customer

demand, competition, unions, and macroeconomic variables that account for variation in

the number and the kind of jobs that are released into the shop floor. Although it is

impossible for management to control such external factors, it is reasonable to assume that

they are independent from each other and, thus, can be described as idiosyncratic risk. The

cumulative impact of all different factors should then oscillate around a basic trend, and we

can expect the drift and volatility parameters of various system ratios, such as the average

number of waiting jobs, to stay stable over the short run.

3.2 Probabilistic Evaluation of Future System States

We introduce a general procedure to compute the look-ahead component to improve forecasts

of future waiting times. We rely on stochastic processes as a means of calculating probabilities

for various system changes. Our intent is to enrich the dispatching decision through a

probability assessment that answers the following question: how likely is it for a job to be

processed at its next operation without accumulating additional waiting time, given that it

is chosen to be sent for processing at its current work step? Let us call this the No-Queuing

probability Pj of job j. A dispatching rule should then choose the job with the highest

No-Queuing probability Pj.

Consider a job shop consisting of M machines, where every machine makes its own

dispatching decision based on the SPT rule. Pick machine m1 and assume that there are

two jobs ji, i = 1, 2, waiting for processing. Let ρjm denote the process time (PT) of job
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Table 1: Process Times in Minutes

Job ji Machine mi

i 1 2 3
1 10 35 –
2 20 – 50

j at machine m and let both jobs be different and require different machining sequences:

j1 has to visit m2 next while j2 has to visit m3 next. Suppose, for example, that there are

currently 5 jobs waiting at machine m2 and that the process times across those jobs are

normally distributed with a mean of 20 and a standard deviation of 5 minutes. On the

other hand, there are 50 jobs waiting at machine m3, and the process times for these jobs is

normally distributed with a mean value of 200 and a standard deviation of 50 minutes. We

acknowledge that process times cannot be normally distributed in the sense that they would

then have a chance, however small, to take on negative values. However, the simulation

results in section 6 appear to be robust to departures from this normality assumption. Now,

given Table 1 for the processing times ρjm, which job should be chosen for processing at

machine m1?

SPT requires the workstation m1 to choose job 1. However, given the current situation

at its subsequent workstation and given that the SPT policy is implemented at every part

of the system, it is likely for job 1 to accumulate more than 100 minutes of additional

waiting time at machine m2. At the same time, job 2 is likely to be processed instantly

without accumulating any more waiting time at its subsequent workstation m3, since its

process time at this machine ρ23 lies more than 3σ below the average process time of all jobs

currently waiting at m3. Clearly, the dispatching decision made solely based on SPT should

be revised through the consideration of the jobs’ No-Queuing probabilities. It is much more

likely for job j2 to be processed prior to all other jobs waiting at machine m3 than it is

for job j1 at machine m2. Up to now, we have considered a static environment in that the

system status does not change over time. Now, let us go one step further and introduce

system dynamics. If we assume that the process underlying the average process time of all

jobs waiting at any machine m follows geometric Brownian motion, we can make a more

sophisticated dispatching decision. Should the N(20, 5) distribution of the process times at

machine m2 represent an all-time low and start to move upward over time, then our previous

dispatching decision “choose job 1 for processing” might not continue to be an optimal one.
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The picture gets even more complex if we consider the volatility of the diffusion process. The

remainder of this paper introduces an approach to forecast waiting times based on stochastic

processes that considers all of the aforementioned factors.

4 No-Queuing Probability Pj

There are multiple ways to measure the introduced No-Queuing Probability Pj for a given

job j. We measure Pj as the probability that the mean process time of the jobs waiting

at the subsequent machine m′ in the machining sequence of job j falls below the process

time ρjm′ of job j at machine m′ by the time it gets there. Since the dispatching decision at

the current machine m is to be made at time t0, it takes a given job ρjm time units to get

to machine m′. Let t′ = t0 + ρjm represent the moment when job j arrives at machine m′

(remember that we have assumed transportation times to be 0). Now, we can rewrite the

No-Queuing probability as Pj(ρ̄m′t′ < ρjm′ | ρ̄m′t0) where ρ̄m′t′ denotes the mean process time

across all jobs waiting at machine m′ at time t′. m′ simply denotes the next work station in

the machining sequence of a given job. Let us develop a model that calculates Pj exactly.

4.1 Geometric Brownian Motion as the Underlying Process

As mentioned earlier, many social systems are exposed to various independent risks that

sum up to a cumulative risk factor that oscillates around a basic trend over the short run.

Although the impact of the various risk factors changes on a continuous basis, we expect the

cumulative impact to follow stable patterns over the short run.

Stochastic processes can be described by a drift and a volatility parameter. In the

special case of production systems, many ratios such as the average process time across all

jobs waiting at a particular machine must be positive numbers. Therefore, we use geometric

Brownian motion as the underlying process to model the development of ρ̄mt over time.

Rossner (2005) gives statistical evidence that ρ̄mt follows geometric Brownian motion for a

specified, and highly loaded production system. The process that mimics the development

of ρ̄mt at machine m is denoted as dθmt. Clearly, the stochastic process is not able to

predict future values for ρ̄mt. However, the trend and volatility parameters that underlie

both time series have to be identical. Hence, the probability that the virtual random walk

dθmt undergoes a certain value x∗ in a finite time window [t0, t
′] should equal the probability

that the real process ρ̄mt undergoes the same value x∗ in [t0, t
′]. Let us therefore derive Pj
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from the stochastic differential equation of a geometric Brownian process. We will see later

what limits the use of a geometric Brownian motion. The use of more complex processes

such as jump-diffusion movements might be more appropriate to capture the various kinds of

underlying risk factors. Since geometric Brownian motion does a good job in most situations

and since it is easy to implement, we adopt it for our purposes. For the remainder of the

paper, we refer to dθt as the stochastic processes without specifying a specific machine m.

4.1.1 Derivation of Pj

This section requires an understanding of stochastic differential equations; see Oksendal

(1998) for background. Write dθt as a stochastic process in continuous time as

dθt

dt
= a(t)θt (1)

where a(t) = α + σ ×Wt. Wt specifies a Wiener process—also referred to as standardized

Brownian motion—that has drift and volatility parameters of 0 and 1, respectively. Wt can

be described as a martingale. We can rewrite (1) as

dθt = αθtdt + σdWtθt (2)

where the drift parameter α specifies the expected growth, and the volatility σ describes the

mean relative deviation of the process from α. The Wiener process dWt accounts for the

randomness in the model and can be expressed as

dWt = ε
√

dt (3)

where ε is a N(0, 1) distributed random variable. By the central limit theorem, the ending

values of a random walk described by a Wiener process are normally distributed, since they

simply represent the sum of various identically distributed random variables. This result

will help us to derive the distribution for Pj.

Assuming that this model fully describes the fluctuations of ρ̄mt at any machine m over

time, we can use Ito’s lemma to solve the stochastic differential equation (2).

Theorem 1 (Ito 1951). Let dxt = αdt + σdWt be a stochastic process with a drift rate α

and volatility σ. The increments in continuous time of a twice-differentiable function G(t, x)

can be written as

dG =

[
δG

δt
+

δG

δx
α +

1

2
σ2 δ2G

δx2

]
dt +

δG

δx
σdWt.
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dG then describes the process as dxt with identical values for α and σ.

For a function f(t, θt) = ln θt we can write

δf

δθt

=
1

θt

,
δ2f

δθ2
t

= − 1

θ2
t

, and
δf

δt
= 0,

and because of Theorem 1

df =

[
0 +

1

θt

αθt +
1

2

(
− 1

θ2
t

)
σ2θ2

t

]
dt +

1

θt

σθtdWt,

or

df =

[
α− σ2

2

]
dt + σdWt, (4)

which then describes the diffusion of ln θt over time with identical values for α and σ from

the underlying process (2). We can finally rewrite df as

df = d ln θt = ln θt+dt − ln θt = ln
θt+dt

θt

.

Because α and σ are constant, (4) follows a Wiener process with drift. The drift rate is

perfectly described by the first term in (4), while the variance is simply σ2dt; see (3) for

the variance of a Wiener process. Since we know the distributional properties of a Wiener

process, we can derive the distributional properties of the process (2) as Theorem 2.

Theorem 2 The increments of the process described in formula (2) have the following prop-

erties:

1. ln θt+dt

θt
∼ N

((
α− σ2

2

)
dt, σ2dt

)
,

2. The increments are stationary,

3. The increments are independent of each other.

The first item in Theorem 2 allows us to calculate the No-Queuing probability Pj as a

function of the drift and volatility of the underlying stochastic process as well as from the

remaining time dt. As mentioned earlier, dt should be taken as ρjm, the process time of job

j at the current work station m.

Recall that Pj, the probability that the average process time across all jobs waiting at the

next machine of job j falls below the process time of job j at machine m′, given the current
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average process time across all jobs waiting at machine m′, was Pj(ρ̄m′t′ < ρjm′ | ρ̄m′t0) where

t′ is the moment when job j is expected to arrive at machine m, t′ = t0 + ρjm, and t′ > t0.

Thanks to the first item in Theorem 2 we now have a better idea of what Pj actually means:

Pj describes how likely a certain movement dθt will occur in a given time window [t0; t
′].

Since we already know that dθt is normally distributed, we can finally calculate Pj.

Let bj denote the critical movement for which we want to calculate a probability Pj.

Clearly,

bj = ln
ρjm′

θm′t0

and therefore, we can write Pj as

Pj(ρ̄m′t′ < ρjm′ | ρ̄m′t0) =

{
P (bj ≥ a) = 1− Φ(a), ∀bj ≥ 0
P (bj < a) = Φ(a), ∀bj < 0

where

a =
bj − (α− σ2/2) dt√

σ2dt

and Φ is the cumulative distribution function of the standard normal distribution.

4.1.2 Properties of the Underlying Process dθt

We can plug (4) into the exponential function and get

θt = θ0e
(α−σ2/2)dt+σε

√
dt. (5)

From (5) we can derive helpful insights into the implied oscillation of the stochastic process.

Theorem 3 The stochastic process describing the diffusion of dθt has the following properties:

1. θt →∞ if t →∞, for α > σ2/2,

2. θt → 0 if t →∞, for α < σ2/2,

3. θt oscillates between arbitrary small and large values for α = σ2/2.

Since the drift rate is expected to be 1 in a steady-state system, θt approaches 0 when the

forecast horizon is only high enough. Hence, for jobs with long process times ρjm, t′ = t0+ρjm

becomes large and, thus, Pj increases. This makes perfect sense: if a given job requires long

process times at the current work step, the mean process time at the next machine ρ̄m′ has

more time to realize the critical movement bj.
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4.1.3 Distribution Parameters for θt

θtm is a function of the number of jobs ntm at a given machine and the process times ρjm

required by each of those jobs j = 1, ..., ntm. Since both ntm and ρjm are random variables,

θtm is also a random variable. Let Ntm = {j1, ..., jn} denote the set of jobs waiting at machine

m in time t. The expected value for θtm can be written as

E [θtm] =
1

ntm

∑

i∈Ntm

ρim

and, thus, E [θtm] → E [ρjm] if ntm → ∞. More interesting is the second moment of the

distribution. Let ρjm be a discrete uniform random variable in the set {a, a + 1, a + 2, ..., b}.
For 0 < a < b, we get

P (θtm = a | Ntm = 1) > P (θtm = a | Ntm = n)

for every n > 1, since

P (a | 1) =
1

b− a
> (b− a)−n = P (a | n) .

Clearly, for every point in time where ntm = 1, the distribution of θtm is discrete uniform

in the interval [a, b] and approaches a normal distribution as ntm increases. The conditional

variance σρ̄ (θtm | ntm) is expected to increase as ntm decreases.

We conclude that the No-Queuing probability is suitable only for highly loaded systems.

In lightly loaded systems, ntm, the number of waiting jobs at a machine m, is likely to be

low and, thus, as seen above, the mean process time across all waiting jobs tends to fluc-

tuate widely. Based upon the implied oscillation properties of geometric Brownian motion,

increased volatility σρ̄ leads to higher values for the No-Queuing probability values Pj. But

as soon as Pj approaches 1 for all jobs waiting in line, the concept of No-Queuing probability

is not of much help for the dispatching decision.

This result is very important for future use of the presented concept. We stress that the

use of Pj is most effective in highly loaded systems and not of additional value in lightly

loaded environments.

5 Implementation of the No-Queuing Probability

The remainder of this paper describes a real implementation of a dispatching rule based on

the No-Queuing probability concept. We performed a simulation study to show that the

11



proposed No-Queuing probability increases the effectiveness of any global dispatching rule

in terms of minimized mean flow times. The results support the theoretical finding that the

No-Queuing probability is most effective in highly loaded systems, while it does not lead to

more effective dispatching decisions in lightly loaded environments.

5.1 New Dispatching Rule Based on the No-Queuing Probability

The No-Queuing probability is not to be seen as a proper dispatching rule itself, but rather

as a very powerful look-ahead term that can be combined with any other global dispatching

rule with respect to the minimization of mean flow time. For the simulation study, we chose

three dispatching rules that have been proven very effective and integrated the No-Queuing

probability into each of them. We do not provide a detailed description of the dispatching

rules being used in the simulation study, but the interested reader could refer to Raghu and

Rajendran (1993) and Holthaus and Rajendran (1999, 2000).

Raghu and Rajendran (1993) developed a dispatching rule on the finding that SPT

achieves good results under heavy load conditions while due-date-based rules such as S/OPN

perform better under light loads. Their proposed rule uses the utilization rate observed for

a machine m in the past, denoted by νm, 0 < νm < 1. When νm is high the rule resembles

SPT. When νm is low, more weight is given to a due-date-based dispatching decision. Since

the rule is widely known as RR, we refer to RR⊗ Pj as the enhanced version. RR⊗ Pj can

be written as

Zj =
Slackj ⊗ e−νmρjm

RPTj

+ eνmρjm + WINQj ⊗ Pj (ρ̄m′t′ < ρjm′ | ρ̄m′t0)

where Slackj means the maximum time job j could spend waiting before it overshoots

its assigned due date. RPTj denotes the sum of process times of uncompleted operations

(remaining process time). WINQj indicates the already-introduced concept of work in next

queue, which is the sum of process times of all jobs waiting at the subsequent machine of

job j. The No-Queuing probability was incorporated in the last term of the RR rule.

Zj is the priority index for job j. The job with the smallest priority index Zj is chosen

for processing.

Holthaus and Rajendran (1999) showed that PT +WINQ outperforms RR in job shops

with missing operations and, thus, was the most effective dispatching rule at the time. We

stretch the rule to PT + WINQ ⊗ Pj again by incorporating the No-Queuing Probability.
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PT + WINQ⊗ Pj can be written as

Zj = ρjm + WINQj ⊗ Pj (ρ̄m′t′ < ρjm′ | ρ̄m′t0) .

2PT + WINQ + NPT (Holthaus and Rajendran 2000) was shown to outperform PT +

WINQ. Again, this rule is extended to 2PT +WINQ⊗Pj +NPT so that the No-Queuing

probability is considered as the look-ahead component. 2PT + WINQ⊗ Pj + NPT can be

written as

Zj = 2ρjm + WINQj ⊗ Pj (ρ̄m′t′ < ρjm′ | ρ̄m′t0) + NPTj

where the middle term was modified by the No-Queuing probability and the last term indi-

cates the job’s process time at its next operation.

As shown below, the use of the No-Queuing probability Pj makes each of the rules above

more effective.

5.2 Estimating Core Parameters

Computation of Pj requires the estimation of α and σ, and the derivation of the function

Φ(z).

α and σ are time sensitive since either one depends on realizations for the random vari-

able ρ̄mt. At a first glance it seems appropriate to estimate both parameters “on-the-fly.”

However, the distributional properties of the underlying stochastic process described in The-

orem 2 and Theorem 3 do not allow for parameter estimates in continuous time. Recall that

the second moment of ρ̄mt relies on nmt so that the variance of ρ̄mt is high when ntm is low

and vice versa. If there are only a few jobs waiting, σρ̄ increases and it follows that Pj ap-

proaches one. In this case, the dispatching decision gives less weight to ρjm since high values

for σρ̄ enable the underlying stochastic process to realize almost every critical movement bj

in any time. Hence, a job whose next workstation is frequented by not too many jobs has

a small chance of being chosen for processing at its current work step. The easiest way to

cope with obviously wrong dispatching decisions is to estimate α and σ in advance instead

of “on-the-fly.”

As soon as the system reaches its steady state, α approaches one and was therefore fixed

to one. Based on output data from the simulation study described in section 5.3, σρ̄ was

estimated as 34. The performance of the No-Queuing probability is sensitive to changes in

both parameters.
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There are multiple ways to implement a function Φ(z), e.g., a Taylor-Series expansion.

We simply did a nine-times polynomial approximation of 10,000 data points derived from

standard normal tables. The polynomial approximation draws the function Φ̂(z) for −5 <

z < 5. See Rossner (2005) for a detailed description of the estimated function Φ̂(z).

5.3 Simulation study in SIMAN

5.3.1 Experimental Design for the Simulation Study

A job shop could be classified into an open shop and a closed shop, depending on the way

in which jobs are routed in the shop. In a closed shop, the number of routings available to

a job is fixed and an arriving job can follow one of the available routings. In an open shop,

there is no limitation on the routing of a job and each job could have a different routing.

In this paper we consider the open-shop configuration. The typical standard assumptions,

such as the processing of only one operation on a given machine at a given instant, no job

preemption, an operation of any job to be performed after the completion of all its previous

operations, machines being the only limiting resources, no machine breakdowns, no assembly

of jobs, and no parallel machines (Haupt 1989, Ramasesh 1990), are also made in this study.

We assume the presence of ten machines.

To determine the machining sequence of a newly arrived job, a random permutation

of a subset of the ten machines is chosen and the entering job undergoes processing in

the chosen permutation order. Each machine in the chosen subset is visited exactly once.

First, the number of operations for an entering job is randomly and uniformly sampled from

{2, 3, ..., 9, 10} and the corresponding machine visitations are randomly generated with no

machine being revisited. For example, if the number of operations for an entering job is 6,

we sample (without replacement) six different machines out of the ten to be visited by the

job, say, 4− 1− 7− 10− 8− 3. In all experimental setups, the process times are drawn from

a uniform discrete distribution on {1, 2, ..., 49}.
Job arrival times are generated using an exponential distribution for inter-arrival times.

Two machine-utilization levels Ug are tested in the experiments, 80% and 95%. Thus, in all,

there are two different utilization levels (i.e. two different mean inter-arrival times) and 15

different dispatching rules, making a total of 30 scenarios.

It is a customary for researchers to conduct simulation experiments with different param-

eter settings. We find in the literature that the utilization levels in the range 80%-95% are
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Figure 1: Mean Flow Time Across 20 Replications: Light Dots are Individual Observations,
Dark Line Plots Moving Averages for 50 Observations

commonly considered (Blackstone et al. 1982, Haupt 1989). While the number of machines

in a jobshop could be theoretically anything, it is usually set in the range 6-12. This setting

follows from the observations of Baker and Dzielinski (1960) and Nanot (1963) that the shop

size is not a significant factor in the relative performance of rules, and that a shop with

about nine machines should adequately represent the complexity involved in large dynamic

job-shop operations.

In our study, we are interested in steady-state or long-run performance, and each sim-

ulation experiment consists of 20 different runs (or replications). In each run, the shop is

continuously loaded with job orders that are numbered on arrival. In order to ascertain when

the system effectively reaches steady state, we observed the shop parameters, such as uti-

lization level of machines, mean flow time of jobs, etc. We found that the shop appeared to

reach steady state after the arrival of about 2,000 job orders (see Figure 1). Figures 1–3 plot

the convergence of average flow time, number of entities in the system, and utilization rate.

While the average flow time is a stochastic process in discrete time, the number of entities in

the system as well as the utilization rate are both in continuous time. Since the system was

warmed up in discrete time specified by number of job completions, all other variables were

converted into discrete time according to the mean inter-arrival times of jobs. According to

the aforementioned model settings, we need a mean inter-arrival time of approximately 15.8

minutes to satisfy a 95% utilization rate. Hence, on average every 15.8 minutes one job gets

completed. This is how we convert continuous time into discrete time (see Figures 2 and 3).
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Obviously, the average flow time takes the longest to achieve steady-state. Once the

average flow time has reached steady-state, both, the number of entities in the system and

the utilization rate already have. Thus, we specify the the warm-up phase according to the

behavior of the average flow time (see Figure 1). According to Welch (1981), “eyeballing”

multi-replication plots and being conservative in the sense of warming up longer than the

bare minimum indicated by the plots gives a reliable warm-up phase.

Typically, the total run length in simulation studies of jobshop scheduling is of the order

of thousands of job completions (Conway et al. 1960, Blackstone et al. 1982). For a given

total run length, it is preferable to have fewer replications and a longer run length, and

the recommended minimum number of replications is about 10 (Law and Kelton 1984).

Following these guidelines, we fixed the number of replications as 20, with the run length for

every replication as 60,000 completed job orders, which provided for adequate precision to

draw conclusions. As for the computation of statistics for a given replication, we collected

data from orders 2,001 through 62,000, and the shop is further loaded with jobs until the

completion of 64,000 job orders. This helps in overcoming the problem of “censored data”

(Conway 1965). The use of very long run length produced statistically significant results in

terms of small confidence intervals.

The simulation program was written in SIMAN and implemented on a Intel Pentium 2

GHz PC. See Tables 2 and 3 for the results, as well as Figures 4 and 5.

6 Conclusion

As expected by the theoretical derivation of the new concept of a No-Queuing probability,

the implementation requires highly loaded systems. For systems operating under only light

loads, the new concept does not improve job-shop performance for the reasons we have cited

above.

Table 2 and Figure 4 show that the introduced No-Queueing probability improves the

performance significantly for two of the three dispatching rules that have been tested. In

case of the rule RR, incorporating the No-Queuing probability decreases the mean flow time

by almost 15%. For the rule PT + WINQ, the performance gain is about 10%. In either

case, the performance improves significantly. Only in case of the rule 2PT +WINQ+NPT ,

the performance gain is not significant for a confidence level of 95%. We conclude that the

randomness in the model accounts for the improvement of 2PT + WINQ⊗ P + NPT over

17



Table 2: Results after 20 Replications, 60,000 Observed Jobs per Replication, 95% Utilization
Rate

Dispatching Rule Mean Flow Time (Min.) Half-Width
(95% Confidence)

RR⊗ P 870.6 23.3
2PT + WINQ⊗ P + NPT 878.5 23.7
PT + WINQ⊗ P 885.0 24.1
2PT + WINQ + NPT 907.7 25.2
PT + WINQ 975.3 27.6
RR 1018.2 35.4
SPT 1019.8 31.9
PT + WINQ/TIS 1090.5 34.2
PT/TIS 1206.5 39.7
PT + WINQ + SL 1248.6 43.6
PT + WINQ + AT 1343.3 42.6
EDD 1542.7 53.5
AT 1565.7 53.7
AT −RPT 1568.9 52.8
S/OPN 1705.0 63.7

Table 3: Results after 20 Replications, 60,000 Observed Jobs per Replication, 80% Utilization
Rate

Dispatching Rule Mean Flow Time (Min.) Half-Width
(95% Confidence)

RR⊗ P 372.0 2.0
2PT + WINQ⊗ P + NPT 376.0 2.0
PT + WINQ⊗ P 378.0 2.2
2PT + WINQ + NPT 377.4 2.0
PT + WINQ 383.0 2.1
RR 378.0 2
SPT 386.2 2.3
PT + WINQ/TIS 410.4 2.6
PT/TIS 424.0 2.7
PT + WINQ + SL 392.0 2.7
PT + WINQ + AT 461.4 3.4
EDD 481.9 4.2
AT 493.8 4.2
AT −RPT 497.0 3.8
S/OPN 476.0 4.0
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Figure 5: Results and 95% Confidence Intervals for 80% Utilization Rate: The Dotted Line
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2PT + WINQ + NPT .

Table 3 shows the results for an 80% utilization rate. Even though the performance

improvement of RR ⊗ P and PT + WINQ ⊗ P over RR and PT + WINQ, respectively,

is still significant for α = 0.05, it is expected to be not significant for every confidence level

α < 0.05.

The simulation results indicate that the introduced No-Queuing probability improves the

performance of global dispatching rules in general. For low load factors, more sophisticated

processes such as jump-diffusion models seem to be more appropriate to capture the erratic

movements that result from the fact that random variables do not approach a normal distri-

bution. We conclude that the No-Queueing probability should be used in combination with

various global dispatching rules to improve performance in highly loaded job-shops.

This paper makes a first attempt at presenting a way to account for structured uncer-

tainty in stochastic systems. We introduced stochastic processes as one way to model and

finally incorporate system dynamics into the dispatching decision. Further research should

concentrate on more sophisticated stochastic processes to model chaotic behavior that cannot

be described by normally distributed increments.
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