
AN OBJECT-ORIENTED RANDOM-NUMBER PACKAGE WITH MANY LONG STREAMS AND

SUBSTREAMS

PIERRE L’ECUYER and RICHARD SIMARD

Département d’informatique et de recherche opérationnelle, Université de Montréal, C.P. 6128
succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
lecuyer@iro.umontreal.ca • simardr@iro.umontreal.ca

E. JACK CHEN

BASF Corporation, 3000 Continental Drive–North, Mount Olive, New Jersey 07828–1234, USA
chenej@basf.com

W. DAVID KELTON

Department of Management Science and Information Systems, The Smeal College of Business
Administration, 303 Beam, The Pennsylvania State University, University Park, PA 16802-1913,

USA
dkelton@psu.edu

(Received December 2000)

Multiple independent streams of random numbers are often required in simulation studies,
for instance, to facilitate synchronization for variance-reduction purposes, and for making
independent replications. A portable set of software utilities is described for uniform random-
number generation. It provides for multiple generators (streams) running simultaneously,
and each generator (stream) has its sequence of numbers partitioned into many long disjoint
contiguous substreams. The basic underlying generator for this implementation is a combined
multiple recursive generator with period length of approximately 2191, proposed in a previous
paper. A C++ interface is described here. Portable implementations are available in C,
C++, and Java via the Online Companion to this paper on the Operations Research website.

This report is an expanded version of the article by L’Ecuyer et al. (2001).

Subject classifications: Simulation: Random number generation, Simulation: Random vari-
able generation, Simulation: Statistical analysis, Computers/computer science: Software

Experts now recognize that small linear congruential generators (LCGs) with moduli around

231 or so should no longer be used as general-purpose random-number generators (RNGs).

Not only can one exhaust the period in a few minutes on a PC, but more importantly the

poor structure of the points can dramatically bias simulation results for sample sizes much

smaller than the period length.

As an illustration, we consider a variant of the birthday problem, defined as follows.

Partition the unit square [0, 1)2 into k cells (square boxes) of equal sizes. Identify these cells as

0 through k−1. If we generate 2n random numbers U0, . . . , U2n−1, then each non-overlapping

2-tuple Vi = (U2i, U2i+1), i = 0, . . . , n − 1, will fall into some cell Ii ∈ {0, . . . , k − 1}. Let

1

Table I
p-values for the birthday problem.

n y p+(y)

212 2 0.26
213 16 1.9 × 10−14

214 170 < 10−15

215 1310 < 10−15

216 10060 < 10−15

217 53907 < 10−15

I(1) ≤ I(2) ≤ · · · ≤ I(n) be the identification of the cells sorted by increasing order. Compute

the spacings Sj = I(j+1) − I(j), for j = 1, . . . , n − 1, and let Y be the number of values of

j ∈ {1, . . . , n − 2} such that S(j+1) = S(j), where S(1), . . . , S(n−1) are the spacings sorted by

increasing order. These n cells can be viewed as the birthdays (between day 0 and day k−1)

of n people in a world where years have k days, whence the name birthday spacings (Marsaglia

1985, L’Ecuyer and Simard 2001). Suppose we want to estimate E[Y] by simulation, using

the LCG:

xi = axi−1 mod m, ui = xi/m, x0 ∈ {1, . . . ,m − 1},

with a = 16807 and m = 231 − 1. This LCG is widely used. We made ten replications of the

simulation, with n = 215 = 32768 and k ≈ 243, and obtained ten values of Y ranging from

1315 to 1404. (Each replication takes < 0.02 sec on a PC.) One may then conclude that E[Y]

is somewhere between 1300 and 1400. In fact, it can be shown (theoretically) that Y has

approximately the Poisson distribution with mean λ = n3/(4k) when n is large and λ is small

(Marsaglia 1985). Here, we took k ≈ n3/4, so E[Y] = λ ≈ 1. The above estimate is thus

very far from the truth! If Y takes the value y, the (right) p-value is p+(y) = P [Y ≥ y | H0],

where H0 is the null hypothesis that E(Y) = y. Table I gives the estimated value y of E(Y),

and the corresponding p-value, with different values of n and with k ≈ n3/4. In all cases,

the true distribution of Y is approximately Poisson with mean 1. For n ≥ 213, the p-values

are virtually zero, i.e., the estimates are highly inaccurate. Changing the multiplier a brings

no significant improvement: All LCGs start to fail at n ≈ 8m1/3. The problem is that the

structure of the points is much too regular. We clearly need better RNGs!

Much better RNGs have already been proposed to replace older unsafe LCGs. We men-

tion, for instance, the Mersenne twister of Matsumoto and Nishimura (1998), the combined

2

MRGs of L’Ecuyer (1999a), the combined LCGs of L’Ecuyer and Andres (1997), and the

combined Tausworthe generators of L’Ecuyer (1999b). All of these have fairly solid theoret-

ical support, have been extensively tested, and are easy to use.

However, a single RNG does not always suffice. Many disjoint random-number sub-

sequences, each having long period and good statistical properties, are often required in

simulation studies, for instance, to make independent replications or to associate distinct

“streams” of random numbers with different sources of randomness in the system to facili-

tate synchronization for variance reduction (Law and Kelton 2000). Suppose, for instance,

that one wants to perform independent pairs of replications with common random numbers

across the configurations (i.e., between any two replications of the same pair) in order to

compare two different competing configurations of a system. To ensure proper synchroniza-

tion, we want every generator to start from the same seed in both runs of the same pair.

However, in general, these two runs will make a different number of calls to a generator, and

programming “tricks” have to be used to skip a proper amount of random numbers to resyn-

chronize the generators for the next pair without overlap in the random-number streams.

This requires extra programming effort and is error-prone. Good software tools should ease

the programmer’s task in that respect (L’Ecuyer and Côté 1991).

In this paper, we propose a package for uniform random-number generation with multiple

streams of (pseudo)random numbers and convenient tools to move around within and across

these streams. The structure and the tools offered are similar to those in the package pro-

posed by L’Ecuyer and Côté (1991) and L’Ecuyer and Andres (1997). The main differences

are:

• The underlying “backbone” generator is more robust and has longer period than those

used by these authors. We use the combined multiple recursive generator (CMRG)

MRG32k3a proposed by L’Ecuyer (1999a).

• The package proposed here has an object-oriented design. The streams, which can be

seen as virtual RNGs, are declared at will, as instances of a class, instead of being

numbered from 0 to N where N is fixed.

• The generator is implemented in floating-point arithmetic instead of integer arith-

metic. This is faster on most current 32-bit computers, for which 64-bit floating-point

operations are implemented in hardware on the CPU.

3

Other random number packages with multiple streams have been proposed in recent years;

see for example Mascagni and Srinivasan (2000). These packages do not offer the same tools

for streams and substreams as ours, and are not supported by the same theoretical analysis

for the quality and independence of the different streams.

The rest of this paper is organized as follows. Section 1 provides some background on the

backbone CMRG and explains the idea of multiple streams and substreams. In Section 2,

we describe support utilities. We give a quick and easy way to compute a×s mod m for any

positive integer values of a < m, s < m, and m < 232, for computers that support the IEEE-

754 standard (which ensures that floating-point numbers have at least 53 bits of precision for

the mantissa). We also describe a code to compute Av mod m, where A is a square matrix

of integers. These kinds of computations are required for jumping by several steps at a time

in the generator’s sequence (e.g., for jumping to distant streams or substreams). Section 3

describes a package with multiple streams and substreams, and gives the interface of its C++

implementation. Section 4 provides some examples of using this RNG package. Section 5

summarizes. The appendix gives the complete C++ implementation. Implementations in C

and Java are available at http://www.iro.umontreal.ca/~lecuyer.

1 DESCRIPTION AND IMPLEMENTATION OF THE SOFTWARE

1.1 The underlying backbone generator

L’Ecuyer (1999a) gave several good parameter sets for CMRGs of different sizes. We have

selected one of them, called MRG32k3a, as our backbone generator. It has 2 components

each of order 3. At step n, its state is the pair of vectors s1,n = (x1,n, x1,n+1, x1,n+2) and

s2,n = (x2,n, x2,n+1, x2,n+2), which evolve according to the linear recurrences

x1,n = (1403580 × x1,n−2 − 810728 × x1,n−3) mod m1

x2,n = (527612 × x2,n−1 − 1370589 × x2,n−3) mod m2,

where m1 = 232 − 209 = 4294967087 and m2 = 232 − 22853 = 4294944443, and its output un

is defined by

zn = (x1,n − x2,n) mod 4294967087

un =

{
zn/4294967088 if zn > 0
4294967087/4294967088 if zn = 0.

4

Its period length is ρ = (m3
1 − 1)(m3

2 − 1)/2 ≈ 2191 ≈ 3.1 × 1057. RNGs with much

longer periods are also available, but their states must contain more bits and are therefore

more expensive to manipulate. We think that our choice is a reasonable compromise. The

parameters have been chosen so that the period is long, a fast implementation is available (in

floating point arithmetic), and the generator performs well with respect to the spectral test

in up to (at least) 45 dimensions. The spectral test in t dimensions measures the uniformity

of the point set

Tt = {(u0, . . . , ut−1) |(x1,0, x1,1, x1,2) ∈ Z3
m1

, (x2,0, x2,1, x2,2) ∈ Z3
m2

},

where Zm = {0, . . . ,m − 1}, and makes sure that this set covers the t-dimensional unit

hypercube very uniformly. This Tt is the set of all overlapping t-tuples of successive values

produced by the generator, from all possible initial states. It turns out to be the intersection

of a lattice with the t-dimensional unit hypercube. This means that all the points of Tt lie

in a limited number of equidistant parallel hyperplanes. The parameters of the generator

were chosen so that the distance between the successive hyperplanes is close to the minimal

achievable distance given the total number of points m1m2, for all t up to 45.

1.2 Multiple streams and substreams

Let ρ be the period length of the RNG and T its transition function; that is, T (sn) = sn+1

where sn is the generator’s state at step n, and T ρ(s) = s. To partition the generator’s

sequence into disjoint streams and substreams, we choose two positive integers v and w, and

let z = v + w. We first cut the long cycle into adjacent streams of length Z = 2z and then

partition each of these streams into V = 2v blocks (or substreams) of length W = 2w.

If s0 is the initial seed of the generator and Ig denotes the initial state of stream g for

g ≥ 1, then we have I1 = s0, I2 = TZ(s0), . . . , Ig = TZ(Ig−1) = T (g−1)Z(s0), The first

substream of stream g starts in state Ig, the second one in state TW (Ig), the third one in state

T 2W (Ig), and so on. At any moment during program execution, stream g is in some state,

say Cg. We denote by Bg the starting state of the substream that contains the current state,

i.e., of the current substream, and Ng = TW (Bg) the starting state of the next substream. In

the following illustration, for example, the state of stream g is at the 6th value of the third

substream, i.e., 2W + 5 steps ahead of its initial state Ig and 5 steps ahead of Bg. Figure 1

depicts the overall arrangement of the streams and substreams, and indicates the spacings

and number of each.

5

Cg⇓.

Ig Bg Ng

Whenever a new stream is created (instantiated), say the gth stream, the software auto-

matically computes Ig = TZ(Ig−1) and puts Cg = Bg = Ig. When going from a substream

to the next one, the software must compute Ng = TW (Bg). Of course, W and Z must

be huge numbers, so a quick way to compute sn+ν from sn for large integers ν, without

generating the intermediate values, must be available. For a combined MRG, we can do

this for each of its components separately, as explained in L’Ecuyer (1990): one can write

sj,n+1 = Ajsj,n mod mj for some 3×3 matrix Aj, and then sj,n+ν = (Aν
j mod mj)sj,n mod mj,

see Section 2.2. The matrix Aν
j mod mj is computed via a standard divide-and-conquer al-

gorithm (Knuth 1998), and can be precomputed once for ν = W and ν = Z. Most other

random-number packages offer no facility for jumping ahead directly from sn to sn+ν or to

compute distant seeds efficiently.

1.3 Choice of v and w

We have selected v = 51 and w = 76, so W = 276 and Z = 2127. To select v and w,

a spectral test for the vectors of non-successive output values spaced h = 2l steps apart

was performed for different integer values of l, and we chose v and w so that the be-

havior was good for l = v, l = w, and l = v + w. More specifically, let Tt(s, h) be

the point set obtained if we replace (un, . . . , un+t−1) by the first t components of the se-

quence (un, . . . , un+s−1, uh, . . . , un+h+s−1, un+2h, . . . , un+2h+s−1, . . .) in the definition of Tt. If

the streams are started h apart, the points of Tt(s, h) are those obtained by taking s suc-

cessive values from the first stream, s successive values from the second stream, and so on

until t values have been taken. These points have a lattice structure and we have selected l

so that it is good (the hyperplanes are close together) for h = 2l and (say) all s ≤ 16 and

t ≤ 32. This was done for 51 ≤ l ≤ 150 and we found that the structure was particularly

good for l = 51, 76, and 127.

1.4 Precision and Speed of the RNG

Note that the generator gives no more than 32 bits of precision even though it returns 53-bit

floating-point numbers. If higher precision is required, successive numbers produced by the

6

Figure 1
Overall arrangement of streams and substreams for the package.

7

Table II
Timing reports.
Time to generate 109 Random numbers

Function random numbers (minutes) generated per second

RandU01 12.9 1288659
RandU01 (inc. prec.) 28.5 585480
RandInt 18.5 901713
lcgrand 14.8 1127395

generator may be used to construct each output value. That is, if the generator outputs the

sequence u1, u2, . . . , one can construct and use the sequence v1, v2, . . . , defined by

vi = (vu2i + u2i−1) mod 1

for some appropriate constant v, for instance v = 2−24.

Table II gives the total elapsed time (in minutes) for 109 (one billion) calls to a given

function from the package, and the number of random numbers generated per second for

certain specific generators, on a Pentium III computer at 600MHz with 128MB of RAM,

running Windows 98 and C++ codes compiled with Microsoft visual C++ version 6.0. To

get an idea of the comparative speeds of the implementations, we also include the timing of

LCG lcgrand of Law and Kelton (2000, pp. 430-431). Note that lcgrand is implemented

with integer arithmetic. Furthermore, these one billion random numbers represent almost

half of the entire period of lcgrand, which would have been exhausted in about a half hour

on our machine. The absolute times of generating the random numbers are extremely small

and will be masked by other things going on in most simulations. If we use Moore’s law

assuming that computing speed doubles every 1.5 years, it will be approximately 219 years

into the future before average desktop computers will have the capability to exhaust the

cycle of RandU01 in a year of continuous computing.

2 SUPPORT UTILITIES

Some random-number packages offer a limited number of fixed streams, all based on the

same generator, but using fixed starting seeds set, say, 100,000 values apart. This provides

relatively low flexibility, as well as streams that are far too short (close together) for modern

computers (even PCs). A simple procedure call should permit resetting a generator to

8

a previous seed or jumping ahead to a new seed for the next run. Implementing such

tools requires efficient jumping-ahead facilities, which in turn requires efficient procedures

to compute the quantity a × s mod m.

2.1 Computing a × s mod m

If the product a × s ≤ 253, then it is always represented exactly in floating point on 32-

bit computers that support the IEEE-754 floating-point arithmetic standard, with at least

53 bits of precision for the mantissa. The generator can then be implemented directly in

floating-point arithmetic, which is typically faster than an integer arithmetic implementation

since it is done in hardware on the CPU. On the other hand, with this implementation, the

state of the generator is represented over 64 k × J bits, as opposed to 32 k × J bits when

the xj,n are represented as 32-bit integers.

Now, consider a 32-bit computer on which all integers between −231 and 231 (exclusive)

are well represented. We want to compute a × s mod m, where a, s, and m are positive

integers smaller than 232. Without loss of generality, we assume that a < m and s < m (if

not, replace a and s by a mod m and s mod m, respectively). Performing the computation

is tricky, because the product of a × s can exceed 263, while double precision in most 32-bit

computers carries no more than 53 bits of accuracy.

An algorithm was developed to compute a × s mod m with exact accuracy for the case

where a × s > 253 by making sure that no operations in the algorithm produces a number

greater than 253. A direct approach, based on decomposition, operates as follows. Rewrite

a = a1 × 217 + a2,

so

a × s = a1 × s × 217 + a2 × s.

Therefore,

a × s mod m = ((a1 × s mod m) × 217 + a2 × s) mod m

where a1 < 215, so a1×s < 247(= 215×232), a2 < 217, and a2×s < 249(= 217×232). Because

v = (a1 × s mod m) < 232, we have v × 217 < 249 so that all the intermediate terms in the

above computations are less than 253. Therefore, all seed values will have exact accuracy.

Refer to function MultModM in Appendix A for an implementation of this algorithm. Even

9

though a, s, and m are positive integers, they are declared (and represented) as double

internally in our C++ implementation.

2.2 Computing Av mod m

The initial state of substreams can be computed easily if jumping-ahead facilities are avail-

able for the individual MRG components; that is, if an efficient algorithm is available for

computing the state of the MRG v steps ahead of the current one, for large values of v.

L’Ecuyer (1990) explains one way of doing that, based on the fact that the MRG can be

viewed as a LCG in matrix form, whose state is a k-dimensional vector and whose multiplier

is a k×k matrix A. To jump ahead by v values, just multiply the current state by Av mod m.

The matrix Av mod m can be pre-computed in time O(log v), using the divide-and-conquer

algorithm (Brassard and Bratley 1988, Knuth 1998, L’Ecuyer 1996).

That is, for the MRG, sn+v can be computed directly from sn using

sn+v = (Avsn) mod m = (Av mod m)sn mod m (1)

where

A =

0 1 · 0
· · · ·
0 0 · 1
ak ak−1 · a1

 . (2)

When A has this special structure, the first k − 1 components of sn are obtained by shifting

the last k − 1 components of sn−1, and the last component of sn is a linear combination of

the components of sn−1 according to the MRG recursion (L’Ecuyer 1990).

Thus, in our implementation the matrix A1 for s1,n to jump ahead one step is

A1 =

 0 1 0

0 0 1
−810728 1403580 0

and the matrix A2 for s2,n to jump ahead one step is

A2 =

 0 1 0

0 0 1
−1370589 0 527612

 .

The divide-and-conquer algorithm computes the jump-ahead matrix Av using the follow-

ing recursion:

Av mod m =

A if v = 1;
A × Av−1 mod m if v > 1, v odd;
Av/2 × Av/2 mod m if v > 1, v even.

10

See the procedure MatPowModM in Appendix A for an implementation of this algorithm

for a 3 × 3 matrix.

2.3 Jumping Backward

Fermat’s first theorem tells us that A
ρj

j mod mj = I, where ρj is the period length of the

jth MRG component, because each component has a primitive characteristic polynomial.

Therefore, Bj = A
ρj−1
j mod mj is the multiplicative inverse of Aj mod mj. This means that

Bj is the jump-back-one-step matrix: Given a vector sj,n, one can jump back v steps to sj,n−v

by multiplying sj,n by Bv
j . The matrix Bj generates the same stream but in reverse order.

As we can see from the new recursion below, the values of the parameters bij are much larger

than the original ones, where the bij are the parameters of the new CMRG. Furthermore,

we no longer have bij(mj − 1) < 253 for all bij, so that the implementation would be slower

than that of the original recursion.

The matrix B1 for s1,n to jump back one step is

B1 =

 184888585 0 1945170933

1 0 0
0 1 0

and for s2,n to jump back one step we have

B2 =

 0 360363334 4225571728

1 0 0
0 1 0

 .

The reverse stream follows the recursion

x1,n = (184888585 × x1,n+1 + 1945170933 × x1,n+3) mod 4294967087,

x2,n = (360366334 × x2,n+2 + 4225571728 × x2,n+3) mod 4294944443

= (360366334 × x2,n+2 − 69372715 × x2,n+3) mod 4294944443.

3 A PORTABLE AND EFFICIENT PACKAGE FOR RANDOM-NUMBER GENERATION

We now provide a set of portable utilities for random-number generation. The initial values

of (x1,0, x1,1, x1,2) can be any non-negative integer values less than m1 and not all zero, and

the initial values of (x2,0, x2,1, x2,2) can be any non-negative integer values less than m2 and

not all zero.

11

The initial seed of the main generator s0 is the starting point of the first stream I1. In the

proposed package, the initial seed s0 = I1 is set to the default value (12345, 12345, 12345, 12345,

12345, 12345), but this value can be changed by the user (via SetPackageSeed). Each time

a new RngStream object is created, its starting point (initial seed) Ig is set Z = 2127 steps

ahead of the starting point of the last created object. A vector named nextSeed is used to

keep the seed values of the next created RngStream object (stream). For example, the decla-

ration “RngStream g;” creates a stream with Ig equal to nextSeed and advances nextSeed

by Z steps. Because the initial seed for each RngStream object is computed dynamically, no

pre-computed list of seeds is needed.

For each RngStream, one can generate one value and go ahead one step, or go ahead to

the beginning of the next substream within this stream, or go back to the beginning of the

current substream, or to the beginning of the stream, or jump ahead or back by an arbitrary

number of steps. As discussed in Section 1.1, the spacing between adjacent substreams is

W = 276. To get a feel for the extent of these spacings of streams and substreams, it would

take over 1.8 billion years for RandU01 to exhaust one of the substreams using the hardware

producing the timings of Table II. Once again assuming that Moore’s law will continue to

hold, RandU01 will require two months on an average desktop computer 50 years from now

to exhaust one of the substreams (but over 385 millennia to exhaust one of the streams).

Several pre-computed jump matrices are provided in the RngStream class. With these

jump matrices, we are able to compute the initial seed for each stream dynamically and reset

the stream to various states. Thus, each instance of RngStream can assume different disjoint

streams of which there are 264 ≈ 1.8 × 1019 (so are virtually unlimited). Moreover, one can

use AdvanceState to jump ahead or backward.

The methods Reset* reset a given stream either to its initial state (Cg ← Ig and Bg ← Ig),

or to the beginning of its current substream (Cg ← Bg), or to the beginning of its next

substream (Cg ← Ng and Bg ← Ng). The method GetState returns the state of a stream.

One can change the seed of a given stream, without modifying that of other streams, by

invoking SetSeed or AdvanceState. However, after calling SetSeed for a given stream, the

initial states of the different streams are no longer spaced Z values apart. Therefore, this

method should be used only in exceptional cases. The methods Reset* suffices for almost

all applications.

The methods RandU01 and RandInt generate the uniform (pseudo)random numbers.

12

Each stream can produce (if desired) antithetic random numbers with respect to the uniforms

normally produced, i.e., return 1 − U instead of U , by calling SetAntithetic, or produce

53-bit precision random numbers by calling IncreasePrecis.

Here are examples of situations where the tools offered in this package are useful:

• Compare two or more similar systems, via simulation with common random numbers,

with n simulation runs for each system. To guarantee that the same random numbers

are used across the systems with good synchronization, assign different streams to

different places where random numbers are needed in the model (e.g., to compare

queuing systems, use one stream for interarrival times, one stream for the service

times at each queue, one stream for a routing decision, etc.). To make sure that each

stream starts from the same state across the different systems, assign run j to the jth

substream, within each stream. The experiment then proceeds as follows. For the first

system, simulate run 1 by starting all the streams from their initial seed, Ig. Before

each new run, advance all the streams to the initial state of their next substream, Ng.

After the nth run, reset all the streams to their initial state, Ig. Repeat for each system

to compare; see Example 2 in Section 4. Note that in this application, the substreams

correspond to replications within each stream.

• Run simulations on several processors, in parallel, and each processor is to have its

own (virtual) generator. In this case, simply use one stream for each processor. There

must be a central authority, or monitor, to manage the allocation of the streams, but

once a stream is allocated, the processors can go their own way, independently of each

other. In this setup, the processors in fact use the same generator, but with different

seeds. This makes the implementation much easier than if a different generator must

be implemented on each processor.

We now describe the members of the C++ class RngStream. This is the file RngStream.h,

with comments.

13

#ifndef RNGSTREAM_H
#define RNGSTREAM_H
#include <string>

class RngStream
{
public:

RngStream (const char *name = "");
This constructor creates a new stream with (optional) descriptor name. It initializes its seed Ig,
and sets Bg and Cg to Ig. It also sets its anti and incPrec switches to false. The seed Ig is
equal to the initial seed of the package if this is the first stream created; otherwise it is Z steps
ahead of the seed of the most recently created stream.

static void SetPackageSeed (const unsigned long seed[6]);
Sets the initial seed s0 of the package to the six integers in the vector seed. The first 3 integers
in the seed must all be less than m1 = 4294967087, and not all 0; and the last 3 integers must
all be less than m2 = 4294944443, and not all 0. If this method is not called, the default initial
seed is (12345, 12345, 12345, 12345, 12345, 12345).

void ResetStartStream ();
Reinitializes the stream to its initial state: Cg and Bg are set to Ig.

void ResetStartSubstream ();
Reinitializes the stream to the beginning of its current substream: Cg is set to Bg.

void ResetNextSubstream ();
Reinitializes the stream to the beginning of its next substream: Ng is computed, and Cg and
Bg are set to Ng.

void SetAntithetic (bool a);
If a = true, the stream will start generating antithetic variates, i.e., 1 − U instead of U , until
this method is called again with a = false.

void IncreasedPrecis (bool incp);
After calling this method with incp = true, each call to the generator (direct or indirect)
for this stream will return a uniform random number with more bits of resolution (53 bits if
machine follows IEEE 754 standard) instead of 32 bits, and will advance the state of the stream
by 2 steps instead of 1. More precisely, if s is a stream of the class RngStream, in the non-
antithetic case, the instruction “u = s.RandU01()” will be equivalent to “u = (s.RandU01()
+ s.RandU01() * fact) % 1.0” where the constant fact is equal to 2−24. This also applies
when calling RandU01 indirectly (e.g., via RandInt, etc.). By default, or if this method is called
again with incp = false, each call to RandU01 for this stream advances the state by 1 step
and returns a number with 32 bits of resolution.

void SetSeed (const unsigned long seed[6]);
Sets the initial seed Ig of the stream to the vector seed. The vector seed should contain valid
seed values as described in SetPackageSeed. The state of the stream is then reset to this initial
seed. The states and seeds of the other streams are not modified. As a result, after calling this

14

method, the initial seeds of the streams are no longer spaced Z values apart. We discourage
the use of this method; proper use of the Reset* methods is preferable.

void AdvanceState (long e, long c);
Advances the state by n steps (see below for the meaning of n), without modifying the states
of other streams or the values of Bg and Ig in the current object. If e > 0, then n = 2e + c; if
e < 0, then n = −2−e + c; and if e = 0, then n = c. Note: c is allowed to take negative values.
We discourage the use of this method.

void GetState (unsigned long seed[6]) const;
Returns in seed[0..5] the current state Cg of this stream. This is convenient if we want to
save the state for subsequent use.

void WriteState () const;
Writes (to standard output) the current state Cg of this stream.

void WriteStateFull () const;
Writes (to standard output) the value of all the internal variables of this stream: name, anti,
incPrec, Ig, Bg, Cg.

double RandU01 ();
Normally, returns a (pseudo)random number from the uniform distribution over the interval
(0, 1), after advancing the state by one step. The returned number has 32 bits of precision in
the sense that it is always a multiple of 1/(232−208). However, if IncreasedPrecis(true) has
been called for this stream, the state is advanced by two steps and the returned number has 53
bits of precision.

long RandInt (long i, long j);
Returns a (pseudo)random number from the discrete uniform distribution over the integers
{i, i + 1, . . . , j}. Makes one call to RandU01.

private:

double Cg[6], Bg[6], Ig[6];
Vectors to store the current seed, the beginning of the current block (substream) and the
beginning of the current stream.

bool anti, incPrec;
Variables to indicate whether to generate antithetic or increased precision random numbers.

std::string name;
String to store the optional name of the current RngStream object.

static double nextSeed[6];
Static vector to store the beginning state of the next RngStream to be created (instantiated).

double U01 ();
The backbone uniform random number generator.

double U01d ();
The backbone uniform random number generator with increased precision.

15

};

#endif

4 EXAMPLES

Example1.c in Figure 2 shows how we generate a list of ten seed vectors. We set the package
seed to {327612383, 317095578, 14704821, 884064067, 1017894425, 16401881} by calling
SetPackageSeed before instantiating any RngStream object. Note that if SetPackageSeed
is not executed, {12345, 12345, 12345, 12345, 12345, 12345} will be used as the default
package seed. The declaration “RngStream RngObj” is inside the for loop on i. Therefore,
the instance of the object dies before the next iteration, i.e., the object RngObj is not
available outside the for loop on i. Each declaration will create the RngObj instance with
Ig = Bg = Cg = nextSeed and advance nextSeed by 2127 steps. Thus, the output seeds will
be 2127 apart.

Figure 2
example1.C.

#include "RngStream.h"

int main ()

{

unsigned long seed[6] = { 327612383, 317095578, 14704821,

884064067, 1017894425, 16401881 };

RngStream::SetPackageSeed (seed);

for (int i = 1; i <= 10; ++i) {

RngStream RngObj;

RngObj.WriteState();

};

}

Example2.c in Figure 3 shows how to apply some of the utilities supplied in the package.

The declarations “RngStream RngObj1” and “RngStream RngObj2” will create the RNG

objects with

Ig = Bg = Cg = {12345, 12345, 12345, 12345, 12345, 12345}

and

Ig = Bg = Cg = {3692455944, 1366884236, 2968912127, 335948734, 4161675175, 475798818},

16

respectively, i.e., 2127 steps apart. The first RNG object RngObj1 may be dedicated to

generate interarrival times while the second RNG object RngObj2 may be dedicated to gen-

erate service times, for some queueing system to be simulated. We generate five interarrival

times and five service times, then move each RNG to its next substream. This is repeated

ten times, thus yielding ten vectors, each containing five interarrival times and five ser-

vice times. Moreover, these ten vectors will be exactly the same at iterations k = 0 and

k = 1 of the outer for loop, because the statements “RngObj1.ResetStartStream” and

“RngObj2.ResetStartStream” will reset the current seeds Cg of both RNG objects to the

initial seed Ig.

Figure 3
example2.C.

#include <math.h>

#include "RngStream.h"

int main ()

{

RngStream RngObj1;

RngStream RngObj2;

double interArrival;

double serviceTime;

for (int k = 0; k <= 1; ++k) {

for (int j = 1; j <= 10; ++j) {

for (int i = 1; i <= 5; ++i) {

interArrival = -log (1.0 - RngObj1.RandU01());

serviceTime = -0.9 * log (1.0 - RngObj2.RandU01());

};

RngObj1.ResetNextSubstream ();

RngObj2.ResetNextSubstream ();

};

RngObj1.ResetStartStream ();

RngObj2.ResetStartStream ();

};

}

17

5 SUMMARY

We have discussed the backbone CMRG random-number generator, several utilities to en-

hance its practical use, and implementation issues. We briefly mentioned how the spacing

between each stream was chosen, based on a lattice-structure analysis of its successive out-

put values. We implemented a RNG package in the C++ language. Our implementation

eliminates the need to use a fixed number of pre-computed seeds, which would provide little

flexibility. The proposed RNG package provides jumping facilities, has good speed, a long

period, and excellent theoretical/statistical properties.

ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada grant number ODGP0110050 to the first

author. We thank C. Dennis Pegden for suggesting the type of depiction in Figure 1.

REFERENCES

Brassard, G and P. Bratley. 1988. Algorithmics, Theory and Practice. Prentice-Hall.

Knuth, D. E. 1998. The Art of Computer Programming, Volume 2: Seminumerical Algo-

rithms. Third ed. Reading, Mass.: Addison-Wesley.

Law, A. M and W. D. Kelton. 2000. Simulation Modeling and Analysis. Third ed. New

York: McGraw-Hill.

L’Ecuyer, P. 1990. Random numbers for simulation. Communications of the ACM, 33(10),

85–97.

L’Ecuyer, P. 1996. Combined multiple recursive random number generators. Operations

Research, 44(5), 816–822.

L’Ecuyer, P. 1999a. Good parameters and implementations for combined multiple recursive

random number generators. Operations Research, 47(1), 159–164.

L’Ecuyer, P. 1999b. Tables of maximally equidistributed combined LFSR generators. Math-

ematics of Computation, 68(225), 261–269.

L’Ecuyer, P and T. H. Andres. 1997. A random number generator based on the combination

of four LCGs. Mathematics and Computers in Simulation, 44, 99–107.

18

L’Ecuyer, P. and S. Côté. 1991. Implementing a random number package with splitting

facilities. ACM Transactions on Mathematical Software, 17(1), 98–111.

L’Ecuyer, P. and R. Simard. 2001. On the performance of birthday spacings tests for certain

families of random number generators. Mathematics and Computers in Simulation,

55(1–3), 131–137.

L’Ecuyer, P., R. Simard, E. J. Chen, and W. D. Kelton. 2001. An object-oriented random-

number package with many long streams and substreams. Submitted.

Marsaglia, G. 1985. A current view of random number generators. In Computer Science

and Statistics, Sixteenth Symposium on the Interface, 3–10, North-Holland, Amsterdam.

Elsevier Science Publishers.

Mascagni, M and A. Srinivasan. 2000. Algorithm 806: SPRNG: A scalable library for

pseudorandom number generation. ACM Transactions on Mathematical Software, 26,

436–461.

Matsumoto, M. and T. Nishimura. 1998. Mersenne twister: A 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACM Transactions on Modeling

and Computer Simulation, 8(1), 3–30.

19

APPENDIX A. A C++ IMPLEMENTATION

/***\
*
* File: RngStream.cpp for multiple streams of Random Numbers
* Language: C++
* Copyright: Pierre L’Ecuyer, University of Montreal
* Notice: This code can be used freely for personnal, academic,
* or non-commercial purposes. For commercial purposes,
* please contact P. L’Ecuyer at: lecuyer@iro.umontreal.ca
* Date: 14 August 2001
*

***/

#include <cstdlib>
#include <iostream>
#include "RngStream.h"
using namespace std;

namespace
{
const double m1 = 4294967087.0;
const double m2 = 4294944443.0;
const double norm = 1.0 / (m1 + 1.0);
const double a12 = 1403580.0;
const double a13n = 810728.0;
const double a21 = 527612.0;
const double a23n = 1370589.0;
const double two17 = 131072.0;
const double two53 = 9007199254740992.0;
const double fact = 5.9604644775390625e-8; /* 1 / 2^24 */

// The following are the transition matrices of the two MRG components
// (in matrix form), raised to the powers -1, 1, 2^76, and 2^127, resp.

const double InvA1[3][3] = { // Inverse of A1p0
{ 184888585.0, 0.0, 1945170933.0 },
{ 1.0, 0.0, 0.0 },
{ 0.0, 1.0, 0.0 }
};

const double InvA2[3][3] = { // Inverse of A2p0
{ 0.0, 360363334.0, 4225571728.0 },
{ 1.0, 0.0, 0.0 },
{ 0.0, 1.0, 0.0 }
};

20

const double A1p0[3][3] = {
{ 0.0, 1.0, 0.0 },
{ 0.0, 0.0, 1.0 },
{ -810728.0, 1403580.0, 0.0 }
};

const double A2p0[3][3] = {
{ 0.0, 1.0, 0.0 },
{ 0.0, 0.0, 1.0 },
{ -1370589.0, 0.0, 527612.0 }
};

const double A1p76[3][3] = {
{ 82758667.0, 1871391091.0, 4127413238.0 },
{ 3672831523.0, 69195019.0, 1871391091.0 },
{ 3672091415.0, 3528743235.0, 69195019.0 }
};

const double A2p76[3][3] = {
{ 1511326704.0, 3759209742.0, 1610795712.0 },
{ 4292754251.0, 1511326704.0, 3889917532.0 },
{ 3859662829.0, 4292754251.0, 3708466080.0 }
};

const double A1p127[3][3] = {
{ 2427906178.0, 3580155704.0, 949770784.0 },
{ 226153695.0, 1230515664.0, 3580155704.0 },
{ 1988835001.0, 986791581.0, 1230515664.0 }
};

const double A2p127[3][3] = {
{ 1464411153.0, 277697599.0, 1610723613.0 },
{ 32183930.0, 1464411153.0, 1022607788.0 },
{ 2824425944.0, 32183930.0, 2093834863.0 }
};

//---
// Return (a*s + c) MOD m; a, s, c and m must be < 2^35
//
double MultModM (double a, double s, double c, double m)
{

double v;
long a1;

v = a * s + c;

21

if (v >= two53 || v <= -two53) {
a1 = static_cast<long> (a / two17); a -= a1 * two17;
v = a1 * s;
a1 = static_cast<long> (v / m); v -= a1 * m;
v = v * two17 + a * s + c;

}

a1 = static_cast<long> (v / m);
/* in case v < 0)*/
if ((v -= a1 * m) < 0.0) return v += m; else return v;

}

//---
// Compute the vector v = A*s MOD m. Assume that -m < s[i] < m.
// Works also when v = s.
//
void MatVecModM (const double A[3][3], const double s[3], double v[3],

double m)
{

int i;
double x[3]; // Necessary if v = s

for (i = 0; i < 3; ++i) {
x[i] = MultModM (A[i][0], s[0], 0.0, m);
x[i] = MultModM (A[i][1], s[1], x[i], m);
x[i] = MultModM (A[i][2], s[2], x[i], m);

}
for (i = 0; i < 3; ++i)

v[i] = x[i];
}

//---
// Compute the matrix C = A*B MOD m. Assume that -m < s[i] < m.
// Note: works also if A = C or B = C or A = B = C.
//
void MatMatModM (const double A[3][3], const double B[3][3],

double C[3][3], double m)
{

int i, j;
double V[3], W[3][3];

for (i = 0; i < 3; ++i) {
for (j = 0; j < 3; ++j)

V[j] = B[j][i];
MatVecModM (A, V, V, m);
for (j = 0; j < 3; ++j)

22

W[j][i] = V[j];
}
for (i = 0; i < 3; ++i)

for (j = 0; j < 3; ++j)
C[i][j] = W[i][j];

}

//---
// Compute the matrix B = (A^(2^e) Mod m); works also if A = B.
//
void MatTwoPowModM (const double A[3][3], double B[3][3], double m, long e)
{

int i, j;

/* initialize: B = A */
if (A != B) {

for (i = 0; i < 3; ++i)
for (j = 0; j < 3; ++j)

B[i][j] = A[i][j];
}
/* Compute B = A^(2^e) mod m */
for (i = 0; i < e; i++)

MatMatModM (B, B, B, m);
}

//---
// Compute the matrix B = (A^n Mod m); works even if A = B.
//
void MatPowModM (const double A[3][3], double B[3][3], double m, long n)
{

int i, j;
double W[3][3];

/* initialize: W = A; B = I */
for (i = 0; i < 3; ++i)

for (j = 0; j < 3; ++j) {
W[i][j] = A[i][j];
B[i][j] = 0.0;

}
for (j = 0; j < 3; ++j)

B[j][j] = 1.0;

/* Compute B = A^n mod m using the binary decomposition of n */
while (n > 0) {

if (n % 2) MatMatModM (W, B, B, m);
MatMatModM (W, W, W, m);

23

n /= 2;
}

}

//---
// Check that the seeds are legitimate values. Returns 0 if legal seeds,
// -1 otherwise.
//
int CheckSeed (const unsigned long seed[6])
{

int i;

for (i = 0; i < 3; ++i) {
if (seed[i] >= m1) {

cerr << "**\n\n"
<< "ERROR: Seed[" << i << "] >= 4294967087, Seed is not set."
<< "\n\n**\n\n";

return (-1);
}

}
for (i = 3; i < 6; ++i) {

if (seed[i] >= m2) {
cerr << "***\n\n"

<< "ERROR: Seed[" << i << "] >= 4294944443, Seed is not set."
<< "\n\n***\n\n";

return (-1);
}

}
if (seed[0] == 0 && seed[1] == 0 && seed[2] == 0) {

cerr << "****************************\n\n"
<< "ERROR: First 3 seeds = 0.\n\n"
<< "****************************\n\n";

return (-1);
}
if (seed[3] == 0 && seed[4] == 0 && seed[5] == 0) {

cerr << "****************************\n\n"
<< "ERROR: Last 3 seeds = 0.\n\n"
<< "****************************\n\n";

return (-1);
}

return 0;
}

} // end of anonymous namespace

24

//---
// Generate the next random number.
//
double RngStream::U01 ()
{

long k;
double p1, p2, u;

/* Component 1 */
p1 = a12 * Cg[1] - a13n * Cg[0];
k = static_cast<long> (p1 / m1);
p1 -= k * m1;
if (p1 < 0.0) p1 += m1;
Cg[0] = Cg[1]; Cg[1] = Cg[2]; Cg[2] = p1;

/* Component 2 */
p2 = a21 * Cg[5] - a23n * Cg[3];
k = static_cast<long> (p2 / m2);
p2 -= k * m2;
if (p2 < 0.0) p2 += m2;
Cg[3] = Cg[4]; Cg[4] = Cg[5]; Cg[5] = p2;

/* Combination */
u = ((p1 > p2) ? (p1 - p2) * norm : (p1 - p2 + m1) * norm);

return (anti == false) ? u : (1 - u);
}

//---
// Generate the next random number with extended (53 bits) precision.
//
double RngStream::U01d ()
{

double u;
u = U01();
if (anti) {

// Don’t forget that U01() returns 1 - u in the antithetic case
u += (U01() - 1.0) * fact;
return (u < 0.0) ? u + 1.0 : u;

} else {
u += U01() * fact;
return (u < 1.0) ? u : (u - 1.0);

}
}

//***

25

// Public members of the class start here

//---
// The default seed of the package; will be the seed of the first
// declared RngStream, unless SetPackageSeed is called.
//
double RngStream::nextSeed[6] =
{

12345.0, 12345.0, 12345.0, 12345.0, 12345.0, 12345.0
};

//---
// constructor
//
RngStream::RngStream (const char *s) : name (s)
{

anti = false;
incPrec = false;

/* Information on a stream. The arrays {Cg, Bg, Ig} contain the current
state of the stream, the starting state of the current SubStream, and the
starting state of the stream. This stream generates antithetic variates
if anti = true. It also generates numbers with extended precision (53
bits if machine follows IEEE 754 standard) if incPrec = true. nextSeed
will be the seed of the next declared RngStream. */

for (int i = 0; i < 6; ++i) {
Bg[i] = Cg[i] = Ig[i] = nextSeed[i];

}

MatVecModM (A1p127, nextSeed, nextSeed, m1);
MatVecModM (A2p127, &nextSeed[3], &nextSeed[3], m2);

}

//---
// Reset Stream to beginning of Stream.
//
void RngStream::ResetStartStream ()
{

for (int i = 0; i < 6; ++i)
Cg[i] = Bg[i] = Ig[i];

}

//---

26

// Reset Stream to beginning of SubStream.
//
void RngStream::ResetStartSubstream ()
{

for (int i = 0; i < 6; ++i)
Cg[i] = Bg[i];

}

//---
// Reset Stream to NextSubStream.
//
void RngStream::ResetNextSubstream ()
{

MatVecModM(A1p76, Bg, Bg, m1);
MatVecModM(A2p76, &Bg[3], &Bg[3], m2);
for (int i = 0; i < 6; ++i)

Cg[i] = Bg[i];
}

//---
void RngStream::SetPackageSeed (const unsigned long seed[6])
{

if (CheckSeed (seed)) exit (EXIT_FAILURE);
for (int i = 0; i < 6; ++i)

nextSeed[i] = seed[i];
}

//---
void RngStream::SetSeed (const unsigned long seed[6])
{

if (CheckSeed (seed)) exit (EXIT_FAILURE);
for (int i = 0; i < 6; ++i)

Cg[i] = Bg[i] = Ig[i] = seed[i];
}

//---
// if e > 0, let n = 2^e + c;
// if e < 0, let n = -2^(-e) + c;
// if e = 0, let n = c.
// Jump n steps forward if n > 0, backwards if n < 0.
//
void RngStream::AdvanceState (long e, long c)
{

double B1[3][3], C1[3][3], B2[3][3], C2[3][3];

27

if (e > 0) {
MatTwoPowModM (A1p0, B1, m1, e);
MatTwoPowModM (A2p0, B2, m2, e);

} else if (e < 0) {
MatTwoPowModM (InvA1, B1, m1, -e);
MatTwoPowModM (InvA2, B2, m2, -e);

}

if (c >= 0) {
MatPowModM (A1p0, C1, m1, c);
MatPowModM (A2p0, C2, m2, c);

} else {
MatPowModM (InvA1, C1, m1, -c);
MatPowModM (InvA2, C2, m2, -c);

}

if (e) {
MatMatModM (B1, C1, C1, m1);
MatMatModM (B2, C2, C2, m2);

}

MatVecModM (C1, Cg, Cg, m1);
MatVecModM (C2, &Cg[3], &Cg[3], m2);

}

//---
void RngStream::GetState (unsigned long seed[6]) const
{

for (int i = 0; i < 6; ++i)
seed[i] = static_cast<unsigned long> (Cg[i]);

}

//---
void RngStream::WriteState () const
{

cout << "The current state of the Rngstream";
if (name.size() > 0)

cout << " " << name;
cout << ":\n Cg = { ";

for (int i = 0; i < 5; i++) {
cout << static_cast<unsigned long> (Cg [i]) << ", ";

}
cout << static_cast<unsigned long> (Cg [5]) << " }\n\n";

}

28

//---
void RngStream::WriteStateFull () const
{

int i;

cout << "The RngStream";
if (name.size() > 0)

cout << " " << name;
cout << ":\n anti = " << (anti ? "true" : "false") << "\n";
cout << " incPrec = " << (incPrec ? "true" : "false") << "\n";

cout << " Ig = { ";
for (i = 0; i < 5; i++) {

cout << static_cast<unsigned long> (Ig [i]) << ", ";
}
cout << static_cast<unsigned long> (Ig [5]) << " }\n";

cout << " Bg = { ";
for (i = 0; i < 5; i++) {

cout << static_cast<unsigned long> (Bg [i]) << ", ";
}
cout << static_cast<unsigned long> (Bg [5]) << " }\n";

cout << " Cg = { ";
for (i = 0; i < 5; i++) {

cout << static_cast<unsigned long> (Cg [i]) << ", ";
}
cout << static_cast<unsigned long> (Cg [5]) << " }\n\n";

}

//---
void RngStream::IncreasedPrecis (bool incp)
{

incPrec = incp;
}

//---
void RngStream::SetAntithetic (bool a)
{

anti = a;
}

//---
// Generate the next random number.
//

29

double RngStream::RandU01 ()
{

if (incPrec)
return U01d();

else
return U01();

}

//---
// Generate the next random integer.
//
long RngStream::RandInt (long low, long high)
{

return low + static_cast<long> ((high - low + 1) * RandU01 ());
};

30

