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Abstract 
 

Simulation software has made great advances in re-
cent years along the dimensions of modeling capabilities, 
animated graphics, and ease of use.  There have also 
been real improvements in terms of both generality to 
model a wide variety of systems, and in specialization for 
quick and accurate modeling in specific application do-
mains.  And, of course, the dramatic improvement in com-
puting/cost ratios has rendered truly commonplace what 
were just a few years ago impossibly time- and memory-
consuming simulations.  However, the statistical design-
and-analysis capabilities of simulation software have not 
kept pace with the modeling, graphics, and ease-of-use 
advances; nor have they kept pace with ongoing re-
search on the underlying methods.  This paper discusses 
a wide variety of design-and-analysis capabilities that 
the author feels should be as available and as easy-to-
use as are current modeling and graphics functions.  The 
list includes only methods that are in existence today, so 
is not just a “wish list” of perhaps-impossible dreams.  
The paper concludes with speculation on why this im-
balance exists, and suggests how it might be effectively 
addressed. 
 
 

1. Introduction 
 

In the last decade or so there have been truly great ad-
vances in simulation software in terms of modeling capa-
bilities, animated graphics, ease of use, and, to some ex-
tent, generality.  It is now possible for a relative novice to 
learn how to build relatively elaborate simulation models in 
a relatively short time frame.  Indeed, this is in part re-
sponsible for the great and growing popularity and use of 
simulation (along with the obvious leaps in computer per-
formance/price ratios). 

At the same time, though, implementation of design-
and-analysis capabilities has lagged behind.  This is not 
due to paucity of research on such methods, or a large 
inventory of important and unsolved problems, since ba-
sic methodological research in these fields has forged 
ahead unabated for at least 30 years, with many fundamen-
tal and highly applicable advances in evidence. 

So now we have a wealth of extremely good (and good-
looking) simulation models, built without huge invest-
ments in time, people, or software dollars, alongside an 
impoverishment of design-and-analysis tools and applica-
tions.  The result is that we have a large inventory of 
wonderful models that are being tragically underused and 
underanalyzed, to the detriment of simulation’s potential 
to help and have impact. 

So what to do?  Here I’ll make some modest proposals 
to beef up the design-and-analysis capabilities of simula-
tion software, and will throughout remain well within the 
realm of what is possible now, with our current knowledge 
of underlying methods, steering clear of pie-in-the-sky 
wish lists of being able to do things we don’t know how to 
do. 

In Sections 2, 3, and 4 I’ll look at the input side of simu-
lation analysis.  In Section 5 is the groundwork for the 
output side, that of analyzing a single simulated system.  
Sections 6 through 10 give some possibilities for analyzing 
and understanding multiple simulated systems and the 
relationships between them.  In Section 11 I’ll conclude 
with some speculation on concrete steps that can be 
taken.  The references at the end of the paper mention 
several books and recent survey articles on these topics, 
which in turn contain many more references into the litera-
ture. 

Some of what I’d like to see, as described in this paper, 
is indeed available in some software today.  But a lot of it 
isn’t, and I think it should be and could be. 
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2. Input analysis 
 

In developing a stochastic simulation, one must decide 
what input distributions and processes to specify to agree 
as closely as possible with reality.  This involves various 
kinds of statistical analyses of observed real-world data, in 
order to specify realistic probabilistic distributions from 
which to sample to drive the simulation. 

This is quite different from the kind of statistical analy-
sis one finds in standard statistical packages, many of 
which are oriented to social-science survey or economic 
data.  And so these packages are seldom adequate to give 
the simulation modeler what is needed. 

We need to be able to “fit” standard distributions to 
observed data, as well as specify nonparametric empirical 
distributions when standard distributions fail (or even as a 
matter of course, whether standard distributions fail or 
not).  Beyond this, we must be able to fit multivariate 
processes, either by estimating the full-blown joint distri-
bution, or perhaps just estimating the marginal distribu-
tions and the correlation matrix; there are well-known ex-
amples of simulation models’ going seriously astray if 
such correlations are ignored.  Another common need is to 
estimate some kind of dynamic process that might exhibit 
marked nonstationarity, for instance to model an arrival 
process of cars to a freeway interchange over the course 
of a day that contains two rush periods separated by long 
periods of relative inactivity. 

Importantly, it should be easy or almost transparent to 
the user how to link the results of this input analysis to 
the simulation-modeling software.  It is easy to do so in 
terms of syntax of text entries for fitted input distributions, 
but it would be better to establish dynamic links between 
the places in the model where these input-process distri-
butions are needed and the fitting software, or perhaps 
even back to the data themselves, thus making the whole 
fitting process transparent to the user.  I would tell the 
simulation model where my data set is on some input fea-
ture, and it would automatically link to the fitting software, 
analyze the data, and give the results to the simulation 
model.  This kind of dynamic integration is now common 
in office-suite software, and it could be common in simula-
tion software as well, but will require better integration 
than we now have. 
 

3. Random-number generators 
 

I like to describe random-number generators as the 
“engine room” of stochastic simulation buried, out-of-
sight, humming along silently, yet clearly critical to mo v-
ing ahead.  Somewhat alarmingly, we now have a severe 
mismatch between computer-hardware capabilities and the 

characteristics of random-number generators in common 
use. 

First and foremost, random-number generators must be 
of high statistical quality, and produce a stream of num-
bers that behave as though they were independent and 
uniformly distributed on the unit interval, even when scru-
tinized closely for these properties by powerful statistical 
tests.  With the speed of computers several decades ago, 
generators were developed that were adequate to “fool” 
these tests up to the discriminatory power of the day. 

One aspect of this is the cycle length of a generator, 
which is the number of random numbers before the gen-
erator repeats itself (as all algorithmic generators eventu-
ally will).  In the 1960s and 1970s, generators with cycle 
length around 231 (on the order of 109) were developed; 
this cycle length resulted from the word length of fixed-
point integers in computers at that time.  These were ade-
quate for many years, and were in wide use. 

Unfortunately, they are still in wide (almost-universal) 
use today, when computer speeds have increased to the 
point that my low-end laptop can completely exhaust this 
cycle in just a few minutes!  At that point the stream cy-
cles and I get exactly the same “random” numbers in ex-
actly the same order, with obvious deadly implications for 
the integrity of my simulations’ results.  This is a dirty 
little scandal in simulation software, and is one that few 
users (or software developers) are aware of, or seem to 
care about. 

We now have developed and coded algorithms for ex-
tremely long-period generators (with cycle lengths on the 
order of 1057 or more), which display superb statistical 
behavior.  They are “long” even under Moore’s law, for 
centuries to come.  And their speed is comparable to the 
poor little old generators from decades ago.  I cannot think 
of any excuse at all for not implementing these kinds of 
generators immediately. 

Another aspect of random-number generators is the 
ability to specify separate “streams” of the generator, 
which are really just (long) subsegments of the entire cy-
cle, and to make these readily available, perhaps via on-
the-fly object-oriented instantiation.  These streams can 
be further subdivided into substreams, and so on, for 
multi-dimensional indexing and assignment of separate  
and independent chunks of random numbers to separate 
activities in the simulation; the importance of this is really 
in variance reduction, discussed below in Section 7.  Of 
course, being able to do this requires an extremely long-
period underlying generator, but we now have those.  And 
we also have easy and fast methods to create and refer-
ence such a multi-dimensional streams structure. 
 



4. Variate and process generation 
 

Putting input analysis and random-number generation 
together, we arrive at the point of needing to generate 
realizations of the input process to drive the simulation. 

For some years we have had a variety of good methods 
to generate variates from the standard univariate probabil-
ity dis tributions.  Some of these, however, were developed 
at a time when conserving computer time was paramount, 
which still might be the case in some applications requir-
ing extremely large generated samples.  However, in many 
applications it can become more imp ortant to preserve the 
one-to-one mapping of random numbers onto random 
variates (to preserve synchronization for variance reduc-
tion), which can be done by using the inverse-distribution 
method of variate generation.  This also maximizes the 
correlation between random numbers and variates, which 
improves variance reduction.  Inverse-distribution meth-
ods are thus preferred, even if one has to resort to a nu-
merical root-finding scheme to make them work in the case 
of some distributions. 

Going along with specification of multivariate, corre-
lated, and stochastic-process input-model specification 
discussed above in Section 2, we need broader coverage 
of the ability to generate such random structures in simu-
lation, which can be critical to the validity of some simula-
tions.  At this point, there is almost no coverage of these 
abilities, without tedious user-written helper codes. 

And, like input-distribution specification, these genera-
tion methods should be linkable all the way back to the 
observed real-world data, without the need for intermedi-
ate user intervention to supply data, fit distributions or 
processes, and then select them in the modeling software.  
I would like to say to the simulation software: “Here are 
my data, now you generate a random structure that be-
haves like these data, and you decide whether things like 
correlations and nonstationarity are needed to do so in 
order to represent reality faithfully.” 
 

5. Statistical analysis of a single system 
 

Once the model (including the random inputs) are set 
up, we’ll run the model to get some outputs.  Of course, 
these outputs will be subject to sometimes-substantial 
statistical variability if the inputs are random.  So it’s es-
sential to assess the precision of the simulation’s output, 
and to take corrective action if the precision is unaccept-
able. 

If there’s just a single system of interest (a rare but 
possible situation, e.g. in proving in specifications) a 
common and appropriate approach is to build confidence 
intervals on key output performance measures. 

A central question is whether the time frame of the 
simulation is short-run (terminating) or long-run (steady-
state); the software should demand that the user state 
which is of interest, as well as what the key output per-
formance measures are, and then the software should take 
over the decision making about how much simulating is 
needed. 

For terminating systems, the software should perform 
replications until the confidence intervals meet a user-
specified precision requirement, stated in either absolute 
or relative terms.  Such sequential-sampling procedures 
are by now well-understood and are relatively simple to 
explain and to code.  This would produce confidence in-
tervals that satisfy the user’s precision requirements, per-
haps with a gentle warning about the Bonferroni inequal-
ity and the curse of multiple comparisons.  There might 
also be a “bail-out” option for the user if the initial preci-
sion demands are so tight that the simulation would have 
to run until, say, the thermal death of the sun (the required 
simulation effort can be estimated in advance); in this the 
user could be given the opportunity to reconsider and 
relax the precision demands. 

For steady-state simulations, the software should use 
the batch-means method in a single long run, perhaps in 
concert with some initial-data deletion in a warmup phase, 
and should itself decide on things like appropriate batch 
size and run length.  Again, sequential sampling would be 
used, but this time with batches and batch sizes instead of 
replications, to satisfy the user’s precision requirements. 

While it might be rare that only a single system is of in-
terest, the methods for statistical analysis in such cases 
form the basis for the more complex (and realistic) settings 
discussed in the coming sections. 
 

6. Comparison, selection, and ranking of sev-
eral given systems  
 

In many studies we’re faced with a relatively short list 
of possible systems and are asked to compare them or 
rank them or select the best one(s).  There should be pro-
vision for doing everything discussed in this section in 
the context of either terminating or steady-state simula-
tions (using, respectively, replications or batches). 

If there are only two systems, the software should pro-
duce paired-t confidence intervals on the differences be-
tween key performance measures in the two systems.  The 
variance-reduction technique of common random numbers 
(see Section 7) should always be used (as it in fact always 
is today in simulation software, though unconsciously) 
but with proper synchronization (as it in fact almost never 
is today in simulation software without somewhat heroic 
intervention on the part of the user, which seldom hap-



pens).  This synchronization should be automatic, and I 
discuss this further in Section 7. 

If the number of systems is more than two, the software 
should have easy provision for calling for all comparisons 
against a standard, as well as all pairwise comparisons, 
producing just marginal confidence intervals but warning 
about Bonferroni multiple comparisons and the danger of 
overstating the overall confidence level. 

Multiple ranking-and-selection procedures have been 
in development for over 50 years, but simulation now pro-
vides a near-perfect opportunity for their effective use.  
There should be easy entry in the simulation software to 
such methods, probably using indifference-zone formula-
tions for means as well as multinomial probabilities, with 
user specification of the indifference zone and correct-
selection-probability requirements.  The output should 
declare the selected system(s), together with quantifica-
tion of how much worse the inferior systems are in case 
the best system proves undesirable for other reasons. 
 

7. Variance reduction 
 

Since computer simulations use (repeatable) random-
number generators rather than unrepeatable natural ran-
domness, we can “swindle” the output noise by judicious 
re-use of previously-used random numbers, resulting in 
better precision for the same effort, or less effort to 
achieve a given precision. 

Probably the best-known and most effective of these 
methods is common random numbers (CRN), meaning that 
we use the same random numbers to simulate all the differ-
ent systems of interest, rather than using independent 
random numbers to simulate them independently.  This is 
“comparing like with like,” or blocking in experimental-
design parlance where the blocking factor is the sequence 
of random numbers being used. 

A critical but usually-overlooked aspect of effective 
use of CRN is that not only are the same random numbers 
used to simulate across the different systems, but they 
must be used for the same purposes across the different 
systems.  Thus, it is necessary to synchronize random-
number use across the systems, and this can require care 
and even cunning in some situations. 

Simulation software can go a long way toward making 
synchronization happen by devoting separate streams of 
random numbers (see Section 3) to separate sources of 
randomness in the model.  This clearly requires an ample 
supply of long streams, which is yet another reason for 
moving to modern long-period stream-delimited genera-
tors, as argued in Section 3.  It is also important to be able 
to re-synchronize across the different models at the be-
ginning of new replications or batches, which is a good 
use for substreams within streams. 

Current simulation software makes it difficult for the 
user not to use common random numbers, since the de-
fault is to use the same stream with the same seed for all 
runs, including those made with different parameter set-
tings representing the different systems.  However, it is 
currently quite difficult to synchronize properly.  By tick-
ing up a stream counter with each source of randomness 
put into the model, and ticking up a substream counter 
with each additional replication or batch, simulation soft-
ware could promote near-perfect synchronization, with 
sometimes-dramatic improvements in the precision and 
sharpness of the comparisons across the different sys-
tems. 
 

8. Sensitivity and gradient estimation 
 

A natural question to ask of many simulations is “what 
happens if I change this parameter a little bit?”  This is in 
essence a question of estimating a derivative or a gradient 
vector if several parameters are moved at once. 

I would like to be able to tell the software that these 
three or four parameters are critical in this region, and have 
the runs give me back estimates of the partial derivatives 
with respect to these parameters (and, of course, precision 
statements, maybe as confidence intervals, on these de-
rivative estimates).  A currently-available and reliable 
method to do this is known as finite differences. 
 

9. Experimental design 
 

Related to the question of sensitivity estimation is to 
state a somewhat cruder result in terms of the “effect” of 
input factors, and whether (and to what extent) these fac-
tors might interact with each other.  The fundamental prin-
ciples of experimental design have been in development 
since the 1920s, and while being born out of physical (of-
ten agricultural) experiments, they are eminently applicable 
to simulation experiments as well. 

There should be provision for automatic running of full 
factorial experiments, given an identification of the factors 
and a coding chart, producing main effects and interac-
tions across replicated designs for confidence intervals on 
all effects, and presented in graphical formats.  Fractional 
factorial designs should be just as accessible, asking the 
user for factors,  their coding chart, and the desired preci-
sion on the effects estimates, reporting back on fractionat-
ing possibilities, an estimate of run time, and asking the 
user for advice on how to proceed; the results should 
again be graphically displayed as in full-factorial designs.  
There should be factor-screening designs available to pare 
down an initial large number of factors, as well as integra-
tion of regression methods for building response-surface 



metamodels of the key outputs as functions of the impor-
tant inputs. 
 

10. Optimum seeking 
 

Of current interest (and development) are various “con-
troller” packages to run and rerun simulation models in 
pursuit of a combination of input factors that optimizes 
some key output performance measure.  The controller 
package makes its own decisions about how to move 
which input parameters in search of the optimum, based 
on a wide variety of methods and ideas borrowed from the 
nonlinear-programming world.  This capability is of obvi-
ous value, which accounts for the relatively high level of 
current interest. 

Probably the best hope for widely robust, reliable, and 
stable methods lies in the realm of heuristic-search meth-
ods.  These methods avoid simplifying yet highly suspect 
assumptions (e.g., linearity, convexity or concavity) and 
are thus widely applicable.  However, they cannot guaran-
tee an optimum, and it is important to realize this (regard-
less of what might be claimed) in understanding what we 
are getting. 
 

11. Conclusions  
 

The above represents quite a laundry list of desires, 
but it is all doable at this time .  I have not mentioned any-
thing at all for which there are still open research ques-
tions or uncertainties or gaps in our methodological 
knowledge. 

So why haven’t these things been done already?  My 
own speculation is that due to commercial and competitive 
pressures, software developers have been forced into 
short-term reactions to demands from perhaps-short-
sighted customers that development effort be devoted 
instead to more “visible” enhancements like graphics (3-d, 
shadows, reflections, just like the movies) and extreme 
ease of use.  These customers are themselves probably 
only reacting to the short-term thinking of their manage-
ment, and on and on.  So I don’t “blame” the software 
developers or their customers for this state of affairs, but 
only seek to point out that we are in a situation of consid-
erable imbalance between modeling and design/analysis 
capabilities of simulation software. 

I feel it is up to those of us in the research community 
to address this imbalance, by educating about the real 
needs for the quite-feasible developments I’ve outlined 
here.  So maybe this paper can be a start in that direction. 
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